README.md 12.8 KB
Newer Older
zhuwenwen's avatar
zhuwenwen committed
1
2
3
4
<!--
 * @Author: zhuww
 * @email: zhuww@sugon.com
 * @Date: 2024-05-24 14:15:07
zhuwenwen's avatar
zhuwenwen committed
5
 * @LastEditTime: 2024-09-30 08:30:01
zhuwenwen's avatar
zhuwenwen committed
6
-->
laibao's avatar
laibao committed
7

zhuwenwen's avatar
zhuwenwen committed
8
9
10
# Qwen1.5

## 论文
laibao's avatar
laibao committed
11

zhuwenwen's avatar
zhuwenwen committed
12
13
14


## 模型结构
laibao's avatar
laibao committed
15

zhuwenwen's avatar
zhuwenwen committed
16
Qwen1.5是阿里云开源大型语言模型系列,是Qwen2.0的beta版本。相较于以往版本,本次更新着重提升了Chat模型与人类偏好的对齐程度,并且显著增强了模型的多语言处理能力。在序列长度方面,所有规模模型均已实现 32768 个tokens的上下文长度范围支持。同时,预训练 Base 模型的质量也有关键优化,有望在微调过程中带来更佳体验。
laibao's avatar
laibao committed
17

zhuwenwen's avatar
zhuwenwen committed
18
19
20
21
22
<div align=center>
    <img src="./doc/qwen1.5.jpg"/>
</div>

## 算法原理
laibao's avatar
laibao committed
23

zhuwenwen's avatar
zhuwenwen committed
24
25
26
27
28
29
30
和Qwen一样,Qwen1.5仍然是一个decoder-only的transformer模型,使用SwiGLU激活函数、RoPE、多头注意力机制等。

<div align=center>
    <img src="./doc/qwen1.5.png"/>
</div>

## 环境配置
laibao's avatar
laibao committed
31

zhuwenwen's avatar
zhuwenwen committed
32
### Docker(方法一)
laibao's avatar
laibao committed
33

zhuwenwen's avatar
zhuwenwen committed
34
35
36
提供[光源](https://www.sourcefind.cn/#/image/dcu/custom)拉取推理的docker镜像:

```
37
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:vllm0.8.5-ubuntu22.04-dtk25.04.1-rc5-das1.6-py3.10-20250724
zhuwenwen's avatar
zhuwenwen committed
38
39
40
# <Image ID>用上面拉取docker镜像的ID替换
# <Host Path>主机端路径
# <Container Path>容器映射路径
zhuwenwen's avatar
zhuwenwen committed
41
# 若要在主机端和容器端映射端口需要删除--network host参数
zhuwenwen's avatar
zhuwenwen committed
42
43
docker run -it --name qwen1.5_vllm --privileged --shm-size=64G  --device=/dev/kfd --device=/dev/dri/ --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --ulimit memlock=-1:-1 --ipc=host --network host --group-add video -v /opt/hyhal:/opt/hyhal -v <Host Path>:<Container Path> <Image ID> /bin/bash
```
laibao's avatar
laibao committed
44

zhuwenwen's avatar
zhuwenwen committed
45
`Tips:若在K100/Z100L上使用,使用定制镜像docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:vllm0.5.0-dtk24.04.1-ubuntu20.04-py310-zk-v1,K100/Z100L不支持awq量化`
zhuwenwen's avatar
zhuwenwen committed
46
47

### Dockerfile(方法二)
laibao's avatar
laibao committed
48

zhuwenwen's avatar
zhuwenwen committed
49
50
51
52
```
# <Host Path>主机端路径
# <Container Path>容器映射路径
docker build -t qwen1.5:latest .
zhuwenwen's avatar
zhuwenwen committed
53
docker run -it --name qwen1.5_vllm --privileged --shm-size=64G  --device=/dev/kfd --device=/dev/dri/ --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --ulimit memlock=-1:-1 --ipc=host --network host --group-add video -v /opt/hyhal:/opt/hyhal:ro -v <Host Path>:<Container Path> qwen1.5:latest /bin/bash
zhuwenwen's avatar
zhuwenwen committed
54
55
56
```

