factory.py 14.8 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
16
17
"""Factory methods to build models."""

# Import libraries
Abdullah Rashwan's avatar
Abdullah Rashwan committed
18

Abdullah Rashwan's avatar
Abdullah Rashwan committed
19
20
21
22
23
import tensorflow as tf

from official.vision.beta.configs import image_classification as classification_cfg
from official.vision.beta.configs import maskrcnn as maskrcnn_cfg
from official.vision.beta.configs import retinanet as retinanet_cfg
Abdullah Rashwan's avatar
Abdullah Rashwan committed
24
from official.vision.beta.configs import semantic_segmentation as segmentation_cfg
Yeqing Li's avatar
Yeqing Li committed
25
from official.vision.beta.modeling import backbones
Abdullah Rashwan's avatar
Abdullah Rashwan committed
26
from official.vision.beta.modeling import classification_model
27
from official.vision.beta.modeling import decoders
Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
29
from official.vision.beta.modeling import maskrcnn_model
from official.vision.beta.modeling import retinanet_model
Abdullah Rashwan's avatar
Abdullah Rashwan committed
30
from official.vision.beta.modeling import segmentation_model
Abdullah Rashwan's avatar
Abdullah Rashwan committed
31
32
from official.vision.beta.modeling.heads import dense_prediction_heads
from official.vision.beta.modeling.heads import instance_heads
Abdullah Rashwan's avatar
Abdullah Rashwan committed
33
from official.vision.beta.modeling.heads import segmentation_heads
Abdullah Rashwan's avatar
Abdullah Rashwan committed
34
35
36
37
38
39
40
41
42
43
from official.vision.beta.modeling.layers import detection_generator
from official.vision.beta.modeling.layers import mask_sampler
from official.vision.beta.modeling.layers import roi_aligner
from official.vision.beta.modeling.layers import roi_generator
from official.vision.beta.modeling.layers import roi_sampler


def build_classification_model(
    input_specs: tf.keras.layers.InputSpec,
    model_config: classification_cfg.ImageClassificationModel,
Pengchong Jin's avatar
Pengchong Jin committed
44
    l2_regularizer: tf.keras.regularizers.Regularizer = None,
Fan Yang's avatar
Fan Yang committed
45
    skip_logits_layer: bool = False) -> tf.keras.Model:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
46
  """Builds the classification model."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
47
  norm_activation_config = model_config.norm_activation
Yeqing Li's avatar
Yeqing Li committed
48
  backbone = backbones.factory.build_backbone(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
49
      input_specs=input_specs,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
50
51
      backbone_config=model_config.backbone,
      norm_activation_config=norm_activation_config,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
52
53
54
55
56
57
58
59
60
61
62
      l2_regularizer=l2_regularizer)

  model = classification_model.ClassificationModel(
      backbone=backbone,
      num_classes=model_config.num_classes,
      input_specs=input_specs,
      dropout_rate=model_config.dropout_rate,
      kernel_regularizer=l2_regularizer,
      add_head_batch_norm=model_config.add_head_batch_norm,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
Pengchong Jin's avatar
Pengchong Jin committed
63
64
      norm_epsilon=norm_activation_config.norm_epsilon,
      skip_logits_layer=skip_logits_layer)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
65
66
67
  return model


Fan Yang's avatar
Fan Yang committed
68
69
70
71
def build_maskrcnn(
    input_specs: tf.keras.layers.InputSpec,
    model_config: maskrcnn_cfg.MaskRCNN,
    l2_regularizer: tf.keras.regularizers.Regularizer = None) -> tf.keras.Model:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
72
  """Builds Mask R-CNN model."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
73
  norm_activation_config = model_config.norm_activation
Yeqing Li's avatar
Yeqing Li committed
74
  backbone = backbones.factory.build_backbone(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
75
      input_specs=input_specs,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
76
77
      backbone_config=model_config.backbone,
      norm_activation_config=norm_activation_config,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
78
      l2_regularizer=l2_regularizer)
Cristina Vasconcelos's avatar
Cristina Vasconcelos committed
79
  backbone_features = backbone(tf.keras.Input(input_specs.shape[1:]))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
80

