patchtst.py 35.8 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
# AUTOGENERATED! DO NOT EDIT! File to edit: ../../nbs/models.patchtst.ipynb.

# %% auto 0
__all__ = ['SinCosPosEncoding', 'Transpose', 'get_activation_fn', 'PositionalEncoding', 'Coord2dPosEncoding',
           'Coord1dPosEncoding', 'positional_encoding', 'RevIN', 'PatchTST_backbone', 'Flatten_Head', 'TSTiEncoder',
           'TSTEncoder', 'TSTEncoderLayer', 'PatchTST']

# %% ../../nbs/models.patchtst.ipynb 5
import math
import numpy as np
from typing import Optional  # , Any, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F

from ..common._base_windows import BaseWindows

from ..losses.pytorch import MAE

# %% ../../nbs/models.patchtst.ipynb 9
class Transpose(nn.Module):
    def __init__(self, *dims, contiguous=False):
        super().__init__()
        self.dims, self.contiguous = dims, contiguous

    def forward(self, x):
        if self.contiguous:
            return x.transpose(*self.dims).contiguous()
        else:
            return x.transpose(*self.dims)


def get_activation_fn(activation):
    if callable(activation):
        return activation()
    elif activation.lower() == "relu":
        return nn.ReLU()
    elif activation.lower() == "gelu":
        return nn.GELU()
    raise ValueError(
        f'{activation} is not available. You can use "relu", "gelu", or a callable'
    )

# %% ../../nbs/models.patchtst.ipynb 11
def PositionalEncoding(q_len, hidden_size, normalize=True):
    pe = torch.zeros(q_len, hidden_size)
    position = torch.arange(0, q_len).unsqueeze(1)
    div_term = torch.exp(
        torch.arange(0, hidden_size, 2) * -(math.log(10000.0) / hidden_size)
    )
    pe[:, 0::2] = torch.sin(position * div_term)
    pe[:, 1::2] = torch.cos(position * div_term)
    if normalize:
        pe = pe - pe.mean()
        pe = pe / (pe.std() * 10)
    return pe


SinCosPosEncoding = PositionalEncoding


def Coord2dPosEncoding(q_len, hidden_size, exponential=False, normalize=True, eps=1e-3):
    x = 0.5 if exponential else 1
    i = 0
    for i in range(100):
        cpe = (
            2
            * (torch.linspace(0, 1, q_len).reshape(-1, 1) ** x)
            * (torch.linspace(0, 1, hidden_size).reshape(1, -1) ** x)
            - 1
        )
        if abs(cpe.mean()) <= eps:
            break
        elif cpe.mean() > eps:
            x += 0.001
        else:
            x -= 0.001
        i += 1
    if normalize:
        cpe = cpe - cpe.mean()
        cpe = cpe / (cpe.std() * 10)
    return cpe


def Coord1dPosEncoding(q_len, exponential=False, normalize=True):
    cpe = (
        2 * (torch.linspace(0, 1, q_len).reshape(-1, 1) ** (0.5 if exponential else 1))
        - 1
    )
    if normalize:
        cpe = cpe - cpe.mean()
        cpe = cpe / (cpe.std() * 10)
    return cpe


