"mmdet3d/vscode:/vscode.git/clone" did not exist on "a2e7387eba111aa647537505e37a39146a65c431"
neural_programmer.py 9.53 KB
Newer Older
Quoc Le's avatar
Quoc Le committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementation of the Neural Programmer model described in https://openreview.net/pdf?id=ry2YOrcge

This file calls functions to load & pre-process data, construct the TF graph
and performs training or evaluation as specified by the flag evaluator_job
Author: aneelakantan (Arvind Neelakantan)
"""
21
22
from __future__ import print_function

Quoc Le's avatar
Quoc Le committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import time
from random import Random
import numpy as np
import tensorflow as tf
import model
import wiki_data
import parameters
import data_utils

tf.flags.DEFINE_integer("train_steps", 100001, "Number of steps to train")
tf.flags.DEFINE_integer("eval_cycle", 500,
                        "Evaluate model at every eval_cycle steps")
tf.flags.DEFINE_integer("max_elements", 100,
                        "maximum rows that are  considered for processing")
tf.flags.DEFINE_integer(
    "max_number_cols", 15,
    "maximum number columns that are considered for processing")
tf.flags.DEFINE_integer(
    "max_word_cols", 25,
    "maximum number columns that are considered for processing")
tf.flags.DEFINE_integer("question_length", 62, "maximum question length")
tf.flags.DEFINE_integer("max_entry_length", 1, "")
tf.flags.DEFINE_integer("max_passes", 4, "number of operation passes")
tf.flags.DEFINE_integer("embedding_dims", 256, "")
tf.flags.DEFINE_integer("batch_size", 20, "")
tf.flags.DEFINE_float("clip_gradients", 1.0, "")
tf.flags.DEFINE_float("eps", 1e-6, "")
tf.flags.DEFINE_float("param_init", 0.1, "")
tf.flags.DEFINE_float("learning_rate", 0.001, "")
tf.flags.DEFINE_float("l2_regularizer", 0.0001, "")
tf.flags.DEFINE_float("print_cost", 50.0,
                      "weighting factor in the objective function")
tf.flags.DEFINE_string("job_id", "temp", """job id""")
tf.flags.DEFINE_string("output_dir", "../model/",
                       """output_dir""")
tf.flags.DEFINE_string("data_dir", "../data/",
                       """data_dir""")
tf.flags.DEFINE_integer("write_every", 500, "wrtie every N")
tf.flags.DEFINE_integer("param_seed", 150, "")
tf.flags.DEFINE_integer("python_seed", 200, "")
tf.flags.DEFINE_float("dropout", 0.8, "dropout keep probability")
tf.flags.DEFINE_float("rnn_dropout", 0.9,
                      "dropout keep probability for rnn connections")
tf.flags.DEFINE_float("pad_int", -20000.0,
                      "number columns are padded with pad_int")
tf.flags.DEFINE_string("data_type", "double", "float or double")
tf.flags.DEFINE_float("word_dropout_prob", 0.9, "word dropout keep prob")
tf.flags.DEFINE_integer("word_cutoff", 10, "")
tf.flags.DEFINE_integer("vocab_size", 10800, "")
tf.flags.DEFINE_boolean("evaluator_job", False,
                        "wehther to run as trainer/evaluator")
tf.flags.DEFINE_float(
    "bad_number_pre_process", -200000.0,
    "number that is added to a corrupted table entry in a number column")
tf.flags.DEFINE_float("max_math_error", 3.0,
                      "max square loss error that is considered")
tf.flags.DEFINE_float("soft_min_value", 5.0, "")
FLAGS = tf.flags.FLAGS


class Utility:
  #holds FLAGS and other variables that are used in different files
  def __init__(self):
    global FLAGS
    self.FLAGS = FLAGS
    self.unk_token = "UNK"
    self.entry_match_token = "entry_match"
    self.column_match_token = "column_match"
    self.dummy_token = "dummy_token"
    self.tf_data_type = {}
    self.tf_data_type["double"] = tf.float64
    self.tf_data_type["float"] = tf.float32
    self.np_data_type = {}
    self.np_data_type["double"] = np.float64
    self.np_data_type["float"] = np.float32
    self.operations_set = ["count"] + [
        "prev", "next", "first_rs", "last_rs", "group_by_max", "greater",
        "lesser", "geq", "leq", "max", "min", "word-match"
    ] + ["reset_select"] + ["print"]
    self.word_ids = {}
    self.reverse_word_ids = {}
    self.word_count = {}
    self.random = Random(FLAGS.python_seed)


def evaluate(sess, data, batch_size, graph, i):
  #computes accuracy
  num_examples = 0.0
  gc = 0.0
  for j in range(0, len(data) - batch_size + 1, batch_size):
    [ct] = sess.run([graph.final_correct],
                    feed_dict=data_utils.generate_feed_dict(data, j, batch_size,
                                                            graph))
    gc += ct * batch_size
    num_examples += batch_size
118
119
120
  print("dev set accuracy   after ", i, " : ", gc / num_examples)
  print(num_examples, len(data))
  print("--------")
Quoc Le's avatar
Quoc Le committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146


