mdp3.py 16.2 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
# MDP3: A Training-free Approach for List-wise Frame Selection in Video-LLMs
# https://arxiv.org/abs/2501.02885
import copy
import time
from contextlib import contextmanager

import torch
from torch import nn
from transformers import AutoProcessor, AutoModel


@contextmanager
def timer(hint=""):
    start = time.perf_counter()
    yield
    end = time.perf_counter()
    print(f"{hint} runtime: {end - start:.4f} s")


INF = 0x7fffffff


class VisualEncoder():

    def __init__(self, model_path, device="cuda"):
        self.device = device
        self.model_path = model_path
        self.model = AutoModel.from_pretrained(self.model_path)
        self.model = self.model.to(device=self.device)
        self.processor = AutoProcessor.from_pretrained(self.model_path)

    def __call__(self, images, texts, clear_prompt=False):
        if clear_prompt:
            texts = self.clear_prompt(copy.deepcopy(texts))

        with timer("visual processor"):
            inputs = self.processor(
                text=texts, images=images, padding="max_length", return_tensors="pt").to(self.model.device)

        stride_num = (int(inputs["input_ids"].shape[-1]) + 63) // 64
        stride = (inputs["input_ids"].shape[-1] + stride_num - 1) // stride_num

        input_id_heads, input_id_tails = [], []
        l, r = 0, inputs["input_ids"].shape[-1]
        while l < r:
            input_id_heads.append(inputs["input_ids"][:, l:l + stride])
            l += stride
            if l < r:
                input_id_tails.append(inputs["input_ids"][:, r - stride:r])
                r -= stride

        input_ids = input_id_heads + input_id_tails[::-1]
        input_ids = torch.cat(input_ids)

        with timer("extract embeds"):
            with torch.no_grad():
                with torch.autocast(self.device):
                    outputs = self.model(
                        input_ids, pixel_values=inputs["pixel_values"])
        image_embeds = outputs.image_embeds
        text_embeds = outputs.text_embeds
        return image_embeds, text_embeds.mean(dim=0, keepdim=True)

    def clear_prompt(self, prompt):
        heads = [
            "Select the best answer to the following multiple-choice question based on the video and the subtitles. Respond with only the letter (A, B, C, or D) of the correct option.",
            "Select the best answer to the following multiple-choice question based on the video. Respond with only the letter (A, B, C, or D) of the correct option.",
            "Carefully watch the video and pay attention to the cause and sequence of events, the detail and movement of objects, and the action and pose of persons. Based on your observations, select the best option that accurately addresses the question.",
            "Carefully watch this video and pay attention to every detail. Based on your observations, select the best option that accurately addresses the question."
        ]
        tails = [
            "Answer with the option's letter from the given choices directly.",
            "The best answer is:",
            "Answer the question using a single word or phrase.",
            "Only give the best option.",
            "Best option: (",
            "Please directly give the best option:"
        ]
        for head in heads:
            prompt = prompt.split(head)[-1]
        for tail in tails:
            prompt = prompt.split(tail)[0]
        prompt = prompt.strip()

        return prompt


class MDP3:

    def __init__(self, n_selection=16, visual_encoder_name_or_path="google/siglip-so400m-patch14-384", device="cuda"):
        super().__init__()
        self.n_selection = n_selection
        self.lamda = 0.2
        self.segment_size = -1
        self.condition_size = 1

        self.kernel = MultiGaussianKernel(
            alphas=[2 ** k for k in list(range(-3, 2))])
        self.ve = VisualEncoder(model_path=visual_encoder_name_or_path, device=device)

    def __call__(self, conversations, frames, clear_prompt=True):
        if len(frames) <= self.n_selection:
            return conversations, frames

