train.py 7.46 KB
Newer Older
zhangwq5's avatar
all  
zhangwq5 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from datetime import datetime
import os
import random

import numpy as np
import torch
from torch_geometric.loader import DataLoader

from tqdm import tqdm

from datasets.PowerFlowData import PowerFlowData
from networks.MPN import MPN, MPN_simplenet, SkipMPN, MaskEmbdMPN, MultiConvNet, MultiMPN, MaskEmbdMultiMPN
from utils.argument_parser import argument_parser
from utils.training import train_epoch, append_to_json
from utils.evaluation import evaluate_epoch
from utils.custom_loss_functions import Masked_L2_loss, PowerImbalance, MixedMSEPoweImbalance

import wandb


def main():
    # Step 0: Parse Arguments and Setup
    args = argument_parser()
    run_id = datetime.now().strftime("%Y%m%d") + '-' + str(random.randint(0, 9999))
    LOG_DIR = 'logs'
    SAVE_DIR = 'models'
    TRAIN_LOG_PATH = os.path.join(LOG_DIR, 'train_log/train_log_'+run_id+'.pt')
    SAVE_LOG_PATH = os.path.join(LOG_DIR, 'save_logs.json')
    SAVE_MODEL_PATH = os.path.join(SAVE_DIR, 'model_'+run_id+'.pt')
    models = {
        'MPN': MPN,
        'MPN_simplenet': MPN_simplenet,
        'SkipMPN': SkipMPN,
        'MaskEmbdMPN': MaskEmbdMPN,
        'MultiConvNet': MultiConvNet,
        'MultiMPN': MultiMPN,
        'MaskEmbdMultiMPN': MaskEmbdMultiMPN
    }
    mixed_cases = ['118v2', '14v2']

    # Training parameters
    data_dir = args.data_dir
    nomalize_data = not args.disable_normalize
    num_epochs = args.num_epochs
    loss_fn = Masked_L2_loss(regularize=args.regularize, regcoeff=args.regularization_coeff)
    eval_loss_fn = Masked_L2_loss(regularize=False)
    lr = args.lr
    batch_size = args.batch_size
    grid_case = args.case
    
    # Network parameters
    nfeature_dim = args.nfeature_dim
    efeature_dim = args.efeature_dim
    hidden_dim = args.hidden_dim
    output_dim = args.output_dim
    n_gnn_layers = args.n_gnn_layers
    conv_K = args.K
    dropout_rate = args.dropout_rate
    model = models[args.model]

    log_to_wandb = args.wandb
    wandb_entity = args.wandb_entity
    if log_to_wandb:
        wandb.init(project="PowerFlowNet",
                   entity=wandb_entity,
                   name=run_id,
                   config=args)

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    torch.manual_seed(1234)
    np.random.seed(1234)
    # torch.backends.cudnn.deterministic = True
    # torch.backends.cudnn.benchmark = False

    # Step 1: Load data
    trainset = PowerFlowData(root=data_dir, case=grid_case, split=[.5, .2, .3], task='train', normalize=nomalize_data)
    valset = PowerFlowData(root=data_dir, case=grid_case, split=[.5, .2, .3], task='val', normalize=nomalize_data)
    testset = PowerFlowData(root=data_dir, case=grid_case, split=[.5, .2, .3], task='test', normalize=nomalize_data)
        
    train_loader = DataLoader(trainset, batch_size=batch_size, shuffle=True)
    val_loader = DataLoader(valset, batch_size=batch_size, shuffle=False)
    test_loader = DataLoader(testset, batch_size=batch_size, shuffle=False)
    
    ## [Optional] physics-informed loss function
    if args.train_loss_fn == 'power_imbalance':
        # overwrite the loss function
        loss_fn = PowerImbalance(*trainset.get_data_means_stds()).to(device)
    elif args.train_loss_fn == 'masked_l2':
        loss_fn = Masked_L2_loss(regularize=args.regularize, regcoeff=args.regularization_coeff)
    elif args.train_loss_fn == 'mixed_mse_power_imbalance':
        loss_fn = MixedMSEPoweImbalance(*trainset.get_data_means_stds(), alpha=0.9).to(device)
    else:
        loss_fn = torch.nn.MSELoss()
    
