train.py 7.97 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import json
import os
import pathlib

import deepspeed
import flash_attn
import torch
import transformers
from deepspeed import get_accelerator
from torch.utils.data import ConcatDataset
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, AutoModel, Trainer
from transformers.trainer_utils import set_seed

from ovis.model.configuration_ovis import OvisConfig
from ovis.model.modeling_ovis import Ovis, VisualTokenizer
from ovis.train.arguments import ModelArguments, TrainingArguments
from ovis.train.callback import MonitorCallback
from ovis.train.dataset.caption_dataset import CaptionDataset
from ovis.train.dataset.conversation_dataset import ConversationDataset
from ovis.train.dataset.multimodal_dataset import DataCollatorForMultimodalDataset
from ovis.util.constants import BEGIN_LINE, END_LINE
from ovis.util.utils import smart_unit, rank0_print, rankN_print, replace_torch_load_with_weights_only_false


def load_model(model_args: ModelArguments, training_args: TrainingArguments):
    model, loading_info = Ovis.from_pretrained(
        training_args.ovis_pretrained_path,
        output_loading_info=True,
        trust_remote_code=True
    )
    rankN_print(BEGIN_LINE)
    rankN_print(f'Loading info of Ovis:\n{loading_info}')
    rankN_print(END_LINE)

    model.accepts_loss_kwargs = model_args.accepts_loss_kwargs
    if model_args.attn_implementation:
        model.llm.config._attn_implementation = model_args.attn_implementation
        model.visual_tokenizer.vit.config._attn_implementation = model_args.attn_implementation
    model.llm.config.use_cache = False
    model.config.use_cache = False
    rank0_print(BEGIN_LINE)
    rank0_print(f'model.config:\n{model.config}')
    rank0_print(END_LINE)

    return model


def load_data(model: Ovis, training_args: TrainingArguments):
    # construct data module
    if training_args.data_type == 'caption':
        train_dataset = CaptionDataset(model, training_args)
    elif training_args.data_type == 'conversation':
        train_dataset = ConversationDataset(model, training_args)
    else:
        raise ValueError(f'Invalid data type: {training_args.data_type}')
    data_module = dict(
        train_dataset=train_dataset,
        data_collator=DataCollatorForMultimodalDataset(model.text_tokenizer, training_args)
    )
    return data_module


def train(model_args: ModelArguments, training_args: TrainingArguments):
    # save args to checkpoint dir
    with training_args.main_process_first(local=False):
        if training_args.process_index == 0:
            def args2dict(args):
                return {k: str(v) for k, v in args.__dict__.items()}

            args_log = json.dumps(dict(
                model_args=args2dict(model_args),
                training_args=args2dict(training_args)
            ), ensure_ascii=False, indent=2)
            print(args_log)
            os.makedirs(training_args.output_dir, exist_ok=True)
            with open(os.path.join(training_args.output_dir, 'model_training_args.json'), 'w',
                      encoding='utf-8') as f:
                f.write(args_log + '\n')

    # load model & data
    model = load_model(model_args, training_args)

    # select train modules, support different learning rate for different modules
    model.requires_grad_(False)
    parameters = []
    for module_name_lr in training_args.train_modules.split('|'):
        module_name_lr = module_name_lr.replace(' ', '').split(':')
        module_lr = training_args.learning_rate
        if len(module_name_lr) == 2:
            module_name, module_lr = module_name_lr[0], float(module_name_lr[1])
        elif len(module_name_lr) == 1:
            module_name = module_name_lr[0]
        else:
            raise ValueError
        match module_name:
            case 'all':
                module = model
            case 'llm':
                module = model.llm
            case 'visual_tokenizer':
                module = model.visual_tokenizer
            case 'visual_tokenizer.head':
                module = model.visual_tokenizer.head
            case 'visual_tokenizer.vit':
                module = model.visual_tokenizer.vit
            case 'visual_tokenizer.vit.last_block':
                module = model.visual_tokenizer._get_last_block()
            case 'vte':
                module = model.vte
            case _:
                raise ValueError(f'Invalid train module name: {module_name}')
        module.requires_grad_(True)
        parameters.append({'params': module.parameters(), 'lr': module_lr})