def positional_encoding(pe, learn_pe, q_len, hidden_size):
    # Positional encoding
    if pe == None:
        W_pos = torch.empty(
            (q_len, hidden_size)
        )  # pe = None and learn_pe = False can be used to measure impact of pe
        nn.init.uniform_(W_pos, -0.02, 0.02)
        learn_pe = False
    elif pe == "zero":
        W_pos = torch.empty((q_len, 1))
        nn.init.uniform_(W_pos, -0.02, 0.02)
    elif pe == "zeros":
        W_pos = torch.empty((q_len, hidden_size))
        nn.init.uniform_(W_pos, -0.02, 0.02)
    elif pe == "normal" or pe == "gauss":
        W_pos = torch.zeros((q_len, 1))
        torch.nn.init.normal_(W_pos, mean=0.0, std=0.1)
    elif pe == "uniform":
        W_pos = torch.zeros((q_len, 1))
        nn.init.uniform_(W_pos, a=0.0, b=0.1)
    elif pe == "lin1d":
        W_pos = Coord1dPosEncoding(q_len, exponential=False, normalize=True)
    elif pe == "exp1d":
        W_pos = Coord1dPosEncoding(q_len, exponential=True, normalize=True)
    elif pe == "lin2d":
        W_pos = Coord2dPosEncoding(
            q_len, hidden_size, exponential=False, normalize=True
        )
    elif pe == "exp2d":
        W_pos = Coord2dPosEncoding(q_len, hidden_size, exponential=True, normalize=True)
    elif pe == "sincos":
        W_pos = PositionalEncoding(q_len, hidden_size, normalize=True)
    else:
        raise ValueError(
            f"{pe} is not a valid pe (positional encoder. Available types: 'gauss'=='normal', \
        'zeros', 'zero', uniform', 'lin1d', 'exp1d', 'lin2d', 'exp2d', 'sincos', None.)"
        )
    return nn.Parameter(W_pos, requires_grad=learn_pe)

# %% ../../nbs/models.patchtst.ipynb 13
class RevIN(nn.Module):
    def __init__(self, num_features: int, eps=1e-5, affine=True, subtract_last=False):
        """
        :param num_features: the number of features or channels
        :param eps: a value added for numerical stability
        :param affine: if True, RevIN has learnable affine parameters
        """
        super(RevIN, self).__init__()
        self.num_features = num_features
        self.eps = eps
        self.affine = affine
        self.subtract_last = subtract_last
        if self.affine:
            self._init_params()

    def forward(self, x, mode: str):
        if mode == "norm":
            self._get_statistics(x)
            x = self._normalize(x)
        elif mode == "denorm":
            x = self._denormalize(x)
        else:
            raise NotImplementedError
        return x

    def _init_params(self):
        # initialize RevIN params: (C,)
        self.affine_weight = nn.Parameter(torch.ones(self.num_features))
        self.affine_bias = nn.Parameter(torch.zeros(self.num_features))

    def _get_statistics(self, x):
        dim2reduce = tuple(range(1, x.ndim - 1))
        if self.subtract_last:
            self.last = x[:, -1, :].unsqueeze(1)
        else:
            self.mean = torch.mean(x, dim=dim2reduce, keepdim=True).detach()
        self.stdev = torch.sqrt(
            torch.var(x, dim=dim2reduce, keepdim=True, unbiased=False) + self.eps
        ).detach()

    def _normalize(self, x):
        if self.subtract_last:
            x = x - self.last
        else:
            x = x - self.mean
        x = x / self.stdev
        if self.affine:
            x = x * self.affine_weight
            x = x + self.affine_bias
        return x

    def _denormalize(self, x):
        if self.affine:
            x = x - self.affine_bias
            x = x / (self.affine_weight + self.eps * self.eps)
        x = x * self.stdev
        if self.subtract_last:
            x = x + self.last
        else:
            x = x + self.mean
        return x

# %% ../../nbs/models.patchtst.ipynb 15
class PatchTST_backbone(nn.Module):
    def __init__(
        self,
        c_in: int,
        c_out: int,
        input_size: int,
        h: int,
        patch_len: int,
        stride: int,
        max_seq_len: Optional[int] = 1024,
        n_layers: int = 3,
        hidden_size=128,
        n_heads=16,
        d_k: Optional[int] = None,
        d_v: Optional[int] = None,
        linear_hidden_size: int = 256,
        norm: str = "BatchNorm",
        attn_dropout: float = 0.0,
        dropout: float = 0.0,
        act: str = "gelu",
        key_padding_mask: str = "auto",
        padding_var: Optional[int] = None,
        attn_mask: Optional[torch.Tensor] = None,
        res_attention: bool = True,
        pre_norm: bool = False,
        store_attn: bool = False,
        pe: str = "zeros",
        learn_pe: bool = True,
        fc_dropout: float = 0.0,
        head_dropout=0,
        padding_patch=None,
        pretrain_head: bool = False,
        head_type="flatten",
        individual=False,
        revin=True,
        affine=True,
        subtract_last=False,
    ):

        super().__init__()