### Anaconda(方法三)
laibao's avatar
laibao committed
57

zhuwenwen's avatar
zhuwenwen committed
58
59
60
```
conda create -n qwen1.5_vllm python=3.10
```
laibao's avatar
laibao committed
61

chenzk's avatar
chenzk committed
62
关于本项目DCU显卡所需的特殊深度学习库可从[光合](https://developer.sourcefind.cn/tool/)开发者社区下载安装。
laibao's avatar
laibao committed
63

64
65
66
67
* DTK驱动:dtk25.04.01
* Pytorch: 2.4.0
* triton: 3.0.0
* lmslim: 0.2.1
laibao's avatar
laibao committed
68
* flash_attn: 2.6.1
69
70
* flash_mla: 1.0.0
* vllm: 0.8.5
zhuwenwen's avatar
zhuwenwen committed
71
* python: python3.10
zhuwenwen's avatar
zhuwenwen committed
72

73
`Tips:需先安装相关依赖,最后安装vllm包`  
laibao's avatar
laibao committed
74

75
76
环境变量:  
export ALLREDUCE_STREAM_WITH_COMPUTE=1  
laibao's avatar
laibao committed
77
export VLLM_NUMA_BIND=1  
78
79
export VLLM_RANK0_NUMA=0  
export VLLM_RANK1_NUMA=1  
laibao's avatar
laibao committed
80
81
82
83
export VLLM_RANK2_NUMA=2  
export VLLM_RANK3_NUMA=3  
export VLLM_RANK4_NUMA=4  
export VLLM_RANK5_NUMA=5  
84
85
export VLLM_RANK6_NUMA=6  
export VLLM_RANK7_NUMA=7  
zhuwenwen's avatar
zhuwenwen committed
86
87

## 数据集
laibao's avatar
laibao committed
88

zhuwenwen's avatar
zhuwenwen committed
89
90
91
92


## 推理

laibao's avatar
laibao committed
93
94
### 模型下载

laibao's avatar
laibao committed
95
96
| 基座模型                                                              | chat模型                                                                      | GPTQ模型                                                                                                | AWQ模型                                                                                      |
| --------------------------------------------------------------------- | ----------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------- |
chenzk's avatar
chenzk committed
97
98
99
100
101
102
103
104
105
106
| [Qwen-7B](https://huggingface.co/Qwen/Qwen1.5-7B)         | [Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat)                | [Qwen-7B-Chat-GPTQ-Int4](https://huggingface.co/Qwen/Qwen-7B-Chat-Int4)                                    |                                                                                              |
| [Qwen-14B](https://huggingface.co/Qwen/Qwen1.5-14B)           | [Qwen-14B-Chat](https://huggingface.co/Qwen/Qwen-14B-Chat)              | [Qwen-14B-Chat-GPTQ-Int4](https://huggingface.co/Qwen/Qwen1.5-14B-Chat-GPTQ-Int4)                |                                                                                              |
| [Qwen-72B](https://huggingface.co/Qwen/Qwen1.5-72B)           | [Qwen-72B-Chat](https://huggingface.co/Qwen/Qwen1.5-72B-Chat)              | [Qwen-72B-Chat-GPTQ-Int4](https://huggingface.co/Qwen/Qwen1.5-72B-Chat-GPTQ-Int4)                |                                                                                              |
| [Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B)   | [Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) | [Qwen1.5-7B-Chat-GPTQ-Int4](https://huggingface.co/Qwen/Qwen1.5-7B-Chat-GPTQ-Int4)       | [Qwen1.5-7B-Chat-AWQ](https://huggingface.co/Qwen/Qwen1.5-7B-Chat-AWQ)       |
| [Qwen1.5-14B](https://huggingface.co/Qwen/Qwen1.5-14B) | [Qwen1.5-14B-Chat](https://huggingface.co/Qwen/Qwen1.5-14B-Chat)   | [Qwen1.5-14B-Chat-GPTQ-Int4](https://huggingface.co/Qwen/Qwen1.5-14B-Chat-GPTQ-Int4)     | [Qwen1.5-14B-Chat-AWQ](https://huggingface.co/Qwen/Qwen1.5-14B-Chat-AWQ)     |
| [Qwen1.5-32B](https://huggingface.co/Qwen/Qwen1.5-32B)          | [Qwen1.5-32B-Chat](https://huggingface.co/Qwen/Qwen1.5-32B-Chat)        | [Qwen1.5-32B-Chat-GPTQ-Int4](https://huggingface.co/Qwen/Qwen1.5-32B-Chat-GPTQ-Int4)              | [Qwen1.5-32B-Chat-AWQ](https://huggingface.co/Qwen/Qwen1.5-32B-Chat-AWQ) |
| [Qwen1.5-72B](https://huggingface.co/Qwen/Qwen1.5-72B)          | [Qwen1.5-72B-Chat](https://huggingface.co/Qwen/Qwen1.5-72B-Chat)        | [Qwen1.5-72B-Chat-GPTQ-Int4](https://huggingface.co/Qwen/Qwen1.5-72B-Chat-GPTQ-Int4)     | [Qwen1.5-72B-Chat-AWQ](https://huggingface.co/Qwen/Qwen1.5-72B-Chat-AWQ)     |
| [Qwen1.5-110B](https://huggingface.co/Qwen/Qwen1.5-110B)        | [Qwen1.5-110B-Chat](https://huggingface.co/Qwen/Qwen1.5-110B-Chat)      | [Qwen1.5-110B-Chat-GPTQ-Int4](https://huggingface.co/Qwen/Qwen1.5-110B-Chat-GPTQ-Int4)   | [Qwen1.5-110B-Chat-AWQ](https://huggingface.co/Qwen/Qwen1.5-110B-Chat-AWQ)   |
| [Qwen2-7B](https://huggingface.co/unsloth/Qwen2-7B)                | [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct)      | [Qwen2-7B-Instruct-GPTQ-Int4](https://huggingface.co/Qwen/Qwen2-7B-Instruct-GPTQ-Int4)   | [Qwen2-7B-Instruct-AWQ](https://huggingface.co/Qwen/Qwen2-7B-Instruct-AWQ)   |
| [Qwen2-72B](https://huggingface.co/Qwen/Qwen2-72B)              | [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct)    | [Qwen2-72B-Instruct-GPTQ-Int4](https://huggingface.co/Qwen/Qwen2-72B-Instruct-GPTQ-Int4) | [Qwen2-72B-Instruct-AWQ](https://huggingface.co/Qwen/Qwen2-72B-Instruct-AWQ) |
zhuwenwen's avatar
add env  
zhuwenwen committed
107

