dataset_generator_pandapower.py 10.4 KB
Newer Older
zhangwq5's avatar
all  
zhangwq5 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import time
import pandapower as pp
import numpy as np
import pickle
# write file documentation here




# dict_keys(['bus', 'load', 'sgen', 'motor', 'asymmetric_load', 'asymmetric_sgen', 'storage', 'gen', 'switch', 'shunt', 'svc', 'ext_grid', 'line', 'trafo', 'trafo3w', 'impedance', 'tcsc', 'dcline', 'ward', 'xward', 'measurement', 'pwl_cost', 'poly_cost', 'characteristic', 'controller', 'group', 'line_geodata', 'bus_geodata', '_empty_res_bus', '_empty_res_ext_grid', '_empty_res_line', '_empty_res_trafo', '_empty_res_load', '_empty_res_asymmetric_load', '_empty_res_asymmetric_sgen', '_empty_res_motor', '_empty_res_sgen', '_empty_res_shunt', '_empty_res_svc', '_empty_res_switch', '_empty_res_impedance', '_empty_res_tcsc', '_empty_res_dcline', '_empty_res_ward', '_empty_res_xward', '_empty_res_trafo_3ph', '_empty_res_trafo3w', '_empty_res_bus_3ph', '_empty_res_ext_grid_3ph', '_empty_res_line_3ph', '_empty_res_asymmetric_load_3ph', '_empty_res_asymmetric_sgen_3ph', '_empty_res_storage', '_empty_res_storage_3ph', '_empty_res_gen',
        #   '_ppc', '_ppc0', '_ppc1', '_ppc2', '_is_elements', '_pd2ppc_lookups', 'version', 'format_version', 'converged', 'OPF_converged', 'name', 'f_hz', 'sn_mva', '_empty_res_load_3ph', '_empty_res_sgen_3ph', 'std_types', 'res_bus', 'res_line', 'res_trafo', 'res_trafo3w', 'res_impedance', 'res_ext_grid', 'res_load', 'res_motor', 'res_sgen', 'res_storage', 'res_shunt', 'res_gen', 'res_ward', 'res_xward', 'res_dcline', 'res_asymmetric_load', 'res_asymmetric_sgen', 'res_switch', 'res_tcsc', 'res_svc', 'res_bus_est', 'res_line_est', 'res_trafo_est', 'res_trafo3w_est', 'res_impedance_est', 'res_switch_est', 'res_bus_sc', 'res_line_sc', 'res_trafo_sc', 'res_trafo3w_sc', 'res_ext_grid_sc', 'res_gen_sc', 'res_sgen_sc', 'res_switch_sc', 'res_bus_3ph', 'res_line_3ph', 'res_trafo_3ph', 'res_ext_grid_3ph', 'res_shunt_3ph', 'res_load_3ph', 'res_sgen_3ph', 'res_storage_3ph', 'res_asymmetric_load_3ph', 'res_asymmetric_sgen_3ph', 'user_pf_options'])

# net = pp.networks.GBnetwork()

# algorithm (str, “nr”) - algorithm that is used to solve the power flow problem.

# The following algorithms are available:

# “nr” Newton-Raphson (pypower implementation with numba accelerations)

# “iwamoto_nr” Newton-Raphson with Iwamoto multiplier (maybe slower than NR but more robust)

# “bfsw” backward/forward sweep (specially suited for radial and weakly-meshed networks)

# “gs” gauss-seidel (pypower implementation)

# “fdbx” fast-decoupled (pypower implementation)

# “fdxb” fast-decoupled (pypower implementation)

# print(net)
# print(net.keys())

number_of_samples = 100000

test_case = 'case118'
# base_net = pp.networks.case6470rte()
base_net = pp.networks.case118()
base_net.bus['name'] = base_net.bus.index
print(base_net.bus)
print(base_net.line)
print(base_net.gen)

# Get Adjacency Matrix
bus_names = base_net.bus['name'].values.tolist()
n = base_net.bus.values.shape[0]
A = np.zeros((n, n))
for edge1,edge2 in base_net.line[['from_bus', 'to_bus']].values:
    
    edge_1 = bus_names.index(edge1)
    edge_2 = bus_names.index(edge2)