        # RevIn
        self.revin = revin
        if self.revin:
            self.revin_layer = RevIN(c_in, affine=affine, subtract_last=subtract_last)

        # Patching
        self.patch_len = patch_len
        self.stride = stride
        self.padding_patch = padding_patch
        patch_num = int((input_size - patch_len) / stride + 1)
        if padding_patch == "end":  # can be modified to general case
            self.padding_patch_layer = nn.ReplicationPad1d((0, stride))
            patch_num += 1

        # Backbone
        self.backbone = TSTiEncoder(
            c_in,
            patch_num=patch_num,
            patch_len=patch_len,
            max_seq_len=max_seq_len,
            n_layers=n_layers,
            hidden_size=hidden_size,
            n_heads=n_heads,
            d_k=d_k,
            d_v=d_v,
            linear_hidden_size=linear_hidden_size,
            attn_dropout=attn_dropout,
            dropout=dropout,
            act=act,
            key_padding_mask=key_padding_mask,
            padding_var=padding_var,
            attn_mask=attn_mask,
            res_attention=res_attention,
            pre_norm=pre_norm,
            store_attn=store_attn,
            pe=pe,
            learn_pe=learn_pe,
        )

        # Head
        self.head_nf = hidden_size * patch_num
        self.n_vars = c_in
        self.c_out = c_out
        self.pretrain_head = pretrain_head
        self.head_type = head_type
        self.individual = individual

        if self.pretrain_head:
            self.head = self.create_pretrain_head(
                self.head_nf, c_in, fc_dropout
            )  # custom head passed as a partial func with all its kwargs
        elif head_type == "flatten":
            self.head = Flatten_Head(
                self.individual,
                self.n_vars,
                self.head_nf,
                h,
                c_out,
                head_dropout=head_dropout,
            )

    def forward(self, z):  # z: [bs x nvars x seq_len]
        # norm
        if self.revin:
            z = z.permute(0, 2, 1)
            z = self.revin_layer(z, "norm")
            z = z.permute(0, 2, 1)

        # do patching
        if self.padding_patch == "end":
            z = self.padding_patch_layer(z)
        z = z.unfold(
            dimension=-1, size=self.patch_len, step=self.stride
        )  # z: [bs x nvars x patch_num x patch_len]
        z = z.permute(0, 1, 3, 2)  # z: [bs x nvars x patch_len x patch_num]

        # model
        z = self.backbone(z)  # z: [bs x nvars x hidden_size x patch_num]
        z = self.head(z)  # z: [bs x nvars x h]

        # denorm
        if self.revin:
            z = z.permute(0, 2, 1)
            z = self.revin_layer(z, "denorm")
            z = z.permute(0, 2, 1)
        return z

    def create_pretrain_head(self, head_nf, vars, dropout):
        return nn.Sequential(nn.Dropout(dropout), nn.Conv1d(head_nf, vars, 1))


class Flatten_Head(nn.Module):
    def __init__(self, individual, n_vars, nf, h, c_out, head_dropout=0):
        super().__init__()

        self.individual = individual
        self.n_vars = n_vars
        self.c_out = c_out

        if self.individual:
            self.linears = nn.ModuleList()
            self.dropouts = nn.ModuleList()
            self.flattens = nn.ModuleList()
            for i in range(self.n_vars):
                self.flattens.append(nn.Flatten(start_dim=-2))
                self.linears.append(nn.Linear(nf, h * c_out))
                self.dropouts.append(nn.Dropout(head_dropout))
        else:
            self.flatten = nn.Flatten(start_dim=-2)
            self.linear = nn.Linear(nf, h * c_out)
            self.dropout = nn.Dropout(head_dropout)

