neural_programmer.py 9.5 KB
Newer Older
Quoc Le's avatar
Quoc Le committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementation of the Neural Programmer model described in https://openreview.net/pdf?id=ry2YOrcge

This file calls functions to load & pre-process data, construct the TF graph
and performs training or evaluation as specified by the flag evaluator_job
Author: aneelakantan (Arvind Neelakantan)
"""
import time
from random import Random
import numpy as np
import tensorflow as tf
import model
import wiki_data
import parameters
import data_utils

tf.flags.DEFINE_integer("train_steps", 100001, "Number of steps to train")
tf.flags.DEFINE_integer("eval_cycle", 500,
                        "Evaluate model at every eval_cycle steps")
tf.flags.DEFINE_integer("max_elements", 100,
                        "maximum rows that are  considered for processing")
tf.flags.DEFINE_integer(
    "max_number_cols", 15,
    "maximum number columns that are considered for processing")
tf.flags.DEFINE_integer(
    "max_word_cols", 25,
    "maximum number columns that are considered for processing")
tf.flags.DEFINE_integer("question_length", 62, "maximum question length")
tf.flags.DEFINE_integer("max_entry_length", 1, "")
tf.flags.DEFINE_integer("max_passes", 4, "number of operation passes")
tf.flags.DEFINE_integer("embedding_dims", 256, "")
tf.flags.DEFINE_integer("batch_size", 20, "")
tf.flags.DEFINE_float("clip_gradients", 1.0, "")
tf.flags.DEFINE_float("eps", 1e-6, "")
tf.flags.DEFINE_float("param_init", 0.1, "")
tf.flags.DEFINE_float("learning_rate", 0.001, "")
tf.flags.DEFINE_float("l2_regularizer", 0.0001, "")
tf.flags.DEFINE_float("print_cost", 50.0,
                      "weighting factor in the objective function")
tf.flags.DEFINE_string("job_id", "temp", """job id""")
tf.flags.DEFINE_string("output_dir", "../model/",
                       """output_dir""")
tf.flags.DEFINE_string("data_dir", "../data/",
                       """data_dir""")
tf.flags.DEFINE_integer("write_every", 500, "wrtie every N")
tf.flags.DEFINE_integer("param_seed", 150, "")
tf.flags.DEFINE_integer("python_seed", 200, "")
tf.flags.DEFINE_float("dropout", 0.8, "dropout keep probability")
tf.flags.DEFINE_float("rnn_dropout", 0.9,
                      "dropout keep probability for rnn connections")
tf.flags.DEFINE_float("pad_int", -20000.0,
                      "number columns are padded with pad_int")
tf.flags.DEFINE_string("data_type", "double", "float or double")
tf.flags.DEFINE_float("word_dropout_prob", 0.9, "word dropout keep prob")
tf.flags.DEFINE_integer("word_cutoff", 10, "")
tf.flags.DEFINE_integer("vocab_size", 10800, "")
tf.flags.DEFINE_boolean("evaluator_job", False,
                        "wehther to run as trainer/evaluator")
tf.flags.DEFINE_float(
    "bad_number_pre_process", -200000.0,
    "number that is added to a corrupted table entry in a number column")
tf.flags.DEFINE_float("max_math_error", 3.0,
                      "max square loss error that is considered")
tf.flags.DEFINE_float("soft_min_value", 5.0, "")
FLAGS = tf.flags.FLAGS


class Utility:
  #holds FLAGS and other variables that are used in different files
  def __init__(self):
    global FLAGS
    self.FLAGS = FLAGS
    self.unk_token = "UNK"
    self.entry_match_token = "entry_match"
    self.column_match_token = "column_match"
    self.dummy_token = "dummy_token"
    self.tf_data_type = {}
    self.tf_data_type["double"] = tf.float64
    self.tf_data_type["float"] = tf.float32
    self.np_data_type = {}
    self.np_data_type["double"] = np.float64
    self.np_data_type["float"] = np.float32
    self.operations_set = ["count"] + [
        "prev", "next", "first_rs", "last_rs", "group_by_max", "greater",
        "lesser", "geq", "leq", "max", "min", "word-match"
    ] + ["reset_select"] + ["print"]
    self.word_ids = {}
    self.reverse_word_ids = {}
    self.word_count = {}
    self.random = Random(FLAGS.python_seed)


def evaluate(sess, data, batch_size, graph, i):
  #computes accuracy
  num_examples = 0.0
  gc = 0.0
  for j in range(0, len(data) - batch_size + 1, batch_size):
    [ct] = sess.run([graph.final_correct],
                    feed_dict=data_utils.generate_feed_dict(data, j, batch_size,
                                                            graph))
    gc += ct * batch_size
    num_examples += batch_size
116
117
118
  print("dev set accuracy   after ", i, " : ", gc / num_examples)
  print(num_examples, len(data))
  print("--------")
Quoc Le's avatar
Quoc Le committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144


