"cmd/hytop/tui/main.go" did not exist on "fbb93034261b79c9778a38f84e7826868ed31011"
README.md 12.4 KB
Newer Older
zhuwenwen's avatar
zhuwenwen committed
1
2
3
4
<!--
 * @Author: zhuww
 * @email: zhuww@sugon.com
 * @Date: 2024-05-24 14:15:07
zhuwenwen's avatar
zhuwenwen committed
5
 * @LastEditTime: 2024-09-30 08:30:01
zhuwenwen's avatar
zhuwenwen committed
6
-->
laibao's avatar
laibao committed
7

zhuwenwen's avatar
zhuwenwen committed
8
9
10
# Qwen1.5

## 论文
laibao's avatar
laibao committed
11

zhuwenwen's avatar
zhuwenwen committed
12
13
14


## 模型结构
laibao's avatar
laibao committed
15

zhuwenwen's avatar
zhuwenwen committed
16
Qwen1.5是阿里云开源大型语言模型系列,是Qwen2.0的beta版本。相较于以往版本,本次更新着重提升了Chat模型与人类偏好的对齐程度,并且显著增强了模型的多语言处理能力。在序列长度方面,所有规模模型均已实现 32768 个tokens的上下文长度范围支持。同时,预训练 Base 模型的质量也有关键优化,有望在微调过程中带来更佳体验。
laibao's avatar
laibao committed
17

zhuwenwen's avatar
zhuwenwen committed
18
19
20
21
22
<div align=center>
    <img src="./doc/qwen1.5.jpg"/>
</div>

## 算法原理
laibao's avatar
laibao committed
23

zhuwenwen's avatar
zhuwenwen committed
24
25
26
27
28
29
30
和Qwen一样,Qwen1.5仍然是一个decoder-only的transformer模型,使用SwiGLU激活函数、RoPE、多头注意力机制等。

<div align=center>
    <img src="./doc/qwen1.5.png"/>
</div>

## 环境配置
laibao's avatar
laibao committed
31

zhuwenwen's avatar
zhuwenwen committed
32
### Docker(方法一)
laibao's avatar
laibao committed
33

zhuwenwen's avatar
zhuwenwen committed
34
35
36
提供[光源](https://www.sourcefind.cn/#/image/dcu/custom)拉取推理的docker镜像:

```
zhuwenwen's avatar
zhuwenwen committed
37
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-ubuntu20.04-dtk24.04.2-py3.10
zhuwenwen's avatar
zhuwenwen committed
38
39
40
41
42
# <Image ID>用上面拉取docker镜像的ID替换
# <Host Path>主机端路径
# <Container Path>容器映射路径
docker run -it --name qwen1.5_vllm --privileged --shm-size=64G  --device=/dev/kfd --device=/dev/dri/ --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --ulimit memlock=-1:-1 --ipc=host --network host --group-add video -v /opt/hyhal:/opt/hyhal -v <Host Path>:<Container Path> <Image ID> /bin/bash
```
laibao's avatar
laibao committed
43

zhuwenwen's avatar
zhuwenwen committed
44
`Tips:若在K100/Z100L上使用,使用定制镜像docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:vllm0.5.0-dtk24.04.1-ubuntu20.04-py310-zk-v1,K100/Z100L不支持awq量化`
zhuwenwen's avatar
zhuwenwen committed
45
46

### Dockerfile(方法二)
laibao's avatar
laibao committed
47

zhuwenwen's avatar
zhuwenwen committed
48
49
50
51
```
# <Host Path>主机端路径
# <Container Path>容器映射路径
docker build -t qwen1.5:latest .
zhuwenwen's avatar
zhuwenwen committed
52
docker run -it --name qwen1.5_vllm --privileged --shm-size=64G  --device=/dev/kfd --device=/dev/dri/ --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --ulimit memlock=-1:-1 --ipc=host --network host --group-add video -v /opt/hyhal:/opt/hyhal:ro -v <Host Path>:<Container Path> qwen1.5:latest /bin/bash
zhuwenwen's avatar
zhuwenwen committed
53
54
55
```