81
  decoder = decoders.factory.build_decoder(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
      input_specs=backbone.output_specs,
      model_config=model_config,
      l2_regularizer=l2_regularizer)

  rpn_head_config = model_config.rpn_head
  roi_generator_config = model_config.roi_generator
  roi_sampler_config = model_config.roi_sampler
  roi_aligner_config = model_config.roi_aligner
  detection_head_config = model_config.detection_head
  generator_config = model_config.detection_generator
  num_anchors_per_location = (
      len(model_config.anchor.aspect_ratios) * model_config.anchor.num_scales)

  rpn_head = dense_prediction_heads.RPNHead(
      min_level=model_config.min_level,
      max_level=model_config.max_level,
      num_anchors_per_location=num_anchors_per_location,
      num_convs=rpn_head_config.num_convs,
      num_filters=rpn_head_config.num_filters,
      use_separable_conv=rpn_head_config.use_separable_conv,
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)

  detection_head = instance_heads.DetectionHead(
      num_classes=model_config.num_classes,
      num_convs=detection_head_config.num_convs,
      num_filters=detection_head_config.num_filters,
      use_separable_conv=detection_head_config.use_separable_conv,
      num_fcs=detection_head_config.num_fcs,
      fc_dims=detection_head_config.fc_dims,
Xianzhi Du's avatar
Xianzhi Du committed
115
      class_agnostic_bbox_pred=detection_head_config.class_agnostic_bbox_pred,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
116
117
118
119
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
Xianzhi Du's avatar
Xianzhi Du committed
120
121
      kernel_regularizer=l2_regularizer,
      name='detection_head')
Cristina Vasconcelos's avatar
Cristina Vasconcelos committed
122
123
124
125
126
127
128

  # Build backbone, decoder and region proposal network:

  if decoder:
    decoder_features = decoder(backbone_features)
    rpn_head(decoder_features)

Xianzhi Du's avatar
Xianzhi Du committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
  if roi_sampler_config.cascade_iou_thresholds:
    detection_head_cascade = [detection_head]
    for cascade_num in range(len(roi_sampler_config.cascade_iou_thresholds)):
      detection_head = instance_heads.DetectionHead(
          num_classes=model_config.num_classes,
          num_convs=detection_head_config.num_convs,
          num_filters=detection_head_config.num_filters,
          use_separable_conv=detection_head_config.use_separable_conv,
          num_fcs=detection_head_config.num_fcs,
          fc_dims=detection_head_config.fc_dims,
          class_agnostic_bbox_pred=detection_head_config
          .class_agnostic_bbox_pred,
          activation=norm_activation_config.activation,
          use_sync_bn=norm_activation_config.use_sync_bn,
          norm_momentum=norm_activation_config.norm_momentum,
          norm_epsilon=norm_activation_config.norm_epsilon,
          kernel_regularizer=l2_regularizer,
          name='detection_head_{}'.format(cascade_num + 1))
      detection_head_cascade.append(detection_head)
    detection_head = detection_head_cascade
Abdullah Rashwan's avatar
Abdullah Rashwan committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

  roi_generator_obj = roi_generator.MultilevelROIGenerator(
      pre_nms_top_k=roi_generator_config.pre_nms_top_k,
      pre_nms_score_threshold=roi_generator_config.pre_nms_score_threshold,
      pre_nms_min_size_threshold=(
          roi_generator_config.pre_nms_min_size_threshold),
      nms_iou_threshold=roi_generator_config.nms_iou_threshold,
      num_proposals=roi_generator_config.num_proposals,
      test_pre_nms_top_k=roi_generator_config.test_pre_nms_top_k,
      test_pre_nms_score_threshold=(
          roi_generator_config.test_pre_nms_score_threshold),
      test_pre_nms_min_size_threshold=(
          roi_generator_config.test_pre_nms_min_size_threshold),
      test_nms_iou_threshold=roi_generator_config.test_nms_iou_threshold,
      test_num_proposals=roi_generator_config.test_num_proposals,
      use_batched_nms=roi_generator_config.use_batched_nms)

