MPN.py 24.2 KB
Newer Older
zhangwq5's avatar
all  
zhangwq5 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
import torch
import torch.nn as nn
from torch_geometric.nn import MessagePassing, TAGConv, GCNConv, ChebConv
from torch_geometric.utils import degree

class EdgeAggregation(MessagePassing):
    """MessagePassing for aggregating edge features

    """
    def __init__(self, nfeature_dim, efeature_dim, hidden_dim, output_dim):
        super().__init__(aggr='add')
        self.nfeature_dim = nfeature_dim
        self.efeature_dim = efeature_dim
        self.output_dim = output_dim

        # self.linear = nn.Linear(nfeature_dim, output_dim) 
        self.edge_aggr = nn.Sequential(
            nn.Linear(nfeature_dim*2 + efeature_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, output_dim)
        )
        
    def message(self, x_i, x_j, edge_attr):
        '''
        x_j:        shape (N, nfeature_dim,)
        edge_attr:  shape (N, efeature_dim,)
        '''
        return self.edge_aggr(torch.cat([x_i, x_j, edge_attr], dim=-1)) # PNAConv style
    
    def forward(self, x, edge_index, edge_attr):
        '''
        input:
            x:          shape (N, num_nodes, nfeature_dim,)
            edge_attr:  shape (N, num_edges, efeature_dim,)
            
        output:
            out:        shape (N, num_nodes, output_dim,)
        '''
        # Step 1: Add self-loops to the adjacency matrix.
        # edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0)) # no self loop because NO EDGE ATTR FOR SELF LOOP
        
        # Step 2: Calculate the degree of each node.
        row, col = edge_index
        deg = degree(col, x.size(0), dtype=x.dtype)
        deg_inv_sqrt = deg.pow(-0.5)
        deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0.
        norm = deg_inv_sqrt[row] * deg_inv_sqrt[col] 
        
        # Step 3: Feature transformation. 
        # x = self.linear(x) # no feature transformation
        
        # Step 4: Propagation
        out = self.propagate(x=x, edge_index=edge_index, edge_attr=edge_attr, norm=norm)
        #   no bias here
        
        return out

class MPN(nn.Module):
    """Wrapped Message Passing Network
        - One-time Message Passing to aggregate edge features into node features
        - Multiple Conv layers
    """
    def __init__(self, nfeature_dim, efeature_dim, output_dim, hidden_dim, n_gnn_layers, K, dropout_rate):
        super().__init__()
        self.nfeature_dim = nfeature_dim
        self.efeature_dim = efeature_dim
        self.output_dim = output_dim
        self.hidden_dim = hidden_dim
        self.n_gnn_layers = n_gnn_layers
        self.K = K
        self.dropout_rate = dropout_rate
        self.edge_aggr = EdgeAggregation(nfeature_dim, efeature_dim, hidden_dim, hidden_dim)
        self.convs = nn.ModuleList()

        if n_gnn_layers == 1:
            self.convs.append(TAGConv(hidden_dim, output_dim, K=K))
        else:
            self.convs.append(TAGConv(hidden_dim, hidden_dim, K=K))

        for l in range(n_gnn_layers-2):
            self.convs.append(TAGConv(hidden_dim, hidden_dim, K=K))
            
        self.convs.append(TAGConv(hidden_dim, output_dim, K=K))

    def is_directed(self, edge_index):
        'determine if a graph id directed by reading only one edge'
        return edge_index[0,0] not in edge_index[1,edge_index[0,:] == edge_index[1,0]]
    
    def undirect_graph(self, edge_index, edge_attr):
        if self.is_directed(edge_index):
            edge_index_dup = torch.stack(
                [edge_index[1,:], edge_index[0,:]],
                dim = 0
            )   # (2, E)
            edge_index = torch.cat(
                [edge_index, edge_index_dup],
                dim = 1
            )   # (2, 2*E)
            edge_attr = torch.cat(
                [edge_attr, edge_attr],
                dim = 0
            )   # (2*E, fe)
            
            return edge_index, edge_attr
        else:
            return edge_index, edge_attr
    
