import time import os import numpy as np import torch from torch.autograd import Variable from collections import OrderedDict from subprocess import call import fractions def lcm(a,b): return abs(a * b)/fractions.gcd(a,b) if a and b else 0 from options.train_options import TrainOptions from data.data_loader import CreateDataLoader from models.models import create_model import util.util as util from util.visualizer import Visualizer opt = TrainOptions().parse() iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt') if opt.continue_train: try: start_epoch, epoch_iter = np.loadtxt(iter_path , delimiter=',', dtype=int) except: start_epoch, epoch_iter = 1, 0 print('Resuming from epoch %d at iteration %d' % (start_epoch, epoch_iter)) else: start_epoch, epoch_iter = 1, 0 opt.print_freq = lcm(opt.print_freq, opt.batchSize) if opt.debug: opt.display_freq = 1 opt.print_freq = 1 opt.niter = 1 opt.niter_decay = 0 opt.max_dataset_size = 10 data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() dataset_size = len(data_loader) print('#training images = %d' % dataset_size) model = create_model(opt) visualizer = Visualizer(opt) if opt.fp16: from apex import amp model, [optimizer_G, optimizer_D] = amp.initialize(model, [model.optimizer_G, model.optimizer_D], opt_level='O1') model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids) else: optimizer_G, optimizer_D = model.module.optimizer_G, model.module.optimizer_D total_steps = (start_epoch-1) * dataset_size + epoch_iter display_delta = total_steps % opt.display_freq print_delta = total_steps % opt.print_freq save_delta = total_steps % opt.save_latest_freq for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1): epoch_start_time = time.time() if epoch != start_epoch: epoch_iter = epoch_iter % dataset_size for i, data in enumerate(dataset, start=epoch_iter): if total_steps % opt.print_freq == print_delta: iter_start_time = time.time() total_steps += opt.batchSize epoch_iter += opt.batchSize # whether to collect output images save_fake = total_steps % opt.display_freq == display_delta ############## Forward Pass ###################### losses, generated = model(Variable(data['label']), Variable(data['inst']), Variable(data['image']), Variable(data['feat']), infer=save_fake) # sum per device losses losses = [ torch.mean(x) if not isinstance(x, int) else x for x in losses ] loss_dict = dict(zip(model.module.loss_names, losses)) # calculate final loss scalar loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5 loss_G = loss_dict['G_GAN'] + loss_dict.get('G_GAN_Feat',0) + loss_dict.get('G_VGG',0) ############### Backward Pass #################### # update generator weights optimizer_G.zero_grad() if opt.fp16: with amp.scale_loss(loss_G, optimizer_G) as scaled_loss: scaled_loss.backward() else: loss_G.backward() optimizer_G.step() # update discriminator weights optimizer_D.zero_grad() if opt.fp16: with amp.scale_loss(loss_D, optimizer_D) as scaled_loss: scaled_loss.backward() else: loss_D.backward() optimizer_D.step() ############## Display results and errors ########## ### print out errors if total_steps % opt.print_freq == print_delta: errors = {k: v.data.item() if not isinstance(v, int) else v for k, v in loss_dict.items()} t = (time.time() - iter_start_time) / opt.print_freq visualizer.print_current_errors(epoch, epoch_iter, errors, t) visualizer.plot_current_errors(errors, total_steps) #call(["nvidia-smi", "--format=csv", "--query-gpu=memory.used,memory.free"]) ### display output images if save_fake: visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], opt.label_nc)), ('synthesized_image', util.tensor2im(generated.data[0])), ('real_image', util.tensor2im(data['image'][0]))]) visualizer.display_current_results(visuals, epoch, total_steps) ### save latest model if total_steps % opt.save_latest_freq == save_delta: print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps)) model.module.save('latest') np.savetxt(iter_path, (epoch, epoch_iter), delimiter=',', fmt='%d') if epoch_iter >= dataset_size: break # end of epoch iter_end_time = time.time() print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) ### save model for this epoch if epoch % opt.save_epoch_freq == 0: print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps)) model.module.save('latest') model.module.save(epoch) np.savetxt(iter_path, (epoch+1, 0), delimiter=',', fmt='%d') ### instead of only training the local enhancer, train the entire network after certain iterations if (opt.niter_fix_global != 0) and (epoch == opt.niter_fix_global): model.module.update_fixed_params() ### linearly decay learning rate after certain iterations if epoch > opt.niter: model.module.update_learning_rate()