zhuwenwen's avatar
zhuwenwen committed
108
### 离线批量推理
laibao's avatar
laibao committed
109

zhuwenwen's avatar
zhuwenwen committed
110
```bash
111
VLLM_USE_FLASH_ATTN_PA=1 pythonexamples/offline_inference/basic/basic.py
zhuwenwen's avatar
zhuwenwen committed
112
```
laibao's avatar
laibao committed
113

zhuwenwen's avatar
zhuwenwen committed
114
其中,`prompts`为提示词;`temperature`为控制采样随机性的值,值越小模型生成越确定,值变高模型生成更随机,0表示贪婪采样,默认为1;`max_tokens=16`为生成长度,默认为1;
zhuwenwen's avatar
zhuwenwen committed
115
`model`为模型路径;`tensor_parallel_size=1`为使用卡数,默认为1;`dtype="float16"`为推理数据类型,如果模型权重是bfloat16,需要修改为float16推理,`quantization="gptq"`为使用gptq量化进行推理,需下载以上GPTQ模型。`quantization="awq"`为使用awq量化进行推理,需下载以上AWQ模型。
zhuwenwen's avatar
zhuwenwen committed
116
117

### 离线批量推理性能测试
laibao's avatar
laibao committed
118

zhuwenwen's avatar
zhuwenwen committed
119
1、指定输入输出
laibao's avatar
laibao committed
120

zhuwenwen's avatar
zhuwenwen committed
121
```bash
122
VLLM_USE_FLASH_ATTN_PA=1 python benchmarks/benchmark_throughput.py --num-prompts 1 --input-len 32 --output-len 128 --model /your/model/path -tp 1 --trust-remote-code --enforce-eager --dtype float16
zhuwenwen's avatar
zhuwenwen committed
123
```
laibao's avatar
laibao committed
124
125

其中 `--num-prompts`是batch数,`--input-len`是输入seqlen,`--output-len`是输出token长度,`--model`为模型路径,`-tp`为使用卡数,`dtype="float16"`为推理数据类型,如果模型权重是bfloat16,需要修改为float16推理。若指定 `--output-len  1`即为首字延迟。`-q gptq`为使用gptq量化模型进行推理。
zhuwenwen's avatar
zhuwenwen committed
126
127
128