    def forward(self, data):
        assert data.x.shape[-1] == self.nfeature_dim * 2 + 4 # features and their mask + one-hot node type embedding
        x = data.x[:, 4:4+self.nfeature_dim] # first four features: node type. not elegant at all this way. just saying. 
        input_x = x # problem if there is inplace operation on x, so pay attention
        mask = data.x[:, -self.nfeature_dim:]# last few dimensions: mask.
        edge_index = data.edge_index
        edge_features = data.edge_attr
        
        edge_index, edge_features = self.undirect_graph(edge_index, edge_features)
        
        x = self.edge_aggr(x, edge_index, edge_features)
        for i in range(len(self.convs)-1):
            # x = self.convs[i](x=x, edge_index=edge_index, edge_weight=edge_attr)
            x = self.convs[i](x=x, edge_index=edge_index)
            x = nn.Dropout(self.dropout_rate, inplace=False)(x)
            x = nn.ReLU()(x)
        
        # x = self.convs[-1](x=x, edge_index=edge_index, edge_weight=edge_attr)
        x = self.convs[-1](x=x, edge_index=edge_index)
        
        return x
    
class SkipMPN(nn.Module):
    """Wrapped Message Passing Network
        - * Added skip connection
        - One-time Message Passing to aggregate edge features into node features
        - Multiple Conv layers
    """
    def __init__(self, nfeature_dim, efeature_dim, output_dim, hidden_dim, n_gnn_layers, K, dropout_rate):
        super().__init__()
        self.nfeature_dim = nfeature_dim
        self.efeature_dim = efeature_dim
        self.output_dim = output_dim
        self.hidden_dim = hidden_dim
        self.n_gnn_layers = n_gnn_layers
        self.K = K
        self.dropout_rate = dropout_rate
        self.edge_aggr = EdgeAggregation(nfeature_dim, efeature_dim, hidden_dim, hidden_dim)
        self.convs = nn.ModuleList()

        if n_gnn_layers == 1:
            self.convs.append(TAGConv(hidden_dim, output_dim, K=K))
        else:
            self.convs.append(TAGConv(hidden_dim, hidden_dim, K=K))

        for l in range(n_gnn_layers-2):
            self.convs.append(TAGConv(hidden_dim, hidden_dim, K=K))
            
        self.convs.append(TAGConv(hidden_dim, output_dim, K=K))

    def is_directed(self, edge_index):
        'determine if a graph id directed by reading only one edge'
        return edge_index[0,0] not in edge_index[1,edge_index[0,:] == edge_index[1,0]]
    
    def undirect_graph(self, edge_index, edge_attr):
        if self.is_directed(edge_index):
            edge_index_dup = torch.stack(
                [edge_index[1,:], edge_index[0,:]],
                dim = 0
            )   # (2, E)
            edge_index = torch.cat(
                [edge_index, edge_index_dup],
                dim = 1
            )   # (2, 2*E)
            edge_attr = torch.cat(
                [edge_attr, edge_attr],
                dim = 0
            )   # (2*E, fe)
            
            return edge_index, edge_attr
        else:
            return edge_index, edge_attr
    
    def forward(self, data):
        assert data.x.shape[-1] == self.nfeature_dim * 2 + 4 # features and their mask + one-hot node type embedding
        x = data.x[:, 4:4+self.nfeature_dim] # first four features: node type. not elegant at all this way. just saying. 
        input_x = x # problem if there is inplace operation on x, so pay attention
        mask = data.x[:, -self.nfeature_dim:]# last few dimensions: mask.
        edge_index = data.edge_index
        edge_features = data.edge_attr
        
        edge_index, edge_features = self.undirect_graph(edge_index, edge_features)
        
        x = self.edge_aggr(x, edge_index, edge_features)
        for i in range(len(self.convs)-1):
            # x = self.convs[i](x=x, edge_index=edge_index, edge_weight=edge_attr)
            x = self.convs[i](x=x, edge_index=edge_index)
            x = nn.Dropout(self.dropout_rate, inplace=False)(x)
            x = nn.ReLU()(x)
        
        # x = self.convs[-1](x=x, edge_index=edge_index, edge_weight=edge_attr)
        x = self.convs[-1](x=x, edge_index=edge_index)
        