    A[edge_1, edge_2] = 1
    A[edge_2, edge_1] = 1

edge_features_list = []
node_features_x_list = []
node_features_y_list = []
graph_feature_list = []
reconstruction_case_list = []

ref_bus = base_net.ext_grid['bus'].values[0]
print(f'ref_bus: {ref_bus}')

r_original = base_net.line['r_ohm_per_km'].values
x_original = base_net.line['x_ohm_per_km'].values

vm_original = base_net.gen['vm_pu'].values
vg_original = base_net.gen['p_mw'].values

pd_original = base_net.load['p_mw'].values
qd_original = base_net.load['q_mvar'].values
net = base_net

counter = 0
while True:

    counter += 1
    if counter % 100 == 0:
        base_net = pp.networks.case118()    
    else:
        net = base_net
    # net = pp.networks.case6470rte()
    # net = pp.networks.case14()
    net.bus['name'] = base_net.bus.index

    # net.line['r_ohm_per_km'] = r_original
    # net.line['x_ohm_per_km'] = x_original

    # net.gen['vm_pu'] = vm_original
    # net.gen['p_mw'] = vg_original
    
    # net.load['p_mw'] = pd_original
    # net.load['q_mvar'] = qd_original



    r = net.line['r_ohm_per_km'].values    
    x = net.line['x_ohm_per_km'].values
    # c = net.line['c_nf_per_km'].values
    le = net.line['length_km'].values
    # x = case['branch'][:, 3]
    # b = case['branch'][:, 4]
    # tau = case['branch'][:, 8]  # ratio

    Pmax = net.gen['max_p_mw'].values
    Pmin = net.gen['min_p_mw'].values
    Pmw = net.gen['p_mw'].values

    Pd = net.load['p_mw'].values
    Qd = net.load['q_mvar'].values

    r = np.random.uniform(0.8*r, 1.2*r, r.shape[0])    
    x = np.random.uniform(0.8*x, 1.2*x, x.shape[0])
    # le = np.random.uniform(0.8*le, 1.2*le, le.shape[0])
   
    vg = np.random.uniform(0.95, 1.05, net.gen['vm_pu'].shape[0])
    # Pg = np.random.uniform(0.25*Pmax, 0.75*Pmax, net.gen['p_mw'].shape[0])
    Pg = np.random.uniform(0.25*Pmw, 1.75*Pmw, net.gen['p_mw'].shape[0])
    
    
    Pd = np.random.uniform(0.5*Pd, 1.5*Pd, net.load['p_mw'].shape[0])
    Qd = np.random.uniform(0.5*Qd, 1.5*Qd, net.load['q_mvar'].shape[0])
    
    net.line['r_ohm_per_km'] = r
    net.line['x_ohm_per_km'] = x

    net.gen['vm_pu'] = vg
    net.gen['p_mw'] = Pg

    net.load['p_mw'] = Pd
    net.load['q_mvar'] = Qd

    

    try:    
        pp.runpp(net, algorithm='nr', init="results", numba=False)
    except:
        print(f'Failed to converge, current sample number: {len(edge_features_list)}')        
        continue        
    
    reconstruction_case_list.append((r,x,vg,Pg,Pd,Qd))

    # Graph feature
    # baseMVA = x[0]['baseMVA']

    # Create a vector od branch features including start and end nodes,r,x,b,tau,angle
    edge_features = np.zeros((net.line.shape[0], 7))
    edge_features[:, 0] = net.line['from_bus'].values + 1
    edge_features[:, 1] = net.line['to_bus'].values + 1
    edge_features[:, 2] = net.line['r_ohm_per_km'].values * net.line['length_km'].values
    edge_features[:, 3] = net.line['x_ohm_per_km'].values * net.line['length_km'].values
    edge_features[:, 4] = 0
    edge_features[:, 5] = 0
    edge_features[:, 6] = 0

    # Create a vector of node features including index, type, Vm, Va, Pd, Qd, Gs, Bs, Pg
    # case['bus'] = x[0]['bus']

    node_features_x = np.zeros((n, 9))
    node_features_x[:, 0] = net.bus['name'].values + 1# index
    # Va ----This changes for every bus excecpt slack bus
    node_features_x[:, 3] = np.zeros((n, )) #Va

