import math import pandas as pd import random import re import string import torch import torch.distributed as dist import torchvision.transforms as T import transformers import warnings from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoTokenizer, AutoConfig, AutoModel, CLIPImageProcessor from ..base import BaseModel from ...dataset import DATASET_TYPE, DATASET_MODALITY from ...smp import * IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, input_size=448, max_num=6, upscale=False): image = Image.open(image_file).convert('RGB') if upscale: image = image.resize((image.width * 2, image.height * 2), Image.BILINEAR) transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values def get_local_rank_and_local_world_size(): if not dist.is_available(): return 0, 1 if not dist.is_initialized(): return 0, 1 if 'SLURM_LOCALID' in os.environ: local_rank = int(os.environ['SLURM_LOCALID']) local_world_size = int(os.environ['SLURM_NTASKS_PER_NODE']) return local_rank, local_world_size if 'LOCAL_RANK' in os.environ and 'LOCAL_WORLD_SIZE' in os.environ: return int(os.environ['LOCAL_RANK']), int(os.environ['LOCAL_WORLD_SIZE']) raise NotImplementedError( "Fail to get local_rank and local_world_size! " "Please ensure that you set the environment variable " "`LOCAL_RANK` and `LOCAL_WORLD_SIZE`" ) def split_model(model_path): num_gpus_per_node = 8 rank, world_size = get_rank_and_world_size() try: local_rank, local_world_size = get_local_rank_and_local_world_size() except: local_rank = rank if 'GPUS_PER_PROCESS' in os.environ: gpus_per_process = int(os.environ['GPUS_PER_PROCESS']) else: gpus_per_process = 8 # default to use 8 GPUs for one model start_gpu = local_rank * gpus_per_process end_gpu = start_gpu + gpus_per_process assert end_gpu <= num_gpus_per_node, f"Process {local_rank} tries to access GPU {end_gpu}, " \ f"but only {num_gpus_per_node} GPUs are available per node." visible_devices = list(range(start_gpu, end_gpu)) device_map = {} config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) num_gpus_for_vit = 0.5 num_layers = config.llm_config.num_hidden_layers num_layers_per_gpu = math.ceil(num_layers / (len(visible_devices) - num_gpus_for_vit)) num_layers_per_gpu = [num_layers_per_gpu] * len(visible_devices) num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5) layer_cnt = 0 for i, num_layer in enumerate(num_layers_per_gpu): for j in range(num_layer): device_map[f'language_model.model.layers.{layer_cnt}'] = visible_devices[i] layer_cnt += 1 device_map['vision_model'] = visible_devices[0] device_map['mlp1'] = visible_devices[0] device_map['language_model.model.tok_embeddings'] = visible_devices[0] device_map['language_model.model.embed_tokens'] = visible_devices[0] device_map['language_model.output'] = visible_devices[0] device_map['language_model.model.norm'] = visible_devices[0] device_map['language_model.lm_head'] = visible_devices[0] device_map[f'language_model.model.layers.{num_layers - 1}'] = visible_devices[0] return device_map, visible_devices def split_model_old(model_name): import math device_map = {} num_gpus = torch.cuda.device_count() rank, world_size = get_rank_and_world_size() num_gpus = num_gpus // world_size num_layers_map = { 'InternVL2-8B': 32, 'InternVL2-26B': 48, 'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80 } if model_name not in num_layers_map: return 'cuda' num_layers = num_layers_map[model_name] # Since the first GPU will be used for ViT, treat it as 0.5 GPU. num_layers_per_gpu = math.ceil(num_layers / (num_gpus - 0.5)) num_layers_per_gpu = [num_layers_per_gpu] * num_gpus num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5) layer_cnt = 0 for i, num_layer in enumerate(num_layers_per_gpu): for j in range(num_layer): device_map[f'language_model.model.layers.{layer_cnt}'] = rank + world_size * i layer_cnt += 1 device_map['vision_model'] = rank device_map['mlp1'] = rank device_map['language_model.model.tok_embeddings'] = rank device_map['language_model.model.embed_tokens'] = rank device_map['language_model.output'] = rank device_map['language_model.model.norm'] = rank device_map['language_model.lm_head'] = rank device_map['language_model.model.rotary_emb'] = rank device_map[f'language_model.model.layers.