        # skip connection
        x = input_x + x
        
        return x
    
class MaskEmbdMPN(nn.Module):
    """Wrapped Message Passing Network
        - * Added embedding for mask
        - One-time Message Passing to aggregate edge features into node features
        - Multiple Conv layers
    """
    def __init__(self, nfeature_dim, efeature_dim, output_dim, hidden_dim, n_gnn_layers, K, dropout_rate):
        super().__init__()
        self.nfeature_dim = nfeature_dim
        self.efeature_dim = efeature_dim
        self.output_dim = output_dim
        self.hidden_dim = hidden_dim
        self.n_gnn_layers = n_gnn_layers
        self.K = K
        self.dropout_rate = dropout_rate
        self.edge_aggr = EdgeAggregation(nfeature_dim, efeature_dim, hidden_dim, hidden_dim)
        self.convs = nn.ModuleList()

        if n_gnn_layers == 1:
            self.convs.append(TAGConv(hidden_dim, output_dim, K=K))
        else:
            self.convs.append(TAGConv(hidden_dim, hidden_dim, K=K))

        for l in range(n_gnn_layers-2):
            self.convs.append(TAGConv(hidden_dim, hidden_dim, K=K))
            
        self.convs.append(TAGConv(hidden_dim, output_dim, K=K))
        
        self.mask_embd = nn.Sequential(
            nn.Linear(nfeature_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, nfeature_dim)
        )

    def is_directed(self, edge_index):
        'determine if a graph id directed by reading only one edge'
        return edge_index[0,0] not in edge_index[1,edge_index[0,:] == edge_index[1,0]]
    
    def undirect_graph(self, edge_index, edge_attr):
        if self.is_directed(edge_index):
            edge_index_dup = torch.stack(
                [edge_index[1,:], edge_index[0,:]],
                dim = 0
            )   # (2, E)
            edge_index = torch.cat(
                [edge_index, edge_index_dup],
                dim = 1
            )   # (2, 2*E)
            edge_attr = torch.cat(
                [edge_attr, edge_attr],
                dim = 0
            )   # (2*E, fe)
            
            return edge_index, edge_attr
        else:
            return edge_index, edge_attr
    
    def forward(self, data):
        assert data.x.shape[-1] == self.nfeature_dim * 2 + 4 # features and their mask + one-hot node type embedding
        x = data.x[:, 4:4+self.nfeature_dim] # first four features: node type. not elegant at all this way. just saying. 
        input_x = x # problem if there is inplace operation on x, so pay attention
        mask = data.x[:, -self.nfeature_dim:]# last few dimensions: mask.
        
        x = self.mask_embd(mask) + x
        
        edge_index = data.edge_index
        edge_features = data.edge_attr
        
        edge_index, edge_features = self.undirect_graph(edge_index, edge_features)
        
        x = self.edge_aggr(x, edge_index, edge_features)
        for i in range(len(self.convs)-1):
            # x = self.convs[i](x=x, edge_index=edge_index, edge_weight=edge_attr)
            x = self.convs[i](x=x, edge_index=edge_index)
            x = nn.Dropout(self.dropout_rate, inplace=False)(x)
            x = nn.ReLU()(x)
        
        # x = self.convs[-1](x=x, edge_index=edge_index, edge_weight=edge_attr)
        x = self.convs[-1](x=x, edge_index=edge_index)
        
        return x


class MultiMPN(nn.Module):
    """Wrapped Message Passing Network
        - Multi-step mixed MP+Conv
        - No convolution layers
    """
    def __init__(self, nfeature_dim, efeature_dim, output_dim, hidden_dim, n_gnn_layers, K, dropout_rate):
        super().__init__()
        self.nfeature_dim = nfeature_dim
        self.efeature_dim = efeature_dim
        self.output_dim = output_dim
        self.hidden_dim = hidden_dim
        self.n_gnn_layers = n_gnn_layers
        self.K = K
        self.dropout_rate = dropout_rate
        # self.edge_aggr = EdgeAggregation(nfeature_dim, efeature_dim, hidden_dim, hidden_dim)
        # self.convs = nn.ModuleList()
        self.layers = nn.ModuleList()

        if n_gnn_layers == 1:
            self.layers.append(EdgeAggregation(nfeature_dim, efeature_dim, hidden_dim, hidden_dim))
            self.layers.append(TAGConv(hidden_dim, output_dim, K=K))
        else:
            self.layers.append(EdgeAggregation(nfeature_dim, efeature_dim, hidden_dim, hidden_dim))
            self.layers.append(TAGConv(hidden_dim, hidden_dim, K=K))

        for l in range(n_gnn_layers-2):
            self.layers.append(EdgeAggregation(hidden_dim, efeature_dim, hidden_dim, hidden_dim))
            self.layers.append(TAGConv(hidden_dim, hidden_dim, K=K))
            
