utils.py 13.1 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import math
import pandas as pd
import random
import re
import string
import torch
import torch.distributed as dist
import torchvision.transforms as T
import transformers
import warnings
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoTokenizer, AutoConfig, AutoModel, CLIPImageProcessor

from ..base import BaseModel
from ...dataset import DATASET_TYPE, DATASET_MODALITY
from ...smp import *

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


def load_image(image_file, input_size=448, max_num=6, upscale=False):
    image = Image.open(image_file).convert('RGB')
    if upscale:
        image = image.resize((image.width * 2, image.height * 2), Image.BILINEAR)
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values


def get_local_rank_and_local_world_size():
    if not dist.is_available():
        return 0, 1
    if not dist.is_initialized():
        return 0, 1

    if 'SLURM_LOCALID' in os.environ:
        local_rank = int(os.environ['SLURM_LOCALID'])
        local_world_size = int(os.environ['SLURM_NTASKS_PER_NODE'])
        return local_rank, local_world_size

    if 'LOCAL_RANK' in os.environ and 'LOCAL_WORLD_SIZE' in os.environ:
        return int(os.environ['LOCAL_RANK']), int(os.environ['LOCAL_WORLD_SIZE'])

    raise NotImplementedError(
        "Fail to get local_rank and local_world_size! "
        "Please ensure that you set the environment variable "
        "`LOCAL_RANK` and `LOCAL_WORLD_SIZE`"
    )


def split_model(model_path):
    num_gpus_per_node = 8
    rank, world_size = get_rank_and_world_size()
    try:
        local_rank, local_world_size = get_local_rank_and_local_world_size()
    except:
        local_rank = rank

    if 'GPUS_PER_PROCESS' in os.environ:
        gpus_per_process = int(os.environ['GPUS_PER_PROCESS'])
    else:
        gpus_per_process = 8  # default to use 8 GPUs for one model

    start_gpu = local_rank * gpus_per_process
    end_gpu = start_gpu + gpus_per_process

    assert end_gpu <= num_gpus_per_node, f"Process {local_rank} tries to access GPU {end_gpu}, " \
                                         f"but only {num_gpus_per_node} GPUs are available per node."

    visible_devices = list(range(start_gpu, end_gpu))

    device_map = {}
    config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)

    num_gpus_for_vit = 0.5
    num_layers = config.llm_config.num_hidden_layers
    num_layers_per_gpu = math.ceil(num_layers / (len(visible_devices) - num_gpus_for_vit))
    num_layers_per_gpu = [num_layers_per_gpu] * len(visible_devices)
    num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)

    layer_cnt = 0
    for i, num_layer in enumerate(num_layers_per_gpu):
        for j in range(num_layer):
            device_map[f'language_model.model.layers.{layer_cnt}'] = visible_devices[i]
            layer_cnt += 1
    device_map['vision_model'] = visible_devices[0]
    device_map['mlp1'] = visible_devices[0]
    device_map['language_model.model.tok_embeddings'] = visible_devices[0]
    device_map['language_model.model.embed_tokens'] = visible_devices[0]
    device_map['language_model.output'] = visible_devices[0]
    device_map['language_model.model.norm'] = visible_devices[0]
    device_map['language_model.lm_head'] = visible_devices[0]
    device_map[f'language_model.model.layers.{num_layers - 1}'] = visible_devices[0]

    return device_map, visible_devices


def split_model_old(model_name):
    import math
    device_map = {}
    num_gpus = torch.cuda.device_count()
    rank, world_size = get_rank_and_world_size()
    num_gpus = num_gpus // world_size

    num_layers_map = {
        'InternVL2-8B': 32,
        'InternVL2-26B': 48,
        'InternVL2-40B': 60,
        'InternVL2-Llama3-76B': 80
    }

    if model_name not in num_layers_map:
        return 'cuda'
    num_layers = num_layers_map[model_name]
    # Since the first GPU will be used for ViT, treat it as 0.5 GPU.
    num_layers_per_gpu = math.ceil(num_layers / (num_gpus - 0.5))
    num_layers_per_gpu = [num_layers_per_gpu] * num_gpus
    num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
    layer_cnt = 0
    for i, num_layer in enumerate(num_layers_per_gpu):
        for j in range(num_layer):
            device_map[f'language_model.model.layers.{layer_cnt}'] = rank + world_size * i
            layer_cnt += 1
    device_map['vision_model'] = rank
    device_map['mlp1'] = rank
    device_map['language_model.model.tok_embeddings'] = rank
    device_map['language_model.model.embed_tokens'] = rank
    device_map['language_model.output'] = rank
    device_map['language_model.model.norm'] = rank
    device_map['language_model.lm_head'] = rank
    device_map['language_model.model.rotary_emb'] = rank
    device_map[f'language_model.model.layers.{num_layers - 1}'] = rank
    return device_map