{num_layers - 1}'] = rank return device_map def build_mcq_cot_prompt(line, prompt): cot_prompt = ( "Answer the preceding multiple choice question. The last line of your response should follow " "this format: 'Answer: \\boxed{$LETTER}' (without quotes), where LETTER is one of the options. " "If you are uncertain or the problem is too complex, make a reasoned guess based on the " "information provided. Avoid repeating steps indefinitely—provide your best guess even if " "unsure. Think step by step logically, considering all relevant information before answering." ) prompt = prompt.replace("Answer with the option's letter from the given choices directly.", '').strip() prompt = prompt + '\n' + cot_prompt return prompt def build_qa_cot_prompt(line, prompt): cot_prompt = ( "Answer the preceding question. The last line of your response should follow this format: " "'Answer: \\boxed{$FINAL_ANSWER}' (without quotes), where 'FINAL_ANSWER' is your conclusion " "based on the reasoning provided. If you are uncertain or the problem is too complex, make " "a reasoned guess based on the information provided. Avoid repeating steps indefinitely—" "provide your best guess even if unsure. Think step by step logically, considering all " "relevant information before answering." ) prompt = prompt + '\n' + cot_prompt return prompt def build_multi_choice_prompt(line, dataset=None): question = line['question'] hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None if hint is not None: question = hint + '\n' + question options = { cand: line[cand] for cand in string.ascii_uppercase if cand in line and not pd.isna(line[cand]) } for key, item in options.items(): question += f'\n{key}. {item}' prompt = question if len(options): prompt += '\n请直接回答选项字母。' if cn_string( prompt) else "\nAnswer with the option's letter from the given choices directly." else: prompt += '\n请直接回答问题。' if cn_string(prompt) else '\nAnswer the question directly.' return prompt def build_video_prompt(prompt, dataset=None, max_frames=64): for start in range(0, max_frames, 8): images_to_remove = ''.join([f'' for i in range(start + 1, start + 9)]) prompt = prompt.replace(images_to_remove, '') for i in range(max_frames): prompt = prompt.replace(f'Image-{i + 1}', f'Frame-{i + 1}') if listinstr(['MMBench-Video'], dataset): prompt = prompt.replace('\nAnswer:', '') elif listinstr(['Video-MME'], dataset): prompt = prompt.replace('\nAnswer:', '') prompt += "\nAnswer with the option's letter from the given choices directly." elif listinstr(['MVBench'], dataset): prompt = prompt.replace('Best option:(', '') return prompt def reorganize_prompt(message, image_num, dataset=None): if dataset is not None and listinstr(['MUIRBench'], dataset): prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text']) images_to_remove = ' '.join([''] * image_num) prompt = prompt.replace(images_to_remove, '') for i in range(image_num): prompt = prompt.replace('', f'', 1) prompt = ''.join([f'Image-{i + 1}: \n' for i in range(image_num)]) + prompt elif image_num == 1: prompt = '\n' + '\n'.join([x['value'] for x in message if x['type'] == 'text']) else: prompt, image_idx = '', 1 for x in message: if x['type'] == 'text': prompt += x['value'] elif x['type'] == 'image': prompt += f'' image_idx += 1 prompt = ''.join([f'Image-{i + 1}: \n' for i in range(image_num)]) + prompt images_to_remove = ''.join([f'' for i in range(image_num)]) prompt = prompt.replace(images_to_remove, '') return prompt mpo_prompt_with_final_answer = ( "Your task is to answer the question below. " "Give step by step reasoning before you answer, and when you're ready to answer, " "please use the format \"Final answer: ..\"" "\n\n" "Question:" "\n\n" "{question}" ) mpo_prompt_without_final_answer = ( "Your task is to answer the question below. " "Give step by step reasoning. " "\n\n" "Question:" "\n\n" "{question}" ) def mpo_post_processing(response, dataset): def extract_answer(text): match = re.search(r'(Final answer:|Answer:)\s*(.*)', text, re.IGNORECASE) if match: return match.group(2).strip() return text if dataset is not None and (DATASET_TYPE(dataset) in ['Y/N', 'MCQ'] or listinstr(['CRPE'], dataset)): response = extract_answer(response).strip() return response def build_mpo_prompt(message, line, dataset): if not listinstr(['LLaVABench'], dataset): if listinstr(['MMVet'], dataset): cot_prompt = mpo_prompt_without_final_answer else: cot_prompt = mpo_prompt_with_final_answer question_orig = line['question'] if listinstr(['MathVerse', 'MathVision'], dataset): question_orig = question_orig.split('Question:', 1)[-1].strip() question_orig = question_orig.replace('Choices:\n', '').strip() prompt = cot_prompt.format(question=question_orig) else: prompt = line['question'] message[0]['value'] = prompt return message