    node_features_x[ref_bus, 3] = 0 #Va for reference bus
    
    # node_features_x[:, 6] = np.zeros((n,1)) # Gs
    # node_features_x[:, 7] = np.zeros((n,1)) # Bs
    # Vm is 1 if type is not "generator" else it is case['gen'][:,j]
    vm = np.ones(n)
    types = np.ones(n)*2
    for j in range(net.gen.shape[0]):    
        # find index of case['gen'][j,0] in case['bus'][:,0]
        index = np.where(net.gen['bus'].values[j] == net.bus['name'])[0][0]        
        vm[index] = net.gen['vm_pu'].values[j]  # Vm = Vg
        types[index] = 1  # type = generator
        node_features_x[index, 8] = net.gen['p_mw'].values[j]  # Pg
    
    types[ref_bus] = 3 # 
    node_features_x[:, 2] = vm  # Vm
    node_features_x[:, 1] = types  # type
    
    for j in range(net.load.shape[0]):    
        # find index of case['gen'][j,0] in case['bus'][:,0]
        index = np.where(net.load['bus'].values[j] == net.bus['name'])[0][0]        
        node_features_x[index, 4] = Pd[j]  # Pd
        node_features_x[index, 5] = Qd[j] # Qd

    # Create a vector of node features including index, type, Vm, Va, Pd, Qd, Gs, Bs    
    node_features_y = np.zeros((n, 8))
    node_features_y[:, 0] = net.bus['name'].values + 1 # index
    node_features_y[:, 1] = types  # type
    # Vm ----This changes for Load Buses
    node_features_y[:, 2] = net.res_bus['vm_pu']  # Vm
    # Va ----This changes for every bus excecpt slack bus
    node_features_y[:, 3] = net.res_bus['va_degree']  # Va
    node_features_y[:, 4] = net.res_bus['p_mw']  # P
    node_features_y[:, 5] = net.res_bus['q_mvar']  # Q
    # node_features_y[:, 6] = case['bus'][:, 4]  # Gs
    # node_features_y[:, 7] = case['bus'][:, 5]  # Bs

    edge_features_list.append(edge_features)
    node_features_x_list.append(node_features_x)
    node_features_y_list.append(node_features_y)
    # graph_feature_list.append(baseMVA)

    if len(edge_features_list) == number_of_samples:
        break
    elif len(edge_features_list) % 100 == 0:
        print(f'Current sample number: {len(edge_features_list)}')

    if len(edge_features_list) % 1000 == 0:
        # Turn the lists into numpy arrays
        edge_features = np.array(edge_features_list)
        node_features_x = np.array(node_features_x_list)
        node_features_y = np.array(node_features_y_list)
        # graph_features = np.array(graph_feature_list)
        # reconstruction_case = np.array(reconstruction_case_list)

        with open("./data/raw/"+test_case+"_edge_features.npy", 'wb') as f:
            np.save(f, edge_features)

        with open("./data/raw/"+test_case+"_node_features_x.npy", 'wb') as f:
            np.save(f, node_features_x)

        with open("./data/raw/"+test_case+"_node_features_y.npy", 'wb') as f:
            np.save(f, node_features_y)

        #pickle the reconstructed cases
        with open("./data/raw/"+test_case+"_reconstruction_case.pkl", 'wb') as f:
            pickle.dump(reconstruction_case_list, f)
        

        # with open("./data/"+test_case+"_graph_features.npy", 'wb') as f:
        #     np.save(f, graph_features)

        with open("./data/raw/"+test_case+"_adjacency_matrix.npy", 'wb') as f:
            np.save(f, A)        

edge_features = np.array(edge_features_list)
node_features_x = np.array(node_features_x_list)
node_features_y = np.array(node_features_y_list)
# graph_features = np.array(graph_feature_list)

# Print the shapes
print(f'Adjacency matrix shape: {A.shape}')
print(f'edge_features shape: {edge_features.shape}')
print(f'node_features_x shape: {node_features_x.shape}')
print(f'node_features_y shape: {node_features_y.shape}')
# print(f'graph_features shape: {graph_features.shape}')

print(f'range of edge_features "from": {np.min(edge_features[:,:,0])} - {np.max(edge_features[:,:,0])}')
print(f'range of edge_features "to": {np.min(edge_features[:,:,1])} - {np.max(edge_features[:,:,1])}')

print(f'range of node_features_x "index": {np.min(node_features_x[:,:,0])} - {np.max(node_features_x[:,:,0])}')

print(f'range of node_features_y "index": {np.min(node_features_y[:,:,0])} - {np.max(node_features_y[:,:,0])}')