2、使用数据集
下载数据集:
chenzk's avatar
chenzk committed
129
[sharegpt_v3_unfiltered_cleaned_split](https://huggingface.co/datasets/learnanything/sharegpt_v3_unfiltered_cleaned_split)
zhuwenwen's avatar
zhuwenwen committed
130
131

```bash
132
VLLM_USE_FLASH_ATTN_PA=1 python benchmarks/benchmark_throughput.py --num-prompts 1 --model /your/model/path --dataset-name sharegpt --dataset-path /path/to/ShareGPT_V3_unfiltered_cleaned_split.json -tp 1 --trust-remote-code --enforce-eager --dtype float16
zhuwenwen's avatar
zhuwenwen committed
133
134
```

laibao's avatar
laibao committed
135
其中 `--num-prompts`是batch数,`--model`为模型路径,`--dataset`为使用的数据集,`-tp`为使用卡数,`dtype="float16"`为推理数据类型,如果模型权重是bfloat16,需要修改为float16推理。`-q gptq`为使用gptq量化模型进行推理。
zhuwenwen's avatar
zhuwenwen committed
136

laibao's avatar
laibao committed
137
### OpenAI api服务推理性能测试
laibao's avatar
laibao committed
138

zhuwenwen's avatar
zhuwenwen committed
139
1、启动服务端:
laibao's avatar
laibao committed
140

zhuwenwen's avatar
zhuwenwen committed
141
```bash
142
VLLM_USE_FLASH_ATTN_PA=1 vllm serve --model /your/model/path --enforce-eager --dtype float16 --trust-remote-code --tensor-parallel-size 1
zhuwenwen's avatar
zhuwenwen committed
143
144
145
```

2、启动客户端:
laibao's avatar
laibao committed
146

147
148
```
python benchmarks/benchmark_serving.py --model /your/model/path --dataset-name sharegpt --dataset-path /path/to/ShareGPT_V3_unfiltered_cleaned_split.json  --num-prompts 1 --trust-remote-code
zhuwenwen's avatar
zhuwenwen committed
149
150
```

151
参数同使用数据集,离线批量推理性能测试,具体参考[benchmarks/benchmark_serving.py](/codes/modelzoo/qwen1.5_vllm/-/blob/master/benchmarks/benchmark_serving.py)
zhuwenwen's avatar
zhuwenwen committed
152
153

### OpenAI兼容服务
laibao's avatar
laibao committed
154

zhuwenwen's avatar
zhuwenwen committed
155
启动服务:
laibao's avatar
laibao committed
156

zhuwenwen's avatar
zhuwenwen committed
157
```bash
158
VLLM_USE_FLASH_ATTN_PA=1 vllm serve /your/model/path --enforce-eager --dtype float16 --trust-remote-code
zhuwenwen's avatar
zhuwenwen committed
159
```
laibao's avatar
laibao committed
160

laibao's avatar
laibao committed
161
这里serve之后为加载模型路径,`--dtype`为数据类型:float16,默认情况使用tokenizer中的预定义聊天模板,`--chat-template`可以添加新模板覆盖默认模板,`-q gptq`为使用gptq量化模型进行推理,`-q awqq`为使用awq量化模型进行推理。
zhuwenwen's avatar
zhuwenwen committed
162
163

列出模型型号:
laibao's avatar
laibao committed
164

zhuwenwen's avatar
zhuwenwen committed
165
166
167
168
169
```bash
curl http://localhost:8000/v1/models
```

### OpenAI Completions API和vllm结合使用
laibao's avatar
laibao committed
170

zhuwenwen's avatar
zhuwenwen committed
171
172
173
174
```bash
curl http://localhost:8000/v1/completions \
    -H "Content-Type: application/json" \
    -d '{
175
        "model": "/your/model/path",
zhuwenwen's avatar
zhuwenwen committed
176
177
178
179
180
181
        "prompt": "What is deep learning?",
        "max_tokens": 7,
        "temperature": 0
    }'
```

182
或者使用[examples/online_serving/openai_completion_client.py](examples/online_serving/openai_completion_client.py)
zhuwenwen's avatar
zhuwenwen committed
183
184