    # Step 2: Create model and optimizer (and scheduler)
    node_in_dim, node_out_dim, edge_dim = trainset.get_data_dimensions()
    assert node_in_dim == 16
    model = model(
        nfeature_dim=nfeature_dim,
        efeature_dim=efeature_dim,
        output_dim=output_dim,
        hidden_dim=hidden_dim,
        n_gnn_layers=n_gnn_layers,
        K=conv_K,
        dropout_rate=dropout_rate
    ).to(device) 

    #calculate model size
    pytorch_total_params = sum(p.numel() for p in model.parameters())
    print("Total number of parameters: ", pytorch_total_params)
    
    optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
    # scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
    #                                                        mode='min',
    #                                                        factor=0.5,
    #                                                        patience=5,
    #                                                        verbose=True)
    scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=lr, steps_per_epoch=len(train_loader), epochs=num_epochs)

    # Step 3: Train model
    best_train_loss = 10000.
    best_val_loss = 10000.
    train_log = {
        'train': {
            'loss': []},
        'val': {
            'loss': []},
    }
    # pbar = tqdm(range(num_epochs), total=num_epochs, position=0, leave=True)
    for epoch in range(num_epochs):
        train_loss = train_epoch(
            model, train_loader, loss_fn, optimizer, device)
        val_loss = evaluate_epoch(model, val_loader, eval_loss_fn, device)
        scheduler.step()
        train_log['train']['loss'].append(train_loss)
        train_log['val']['loss'].append(val_loss)

        if log_to_wandb:
            wandb.log({'train_loss': train_loss,
                      'val_loss': val_loss})

        if train_loss < best_train_loss:
            best_train_loss = train_loss

        if val_loss < best_val_loss:
            best_val_loss = val_loss
            if args.save:
                _to_save = {
                    'epoch': epoch,
                    'args': args,
                    'val_loss': best_val_loss,
                    'model_state_dict': model.state_dict(),
                }
                os.makedirs('models', exist_ok=True)
                torch.save(_to_save, SAVE_MODEL_PATH)
                append_to_json(
                    SAVE_LOG_PATH,
                    run_id,
                    {
                        'val_loss': f"{best_val_loss: .4f}",
                        # 'test_loss': f"{test_loss: .4f}",
                        'train_log': TRAIN_LOG_PATH,
                        'saved_file': SAVE_MODEL_PATH,
                        'epoch': epoch,
                        'model': args.model,
                        'train_case': args.case,
                        'train_loss_fn': args.train_loss_fn,
                        'args': vars(args)
                    }
                )
                save_dir = os.path.dirname(TRAIN_LOG_PATH)
                # Check if the directory exists, create it if it doesn't
                if save_dir and not os.path.exists(save_dir):
                    os.makedirs(save_dir)

                torch.save(train_log, TRAIN_LOG_PATH)

        print(f"Epoch {epoch+1} / {num_epochs}: train_loss={train_loss:.4f}, val_loss={val_loss:.4f}, best_val_loss={best_val_loss:.4f}")

    print(f"Training Complete. Best validation loss: {best_val_loss:.4f}")
    
    # Step 4: Evaluate model
    if args.save:
        _to_load = torch.load(SAVE_MODEL_PATH)
        model.load_state_dict(_to_load['model_state_dict'])
        test_loss = evaluate_epoch(model, test_loader, eval_loss_fn, device)
        print(f"Test loss: {best_val_loss:.4f}")
        if log_to_wandb:
            wandb.log({'test_loss', test_loss})

    # Step 5: Save results
    os.makedirs(os.path.join(LOG_DIR, 'train_log'), exist_ok=True)
    if args.save:
        torch.save(train_log, TRAIN_LOG_PATH)


if __name__ == '__main__':
    main()