        # self.layers.append(TAGConv(hidden_dim, output_dim, K=K))
        self.layers.append(EdgeAggregation(hidden_dim, efeature_dim, hidden_dim, output_dim))

    def is_directed(self, edge_index):
        'determine if a graph id directed by reading only one edge'
        return edge_index[0,0] not in edge_index[1,edge_index[0,:] == edge_index[1,0]]
    
    def undirect_graph(self, edge_index, edge_attr):
        if self.is_directed(edge_index):
            edge_index_dup = torch.stack(
                [edge_index[1,:], edge_index[0,:]],
                dim = 0
            )   # (2, E)
            edge_index = torch.cat(
                [edge_index, edge_index_dup],
                dim = 1
            )   # (2, 2*E)
            edge_attr = torch.cat(
                [edge_attr, edge_attr],
                dim = 0
            )   # (2*E, fe)
            
            return edge_index, edge_attr
        else:
            return edge_index, edge_attr
    
    def forward(self, data):
        assert data.x.shape[-1] == self.nfeature_dim * 2 + 4 # features and their mask + one-hot node type embedding
        x = data.x[:, 4:4+self.nfeature_dim] # first four features: node type. not elegant at all this way. just saying. 
        input_x = x # problem if there is inplace operation on x, so pay attention
        mask = data.x[:, -self.nfeature_dim:]# last few dimensions: mask.
        edge_index = data.edge_index
        edge_features = data.edge_attr
        
        edge_index, edge_features = self.undirect_graph(edge_index, edge_features)
        
        for i in range(len(self.layers)-1):
            if isinstance(self.layers[i], EdgeAggregation):
                x = self.layers[i](x=x, edge_index=edge_index, edge_attr=edge_features)
            else:
                x = self.layers[i](x=x, edge_index=edge_index)
            x = nn.Dropout(self.dropout_rate, inplace=False)(x)
            x = nn.ReLU()(x)
        
        # x = self.convs[-1](x=x, edge_index=edge_index, edge_weight=edge_attr)
        if isinstance(self.layers[-1], EdgeAggregation):
            x = self.layers[-1](x=x, edge_index=edge_index, edge_attr=edge_features)
        else:
            x = self.layers[-1](x=x, edge_index=edge_index)
        
        return x


class MaskEmbdMultiMPN(nn.Module):
    """Wrapped Message Passing Network
        - Mask Embedding
        - Multi-step mixed MP+Conv
        - No convolution layers
    """
    def __init__(self, nfeature_dim, efeature_dim, output_dim, hidden_dim, n_gnn_layers, K, dropout_rate):
        super().__init__()
        self.nfeature_dim = nfeature_dim
        self.efeature_dim = efeature_dim
        self.output_dim = output_dim
        self.hidden_dim = hidden_dim
        self.n_gnn_layers = n_gnn_layers
        self.K = K
        self.dropout_rate = dropout_rate
        # self.edge_aggr = EdgeAggregation(nfeature_dim, efeature_dim, hidden_dim, hidden_dim)
        # self.convs = nn.ModuleList()
        self.layers = nn.ModuleList()

        if n_gnn_layers == 1:
            self.layers.append(EdgeAggregation(nfeature_dim, efeature_dim, hidden_dim, hidden_dim))
            self.layers.append(TAGConv(hidden_dim, output_dim, K=K))
        else:
            self.layers.append(EdgeAggregation(nfeature_dim, efeature_dim, hidden_dim, hidden_dim))
            self.layers.append(TAGConv(hidden_dim, hidden_dim, K=K))

        for l in range(n_gnn_layers-2):
            self.layers.append(EdgeAggregation(hidden_dim, efeature_dim, hidden_dim, hidden_dim))
            self.layers.append(TAGConv(hidden_dim, hidden_dim, K=K))
            
