import argparse import sys from pathlib import Path current_file_path = Path(__file__).resolve() sys.path.insert(0, str(current_file_path.parent.parent)) import os import random import torch from torchvision.utils import save_image from diffusion import IDDPM, DPMS, SASolverSampler from diffusers.models import AutoencoderKL from tools.download import find_model from datetime import datetime from typing import List, Union import gradio as gr import numpy as np from gradio.components import Textbox, Image from diffusion.model.utils import prepare_prompt_ar, resize_and_crop_tensor from diffusion.model.nets import PixArtMS_XL_2, PixArt_XL_2 from diffusion.model.t5 import T5Embedder from torchvision.utils import _log_api_usage_once, make_grid from diffusion.data.datasets import ASPECT_RATIO_512_TEST, ASPECT_RATIO_1024_TEST from asset.examples import examples MAX_SEED = np.iinfo(np.int32).max def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--image_size', default=1024, type=int) parser.add_argument('--model_path', default='output/pretrained_models/PixArt-XL-2-1024-MS.pth', type=str) parser.add_argument('--t5_path', default='output/pretrained_models', type=str) parser.add_argument('--tokenizer_path', default='output/pretrained_models/sd-vae-ft-ema', type=str) parser.add_argument('--llm_model', default='t5', type=str) parser.add_argument('--port', default=7788, type=int) return parser.parse_args() @torch.no_grad() def ndarr_image(tensor: Union[torch.Tensor, List[torch.Tensor]], **kwargs,) -> None: if not torch.jit.is_scripting() and not torch.jit.is_tracing(): _log_api_usage_once(save_image) grid = make_grid(tensor, **kwargs) # Add 0.5 after unnormalizing to [0, 255] to round to the nearest integer return grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy() def set_env(seed=0): torch.manual_seed(seed) torch.set_grad_enabled(False) for _ in range(30): torch.randn(1, 4, args.image_size, args.image_size) def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed @torch.inference_mode() def generate_img(prompt, sampler, sample_steps, scale, seed=0, randomize_seed=False): seed = int(randomize_seed_fn(seed, randomize_seed)) set_env(seed) os.makedirs(f'output/demo/online_demo_prompts/', exist_ok=True) save_promt_path = f'output/demo/online_demo_prompts/tested_prompts{datetime.now().date()}.txt' with open(save_promt_path, 'a') as f: f.write(prompt + '\n') print(prompt) prompt_clean, prompt_show, hw, ar, custom_hw = prepare_prompt_ar(prompt, base_ratios, device=device) # ar for aspect ratio prompt_clean = prompt_clean.strip() if isinstance(prompt_clean, str): prompts = [prompt_clean] caption_embs, emb_masks = llm_embed_model.get_text_embeddings(prompts) caption_embs = caption_embs[:, None] null_y = model.y_embedder.y_embedding[None].repeat(len(prompts), 1, 1)[:, None] latent_size_h, latent_size_w = int(hw[0, 0]//8), int(hw[0, 1]//8) # Sample images: if sampler == 'iddpm': # Create sampling noise: n = len(prompts) z = torch.randn(n, 4, latent_size_h, latent_size_w, device=device).repeat(2, 1, 1, 1) model_kwargs = dict(y=torch.cat([caption_embs, null_y]), cfg_scale=scale, data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=emb_masks) diffusion = IDDPM(str(sample_steps)) samples = diffusion.p_sample_loop( model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device ) samples, _ = samples.chunk(2, dim=0) # Remove null class samples elif sampler == 'dpm-solver': # Create sampling noise: n = len(prompts) z = torch.randn(n, 4, latent_size_h, latent_size_w, device=device) model_kwargs = dict(data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=emb_masks) dpm_solver = DPMS(model.forward_with_dpmsolver, condition=caption_embs, uncondition=null_y, cfg_scale=scale, model_kwargs=model_kwargs) samples = dpm_solver.sample( z, steps=sample_steps, order=2, skip_type="time_uniform", method="multistep", ) elif sampler == 'sa-solver': # Create sampling noise: n = len(prompts) model_kwargs = dict(data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=emb_masks) sa_solver = SASolverSampler(model.forward_with_dpmsolver, device=device) samples = sa_solver.sample( S=sample_steps, batch_size=n, shape=(4, latent_size_h, latent_size_w), eta=1, conditioning=caption_embs, unconditional_conditioning=null_y, unconditional_guidance_scale=scale, model_kwargs=model_kwargs, )[0] samples = vae.decode(samples / 0.18215).sample torch.cuda.empty_cache() samples = resize_and_crop_tensor(samples, custom_hw[0,1], custom_hw[0,0]) display_model_info = f'Model path: {args.model_path},\nBase image size: {args.image_size}, \nSampling Algo: {sampler}' return ndarr_image(samples, normalize=True, value_range=(-1, 1)), prompt_show, display_model_info, seed if __name__ == '__main__': from diffusion.utils.logger import get_root_logger args = get_args() device = "cuda" if torch.cuda.is_available() else "cpu" logger = get_root_logger() assert args.image_size in [512, 1024], "We only provide pre-trained models for 256x256, 512x512 and 1024x1024 resolutions." lewei_scale = {512: 1, 1024: 2} latent_size = args.image_size // 8 t5_device = {512: 'cuda', 1024: 'cuda'} if args.image_size == 512: model = PixArt_XL_2(input_size=latent_size, lewei_scale=lewei_scale[args.image_size]).to(device) else: model = PixArtMS_XL_2(input_size=latent_size, lewei_scale=lewei_scale[args.image_size]).to(device) state_dict = find_model(args.model_path) del state_dict['state_dict']['pos_embed'] missing, unexpected = model.load_state_dict(state_dict['state_dict'], strict=False) logger.warning(f'Missing keys: {missing}') logger.warning(f'Unexpected keys: {unexpected}') model.eval() base_ratios = eval(f'ASPECT_RATIO_{args.image_size}_TEST') vae = AutoencoderKL.from_pretrained(args.tokenizer_path).to(device) if args.llm_model == 't5': llm_embed_model = T5Embedder(device=t5_device[args.image_size], local_cache=True, cache_dir=args.t5_path, torch_dtype=torch.float) else: print('We support t5 only, please initialize the llm again') sys.exit() title = f""" '' Unleashing your Creativity \n ''
{args.image_size}px
Running on CPU π₯Ά This demo does not work on CPU.
" demo = gr.Interface( fn=generate_img, inputs=[Textbox(label="Note: If you want to specify a aspect ratio or determine a customized height and width, " "use --ar h:w (or --aspect_ratio h:w) or --hw h:w. If no aspect ratio or hw is given, all setting will be default.", placeholder="Please enter your prompt. \n"), gr.Radio( choices=["iddpm", "dpm-solver"], label=f"Sampler", interactive=True, value='dpm-solver', ), gr.Slider( label='Sample Steps', minimum=1, maximum=100, value=14, step=1 ), gr.Slider( label='Guidance Scale', minimum=0.1, maximum=30.0, value=4.5, step=0.1 ), gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ), gr.Checkbox(label="Randomize seed", value=True), ], outputs=[Image(type="numpy", label="Img"), Textbox(label="clean prompt"), Textbox(label="model info"), gr.Slider(label='seed')], title=title, description=DESCRIPTION, examples=examples, ) demo.launch(server_name="0.0.0.0", server_port=args.port, debug=True)