Xianzhi Du's avatar
Xianzhi Du committed
166
  roi_sampler_cascade = []
Abdullah Rashwan's avatar
Abdullah Rashwan committed
167
168
169
170
171
172
173
174
175
  roi_sampler_obj = roi_sampler.ROISampler(
      mix_gt_boxes=roi_sampler_config.mix_gt_boxes,
      num_sampled_rois=roi_sampler_config.num_sampled_rois,
      foreground_fraction=roi_sampler_config.foreground_fraction,
      foreground_iou_threshold=roi_sampler_config.foreground_iou_threshold,
      background_iou_high_threshold=(
          roi_sampler_config.background_iou_high_threshold),
      background_iou_low_threshold=(
          roi_sampler_config.background_iou_low_threshold))
Xianzhi Du's avatar
Xianzhi Du committed
176
177
178
179
180
181
182
183
184
185
186
187
  roi_sampler_cascade.append(roi_sampler_obj)
  # Initialize addtional roi simplers for cascade heads.
  if roi_sampler_config.cascade_iou_thresholds:
    for iou in roi_sampler_config.cascade_iou_thresholds:
      roi_sampler_obj = roi_sampler.ROISampler(
          mix_gt_boxes=False,
          num_sampled_rois=roi_sampler_config.num_sampled_rois,
          foreground_iou_threshold=iou,
          background_iou_high_threshold=iou,
          background_iou_low_threshold=0.0,
          skip_subsampling=True)
      roi_sampler_cascade.append(roi_sampler_obj)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
188
189
190
191
192
193

  roi_aligner_obj = roi_aligner.MultilevelROIAligner(
      crop_size=roi_aligner_config.crop_size,
      sample_offset=roi_aligner_config.sample_offset)

  detection_generator_obj = detection_generator.DetectionGenerator(
Fan Yang's avatar
Fan Yang committed
194
      apply_nms=generator_config.apply_nms,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
      pre_nms_top_k=generator_config.pre_nms_top_k,
      pre_nms_score_threshold=generator_config.pre_nms_score_threshold,
      nms_iou_threshold=generator_config.nms_iou_threshold,
      max_num_detections=generator_config.max_num_detections,
      use_batched_nms=generator_config.use_batched_nms)

  if model_config.include_mask:
    mask_head = instance_heads.MaskHead(
        num_classes=model_config.num_classes,
        upsample_factor=model_config.mask_head.upsample_factor,
        num_convs=model_config.mask_head.num_convs,
        num_filters=model_config.mask_head.num_filters,
        use_separable_conv=model_config.mask_head.use_separable_conv,
        activation=model_config.norm_activation.activation,
        norm_momentum=model_config.norm_activation.norm_momentum,
        norm_epsilon=model_config.norm_activation.norm_epsilon,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
211
212
        kernel_regularizer=l2_regularizer,
        class_agnostic=model_config.mask_head.class_agnostic)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

    mask_sampler_obj = mask_sampler.MaskSampler(
        mask_target_size=(
            model_config.mask_roi_aligner.crop_size *
            model_config.mask_head.upsample_factor),
        num_sampled_masks=model_config.mask_sampler.num_sampled_masks)

    mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner(
        crop_size=model_config.mask_roi_aligner.crop_size,
        sample_offset=model_config.mask_roi_aligner.sample_offset)
  else:
    mask_head = None
    mask_sampler_obj = None
    mask_roi_aligner_obj = None

  model = maskrcnn_model.MaskRCNNModel(
      backbone=backbone,
      decoder=decoder,
      rpn_head=rpn_head,
      detection_head=detection_head,
      roi_generator=roi_generator_obj,
Xianzhi Du's avatar
Xianzhi Du committed
234
      roi_sampler=roi_sampler_cascade,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
235
236
237
238
      roi_aligner=roi_aligner_obj,
      detection_generator=detection_generator_obj,
      mask_head=mask_head,
      mask_sampler=mask_sampler_obj,
Xianzhi Du's avatar
Xianzhi Du committed
239
240
      mask_roi_aligner=mask_roi_aligner_obj,
      class_agnostic_bbox_pred=detection_head_config.class_agnostic_bbox_pred,
241
242
243
244
245
246
      cascade_class_ensemble=detection_head_config.cascade_class_ensemble,
      min_level=model_config.min_level,
      max_level=model_config.max_level,
      num_scales=model_config.anchor.num_scales,
      aspect_ratios=model_config.anchor.aspect_ratios,
      anchor_size=model_config.anchor.anchor_size)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
247
248
249
  return model