def Train(graph, utility, batch_size, train_data, sess, model_dir,
          saver):
  #performs training
  curr = 0
  train_set_loss = 0.0
  utility.random.shuffle(train_data)
  start = time.time()
  for i in range(utility.FLAGS.train_steps):
    curr_step = i
    if (i > 0 and i % FLAGS.write_every == 0):
      model_file = model_dir + "/model_" + str(i)
      saver.save(sess, model_file)
    if curr + batch_size >= len(train_data):
      curr = 0
      utility.random.shuffle(train_data)
    step, cost_value = sess.run(
        [graph.step, graph.total_cost],
        feed_dict=data_utils.generate_feed_dict(
            train_data, curr, batch_size, graph, train=True, utility=utility))
    curr = curr + batch_size
    train_set_loss += cost_value
    if (i > 0 and i % FLAGS.eval_cycle == 0):
      end = time.time()
      time_taken = end - start
147
      print("step ", i, " ", time_taken, " seconds ")
Quoc Le's avatar
Quoc Le committed
148
      start = end
149
      print(" printing train set loss: ", train_set_loss / utility.FLAGS.eval_cycle)
Quoc Le's avatar
Quoc Le committed
150
151
152
153
154
      train_set_loss = 0.0


def master(train_data, dev_data, utility):
  #creates TF graph and calls trainer or evaluator
155
  batch_size = utility.FLAGS.batch_size
Quoc Le's avatar
Quoc Le committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
  model_dir = utility.FLAGS.output_dir + "/model" + utility.FLAGS.job_id + "/"
  #create all paramters of the model
  param_class = parameters.Parameters(utility)
  params, global_step, init = param_class.parameters(utility)
  key = "test" if (FLAGS.evaluator_job) else "train"
  graph = model.Graph(utility, batch_size, utility.FLAGS.max_passes, mode=key)
  graph.create_graph(params, global_step)
  prev_dev_error = 0.0
  final_loss = 0.0
  final_accuracy = 0.0
  #start session
  with tf.Session() as sess:
    sess.run(init.name)
    sess.run(graph.init_op.name)
    to_save = params.copy()
    saver = tf.train.Saver(to_save, max_to_keep=500)
    if (FLAGS.evaluator_job):
      while True:
        selected_models = {}
        file_list = tf.gfile.ListDirectory(model_dir)
        for model_file in file_list:
          if ("checkpoint" in model_file or "index" in model_file or
              "meta" in model_file):
            continue
          if ("data" in model_file):
            model_file = model_file.split(".")[0]
          model_step = int(
              model_file.split("_")[len(model_file.split("_")) - 1])
          selected_models[model_step] = model_file
        file_list = sorted(selected_models.items(), key=lambda x: x[0])
        if (len(file_list) > 0):
          file_list = file_list[0:len(file_list) - 1]
188
        print("list of models: ", file_list)
Quoc Le's avatar
Quoc Le committed
189
190
        for model_file in file_list:
          model_file = model_file[1]
191
          print("restoring: ", model_file)
Quoc Le's avatar
Quoc Le committed
192
193
194
          saver.restore(sess, model_dir + "/" + model_file)
          model_step = int(
              model_file.split("_")[len(model_file.split("_")) - 1])
195
          print("evaluating on dev ", model_file, model_step)
Quoc Le's avatar
Quoc Le committed
196
197
198
          evaluate(sess, dev_data, batch_size, graph, model_step)
    else:
      ckpt = tf.train.get_checkpoint_state(model_dir)
199
      print("model dir: ", model_dir)
Henry-E's avatar
Henry-E committed
200
      if (not (tf.gfile.IsDirectory(utility.FLAGS.output_dir))):
201
        print("create dir: ", utility.FLAGS.output_dir)
Henry-E's avatar
Henry-E committed
202
        tf.gfile.MkDir(utility.FLAGS.output_dir)
Quoc Le's avatar
Quoc Le committed
203
      if (not (tf.gfile.IsDirectory(model_dir))):
204
        print("create dir: ", model_dir)
Quoc Le's avatar
Quoc Le committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        tf.gfile.MkDir(model_dir)
      Train(graph, utility, batch_size, train_data, sess, model_dir,
            saver)

def main(args):
  utility = Utility()
  train_name = "random-split-1-train.examples"
  dev_name = "random-split-1-dev.examples"
  test_name = "pristine-unseen-tables.examples"
  #load data
  dat = wiki_data.WikiQuestionGenerator(train_name, dev_name, test_name, FLAGS.data_dir)
  train_data, dev_data, test_data = dat.load()
  utility.words = []
  utility.word_ids = {}
  utility.reverse_word_ids = {}
  #construct vocabulary
  data_utils.construct_vocab(train_data, utility)
  data_utils.construct_vocab(dev_data, utility, True)
  data_utils.construct_vocab(test_data, utility, True)
  data_utils.add_special_words(utility)
  data_utils.perform_word_cutoff(utility)
  #convert data to int format and pad the inputs
  train_data = data_utils.complete_wiki_processing(train_data, utility, True)
  dev_data = data_utils.complete_wiki_processing(dev_data, utility, False)
  test_data = data_utils.complete_wiki_processing(test_data, utility, False)
230
231
232
233
  print("# train examples ", len(train_data))
  print("# dev examples ", len(dev_data))
  print("# test examples ", len(test_data))
  print("running open source")
Quoc Le's avatar
Quoc Le committed
234
235
236
237
238
239
  #construct TF graph and train or evaluate
  master(train_data, dev_data, utility)


if __name__ == "__main__":
  tf.app.run()