    def forward(self, x):  # x: [bs x nvars x hidden_size x patch_num]
        if self.individual:
            x_out = []
            for i in range(self.n_vars):
                z = self.flattens[i](x[:, i, :, :])  # z: [bs x hidden_size * patch_num]
                z = self.linears[i](z)  # z: [bs x h]
                z = self.dropouts[i](z)
                x_out.append(z)
            x = torch.stack(x_out, dim=1)  # x: [bs x nvars x h]
        else:
            x = self.flatten(x)
            x = self.linear(x)
            x = self.dropout(x)
        return x


class TSTiEncoder(nn.Module):  # i means channel-independent
    def __init__(
        self,
        c_in,
        patch_num,
        patch_len,
        max_seq_len=1024,
        n_layers=3,
        hidden_size=128,
        n_heads=16,
        d_k=None,
        d_v=None,
        linear_hidden_size=256,
        norm="BatchNorm",
        attn_dropout=0.0,
        dropout=0.0,
        act="gelu",
        store_attn=False,
        key_padding_mask="auto",
        padding_var=None,
        attn_mask=None,
        res_attention=True,
        pre_norm=False,
        pe="zeros",
        learn_pe=True,
    ):

        super().__init__()

        self.patch_num = patch_num
        self.patch_len = patch_len

        # Input encoding
        q_len = patch_num
        self.W_P = nn.Linear(
            patch_len, hidden_size
        )  # Eq 1: projection of feature vectors onto a d-dim vector space
        self.seq_len = q_len

        # Positional encoding
        self.W_pos = positional_encoding(pe, learn_pe, q_len, hidden_size)

        # Residual dropout
        self.dropout = nn.Dropout(dropout)

        # Encoder
        self.encoder = TSTEncoder(
            q_len,
            hidden_size,
            n_heads,
            d_k=d_k,
            d_v=d_v,
            linear_hidden_size=linear_hidden_size,
            norm=norm,
            attn_dropout=attn_dropout,
            dropout=dropout,
            pre_norm=pre_norm,
            activation=act,
            res_attention=res_attention,
            n_layers=n_layers,
            store_attn=store_attn,
        )

    def forward(self, x) -> torch.Tensor:  # x: [bs x nvars x patch_len x patch_num]

        n_vars = x.shape[1]
        # Input encoding
        x = x.permute(0, 1, 3, 2)  # x: [bs x nvars x patch_num x patch_len]
        x = self.W_P(x)  # x: [bs x nvars x patch_num x hidden_size]

        u = torch.reshape(
            x, (x.shape[0] * x.shape[1], x.shape[2], x.shape[3])
        )  # u: [bs * nvars x patch_num x hidden_size]
        u = self.dropout(u + self.W_pos)  # u: [bs * nvars x patch_num x hidden_size]

        # Encoder
        z = self.encoder(u)  # z: [bs * nvars x patch_num x hidden_size]
        z = torch.reshape(
            z, (-1, n_vars, z.shape[-2], z.shape[-1])
        )  # z: [bs x nvars x patch_num x hidden_size]
        z = z.permute(0, 1, 3, 2)  # z: [bs x nvars x hidden_size x patch_num]

        return z


class TSTEncoder(nn.Module):
    def __init__(
        self,
        q_len,
        hidden_size,
        n_heads,
        d_k=None,
        d_v=None,
        linear_hidden_size=None,
        norm="BatchNorm",
        attn_dropout=0.0,
        dropout=0.0,
        activation="gelu",
        res_attention=False,
        n_layers=1,
        pre_norm=False,
        store_attn=False,
    ):
        super().__init__()