### Anaconda(方法三)
laibao's avatar
laibao committed
56

zhuwenwen's avatar
zhuwenwen committed
57
58
59
```
conda create -n qwen1.5_vllm python=3.10
```
laibao's avatar
laibao committed
60

zhuwenwen's avatar
zhuwenwen committed
61
关于本项目DCU显卡所需的特殊深度学习库可从[光合](https://developer.hpccube.com/tool/)开发者社区下载安装。
laibao's avatar
laibao committed
62

zhuwenwen's avatar
zhuwenwen committed
63
* DTK驱动:dtk24.04.2
zhuwenwen's avatar
zhuwenwen committed
64
65
* Pytorch: 2.1.0
* triton:2.1.0
zhuwenwen's avatar
zhuwenwen committed
66
* lmslim: 0.1.0
zhuwenwen's avatar
zhuwenwen committed
67
68
* xformers: 0.0.25
* flash_attn: 2.0.4
zhuwenwen's avatar
zhuwenwen committed
69
* vllm: 0.5.0
zhuwenwen's avatar
zhuwenwen committed
70
* python: python3.10
zhuwenwen's avatar
zhuwenwen committed
71

zhuwenwen's avatar
zhuwenwen committed
72
`Tips:需先安装相关依赖,最后安装vllm包`
zhuwenwen's avatar
zhuwenwen committed
73
74

## 数据集
laibao's avatar
laibao committed
75

zhuwenwen's avatar
zhuwenwen committed
76
77
78
79


## 推理

laibao's avatar
laibao committed
80
81
### 模型下载

laibao's avatar
laibao committed
82
83
84
85
86
87
88
89
90
91
92
93
| 基座模型                                                              | chat模型                                                                      | GPTQ模型                                                                                                | AWQ模型                                                                                      |
| --------------------------------------------------------------------- | ----------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------- |
| [Qwen-7B](http://113.200.138.88:18080/aimodels/qwen/Qwen-7B.git)         | [Qwen-7B-Chat](http://113.200.138.88:18080/aimodels/Qwen-7B-Chat)                | [Qwen-7B-Chat-GPTQ-Int4](https://huggingface.co/Qwen/Qwen-7B-Chat-Int4)                                    |                                                                                              |
| [Qwen-14B](http://113.200.138.88:18080/aimodels/qwen/Qwen-14B)           | [Qwen-14B-Chat](http://113.200.138.88:18080/aimodels/Qwen-14B-Chat)              | [Qwen-14B-Chat-GPTQ-Int4](http://113.200.138.88:18080/aimodels/qwen/Qwen-14B-Chat-Int4.git)                |                                                                                              |
| [Qwen-72B](http://113.200.138.88:18080/aimodels/qwen/Qwen-72B)           | [Qwen-72B-Chat](http://113.200.138.88:18080/aimodels/Qwen-72B-Chat)              | [Qwen-72B-Chat-GPTQ-Int4](http://113.200.138.88:18080/aimodels/qwen/Qwen-72B-Chat-Int4.git)                |                                                                                              |
