Classifier.cpp 4.4 KB
Newer Older
yangql's avatar
yangql committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include <Classifier.h>
#include <Filesystem.h>
#include <SimpleLog.h>
#include <algorithm>
#include <CommonUtility.h>

namespace ortSamples
{

Classifier::Classifier()
{
}

Classifier::~Classifier()
{
    configurationFile.release();
}

ErrorCode Classifier::Initialize(InitializationParameterOfClassifier initializationParameterOfClassifier)
{
    // 读取配置文件
    std::string configFilePath=initializationParameterOfClassifier.configFilePath;
    if(Exists(configFilePath)==false)
    {
        LOG_ERROR(stdout, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
    }
    if(!configurationFile.open(configFilePath, cv::FileStorage::READ))
    {
       LOG_ERROR(stdout, "fail to open configuration file\n");
       return FAIL_TO_OPEN_CONFIG_FILE;
    }
    LOG_INFO(stdout, "succeed to open configuration file\n");

    // 获取配置文件参数
    cv::FileNode netNode = configurationFile["Classifier"];
    std::string modelPath=(std::string)netNode["ModelPath"];

    // 初始化session
liucong's avatar
liucong committed
40
41
42
43
44
    OrtMIGraphXProviderOptions migraphx_options;
    migraphx_options.device_id = 0;
    migraphx_options.migraphx_fp16_enable = 1;
    migraphx_options.dynamic_model = 0; 
    sessionOptions.AppendExecutionProvider_MIGraphX(migraphx_options);
yangql's avatar
yangql committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

    session = new Ort::Session(env, modelPath.c_str(), sessionOptions);
    return SUCCESS;
}

ErrorCode Classifier::Classify(const std::vector<cv::Mat> &srcImages,std::vector<std::vector<ResultOfPrediction>> &predictions)
{
    if(srcImages.size()==0||srcImages[0].empty()||srcImages[0].depth()!=CV_8U)
    {
        LOG_ERROR(stdout, "image error!\n");
        return IMAGE_ERROR;
    }
    
    // 数据预处理
    std::vector<cv::Mat> image;
    for(int i =0;i<srcImages.size();++i)
    {
        //BGR转换为RGB
        cv::Mat imgRGB;
        cv::cvtColor(srcImages[i], imgRGB, cv::COLOR_BGR2RGB);

        // 调整大小,使短边为256,保持长宽比
        cv::Mat shrink;
        float ratio = (float)256 / min(imgRGB.cols, imgRGB.rows);
        if(imgRGB.rows > imgRGB.cols)
        {
            cv::resize(imgRGB, shrink, cv::Size(256, int(ratio * imgRGB.rows)), 0, 0);
        }
        else
        {
            cv::resize(imgRGB, shrink, cv::Size(int(ratio * imgRGB.cols), 256), 0, 0);
        }

        // 裁剪中心窗口为224*224
        int start_x = shrink.cols/2 - 224/2;
        int start_y = shrink.rows/2 - 224/2;
        cv::Rect rect(start_x, start_y, 224, 224);
        cv::Mat images = shrink(rect);
        image.push_back(images);
    }

    // normalize并转换为NCHW
    cv::Mat inputBlob;
    Image2BlobParams image2BlobParams;
    image2BlobParams.scalefactor=cv::Scalar(1/58.395, 1/57.12, 1/57.375);
    image2BlobParams.mean=cv::Scalar(123.675, 116.28, 103.53);
    image2BlobParams.swapRB=false;
    blobFromImagesWithParams(image,inputBlob,image2BlobParams);

    // 设置onnx的输入和输出名
    std::vector<const char*> input_node_names = {"data"};
    std::vector<const char*> output_node_names = {"resnetv24_dense0_fwd"};

    // 初始化输入数据
    std::array<int64_t, 4> inputShape{1, 3, 224, 224};
    auto memoryInfo = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
    std::array<float, 3 * 224 * 224> input_image{};
    float* input_test = (float*)inputBlob.data;
    Ort::Value inputTensor = Ort::Value::CreateTensor<float>(memoryInfo, input_test, input_image.size(), inputShape.data(), inputShape.size());
    std::vector<Ort::Value> intput_tensors;
    intput_tensors.push_back(std::move(inputTensor));
    
    // 进行推理
    auto output_tensors = session->Run(Ort::RunOptions{nullptr}, input_node_names.data(), intput_tensors.data(), 1, output_node_names.data(), 1);
    
    // 解析输出结果
    const float* pdata = output_tensors[0].GetTensorMutableData<float>();
    int numberOfClasses = 1000 ;
    for(int i=0;i<srcImages.size();++i)
    {
        int startIndex=numberOfClasses*i;
        std::vector<float> logit;
        for(int j=0;j<numberOfClasses;++j)
        {
            logit.push_back(pdata[startIndex+j]);
yangql's avatar
yangql committed
120
        }     
yangql's avatar
yangql committed
121
122
123
124
125
126
127
128
129
130
131
132
133
        std::vector<ResultOfPrediction> resultOfPredictions;
        for(int j=0;j<numberOfClasses;++j)
        {
            ResultOfPrediction prediction;
            prediction.label=j;
            prediction.confidence=logit[j];
            resultOfPredictions.push_back(prediction);
        }
        predictions.push_back(resultOfPredictions);
    }
    return SUCCESS;
}
}