syntheticdatasetgeneration.ipynb 4.31 KB
Newer Older
zhangwq5's avatar
all  
zhangwq5 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandapower.networks as pn\n",
    "import pypower.api as pp\n",
    "import networkx as nx\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "graphs = [pp.case300(), pp.case118(), pp.case57(), pp.case39()]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "def analyse_graph(pp_graph, plot=True):\n",
    "    node_ids = pp_graph['bus'][:,0].astype(np.int64)\n",
    "    edges = pp_graph['branch'][:,0:2].astype(np.int64)\n",
    "\n",
    "    G = nx.Graph()\n",
    "    G.add_nodes_from(node_ids)\n",
    "    for edge in edges:\n",
    "        G.add_edge(edge[0], edge[1])\n",
    "\n",
    "    degree_sequence = sorted((d for n, d in G.degree()), reverse=True)\n",
    "    dmax = max(degree_sequence)\n",
    "\n",
    "    if plot:\n",
    "        fig = plt.figure(\"Degree of a random graph\", figsize=(8, 8))\n",
    "        # Create a gridspec for adding subplots of different sizes\n",
    "        axgrid = fig.add_gridspec(5, 4)\n",
    "\n",
    "        ax0 = fig.add_subplot(axgrid[0:3, :])\n",
    "        Gcc = G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0])\n",
    "        pos = nx.spring_layout(Gcc, seed=10396953)\n",
    "        nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20)\n",
    "        nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4)\n",
    "        ax0.set_title(\"Connected components of G\")\n",
    "        ax0.set_axis_off()\n",
    "\n",
    "        ax1 = fig.add_subplot(axgrid[3:, :2])\n",
    "        ax1.plot(degree_sequence, \"b-\", marker=\"o\")\n",
    "        ax1.set_title(\"Degree Rank Plot\")\n",
    "        ax1.set_ylabel(\"Degree\")\n",
    "        ax1.set_xlabel(\"Rank\")\n",
    "\n",
    "        ax2 = fig.add_subplot(axgrid[3:, 2:])\n",
    "        ax2.bar(*np.unique(degree_sequence, return_counts=True))\n",
    "        ax2.set_title(\"Degree histogram\")\n",
    "        ax2.set_xlabel(\"Degree\")\n",
    "        ax2.set_ylabel(\"# of Nodes\")\n",
    "\n",
    "        fig.tight_layout()\n",
    "        plt.show()\n",
    "    return np.unique(degree_sequence, return_counts=True)\n",
    "\n",
    "# (array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 11]), array([69, 76, 84, 42, 14,  6,  5,  2,  1,  1], dtype=int64)) \n",
    "\n",
    "# (array([1, 2, 3, 4, 5, 6, 7, 8, 9]), array([ 7, 56, 19, 15, 11,  6,  2,  1,  1], dtype=int64)) \n",
    "\n",
    "# (array([1, 2, 3, 4, 5, 6]), array([ 1, 32, 12,  7,  3,  2], dtype=int64)) \n",
    "\n",
    "# (array([1, 2, 3, 4, 5]), array([ 9, 12, 14,  3,  1], dtype=int64)) "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[0.16731518 0.34241245 0.25097276 0.13035019 0.05642023 0.02723735\n",
      " 0.01361868 0.00583658 0.00389105 0.         0.00194553]\n"
     ]
    }
   ],
   "source": [
    "def analyse_graphs(graphs):\n",
    "    degree_frequencies = [analyse_graph(graph, plot=False) for graph in graphs]\n",
    "    maxdegree = max([np.max(x[0]) for x in degree_frequencies])\n",
    "    aggregated_degree_frequencies = {d: 0 for d in list(range(1, maxdegree+1))}\n",
    "    for ds, cs in degree_frequencies:\n",
    "        for d, c in zip(ds, cs):\n",
    "            aggregated_degree_frequencies[d] += c\n",
    "    frequencies = [x for x in aggregated_degree_frequencies.values()]\n",
    "    # now we need to determine random degree sequences\n",
    "    print(np.array(frequencies) / sum(frequencies))\n",
    "\n",
    "        \n",
    "\n",
    "\n",
    "analyse_graphs(graphs)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "graphml_proj",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.16"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}