| [Qwen1.5-7B](http://113.200.138.88:18080/aimodels/qwen/Qwen1.5-7B.git)   | [Qwen1.5-7B-Chat](http://113.200.138.88:18080/aimodels/qwen/Qwen1.5-7B-Chat.git) | [Qwen1.5-7B-Chat-GPTQ-Int4](http://113.200.138.88:18080/aimodels/qwen/Qwen1.5-7B-Chat-GPTQ-Int4.git)       | [Qwen1.5-7B-Chat-AWQ-Int4](http://113.200.138.88:18080/aimodels/qwen/Qwen1.5-7B-Chat-AWQ)       |
| [Qwen1.5-14B](http://113.200.138.88:18080/aimodels/qwen/Qwen1.5-14B.git) | [Qwen1.5-14B-Chat](http://113.200.138.88:18080/aimodels/qwen/Qwen1.5-14B-Chat)   | [Qwen1.5-14B-Chat-GPTQ-Int4](http://113.200.138.88:18080/aimodels/qwen/Qwen1.5-14B-Chat-GPTQ-Int4.git)     | [Qwen1.5-14B-Chat-AWQ-Int4](http://113.200.138.88:18080/aimodels/qwen/Qwen1.5-14B-Chat-AWQ)     |
| [Qwen1.5-32B](http://113.200.138.88:18080/aimodels/Qwen1.5-32B)          | [Qwen1.5-32B-Chat](http://113.200.138.88:18080/aimodels/Qwen1.5-32B-Chat)        | [Qwen1.5-32B-Chat-GPTQ-Int4](http://113.200.138.88:18080/aimodels/Qwen1.5-32B-Chat-GPTQ-Int4)              | [Qwen1.5-32B-Chat-AWQ-Int4](http://113.200.138.88:18080/aimodels/qwen/Qwen1.5-32B-Chat-AWQ.git) |
| [Qwen1.5-72B](http://113.200.138.88:18080/aimodels/Qwen1.5-72B)          | [Qwen1.5-72B-Chat](http://113.200.138.88:18080/aimodels/Qwen1.5-72B-Chat)        | [Qwen1.5-72B-Chat-GPTQ-Int4](http://113.200.138.88:18080/aimodels/qwen/Qwen1.5-72B-Chat-GPTQ-Int4.git)     | [Qwen1.5-72B-Chat-AWQ-Int4](http://113.200.138.88:18080/aimodels/qwen/Qwen1.5-72B-Chat-AWQ)     |
| [Qwen1.5-110B](http://113.200.138.88:18080/aimodels/Qwen1.5-110B)        | [Qwen1.5-110B-Chat](http://113.200.138.88:18080/aimodels/Qwen1.5-110B-Chat)      | [Qwen1.5-110B-Chat-GPTQ-Int4](http://113.200.138.88:18080/aimodels/qwen/Qwen1.5-110B-Chat-GPTQ-Int4.git)   | [Qwen1.5-110B-Chat-AWQ-Int4](http://113.200.138.88:18080/aimodels/qwen/Qwen1.5-110B-Chat-AWQ)   |
| [Qwen2-7B](http://113.200.138.88:18080/aimodels/Qwen2-7B)                | [Qwen2-7B-Instruct](http://113.200.138.88:18080/aimodels/Qwen2-7B-Instruct)      | [Qwen2-7B-Instruct-GPTQ-Int4](http://113.200.138.88:18080/aimodels/qwen/Qwen2-7B-Instruct-GPTQ-Int4.git)   | [Qwen2-7B-Instruct-AWQ-Int4](http://113.200.138.88:18080/aimodels/qwen/Qwen2-7B-Instruct-AWQ)   |
| [Qwen2-72B](http://113.200.138.88:18080/aimodels/Qwen2-72B)              | [Qwen2-72B-Instruct](http://113.200.138.88:18080/aimodels/Qwen2-72B-Instruct)    | [Qwen2-72B-Instruct-GPTQ-Int4](http://113.200.138.88:18080/aimodels/qwen/Qwen2-72B-Instruct-GPTQ-Int4.git) | [Qwen2-72B-Instruct-AWQ-Int4](http://113.200.138.88:18080/aimodels/qwen/Qwen2-72B-Instruct-AWQ) |
zhuwenwen's avatar
add env  
zhuwenwen committed
94