        prompt = "\n".join([x["value"] for x in conversations if x["from"] == "human"])
        with timer("** VLMs Process & Extract"):
            frame_embeds, text_embeds = self.ve(frames, prompt, clear_prompt)
        with timer("Select Frames"):
            with torch.no_grad():
                selected_idx = self._select_frames_fast(frame_embeds, text_embeds)
            # clean conversion
            ret_conversions = []
            img_cnt = 0
            for conv in conversations:
                prompt_clips = conv["value"].split("<image>")
                conv_v = []
                for idx, clip in enumerate(prompt_clips):
                    if clip != "\n":
                        conv_v.append(clip)
                    if img_cnt in selected_idx and idx < len(prompt_clips) - 1:
                        if clip == "\n":
                            conv_v.append(clip)
                        conv_v.append("<image>")
                    img_cnt += 1

                ret_conversions.append({"from": conv["from"], "value": ''.join(conv_v)})

            ret_frames = [frames[idx] for idx in selected_idx]

            return ret_conversions, ret_frames

    def cal_obj(self, selected_images_embeds, text_embed):
        kernel_matrix = self.kernel(
            torch.cat([text_embed, selected_images_embeds]))
        r, S_matrix = kernel_matrix[0:1, 1:], kernel_matrix[1:, 1:]
        ret_score = (1. / self.lamda * 2 * torch.log(r).sum()) + \
                    torch.linalg.slogdet(S_matrix).logabsdet
        return ret_score

    def _select_frames(self, image_embeds, text_embeds):
        # initializing dynamic programing
        N_image = len(image_embeds)
        if self.segment_size <= 0:
            segment_size = N_image
        else:
            segment_size = self.segment_size
        segment_num = (N_image + segment_size - 1) // segment_size
        dp = [[0.] + [-INF] * self.n_selection for _ in range(segment_num + 1)]
        trace = [[[] for _ in range(self.n_selection + 1)]
                 for _ in range(segment_num + 1)]

        for seg_idx in range(1, segment_num + 1):
            for selected_num in range(1, min(self.n_selection, seg_idx * segment_size) + 1):
                for to_select_num in range(0, min(selected_num, segment_size) + 1):
                    cur_score, cur_trace = self.seqdpp_select(
                        text_embeds=text_embeds,
                        image_embeds=image_embeds,
                        conditional_index=trace[seg_idx - 1][selected_num - to_select_num][
                                          -min(self.condition_size,
                                               len(trace[seg_idx - 1][selected_num - to_select_num])):],
                        candidate_index=range(
                            (seg_idx - 1) * segment_size, seg_idx * segment_size),
                        to_select_num=to_select_num
                    )
                    cur_score = dp[seg_idx - 1][selected_num -
                                                to_select_num] + cur_score
                    cur_trace = trace[
                                    seg_idx - 1][selected_num - to_select_num] + cur_trace
                    if cur_score > dp[seg_idx][selected_num]:
                        dp[seg_idx][selected_num] = cur_score
                        trace[seg_idx][selected_num] = cur_trace
        return trace[segment_num][self.n_selection]

    def _select_frames_fast(self, image_embeds, text_embeds):
        # initializing dynamic programing
        N_image = len(image_embeds)
        if self.segment_size <= 0:
            segment_size = N_image
        else:
            segment_size = self.segment_size
        segment_num = (N_image + segment_size - 1) // segment_size
        dp = [[0.] + [-INF] * self.n_selection for _ in range(segment_num + 1)]
        trace = [[[] for _ in range(self.n_selection + 1)]
                 for _ in range(segment_num + 1)]

        for seg_idx in range(1, segment_num + 1):
            candidate_index = range(
                (seg_idx - 1) * segment_size, seg_idx * segment_size)
            candidate_embeds = [image_embeds[i] for i in candidate_index]
            sim_matrix = self.kernel(torch.stack(candidate_embeds))