        self.layers = nn.ModuleList(
            [
                TSTEncoderLayer(
                    q_len,
                    hidden_size,
                    n_heads=n_heads,
                    d_k=d_k,
                    d_v=d_v,
                    linear_hidden_size=linear_hidden_size,
                    norm=norm,
                    attn_dropout=attn_dropout,
                    dropout=dropout,
                    activation=activation,
                    res_attention=res_attention,
                    pre_norm=pre_norm,
                    store_attn=store_attn,
                )
                for i in range(n_layers)
            ]
        )
        self.res_attention = res_attention

    def forward(
        self,
        src: torch.Tensor,
        key_padding_mask: Optional[torch.Tensor] = None,
        attn_mask: Optional[torch.Tensor] = None,
    ):
        output = src
        scores = None
        if self.res_attention:
            for mod in self.layers:
                output, scores = mod(
                    output,
                    prev=scores,
                    key_padding_mask=key_padding_mask,
                    attn_mask=attn_mask,
                )
            return output
        else:
            for mod in self.layers:
                output = mod(
                    output, key_padding_mask=key_padding_mask, attn_mask=attn_mask
                )
            return output


class TSTEncoderLayer(nn.Module):
    def __init__(
        self,
        q_len,
        hidden_size,
        n_heads,
        d_k=None,
        d_v=None,
        linear_hidden_size=256,
        store_attn=False,
        norm="BatchNorm",
        attn_dropout=0,
        dropout=0.0,
        bias=True,
        activation="gelu",
        res_attention=False,
        pre_norm=False,
    ):
        super().__init__()
        assert (
            not hidden_size % n_heads
        ), f"hidden_size ({hidden_size}) must be divisible by n_heads ({n_heads})"
        d_k = hidden_size // n_heads if d_k is None else d_k
        d_v = hidden_size // n_heads if d_v is None else d_v

        # Multi-Head attention
        self.res_attention = res_attention
        self.self_attn = _MultiheadAttention(
            hidden_size,
            n_heads,
            d_k,
            d_v,
            attn_dropout=attn_dropout,
            proj_dropout=dropout,
            res_attention=res_attention,
        )

        # Add & Norm
        self.dropout_attn = nn.Dropout(dropout)
        if "batch" in norm.lower():
            self.norm_attn = nn.Sequential(
                Transpose(1, 2), nn.BatchNorm1d(hidden_size), Transpose(1, 2)
            )
        else:
            self.norm_attn = nn.LayerNorm(hidden_size)

        # Position-wise Feed-Forward
        self.ff = nn.Sequential(
            nn.Linear(hidden_size, linear_hidden_size, bias=bias),
            get_activation_fn(activation),
            nn.Dropout(dropout),
            nn.Linear(linear_hidden_size, hidden_size, bias=bias),
        )

        # Add & Norm
        self.dropout_ffn = nn.Dropout(dropout)
        if "batch" in norm.lower():
            self.norm_ffn = nn.Sequential(
                Transpose(1, 2), nn.BatchNorm1d(hidden_size), Transpose(1, 2)
            )
        else:
            self.norm_ffn = nn.LayerNorm(hidden_size)

        self.pre_norm = pre_norm
        self.store_attn = store_attn

    def forward(
        self,
        src: torch.Tensor,
        prev: Optional[torch.Tensor] = None,
        key_padding_mask: Optional[torch.Tensor] = None,
        attn_mask: Optional[torch.Tensor] = None,
    ):  # -> Tuple[torch.Tensor, Any]:

        # Multi-Head attention sublayer
        if self.pre_norm:
            src = self.norm_attn(src)
        ## Multi-Head attention
        if self.res_attention:
            src2, attn, scores = self.self_attn(
                src,
                src,
                src,
                prev,
                key_padding_mask=key_padding_mask,
                attn_mask=attn_mask,
            )
        else:
            src2, attn = self.self_attn(
                src, src, src, key_padding_mask=key_padding_mask, attn_mask=attn_mask
            )
        if self.store_attn:
            self.attn = attn
        ## Add & Norm
        src = src + self.dropout_attn(
            src2
        )  # Add: residual connection with residual dropout
        if not self.pre_norm:
            src = self.norm_attn(src)