zhuwenwen's avatar
zhuwenwen committed
95
### 离线批量推理
laibao's avatar
laibao committed
96

zhuwenwen's avatar
zhuwenwen committed
97
```bash
zhuwenwen's avatar
zhuwenwen committed
98
python examples/offline_inference.py
zhuwenwen's avatar
zhuwenwen committed
99
```
laibao's avatar
laibao committed
100

zhuwenwen's avatar
zhuwenwen committed
101
其中,`prompts`为提示词;`temperature`为控制采样随机性的值,值越小模型生成越确定,值变高模型生成更随机,0表示贪婪采样,默认为1;`max_tokens=16`为生成长度,默认为1;
zhuwenwen's avatar
zhuwenwen committed
102
`model`为模型路径;`tensor_parallel_size=1`为使用卡数,默认为1;`dtype="float16"`为推理数据类型,如果模型权重是bfloat16,需要修改为float16推理,`quantization="gptq"`为使用gptq量化进行推理,需下载以上GPTQ模型。`quantization="awq"`为使用awq量化进行推理,需下载以上AWQ模型。
zhuwenwen's avatar
zhuwenwen committed
103
104

### 离线批量推理性能测试
laibao's avatar
laibao committed
105

zhuwenwen's avatar
zhuwenwen committed
106
1、指定输入输出
laibao's avatar
laibao committed
107

zhuwenwen's avatar
zhuwenwen committed
108
```bash
zhuwenwen's avatar
zhuwenwen committed
109
python benchmarks/benchmark_throughput.py --num-prompts 1 --input-len 32 --output-len 128 --model Qwen/Qwen1.5-7B-Chat -tp 1 --trust-remote-code --enforce-eager --dtype float16
zhuwenwen's avatar
zhuwenwen committed
110
```
laibao's avatar
laibao committed
111
112

其中 `--num-prompts`是batch数,`--input-len`是输入seqlen,`--output-len`是输出token长度,`--model`为模型路径,`-tp`为使用卡数,`dtype="float16"`为推理数据类型,如果模型权重是bfloat16,需要修改为float16推理。若指定 `--output-len  1`即为首字延迟。`-q gptq`为使用gptq量化模型进行推理。
zhuwenwen's avatar
zhuwenwen committed
113
114
115

2、使用数据集
下载数据集:
laibao's avatar
laibao committed
116

zhuwenwen's avatar
zhuwenwen committed
117
```bash
dcuai's avatar
dcuai committed
118
wget http://113.200.138.88:18080/aidatasets/vllm_data/-/raw/main/ShareGPT_V3_unfiltered_cleaned_split.json
zhuwenwen's avatar
zhuwenwen committed
119
120
121
```

```bash
zhuwenwen's avatar
zhuwenwen committed
122
python benchmarks/benchmark_throughput.py --num-prompts 1 --model Qwen/Qwen1.5-7B-Chat --dataset ShareGPT_V3_unfiltered_cleaned_split.json -tp 1 --trust-remote-code --enforce-eager --dtype float16
zhuwenwen's avatar
zhuwenwen committed
123
124
```

laibao's avatar
laibao committed
125
其中 `--num-prompts`是batch数,`--model`为模型路径,`--dataset`为使用的数据集,`-tp`为使用卡数,`dtype="float16"`为推理数据类型,如果模型权重是bfloat16,需要修改为float16推理。`-q gptq`为使用gptq量化模型进行推理。
zhuwenwen's avatar
zhuwenwen committed
126
127

### api服务推理性能测试
laibao's avatar
laibao committed
128

zhuwenwen's avatar
zhuwenwen committed
129
1、启动服务端:
laibao's avatar
laibao committed
130

zhuwenwen's avatar
zhuwenwen committed
131
```bash
zhuwenwen's avatar
zhuwenwen committed
132
python -m vllm.entrypoints.openai.api_server  --model Qwen/Qwen1.5-7B-Chat  --dtype float16 --enforce-eager -tp 1 
zhuwenwen's avatar
zhuwenwen committed
133
134
135
```

2、启动客户端:
laibao's avatar
laibao committed
136

zhuwenwen's avatar
zhuwenwen committed
137
```bash
zhuwenwen's avatar
zhuwenwen committed
138
python benchmarks/benchmark_serving.py --model Qwen/Qwen1.5-7B-Chat --dataset ShareGPT_V3_unfiltered_cleaned_split.json  --num-prompts 1 --trust-remote-code
zhuwenwen's avatar
zhuwenwen committed
139
140
```

laibao's avatar
laibao committed
141
参数同使用数据集,离线批量推理性能测试,具体参考[benchmarks/benchmark_serving.py](benchmarks/benchmark_serving.py)
zhuwenwen's avatar
zhuwenwen committed
142
143

### OpenAI兼容服务
laibao's avatar
laibao committed
144

zhuwenwen's avatar
zhuwenwen committed
145
启动服务:
laibao's avatar
laibao committed
146

zhuwenwen's avatar
zhuwenwen committed
147
148
149
```bash
python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen1.5-7B-Chat --enforce-eager --dtype float16 --trust-remote-code
```
laibao's avatar
laibao committed
150
151

这里 `--model`为加载模型路径,`--dtype`为数据类型:float16,默认情况使用tokenizer中的预定义聊天模板,`--chat-template`可以添加新模板覆盖默认模板,`-q gptq`为使用gptq量化模型进行推理,`-q awqq`为使用awq量化模型进行推理。
zhuwenwen's avatar
zhuwenwen committed
152
153

列出模型型号:
laibao's avatar
laibao committed
154

zhuwenwen's avatar
zhuwenwen committed
155
156
157
158
159
```bash
curl http://localhost:8000/v1/models
```