            for start_selected_num in range(0, min(self.n_selection, (seg_idx - 1) * segment_size) + 1):
                conditional_index = trace[seg_idx - 1][start_selected_num][
                                    -min(self.condition_size, len(trace[seg_idx - 1][start_selected_num])):]
                offset = len(conditional_index)
                additional_embeds = [text_embeds[
                                         0].reshape(-1)] + [image_embeds[i] for i in conditional_index]
                additional = self.kernel(
                    torch.stack(additional_embeds),
                    torch.stack(additional_embeds + candidate_embeds)
                )
                total_matrix = torch.cat([
                    additional,  # [add, 32+add]
                    torch.cat([
                        additional[:, -len(sim_matrix):].T,  # [32, add]
                        sim_matrix  # [32, 32]
                    ], dim=1)  # [32, add + 32]
                ], dim=0)  # [add+32, add+32]

                max_selection = min(self.n_selection -
                                    start_selected_num, segment_size)

                cur_scores, cur_traces = self.seqdpp_select_super_fast(
                    total_matrix, offset, max_selection)

                for to_select_num, (cur_score, cur_trace) in enumerate(zip(cur_scores, cur_traces)):
                    cur_trace = [i + int((seg_idx - 1) * segment_size)
                                 for i in cur_trace]

                    cur_score = dp[seg_idx - 1][start_selected_num] + cur_score
                    cur_trace = trace[
                                    seg_idx - 1][start_selected_num] + cur_trace

                    if cur_score > dp[seg_idx][start_selected_num + to_select_num]:
                        dp[seg_idx][start_selected_num + to_select_num] = cur_score
                        trace[seg_idx][start_selected_num +
                                       to_select_num] = cur_trace
        return trace[segment_num][self.n_selection]

    def seqdpp_select(self, text_embeds, image_embeds, conditional_index, candidate_index, to_select_num):
        if to_select_num == 0:
            return 0.0, []
        conditional_embeds = [image_embeds[i] for i in conditional_index]
        cur_trace = []
        U_matrix = self.kernel(torch.stack(
            conditional_embeds + [image_embeds[i] for i in candidate_index]))
        I = torch.diag(
            torch.tensor([0.] * len(conditional_index) + [1.] *
                         len(candidate_index), device=U_matrix.device)
        )
        obj_values = -torch.linalg.slogdet(U_matrix + I).logabsdet
        while len(cur_trace) < to_select_num:
            max_obj_gain = -INF
            cur_selected_idx = -1
            for i in candidate_index:
                if i in cur_trace:
                    continue
                cur_obj = self.cal_obj(
                    selected_images_embeds=torch.stack(
                        conditional_embeds + [image_embeds[j] for j in cur_trace + [i]]),
                    text_embed=text_embeds[0].reshape(1, -1)
                )
                cur_obj_gain = cur_obj - obj_values
                if cur_obj_gain > max_obj_gain:
                    max_obj_gain = cur_obj_gain
                    cur_selected_idx = i
            cur_trace.append(cur_selected_idx)
            obj_values += max_obj_gain
        cur_trace = sorted(cur_trace)
        return obj_values if len(cur_trace) > 0 else 0.0, cur_trace

    def seqdpp_select_fast(self, total_matrix, offset, to_select_num):
        if to_select_num == 0:
            return 0.0, []
        cur_trace = []
        obj_values = 0.0
        r, S_matrix = total_matrix[0:1, 1:], total_matrix[1:, 1:]
        candidate_index = range(len(S_matrix) - offset)

        while len(cur_trace) < to_select_num:
            max_obj_gain = -INF
            cur_selected_idx = -1
            for i in candidate_index:
                if i in cur_trace:
                    continue
                selected_idx = list(range(offset)) + \
                               [j + offset for j in cur_trace + [i]]
                cur_S_matrix = S_matrix[selected_idx][:, selected_idx]
                cur_obj = (1. / self.lamda * 2 * torch.log(
                    r[:, selected_idx]).sum()) + torch.linalg.slogdet(cur_S_matrix).logabsdet
                cur_obj_gain = cur_obj - obj_values
                if cur_obj_gain > max_obj_gain:
                    max_obj_gain = cur_obj_gain
                    cur_selected_idx = i
            cur_trace.append(cur_selected_idx)
            obj_values += max_obj_gain
        cur_trace = sorted(cur_trace)
        return obj_values if len(cur_trace) > 0 else 0.0, cur_trace

