interface.py 9.7 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse
import sys
from pathlib import Path
current_file_path = Path(__file__).resolve()
sys.path.insert(0, str(current_file_path.parent.parent))
import os
import random
import torch
from torchvision.utils import save_image
from diffusion import IDDPM, DPMS, SASolverSampler
from diffusers.models import AutoencoderKL
from tools.download import find_model
from datetime import datetime
from typing import List, Union
import gradio as gr
import numpy as np
from gradio.components import Textbox, Image
from diffusion.model.utils import prepare_prompt_ar, resize_and_crop_tensor
from diffusion.model.nets import PixArtMS_XL_2, PixArt_XL_2
from diffusion.model.t5 import T5Embedder
from torchvision.utils import _log_api_usage_once, make_grid
from diffusion.data.datasets import ASPECT_RATIO_512_TEST, ASPECT_RATIO_1024_TEST
from asset.examples import examples


MAX_SEED = np.iinfo(np.int32).max


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--image_size', default=1024, type=int)
    parser.add_argument('--model_path', default='output/pretrained_models/PixArt-XL-2-1024-MS.pth', type=str)
    parser.add_argument('--t5_path', default='output/pretrained_models', type=str)
    parser.add_argument('--tokenizer_path', default='output/pretrained_models/sd-vae-ft-ema', type=str)
    parser.add_argument('--llm_model', default='t5', type=str)
    parser.add_argument('--port', default=7788, type=int)

    return parser.parse_args()


@torch.no_grad()
def ndarr_image(tensor: Union[torch.Tensor, List[torch.Tensor]], **kwargs,) -> None:
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(save_image)
    grid = make_grid(tensor, **kwargs)
    # Add 0.5 after unnormalizing to [0, 255] to round to the nearest integer
    return grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()


def set_env(seed=0):
    torch.manual_seed(seed)
    torch.set_grad_enabled(False)
    for _ in range(30):
        torch.randn(1, 4, args.image_size, args.image_size)


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


@torch.inference_mode()
def generate_img(prompt, sampler, sample_steps, scale, seed=0, randomize_seed=False):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    set_env(seed)

    os.makedirs(f'output/demo/online_demo_prompts/', exist_ok=True)
    save_promt_path = f'output/demo/online_demo_prompts/tested_prompts{datetime.now().date()}.txt'
    with open(save_promt_path, 'a') as f:
        f.write(prompt + '\n')
    print(prompt)
    prompt_clean, prompt_show, hw, ar, custom_hw = prepare_prompt_ar(prompt, base_ratios, device=device)      # ar for aspect ratio
    prompt_clean = prompt_clean.strip()
    if isinstance(prompt_clean, str):
        prompts = [prompt_clean]

    caption_embs, emb_masks = llm_embed_model.get_text_embeddings(prompts)
    caption_embs = caption_embs[:, None]

    null_y = model.y_embedder.y_embedding[None].repeat(len(prompts), 1, 1)[:, None]

    latent_size_h, latent_size_w = int(hw[0, 0]//8), int(hw[0, 1]//8)
    # Sample images:
    if sampler == 'iddpm':
        # Create sampling noise:
        n = len(prompts)
        z = torch.randn(n, 4, latent_size_h, latent_size_w, device=device).repeat(2, 1, 1, 1)
        model_kwargs = dict(y=torch.cat([caption_embs, null_y]),
                            cfg_scale=scale, data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=emb_masks)
        diffusion = IDDPM(str(sample_steps))
        samples = diffusion.p_sample_loop(
            model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True,
            device=device
        )
        samples, _ = samples.chunk(2, dim=0)  # Remove null class samples
    elif sampler == 'dpm-solver':
        # Create sampling noise:
        n = len(prompts)
        z = torch.randn(n, 4, latent_size_h, latent_size_w, device=device)
        model_kwargs = dict(data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=emb_masks)
        dpm_solver = DPMS(model.forward_with_dpmsolver,
                          condition=caption_embs,
                          uncondition=null_y,
                          cfg_scale=scale,
                          model_kwargs=model_kwargs)
        samples = dpm_solver.sample(
            z,
            steps=sample_steps,
            order=2,
            skip_type="time_uniform",
            method="multistep",
        )
    elif sampler == 'sa-solver':
        # Create sampling noise:
        n = len(prompts)
        model_kwargs = dict(data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=emb_masks)
        sa_solver = SASolverSampler(model.forward_with_dpmsolver, device=device)
        samples = sa_solver.sample(
            S=sample_steps,
            batch_size=n,
            shape=(4, latent_size_h, latent_size_w),
            eta=1,
            conditioning=caption_embs,
            unconditional_conditioning=null_y,
            unconditional_guidance_scale=scale,
            model_kwargs=model_kwargs,
        )[0]
    samples = vae.decode(samples / 0.18215).sample
    torch.cuda.empty_cache()
    samples = resize_and_crop_tensor(samples, custom_hw[0,1], custom_hw[0,0])
    display_model_info = f'Model path: {args.model_path},\nBase image size: {args.image_size}, \nSampling Algo: {sampler}'
    return ndarr_image(samples, normalize=True, value_range=(-1, 1)), prompt_show, display_model_info, seed


