train.py 5.64 KB
Newer Older
yongshk's avatar
yongshk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import time
import os
import numpy as np
import torch
from torch.autograd import Variable
from collections import OrderedDict
from subprocess import call
import fractions
def lcm(a,b): return abs(a * b)/fractions.gcd(a,b) if a and b else 0

from options.train_options import TrainOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
import util.util as util
from util.visualizer import Visualizer

opt = TrainOptions().parse()
iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt')
if opt.continue_train:
    try:
        start_epoch, epoch_iter = np.loadtxt(iter_path , delimiter=',', dtype=int)
    except:
        start_epoch, epoch_iter = 1, 0
    print('Resuming from epoch %d at iteration %d' % (start_epoch, epoch_iter))        
else:    
    start_epoch, epoch_iter = 1, 0

opt.print_freq = lcm(opt.print_freq, opt.batchSize)    
if opt.debug:
    opt.display_freq = 1
    opt.print_freq = 1
    opt.niter = 1
    opt.niter_decay = 0
    opt.max_dataset_size = 10

data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)

model = create_model(opt)
visualizer = Visualizer(opt)
if opt.fp16:    
    from apex import amp
    model, [optimizer_G, optimizer_D] = amp.initialize(model, [model.optimizer_G, model.optimizer_D], opt_level='O1')             
    model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids)
else:
    optimizer_G, optimizer_D = model.module.optimizer_G, model.module.optimizer_D

total_steps = (start_epoch-1) * dataset_size + epoch_iter

display_delta = total_steps % opt.display_freq
print_delta = total_steps % opt.print_freq
save_delta = total_steps % opt.save_latest_freq

for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
    epoch_start_time = time.time()
    if epoch != start_epoch:
        epoch_iter = epoch_iter % dataset_size
    for i, data in enumerate(dataset, start=epoch_iter):
        if total_steps % opt.print_freq == print_delta:
            iter_start_time = time.time()
        total_steps += opt.batchSize
        epoch_iter += opt.batchSize

        # whether to collect output images
        save_fake = total_steps % opt.display_freq == display_delta

        ############## Forward Pass ######################
        losses, generated = model(Variable(data['label']), Variable(data['inst']), 
            Variable(data['image']), Variable(data['feat']), infer=save_fake)

        # sum per device losses
        losses = [ torch.mean(x) if not isinstance(x, int) else x for x in losses ]
        loss_dict = dict(zip(model.module.loss_names, losses))

        # calculate final loss scalar
        loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5
        loss_G = loss_dict['G_GAN'] + loss_dict.get('G_GAN_Feat',0) + loss_dict.get('G_VGG',0)

        ############### Backward Pass ####################
        # update generator weights
        optimizer_G.zero_grad()
        if opt.fp16:                                
            with amp.scale_loss(loss_G, optimizer_G) as scaled_loss: scaled_loss.backward()                
        else:
            loss_G.backward()          
        optimizer_G.step()

        # update discriminator weights
        optimizer_D.zero_grad()
        if opt.fp16:                                
            with amp.scale_loss(loss_D, optimizer_D) as scaled_loss: scaled_loss.backward()                
        else:
            loss_D.backward()        
        optimizer_D.step()        

        ############## Display results and errors ##########
        ### print out errors
        if total_steps % opt.print_freq == print_delta:
            errors = {k: v.data.item() if not isinstance(v, int) else v for k, v in loss_dict.items()}            
            t = (time.time() - iter_start_time) / opt.print_freq
            visualizer.print_current_errors(epoch, epoch_iter, errors, t)
            visualizer.plot_current_errors(errors, total_steps)
            #call(["nvidia-smi", "--format=csv", "--query-gpu=memory.used,memory.free"]) 

        ### display output images
        if save_fake:
            visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], opt.label_nc)),
                                   ('synthesized_image', util.tensor2im(generated.data[0])),
                                   ('real_image', util.tensor2im(data['image'][0]))])
            visualizer.display_current_results(visuals, epoch, total_steps)

        ### save latest model
        if total_steps % opt.save_latest_freq == save_delta:
            print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps))
            model.module.save('latest')            
            np.savetxt(iter_path, (epoch, epoch_iter), delimiter=',', fmt='%d')

        if epoch_iter >= dataset_size:
            break
       
    # end of epoch 
    iter_end_time = time.time()
    print('End of epoch %d / %d \t Time Taken: %d sec' %
          (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))

    ### save model for this epoch
    if epoch % opt.save_epoch_freq == 0:
        print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps))        
        model.module.save('latest')
        model.module.save(epoch)
        np.savetxt(iter_path, (epoch+1, 0), delimiter=',', fmt='%d')

    ### instead of only training the local enhancer, train the entire network after certain iterations
    if (opt.niter_fix_global != 0) and (epoch == opt.niter_fix_global):
        model.module.update_fixed_params()

    ### linearly decay learning rate after certain iterations
    if epoch > opt.niter:
        model.module.update_learning_rate()