        # self.layers.append(TAGConv(hidden_dim, output_dim, K=K))
        self.layers.append(EdgeAggregation(hidden_dim, efeature_dim, hidden_dim, output_dim))
        
        self.mask_embd = nn.Sequential(
            nn.Linear(nfeature_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, nfeature_dim)
        )

    def is_directed(self, edge_index):
        'determine if a graph id directed by reading only one edge'
        return edge_index[0,0] not in edge_index[1,edge_index[0,:] == edge_index[1,0]]
    
    def undirect_graph(self, edge_index, edge_attr):
        if self.is_directed(edge_index):
            edge_index_dup = torch.stack(
                [edge_index[1,:], edge_index[0,:]],
                dim = 0
            )   # (2, E)
            edge_index = torch.cat(
                [edge_index, edge_index_dup],
                dim = 1
            )   # (2, 2*E)
            edge_attr = torch.cat(
                [edge_attr, edge_attr],
                dim = 0
            )   # (2*E, fe)
            
            return edge_index, edge_attr
        else:
            return edge_index, edge_attr
    
    def forward(self, data):
        assert data.x.shape[-1] == self.nfeature_dim * 2 + 4 # features and their mask + one-hot node type embedding
        x = data.x[:, 4:4+self.nfeature_dim] # first four features: node type. not elegant at all this way. just saying. 
        input_x = x # problem if there is inplace operation on x, so pay attention
        mask = data.x[:, -self.nfeature_dim:]# last few dimensions: mask.
        edge_index = data.edge_index
        edge_features = data.edge_attr
                
        x = self.mask_embd(mask) + x
        
        edge_index, edge_features = self.undirect_graph(edge_index, edge_features)

        for i in range(len(self.layers)-1):
            if isinstance(self.layers[i], EdgeAggregation):
                x = self.layers[i](x=x, edge_index=edge_index, edge_attr=edge_features)
            else:
                x = self.layers[i](x=x, edge_index=edge_index)
            x = nn.Dropout(self.dropout_rate, inplace=False)(x)
            x = nn.ReLU()(x)
        
        # x = self.convs[-1](x=x, edge_index=edge_index, edge_weight=edge_attr)
        if isinstance(self.layers[-1], EdgeAggregation):
            x = self.layers[-1](x=x, edge_index=edge_index, edge_attr=edge_features)
        else:
            x = self.layers[-1](x=x, edge_index=edge_index)
        
        return x
    

class WrappedMultiConv(nn.Module):
    def __init__(self, num_convs, in_channels, out_channels, K, **kwargs):
        super().__init__()
        self.num_convs = num_convs
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.convs = nn.ModuleList()
        for i in range(num_convs):
            self.convs.append(ChebConv(in_channels, out_channels, K, normalization=None, **kwargs))
        
    def forward(self, x, edge_index_list, edge_weights_list):
        out = 0.
        for i in range(self.num_convs):
            edge_index = edge_index_list[i]
            edge_weights = edge_weights_list[i]
            out += self.convs[i](x, edge_index, edge_weights)

        return out

class MultiConvNet(nn.Module):
    """Wrapped Message Passing Network
        - No Message Passing to aggregate edge features into node features
        - Multi-level parallel Conv layers for different edge features
    """
    def __init__(self, nfeature_dim, efeature_dim, output_dim, hidden_dim, n_gnn_layers, K, dropout_rate):
        super().__init__()
        self.nfeature_dim = nfeature_dim
        assert efeature_dim == 5
        efeature_dim = efeature_dim - 3 # should be 2, only these two are meaningful
        self.efeature_dim = efeature_dim
        self.output_dim = output_dim
        self.hidden_dim = hidden_dim
        self.n_gnn_layers = n_gnn_layers
        self.K = K
        self.dropout_rate = dropout_rate
        self.edge_trans = nn.Sequential(
            nn.Linear(efeature_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, efeature_dim)
        )
        self.convs = nn.ModuleList()

        if n_gnn_layers == 1:
            self.convs.append(WrappedMultiConv(efeature_dim, nfeature_dim, output_dim, K=K))
        else:
            self.convs.append(WrappedMultiConv(efeature_dim, nfeature_dim, hidden_dim, K=K))