def Train(graph, utility, batch_size, train_data, sess, model_dir,
          saver):
  #performs training
  curr = 0
  train_set_loss = 0.0
  utility.random.shuffle(train_data)
  start = time.time()
  for i in range(utility.FLAGS.train_steps):
    curr_step = i
    if (i > 0 and i % FLAGS.write_every == 0):
      model_file = model_dir + "/model_" + str(i)
      saver.save(sess, model_file)
    if curr + batch_size >= len(train_data):
      curr = 0
      utility.random.shuffle(train_data)
    step, cost_value = sess.run(
        [graph.step, graph.total_cost],
        feed_dict=data_utils.generate_feed_dict(
            train_data, curr, batch_size, graph, train=True, utility=utility))
    curr = curr + batch_size
    train_set_loss += cost_value
    if (i > 0 and i % FLAGS.eval_cycle == 0):
      end = time.time()
      time_taken = end - start
145
      print("step ", i, " ", time_taken, " seconds ")
Quoc Le's avatar
Quoc Le committed
146
      start = end
147
      print(" printing train set loss: ", train_set_loss / utility.FLAGS.eval_cycle)
Quoc Le's avatar
Quoc Le committed
148
149
150
151
152
      train_set_loss = 0.0


def master(train_data, dev_data, utility):
  #creates TF graph and calls trainer or evaluator
153
  batch_size = utility.FLAGS.batch_size
Quoc Le's avatar
Quoc Le committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
  model_dir = utility.FLAGS.output_dir + "/model" + utility.FLAGS.job_id + "/"
  #create all paramters of the model
  param_class = parameters.Parameters(utility)
  params, global_step, init = param_class.parameters(utility)
  key = "test" if (FLAGS.evaluator_job) else "train"
  graph = model.Graph(utility, batch_size, utility.FLAGS.max_passes, mode=key)
  graph.create_graph(params, global_step)
  prev_dev_error = 0.0
  final_loss = 0.0
  final_accuracy = 0.0
  #start session
  with tf.Session() as sess:
    sess.run(init.name)
    sess.run(graph.init_op.name)
    to_save = params.copy()
    saver = tf.train.Saver(to_save, max_to_keep=500)
    if (FLAGS.evaluator_job):
      while True:
        selected_models = {}
        file_list = tf.gfile.ListDirectory(model_dir)
        for model_file in file_list:
          if ("checkpoint" in model_file or "index" in model_file or
              "meta" in model_file):
            continue
          if ("data" in model_file):
            model_file = model_file.split(".")[0]
          model_step = int(
              model_file.split("_")[len(model_file.split("_")) - 1])
          selected_models[model_step] = model_file
        file_list = sorted(selected_models.items(), key=lambda x: x[0])
        if (len(file_list) > 0):
          file_list = file_list[0:len(file_list) - 1]
186
        print("list of models: ", file_list)
Quoc Le's avatar
Quoc Le committed
187
188
        for model_file in file_list:
          model_file = model_file[1]
189
          print("restoring: ", model_file)
Quoc Le's avatar
Quoc Le committed
190
191
192
          saver.restore(sess, model_dir + "/" + model_file)
          model_step = int(
              model_file.split("_")[len(model_file.split("_")) - 1])
193
          print("evaluating on dev ", model_file, model_step)
Quoc Le's avatar
Quoc Le committed
194
195
196
          evaluate(sess, dev_data, batch_size, graph, model_step)
    else:
      ckpt = tf.train.get_checkpoint_state(model_dir)
197
      print("model dir: ", model_dir)
Henry-E's avatar
Henry-E committed
198
      if (not (tf.gfile.IsDirectory(utility.FLAGS.output_dir))):
199
        print("create dir: ", utility.FLAGS.output_dir)
Henry-E's avatar
Henry-E committed
200
        tf.gfile.MkDir(utility.FLAGS.output_dir)
Quoc Le's avatar
Quoc Le committed
201
      if (not (tf.gfile.IsDirectory(model_dir))):
202
        print("create dir: ", model_dir)
Quoc Le's avatar
Quoc Le committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
        tf.gfile.MkDir(model_dir)
      Train(graph, utility, batch_size, train_data, sess, model_dir,
            saver)

def main(args):
  utility = Utility()
  train_name = "random-split-1-train.examples"
  dev_name = "random-split-1-dev.examples"
  test_name = "pristine-unseen-tables.examples"
  #load data
  dat = wiki_data.WikiQuestionGenerator(train_name, dev_name, test_name, FLAGS.data_dir)
  train_data, dev_data, test_data = dat.load()
  utility.words = []
  utility.word_ids = {}
  utility.reverse_word_ids = {}
  #construct vocabulary
  data_utils.construct_vocab(train_data, utility)
  data_utils.construct_vocab(dev_data, utility, True)
  data_utils.construct_vocab(test_data, utility, True)
  data_utils.add_special_words(utility)
  data_utils.perform_word_cutoff(utility)
  #convert data to int format and pad the inputs
  train_data = data_utils.complete_wiki_processing(train_data, utility, True)
  dev_data = data_utils.complete_wiki_processing(dev_data, utility, False)
  test_data = data_utils.complete_wiki_processing(test_data, utility, False)
228
229
230
231
  print("# train examples ", len(train_data))
  print("# dev examples ", len(dev_data))
  print("# test examples ", len(test_data))
  print("running open source")
Quoc Le's avatar
Quoc Le committed
232
233
234
235
236
237
  #construct TF graph and train or evaluate
  master(train_data, dev_data, utility)


if __name__ == "__main__":
  tf.app.run()