        # Feed-forward sublayer
        if self.pre_norm:
            src = self.norm_ffn(src)
        ## Position-wise Feed-Forward
        src2 = self.ff(src)
        ## Add & Norm
        src = src + self.dropout_ffn(
            src2
        )  # Add: residual connection with residual dropout
        if not self.pre_norm:
            src = self.norm_ffn(src)

        if self.res_attention:
            return src, scores
        else:
            return src


class _MultiheadAttention(nn.Module):
    def __init__(
        self,
        hidden_size,
        n_heads,
        d_k=None,
        d_v=None,
        res_attention=False,
        attn_dropout=0.0,
        proj_dropout=0.0,
        qkv_bias=True,
        lsa=False,
    ):
        """
        Multi Head Attention Layer
        Input shape:
            Q:       [batch_size (bs) x max_q_len x hidden_size]
            K, V:    [batch_size (bs) x q_len x hidden_size]
            mask:    [q_len x q_len]
        """
        super().__init__()
        d_k = hidden_size // n_heads if d_k is None else d_k
        d_v = hidden_size // n_heads if d_v is None else d_v

        self.n_heads, self.d_k, self.d_v = n_heads, d_k, d_v

        self.W_Q = nn.Linear(hidden_size, d_k * n_heads, bias=qkv_bias)
        self.W_K = nn.Linear(hidden_size, d_k * n_heads, bias=qkv_bias)
        self.W_V = nn.Linear(hidden_size, d_v * n_heads, bias=qkv_bias)

        # Scaled Dot-Product Attention (multiple heads)
        self.res_attention = res_attention
        self.sdp_attn = _ScaledDotProductAttention(
            hidden_size,
            n_heads,
            attn_dropout=attn_dropout,
            res_attention=self.res_attention,
            lsa=lsa,
        )

        # Poject output
        self.to_out = nn.Sequential(
            nn.Linear(n_heads * d_v, hidden_size), nn.Dropout(proj_dropout)
        )

    def forward(
        self,
        Q: torch.Tensor,
        K: Optional[torch.Tensor] = None,
        V: Optional[torch.Tensor] = None,
        prev: Optional[torch.Tensor] = None,
        key_padding_mask: Optional[torch.Tensor] = None,
        attn_mask: Optional[torch.Tensor] = None,
    ):

        bs = Q.size(0)
        if K is None:
            K = Q
        if V is None:
            V = Q

        # Linear (+ split in multiple heads)
        q_s = (
            self.W_Q(Q).view(bs, -1, self.n_heads, self.d_k).transpose(1, 2)
        )  # q_s    : [bs x n_heads x max_q_len x d_k]
        k_s = (
            self.W_K(K).view(bs, -1, self.n_heads, self.d_k).permute(0, 2, 3, 1)
        )  # k_s    : [bs x n_heads x d_k x q_len] - transpose(1,2) + transpose(2,3)
        v_s = (
            self.W_V(V).view(bs, -1, self.n_heads, self.d_v).transpose(1, 2)
        )  # v_s    : [bs x n_heads x q_len x d_v]

        # Apply Scaled Dot-Product Attention (multiple heads)
        if self.res_attention:
            output, attn_weights, attn_scores = self.sdp_attn(
                q_s,
                k_s,
                v_s,
                prev=prev,
                key_padding_mask=key_padding_mask,
                attn_mask=attn_mask,
            )
        else:
            output, attn_weights = self.sdp_attn(
                q_s, k_s, v_s, key_padding_mask=key_padding_mask, attn_mask=attn_mask
            )
        # output: [bs x n_heads x q_len x d_v], attn: [bs x n_heads x q_len x q_len], scores: [bs x n_heads x max_q_len x q_len]