    def seqdpp_select_super_fast(self, total_matrix, offset, to_select_num):
        if to_select_num == 0:
            return [0.0], [[]]
        cur_trace = []
        ret_scores = [0.0]
        r, S_matrix = total_matrix[0:1, 1:], total_matrix[1:, 1:]
        candidate_index = list(range(len(S_matrix) - offset))

        conditional_idx = list(range(offset))
        L = None
        if len(conditional_idx) > 0:
            L = torch.linalg.cholesky(
                S_matrix[conditional_idx][:, conditional_idx])

        while len(cur_trace) < to_select_num:
            max_obj = -INF
            cur_selected_idx = -1
            better_L = None
            for i in candidate_index:
                if i in cur_trace:
                    continue
                cur_idx = i + offset
                selected_idx = conditional_idx + \
                               [j + offset for j in cur_trace] + [cur_idx]
                if L is None:
                    cur_sim_v = S_matrix[selected_idx][:, selected_idx]
                    cur_L = torch.sqrt(cur_sim_v).reshape(1, 1)
                    logdet = cur_sim_v.clone().log()
                else:
                    cur_sim_v = S_matrix[cur_idx:cur_idx + 1][:, selected_idx]
                    cur_L, logdet = self.cholesky_update_determinant(
                        L, cur_sim_v)
                cur_obj = 1. / self.lamda * 2 * \
                          torch.log(r[:, selected_idx]).sum() + logdet

                if cur_obj > max_obj or cur_selected_idx == -1:
                    max_obj = cur_obj
                    cur_selected_idx = i
                    better_L = cur_L
            ret_scores.append(max_obj.clone())
            cur_trace.append(cur_selected_idx)
            L = better_L
        ret_traces = [sorted(cur_trace[:j]) for j in range(len(cur_trace) + 1)]
        return ret_scores, ret_traces

    def cholesky_update_determinant(self, L, v):
        n = L.shape[0]
        v = v.view(-1, 1)
        v_projected = torch.linalg.solve_triangular(L, v[:n], upper=False)

        new_diag_element = torch.sqrt(torch.abs(v[-1] - v_projected.T @ v_projected))

        new_row = torch.cat((v_projected.flatten(), new_diag_element.view(1)))
        new_L = torch.zeros((n + 1, n + 1), dtype=L.dtype, device=L.device)
        new_L[:n, :n] = L
        new_L[n, :n] = new_row[:-1]
        new_L[n, n] = new_diag_element

        new_diag = torch.diag(new_L)
        new_logdet = 2 * torch.log(new_diag).sum()

        return new_L, new_logdet


class GaussianKernel(nn.Module):

    def __init__(self, alpha=1.):
        super(GaussianKernel, self).__init__()
        self.alpha = alpha

    def forward(self, X: torch.Tensor) -> torch.Tensor:
        l2_distance_square = ((X.unsqueeze(1) - X.unsqueeze(0)) ** 2).sum(2)
        return torch.exp(-l2_distance_square / (2 * self.alpha))


class MultiGaussianKernel(nn.Module):

    def __init__(self, alphas=None):
        super(MultiGaussianKernel, self).__init__()
        if alphas is None:
            alphas = [2 ** k for k in list(range(-3, 2))]
        self.alphas = alphas

    def forward(self, X: torch.Tensor, Y: torch.tensor = None) -> int:
        Y = X.unsqueeze(0) if Y is None else Y.unsqueeze(0)
        X = X.unsqueeze(1)
        l2_distance_square = ((X - Y) ** 2).sum(2)

        return sum([torch.exp(-l2_distance_square / (2 * alpha)) for alpha in self.alphas])