    optimizer = torch.optim.AdamW(parameters, lr=training_args.learning_rate, weight_decay=training_args.weight_decay)

    rank0_print(BEGIN_LINE)
    rank0_print('Parameters to train:')
    param_lr_mapping = {}
    for group in optimizer.param_groups:
        lr = group['lr']
        for param in group['params']:
            param_lr_mapping[param] = lr
    rank0_print(f'LLM\'s attn implementation: {model.llm.config._attn_implementation}')
    rank0_print(
        f'ViT\'s attn implementation: {model.visual_tokenizer.vit.config._attn_implementation}'
    )
    rank0_print(END_LINE)

    # construct data module
    datasets = []
    dataset_info_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                                     f'dataset/{training_args.data_info_version}.json')
    with open(dataset_info_path, 'r', encoding='utf-8') as f:
        dataset_info = json.load(f)
    for name in training_args.data_name.split('|'):
        info = dataset_info[name]
        data_format = info['data_format']
        if data_format == 'caption':
            dataset = CaptionDataset(name, info, model, training_args)
        elif data_format == 'conversation':
            dataset = ConversationDataset(name, info, model, training_args)
        else:
            raise ValueError(f'Invalid data format `{data_format}` for dataset `{name}`')
        datasets.append(dataset)
    data_module = dict(
        train_dataset=ConcatDataset(datasets),
        data_collator=DataCollatorForMultimodalDataset(model.text_tokenizer)
    )

    # train
    trainer = Trainer(
        model=model,
        args=training_args,
        callbacks=[MonitorCallback],
        **data_module
    )
    rankN_print(BEGIN_LINE)
    rankN_print(f'model_accepts_loss_kwargs: {trainer.model_accepts_loss_kwargs}')
    rankN_print(END_LINE)
    rankN_print(BEGIN_LINE)
    rankN_print('Dataset sample tensor:')
    rankN_print(data_module['train_dataset'][0])
    rankN_print(END_LINE)
    rankN_print(BEGIN_LINE)
    rankN_print('Dataset sample input_ids decoding:')
    rankN_print(model.text_tokenizer.decode([x for x in data_module['train_dataset'][0]['input_ids'] if x >= 0]))
    rankN_print(END_LINE)
    rankN_print(BEGIN_LINE)
    rankN_print('Dataset sample labels decoding:')
    rankN_print(model.text_tokenizer.decode([x for x in data_module['train_dataset'][0]['labels'] if x >= 0]))
    rankN_print(END_LINE)
    rankN_print(BEGIN_LINE)
    rankN_print(f'#param of model: {smart_unit(model.num_parameters())}')
    rankN_print(f'#param of llm: {smart_unit(model.llm.num_parameters())}')
    rankN_print(f'#param of vit: {smart_unit(model.visual_tokenizer.vit.num_parameters())}')
    rankN_print(f'#param of vte: {smart_unit(model.vte.weight.numel())}')
    rankN_print(f'#dtype of model: {model.dtype}')
    rankN_print(f'#dtype of llm: {model.llm.dtype}')
    rankN_print(f'#dtype of vit: {model.visual_tokenizer.vit.dtype}')
    rankN_print(f'#dtype of vte: {model.vte.weight.dtype}')
    rankN_print(END_LINE)
    if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
        trainer.train(resume_from_checkpoint=True)
    else:
        trainer.train()
    trainer.save_state()

    # save model
    model.llm.config.use_cache = True
    model.config.use_cache = True
    trainer.save_model()


if __name__ == '__main__':
    replace_torch_load_with_weights_only_false()
    parser = transformers.HfArgumentParser(
        (ModelArguments, TrainingArguments))
    model_args, training_args = parser.parse_args_into_dataclasses()
    train(model_args, training_args)