def build_mcq_cot_prompt(line, prompt):
    cot_prompt = (
        "Answer the preceding multiple choice question. The last line of your response should follow "
        "this format: 'Answer: \\boxed{$LETTER}' (without quotes), where LETTER is one of the options. "
        "If you are uncertain or the problem is too complex, make a reasoned guess based on the "
        "information provided. Avoid repeating steps indefinitely—provide your best guess even if "
        "unsure. Think step by step logically, considering all relevant information before answering."
    )
    prompt = prompt.replace("Answer with the option's letter from the given choices directly.", '').strip()
    prompt = prompt + '\n' + cot_prompt

    return prompt


def build_qa_cot_prompt(line, prompt):
    cot_prompt = (
        "Answer the preceding question. The last line of your response should follow this format: "
        "'Answer: \\boxed{$FINAL_ANSWER}' (without quotes), where 'FINAL_ANSWER' is your conclusion "
        "based on the reasoning provided. If you are uncertain or the problem is too complex, make "
        "a reasoned guess based on the information provided. Avoid repeating steps indefinitely—"
        "provide your best guess even if unsure. Think step by step logically, considering all "
        "relevant information before answering."
    )
    prompt = prompt + '\n' + cot_prompt

    return prompt


def build_multi_choice_prompt(line, dataset=None):
    question = line['question']
    hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
    if hint is not None:
        question = hint + '\n' + question

    options = {
        cand: line[cand]
        for cand in string.ascii_uppercase
        if cand in line and not pd.isna(line[cand])
    }
    for key, item in options.items():
        question += f'\n{key}. {item}'
    prompt = question

    if len(options):
        prompt += '\n请直接回答选项字母。' if cn_string(
            prompt) else "\nAnswer with the option's letter from the given choices directly."
    else:
        prompt += '\n请直接回答问题。' if cn_string(prompt) else '\nAnswer the question directly.'

    return prompt


def build_video_prompt(prompt, dataset=None, max_frames=64):
    for start in range(0, max_frames, 8):
        images_to_remove = ''.join([f'<Image-{i}>' for i in range(start + 1, start + 9)])
        prompt = prompt.replace(images_to_remove, '')
    for i in range(max_frames):
        prompt = prompt.replace(f'Image-{i + 1}', f'Frame-{i + 1}')
    if listinstr(['MMBench-Video'], dataset):
        prompt = prompt.replace('\nAnswer:', '')
    elif listinstr(['Video-MME'], dataset):
        prompt = prompt.replace('\nAnswer:', '')
        prompt += "\nAnswer with the option's letter from the given choices directly."
    elif listinstr(['MVBench'], dataset):
        prompt = prompt.replace('Best option:(', '')

    return prompt


def reorganize_prompt(message, image_num, dataset=None):
    if dataset is not None and listinstr(['MUIRBench'], dataset):
        prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text'])
        images_to_remove = ' '.join(['<image>'] * image_num)
        prompt = prompt.replace(images_to_remove, '')
        for i in range(image_num):
            prompt = prompt.replace('<image>', f'<Image-{i + 1}>', 1)
        prompt = ''.join([f'Image-{i + 1}: <image>\n' for i in range(image_num)]) + prompt
    elif image_num == 1:
        prompt = '<image>\n' + '\n'.join([x['value'] for x in message if x['type'] == 'text'])
    else:
        prompt, image_idx = '', 1
        for x in message:
            if x['type'] == 'text':
                prompt += x['value']
            elif x['type'] == 'image':
                prompt += f'<Image-{image_idx}>'
                image_idx += 1
        prompt = ''.join([f'Image-{i + 1}: <image>\n' for i in range(image_num)]) + prompt
        images_to_remove = ''.join([f'<Image-{i + 1}>' for i in range(image_num)])
        prompt = prompt.replace(images_to_remove, '')
    return prompt


mpo_prompt_with_final_answer = (
    "Your task is to answer the question below. "
    "Give step by step reasoning before you answer, and when you're ready to answer, "
    "please use the format \"Final answer: ..\""
    "\n\n"
    "Question:"
    "\n\n"
    "{question}"
)

mpo_prompt_without_final_answer = (
    "Your task is to answer the question below. "
    "Give step by step reasoning. "
    "\n\n"
    "Question:"
    "\n\n"
    "{question}"
)


def mpo_post_processing(response, dataset):

    def extract_answer(text):
        match = re.search(r'(Final answer:|Answer:)\s*(.*)', text, re.IGNORECASE)
        if match:
            return match.group(2).strip()
        return text

    if dataset is not None and (DATASET_TYPE(dataset) in ['Y/N', 'MCQ'] or listinstr(['CRPE'], dataset)):
        response = extract_answer(response).strip()
    return response


def build_mpo_prompt(message, line, dataset):
    if not listinstr(['LLaVABench'], dataset):

        if listinstr(['MMVet'], dataset):
            cot_prompt = mpo_prompt_without_final_answer
        else:
            cot_prompt = mpo_prompt_with_final_answer

        question_orig = line['question']
        if listinstr(['MathVerse', 'MathVision'], dataset):
            question_orig = question_orig.split('Question:', 1)[-1].strip()
            question_orig = question_orig.replace('Choices:\n', '').strip()

        prompt = cot_prompt.format(question=question_orig)
    else:
        prompt = line['question']
    message[0]['value'] = prompt
    return message