Fan Yang's avatar
Fan Yang committed
250
251
252
253
def build_retinanet(
    input_specs: tf.keras.layers.InputSpec,
    model_config: retinanet_cfg.RetinaNet,
    l2_regularizer: tf.keras.regularizers.Regularizer = None) -> tf.keras.Model:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
254
  """Builds RetinaNet model."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
255
  norm_activation_config = model_config.norm_activation
Yeqing Li's avatar
Yeqing Li committed
256
  backbone = backbones.factory.build_backbone(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
257
      input_specs=input_specs,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
258
259
      backbone_config=model_config.backbone,
      norm_activation_config=norm_activation_config,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
260
      l2_regularizer=l2_regularizer)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
261
  backbone(tf.keras.Input(input_specs.shape[1:]))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
262

263
  decoder = decoders.factory.build_decoder(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
      input_specs=backbone.output_specs,
      model_config=model_config,
      l2_regularizer=l2_regularizer)

  head_config = model_config.head
  generator_config = model_config.detection_generator
  num_anchors_per_location = (
      len(model_config.anchor.aspect_ratios) * model_config.anchor.num_scales)

  head = dense_prediction_heads.RetinaNetHead(
      min_level=model_config.min_level,
      max_level=model_config.max_level,
      num_classes=model_config.num_classes,
      num_anchors_per_location=num_anchors_per_location,
      num_convs=head_config.num_convs,
      num_filters=head_config.num_filters,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
280
281
282
      attribute_heads=[
          cfg.as_dict() for cfg in (head_config.attribute_heads or [])
      ],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
283
284
285
286
287
288
289
290
      use_separable_conv=head_config.use_separable_conv,
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)

  detection_generator_obj = detection_generator.MultilevelDetectionGenerator(
Fan Yang's avatar
Fan Yang committed
291
      apply_nms=generator_config.apply_nms,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
292
293
294
295
296
297
298
      pre_nms_top_k=generator_config.pre_nms_top_k,
      pre_nms_score_threshold=generator_config.pre_nms_score_threshold,
      nms_iou_threshold=generator_config.nms_iou_threshold,
      max_num_detections=generator_config.max_num_detections,
      use_batched_nms=generator_config.use_batched_nms)

  model = retinanet_model.RetinaNetModel(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
299
300
301
302
303
304
305
306
307
      backbone,
      decoder,
      head,
      detection_generator_obj,
      min_level=model_config.min_level,
      max_level=model_config.max_level,
      num_scales=model_config.anchor.num_scales,
      aspect_ratios=model_config.anchor.aspect_ratios,
      anchor_size=model_config.anchor.anchor_size)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
308
  return model
Abdullah Rashwan's avatar
Abdullah Rashwan committed
309
310
311
312


def build_segmentation_model(
    input_specs: tf.keras.layers.InputSpec,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
313
    model_config: segmentation_cfg.SemanticSegmentationModel,
Fan Yang's avatar
Fan Yang committed
314
    l2_regularizer: tf.keras.regularizers.Regularizer = None) -> tf.keras.Model:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
315
  """Builds Segmentation model."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
316
  norm_activation_config = model_config.norm_activation
Abdullah Rashwan's avatar
Abdullah Rashwan committed
317
318
  backbone = backbones.factory.build_backbone(
      input_specs=input_specs,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
319
320
      backbone_config=model_config.backbone,
      norm_activation_config=norm_activation_config,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
321
322
      l2_regularizer=l2_regularizer)

323
  decoder = decoders.factory.build_decoder(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
324
325
326
327
328
329
330
331
332
333
      input_specs=backbone.output_specs,
      model_config=model_config,
      l2_regularizer=l2_regularizer)

  head_config = model_config.head

  head = segmentation_heads.SegmentationHead(
      num_classes=model_config.num_classes,
      level=head_config.level,
      num_convs=head_config.num_convs,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
334
      prediction_kernel_size=head_config.prediction_kernel_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
335
336
      num_filters=head_config.num_filters,
      upsample_factor=head_config.upsample_factor,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
337
338
339
      feature_fusion=head_config.feature_fusion,
      low_level=head_config.low_level,
      low_level_num_filters=head_config.low_level_num_filters,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
340
341
342
343
344
345
346
347
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)

  model = segmentation_model.SegmentationModel(backbone, decoder, head)
  return model