if __name__ == '__main__':
    from diffusion.utils.logger import get_root_logger
    args = get_args()
    device = "cuda" if torch.cuda.is_available() else "cpu"
    logger = get_root_logger()

    assert args.image_size in [512, 1024], "We only provide pre-trained models for 256x256, 512x512 and 1024x1024 resolutions."
    lewei_scale = {512: 1, 1024: 2}
    latent_size = args.image_size // 8
    t5_device = {512: 'cuda', 1024: 'cuda'}
    if args.image_size == 512:
        model = PixArt_XL_2(input_size=latent_size, lewei_scale=lewei_scale[args.image_size]).to(device)
    else:
        model = PixArtMS_XL_2(input_size=latent_size, lewei_scale=lewei_scale[args.image_size]).to(device)
    state_dict = find_model(args.model_path)
    del state_dict['state_dict']['pos_embed']
    missing, unexpected = model.load_state_dict(state_dict['state_dict'], strict=False)
    logger.warning(f'Missing keys: {missing}')
    logger.warning(f'Unexpected keys: {unexpected}')
    model.eval()
    base_ratios = eval(f'ASPECT_RATIO_{args.image_size}_TEST')

    vae = AutoencoderKL.from_pretrained(args.tokenizer_path).to(device)

    if args.llm_model == 't5':
        llm_embed_model = T5Embedder(device=t5_device[args.image_size], local_cache=True, cache_dir=args.t5_path, torch_dtype=torch.float)
    else:
        print('We support t5 only, please initialize the llm again')
        sys.exit()

    title = f"""
        '' Unleashing your Creativity \n ''
        <div style='display: flex; align-items: center; justify-content: center; text-align: center;'>
            <img src='https://raw.githubusercontent.com/PixArt-alpha/PixArt-alpha.github.io/master/static/images/logo.png' style='width: 400px; height: auto; margin-right: 10px;' />
            {args.image_size}px
        </div>
    """
    DESCRIPTION = """# PixArt-Alpha 1024px
            ## If PixArt-Alpha is helpful, please help to ⭐ the [Github Repo](https://github.com/PixArt-alpha/PixArt) and recommend it to your friends 😊'
            #### [PixArt-Alpha 1024px](https://github.com/PixArt-alpha/PixArt-alpha) is a transformer-based text-to-image diffusion system trained on text embeddings from T5. This demo uses the [PixArt-alpha/PixArt-XL-2-1024-MS](https://huggingface.co/PixArt-alpha/PixArt-XL-2-1024-MS) checkpoint.
            #### English prompts ONLY; 提示词仅限英文
            Don't want to queue? Try [OpenXLab](https://openxlab.org.cn/apps/detail/PixArt-alpha/PixArt-alpha) or [Google Colab Demo](https://colab.research.google.com/drive/1jZ5UZXk7tcpTfVwnX33dDuefNMcnW9ME?usp=sharing).
            """
    if not torch.cuda.is_available():
        DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

    demo = gr.Interface(
        fn=generate_img,
        inputs=[Textbox(label="Note: If you want to specify a aspect ratio or determine a customized height and width, "
                              "use --ar h:w (or --aspect_ratio h:w) or --hw h:w. If no aspect ratio or hw is given, all setting will be default.",
                        placeholder="Please enter your prompt. \n"),
                gr.Radio(
                    choices=["iddpm", "dpm-solver"],
                    label=f"Sampler",
                    interactive=True,
                    value='dpm-solver',
                ),
                gr.Slider(
                    label='Sample Steps',
                    minimum=1,
                    maximum=100,
                    value=14,
                    step=1
                ),
                gr.Slider(
                    label='Guidance Scale',
                    minimum=0.1,
                    maximum=30.0,
                    value=4.5,
                    step=0.1
                ),
                gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                ),
                gr.Checkbox(label="Randomize seed", value=True),
                ],
        outputs=[Image(type="numpy", label="Img"),
                 Textbox(label="clean prompt"),
                 Textbox(label="model info"),
                 gr.Slider(label='seed')],
        title=title,
        description=DESCRIPTION,
        examples=examples,
    )
    demo.launch(server_name="0.0.0.0", server_port=args.port, debug=True)