Classifier.cpp 5.32 KB
Newer Older
yangql's avatar
yangql committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#include <Classifier.h>
#include <Filesystem.h>
#include <SimpleLog.h>
#include <algorithm>
#include <CommonUtility.h>

namespace ortSamples
{

Classifier::Classifier()
{
}

Classifier::~Classifier()
{
liucong's avatar
liucong committed
16
17
18
    delete dcu_session;
    inputNamesPtr.clear();
    outputNamesPtr.clear();
yangql's avatar
yangql committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    configurationFile.release();
}

ErrorCode Classifier::Initialize(InitializationParameterOfClassifier initializationParameterOfClassifier)
{
    // 读取配置文件
    std::string configFilePath=initializationParameterOfClassifier.configFilePath;
    if(Exists(configFilePath)==false)
    {
        LOG_ERROR(stdout, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
    }
    if(!configurationFile.open(configFilePath, cv::FileStorage::READ))
    {
       LOG_ERROR(stdout, "fail to open configuration file\n");
       return FAIL_TO_OPEN_CONFIG_FILE;
    }
    LOG_INFO(stdout, "succeed to open configuration file\n");

    // 获取配置文件参数
    cv::FileNode netNode = configurationFile["Classifier"];
    std::string modelPath=(std::string)netNode["ModelPath"];

    // 初始化session
liucong's avatar
liucong committed
43
44
45
    OrtMIGraphXProviderOptions migraphx_options;
    migraphx_options.device_id = 0;
    migraphx_options.migraphx_fp16_enable = 1;
liucong's avatar
liucong committed
46
47
48
49
50
    migraphx_options.migraphx_int8_enable = 0;
    migraphx_options.dynamic_model = 0;
    migraphx_options.migraphx_profile_max_shapes = "";
    migraphx_options.migraphx_load_compiled_model=0;
    migraphx_options.migraphx_save_compiled_model=0;
liucong's avatar
liucong committed
51
    sessionOptions.AppendExecutionProvider_MIGraphX(migraphx_options);
yangql's avatar
yangql committed
52

liucong's avatar
liucong committed
53
    dcu_session = new Ort::Session(env, modelPath.c_str(), sessionOptions);
yangql's avatar
yangql committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    return SUCCESS;
}

ErrorCode Classifier::Classify(const std::vector<cv::Mat> &srcImages,std::vector<std::vector<ResultOfPrediction>> &predictions)
{
    if(srcImages.size()==0||srcImages[0].empty()||srcImages[0].depth()!=CV_8U)
    {
        LOG_ERROR(stdout, "image error!\n");
        return IMAGE_ERROR;
    }
    
    // 数据预处理
    std::vector<cv::Mat> image;
    for(int i =0;i<srcImages.size();++i)
    {
        //BGR转换为RGB
        cv::Mat imgRGB;
        cv::cvtColor(srcImages[i], imgRGB, cv::COLOR_BGR2RGB);

        // 调整大小,使短边为256,保持长宽比
        cv::Mat shrink;
        float ratio = (float)256 / min(imgRGB.cols, imgRGB.rows);
        if(imgRGB.rows > imgRGB.cols)
        {
            cv::resize(imgRGB, shrink, cv::Size(256, int(ratio * imgRGB.rows)), 0, 0);
        }
        else
        {
            cv::resize(imgRGB, shrink, cv::Size(int(ratio * imgRGB.cols), 256), 0, 0);
        }

        // 裁剪中心窗口为224*224
        int start_x = shrink.cols/2 - 224/2;
        int start_y = shrink.rows/2 - 224/2;
        cv::Rect rect(start_x, start_y, 224, 224);
        cv::Mat images = shrink(rect);
        image.push_back(images);
    }

    // normalize并转换为NCHW
    cv::Mat inputBlob;
    Image2BlobParams image2BlobParams;
    image2BlobParams.scalefactor=cv::Scalar(1/58.395, 1/57.12, 1/57.375);
    image2BlobParams.mean=cv::Scalar(123.675, 116.28, 103.53);
    image2BlobParams.swapRB=false;
    blobFromImagesWithParams(image,inputBlob,image2BlobParams);

liucong's avatar
liucong committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    // 获取模型输入输出信息
    Ort::AllocatorWithDefaultOptions allocator;
    for ( size_t i=0; i<dcu_session->GetInputCount(); i++)
    {
        auto input_name = dcu_session->GetInputNameAllocated(i , allocator);
        inputNamesPtr.push_back(std::move(input_name));
    }
    for ( size_t i=0; i<dcu_session->GetOutputCount(); i++)
    {
        auto out_name = dcu_session->GetOutputNameAllocated(i , allocator);
        outputNamesPtr.push_back(std::move(out_name));
    }
    std::vector<const char *> inputNames = {inputNamesPtr.data()->get()};
    std::vector<const char *> outputNames = {outputNamesPtr.data()->get()};
yangql's avatar
yangql committed
115

liucong's avatar
liucong committed
116
117
118
119
120
121
122
123
124
125
126
127
128
    float* input_data = (float*)inputBlob.data;
    std::array<float, 3 * 224 * 224> input_data_len{};

    Ort::MemoryInfo memoryInfo =Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault);

    std::vector<Ort::Value> inputTensors;
    for(size_t i=0; i<inputNames.size(); i++)
    {
        Ort::TypeInfo inputTypeInfo = dcu_session->GetInputTypeInfo(i);
        auto inputTensorInfo = inputTypeInfo.GetTensorTypeAndShapeInfo();
        std::vector<int64_t> inputDims = inputTensorInfo.GetShape();
        inputTensors.push_back(Ort::Value::CreateTensor<float>(memoryInfo,input_data,input_data_len.size(), inputDims.data(), inputDims.size()));
    }
yangql's avatar
yangql committed
129
130
    
    // 进行推理
liucong's avatar
liucong committed
131
    auto output = dcu_session->Run(Ort::RunOptions{nullptr}, inputNames.data(), inputTensors.data(), inputNames.size(), outputNames.data(), outputNames.size());
yangql's avatar
yangql committed
132
133
    
    // 解析输出结果
liucong's avatar
liucong committed
134
    const float* pdata = output[0].GetTensorMutableData<float>();
yangql's avatar
yangql committed
135
136
137
138
139
140
141
142
    int numberOfClasses = 1000 ;
    for(int i=0;i<srcImages.size();++i)
    {
        int startIndex=numberOfClasses*i;
        std::vector<float> logit;
        for(int j=0;j<numberOfClasses;++j)
        {
            logit.push_back(pdata[startIndex+j]);
yangql's avatar
yangql committed
143
        }     
yangql's avatar
yangql committed
144
145
146
147
148
149
150
151
152
153
154
155
156
        std::vector<ResultOfPrediction> resultOfPredictions;
        for(int j=0;j<numberOfClasses;++j)
        {
            ResultOfPrediction prediction;
            prediction.label=j;
            prediction.confidence=logit[j];
            resultOfPredictions.push_back(prediction);
        }
        predictions.push_back(resultOfPredictions);
    }
    return SUCCESS;
}
}