### OpenAI Chat API和vllm结合使用
laibao's avatar
laibao committed
185

zhuwenwen's avatar
zhuwenwen committed
186
187
188
189
```bash
curl http://localhost:8000/v1/chat/completions \
    -H "Content-Type: application/json" \
    -d '{
190
191
        "model": "/your/model/path",
        "max_tokens": 128,
zhuwenwen's avatar
zhuwenwen committed
192
193
194
195
196
197
        "messages": [
            {"role": "system", "content": "What is deep learning?"},
            {"role": "user", "content": "What is deep learning?"}
        ]
    }'
```
laibao's avatar
laibao committed
198

199
或者使用[examples/online_serving/openai_chat_completion_client.py](examples/online_serving/openai_chat_completion_client.py)
laibao's avatar
laibao committed
200

laibao's avatar
laibao committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
### **gradio和vllm结合使用**

1.安装gradio

```
pip install gradio
```

2.安装必要文件

    2.1 启动gradio服务,根据提示操作

```
python  gradio_openai_chatbot_webserver.py --model "Qwen/Qwen1.5-7B-Chat" --model-url http://localhost:8000/v1 --temp 0.8 --stop-token-ids ""
```

    2.2 更改文件权限

打开提示下载文件目录,输入以下命令给予权限

```
chmod +x frpc_linux_amd64_v0.*
```
laibao's avatar
laibao committed
224

laibao's avatar
laibao committed
225
226
227
228
    2.3端口映射

```
ssh -L 8000:计算节点IP:8000 -L 8001:计算节点IP:8001 用户名@登录节点 -p 登录节点端口
laibao's avatar
laibao committed
229
```
laibao's avatar
laibao committed
230
231
232
233

3.启动OpenAI兼容服务

```
234
VLLM_USE_FLASH_ATTN_PA=1 vllm serve /your/model/path --enforce-eager --dtype float16 --trust-remote-code --port 8000 --host "0.0.0.0"
laibao's avatar
laibao committed
235
236
237
238
239
```

4.启动gradio服务

```
laibao's avatar
laibao committed
240
python  gradio_openai_chatbot_webserver.py --model "Qwen/Qwen1.5-7B-Chat" --model-url http://localhost:8000/v1 --temp 0.8 --stop-token-ids --host "0.0.0.0" --port 8001"
laibao's avatar
laibao committed
241
242
243
244
245
```

5.使用对话服务

在浏览器中输入本地 URL,可以使用 Gradio 提供的对话服务。
zhuwenwen's avatar
zhuwenwen committed
246
247

## result
laibao's avatar
laibao committed
248

zhuwenwen's avatar
zhuwenwen committed
249
使用的加速卡:1张 DCU-K100_AI-64G
laibao's avatar
laibao committed
250

zhuwenwen's avatar
zhuwenwen committed
251
252
253
254
255
```
Prompt: 'What is deep learning?', Generated text: ' Deep learning is a subset of machine learning that involves the use of neural networks to model and solve complex problems. Neural networks are a network of interconnected nodes or " neurons" that are designed to recognize patterns in data, learn from examples, and make predictions or decisions.\nThe term "deep" in deep learning refers to the use of multiple layers or hidden layers in these neural networks. Each layer processes the input data in a different way, extracting increasingly abstract features as the data passes through.'
```

### 精度
laibao's avatar
laibao committed
256

zhuwenwen's avatar
zhuwenwen committed
257
258
259
260
261


## 应用场景

### 算法类别
laibao's avatar
laibao committed
262

zhuwenwen's avatar
zhuwenwen committed
263
264
265
对话问答

### 热点应用行业
laibao's avatar
laibao committed
266

zhuwenwen's avatar
zhuwenwen committed
267
268
269
金融,科研,教育

## 源码仓库及问题反馈
laibao's avatar
laibao committed
270

chenzk's avatar
chenzk committed
271
* [https://developer.sourcefind.cn/codes/modelzoo/qwen1.5_vllm](https://developer.sourcefind.cn/codes/modelzoo/qwen1.5_vllm)
zhuwenwen's avatar
zhuwenwen committed
272
273
274

## 参考资料

laibao's avatar
laibao committed
275
* [https://github.com/vllm-project/vllm](https://github.com/vllm-project/vllm)