        for l in range(n_gnn_layers-2):
            self.convs.append(WrappedMultiConv(efeature_dim, hidden_dim, hidden_dim, K=K))
            
        self.convs.append(WrappedMultiConv(efeature_dim, hidden_dim, output_dim, K=K))

    def is_directed(self, edge_index):
        'determine if a graph id directed by reading only one edge'
        return edge_index[0,0] not in edge_index[1,edge_index[0,:] == edge_index[1,0]]
    
    def undirect_graph(self, edge_index, edge_attr):
        if self.is_directed(edge_index):
            edge_index_dup = torch.stack(
                [edge_index[1,:], edge_index[0,:]],
                dim = 0
            )   # (2, E)
            edge_index = torch.cat(
                [edge_index, edge_index_dup],
                dim = 1
            )   # (2, 2*E)
            edge_attr = torch.cat(
                [edge_attr, edge_attr],
                dim = 0
            )   # (2*E, fe)
            
            return edge_index, edge_attr
        else:
            return edge_index, edge_attr
    
    def forward(self, data):
        assert data.x.shape[-1] == self.nfeature_dim * 2 + 4 # features and their mask + one-hot node type embedding
        x = data.x[:, 4:4+self.nfeature_dim] # first four features: node type. not elegant at all this way. just saying. 
        input_x = x # problem if there is inplace operation on x, so pay attention
        mask = data.x[:, -self.nfeature_dim:]# last few dimensions: mask.
        edge_index = data.edge_index
        edge_features = data.edge_attr
        
        edge_index, edge_features = self.undirect_graph(edge_index, edge_features)
        
        edge_features = edge_features[:, :2] + self.edge_trans(edge_features[:, :2]) # only take the first two meaningful features
        for i in range(len(self.convs)-1):
            x = self.convs[i](x=x, 
                              edge_index_list=[edge_index]*self.efeature_dim,
                              edge_weights_list=[edge_features[:,i] for i in range(self.efeature_dim)])
            x = nn.Dropout(self.dropout_rate, inplace=False)(x)
            x = nn.ReLU()(x)
        
        # x = self.convs[-1](x=x, edge_index=edge_index, edge_weight=edge_attr)
        x = self.convs[-1](x=x, 
                              edge_index_list=[edge_index]*self.efeature_dim,
                              edge_weights_list=[edge_features[:,i] for i in range(self.efeature_dim)])
        
        return x
    
    
class MPN_simplenet(nn.Module):
    """Wrapped Message Passing Network
        - One-time Message Passing to aggregate edge features into node features
        - Multiple Conv layers
    """
    def __init__(self, nfeature_dim, efeature_dim, output_dim, hidden_dim, n_gnn_layers, K, dropout_rate):
        super().__init__()
        self.nfeature_dim = nfeature_dim
        self.efeature_dim = efeature_dim
        self.output_dim = output_dim
        self.hidden_dim = hidden_dim
        self.n_gnn_layers = n_gnn_layers
        self.K = K
        self.dropout_rate = dropout_rate
        self.edge_aggr = EdgeAggregation(nfeature_dim, efeature_dim, hidden_dim, hidden_dim)
        self.convs = nn.ModuleList()

        if n_gnn_layers == 1:
            self.convs.append(TAGConv(hidden_dim, output_dim, K=K))
        else:
            self.convs.append(TAGConv(hidden_dim, hidden_dim, K=K))

        for l in range(n_gnn_layers-2):
            self.convs.append(TAGConv(hidden_dim, hidden_dim, K=K))
            
        self.convs.append(TAGConv(hidden_dim, output_dim, K=K))

    def forward(self, data):
        x = data.x
        edge_index = data.edge_index
        edge_features = data.edge_attr
        
        x = self.edge_aggr(x, edge_index, edge_features)
        for i in range(len(self.convs)-1):
            x = self.convs[i](x=x, edge_index=edge_index)
            x = nn.Dropout(self.dropout_rate, inplace=False)(x)
            x = nn.ReLU()(x)
        
        x = self.convs[-1](x=x, edge_index=edge_index)
        
        return x