### OpenAI Completions API和vllm结合使用
laibao's avatar
laibao committed
160

zhuwenwen's avatar
zhuwenwen committed
161
162
163
164
```bash
curl http://localhost:8000/v1/completions \
    -H "Content-Type: application/json" \
    -d '{
zhuwenwen's avatar
zhuwenwen committed
165
        "model": "Qwen/Qwen1.5-7B",
zhuwenwen's avatar
zhuwenwen committed
166
167
168
169
170
171
        "prompt": "What is deep learning?",
        "max_tokens": 7,
        "temperature": 0
    }'
```

laibao's avatar
laibao committed
172
或者使用[examples/openai_completion_client.py](examples/openai_completion_client.py)
zhuwenwen's avatar
zhuwenwen committed
173
174

### OpenAI Chat API和vllm结合使用
laibao's avatar
laibao committed
175

zhuwenwen's avatar
zhuwenwen committed
176
177
178
179
180
181
182
183
184
185
186
```bash
curl http://localhost:8000/v1/chat/completions \
    -H "Content-Type: application/json" \
    -d '{
        "model": "Qwen/Qwen1.5-7B-Chat",
        "messages": [
            {"role": "system", "content": "What is deep learning?"},
            {"role": "user", "content": "What is deep learning?"}
        ]
    }'
```
laibao's avatar
laibao committed
187

zhuwenwen's avatar
zhuwenwen committed
188
或者使用[examples/openai_chatcompletion_client.py](examples/openai_chatcompletion_client.py)
laibao's avatar
laibao committed
189

laibao's avatar
laibao committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
### **gradio和vllm结合使用**

1.安装gradio

```
pip install gradio
```

2.安装必要文件

    2.1 启动gradio服务,根据提示操作

```
python  gradio_openai_chatbot_webserver.py --model "Qwen/Qwen1.5-7B-Chat" --model-url http://localhost:8000/v1 --temp 0.8 --stop-token-ids ""
```

    2.2 更改文件权限

打开提示下载文件目录,输入以下命令给予权限

```
chmod +x frpc_linux_amd64_v0.*
```

3.启动OpenAI兼容服务

```
python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen1.5-7B-Chat --enforce-eager --dtype float16 --trust-remote-code --port 8000
```

4.启动gradio服务

```
python  gradio_openai_chatbot_webserver.py --model "Qwen/Qwen1.5-7B-Chat" --model-url http://localhost:8000/v1 --temp 0.8 --stop-token-ids ""
```

5.使用对话服务

在浏览器中输入本地 URL,可以使用 Gradio 提供的对话服务。
zhuwenwen's avatar
zhuwenwen committed
229
230

## result
laibao's avatar
laibao committed
231

zhuwenwen's avatar
zhuwenwen committed
232
使用的加速卡:1张 DCU-K100_AI-64G
laibao's avatar
laibao committed
233

zhuwenwen's avatar
zhuwenwen committed
234
235
236
237
238
```
Prompt: 'What is deep learning?', Generated text: ' Deep learning is a subset of machine learning that involves the use of neural networks to model and solve complex problems. Neural networks are a network of interconnected nodes or " neurons" that are designed to recognize patterns in data, learn from examples, and make predictions or decisions.\nThe term "deep" in deep learning refers to the use of multiple layers or hidden layers in these neural networks. Each layer processes the input data in a different way, extracting increasingly abstract features as the data passes through.'
```

### 精度
laibao's avatar
laibao committed
239

zhuwenwen's avatar
zhuwenwen committed
240
241
242
243
244


## 应用场景

### 算法类别
laibao's avatar
laibao committed
245

zhuwenwen's avatar
zhuwenwen committed
246
247
248
对话问答

### 热点应用行业
laibao's avatar
laibao committed
249

zhuwenwen's avatar
zhuwenwen committed
250
251
252
金融,科研,教育

## 源码仓库及问题反馈
laibao's avatar
laibao committed
253

zhuwenwen's avatar
zhuwenwen committed
254
255
256
257
* [https://developer.hpccube.com/codes/modelzoo/qwen1.5_vllm](https://developer.hpccube.com/codes/modelzoo/qwen1.5_vllm)

## 参考资料

laibao's avatar
laibao committed
258
* [https://github.com/vllm-project/vllm](https://github.com/vllm-project/vllm)