        # back to the original inputs dimensions
        output = (
            output.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * self.d_v)
        )  # output: [bs x q_len x n_heads * d_v]
        output = self.to_out(output)

        if self.res_attention:
            return output, attn_weights, attn_scores
        else:
            return output, attn_weights


class _ScaledDotProductAttention(nn.Module):
    """
    Scaled Dot-Product Attention module (Attention is all you need by Vaswani et al., 2017) with optional residual attention from previous layer
    (Realformer: Transformer likes residual attention by He et al, 2020) and locality self sttention (Vision Transformer for Small-Size Datasets
    by Lee et al, 2021)
    """

    def __init__(
        self, hidden_size, n_heads, attn_dropout=0.0, res_attention=False, lsa=False
    ):
        super().__init__()
        self.attn_dropout = nn.Dropout(attn_dropout)
        self.res_attention = res_attention
        head_dim = hidden_size // n_heads
        self.scale = nn.Parameter(torch.tensor(head_dim**-0.5), requires_grad=lsa)
        self.lsa = lsa

    def forward(
        self,
        q: torch.Tensor,
        k: torch.Tensor,
        v: torch.Tensor,
        prev: Optional[torch.Tensor] = None,
        key_padding_mask: Optional[torch.Tensor] = None,
        attn_mask: Optional[torch.Tensor] = None,
    ):
        """
        Input shape:
            q               : [bs x n_heads x max_q_len x d_k]
            k               : [bs x n_heads x d_k x seq_len]
            v               : [bs x n_heads x seq_len x d_v]
            prev            : [bs x n_heads x q_len x seq_len]
            key_padding_mask: [bs x seq_len]
            attn_mask       : [1 x seq_len x seq_len]
        Output shape:
            output:  [bs x n_heads x q_len x d_v]
            attn   : [bs x n_heads x q_len x seq_len]
            scores : [bs x n_heads x q_len x seq_len]
        """

        # Scaled MatMul (q, k) - similarity scores for all pairs of positions in an input sequence
        attn_scores = (
            torch.matmul(q, k) * self.scale
        )  # attn_scores : [bs x n_heads x max_q_len x q_len]

        # Add pre-softmax attention scores from the previous layer (optional)
        if prev is not None:
            attn_scores = attn_scores + prev

        # Attention mask (optional)
        if (
            attn_mask is not None
        ):  # attn_mask with shape [q_len x seq_len] - only used when q_len == seq_len
            if attn_mask.dtype == torch.bool:
                attn_scores.masked_fill_(attn_mask, -np.inf)
            else:
                attn_scores += attn_mask

        # Key padding mask (optional)
        if (
            key_padding_mask is not None
        ):  # mask with shape [bs x q_len] (only when max_w_len == q_len)
            attn_scores.masked_fill_(
                key_padding_mask.unsqueeze(1).unsqueeze(2), -np.inf
            )

        # normalize the attention weights
        attn_weights = F.softmax(
            attn_scores, dim=-1
        )  # attn_weights   : [bs x n_heads x max_q_len x q_len]
        attn_weights = self.attn_dropout(attn_weights)

        # compute the new values given the attention weights
        output = torch.matmul(
            attn_weights, v
        )  # output: [bs x n_heads x max_q_len x d_v]

        if self.res_attention:
            return output, attn_weights, attn_scores
        else:
            return output, attn_weights

# %% ../../nbs/models.patchtst.ipynb 17
class PatchTST(BaseWindows):
    """PatchTST

    The PatchTST model is an efficient Transformer-based model for multivariate time series forecasting.

    It is based on two key components:
    - segmentation of time series into windows (patches) which are served as input tokens to Transformer
    - channel-independence, where each channel contains a single univariate time series.

    **Parameters:**<br>
    `h`: int, Forecast horizon. <br>
    `input_size`: int, autorregresive inputs size, y=[1,2,3,4] input_size=2 -> y_[t-2:t]=[1,2].<br>
    `stat_exog_list`: str list, static exogenous columns.<br>
    `hist_exog_list`: str list, historic exogenous columns.<br>
    `futr_exog_list`: str list, future exogenous columns.<br>
    `exclude_insample_y`: bool=False, the model skips the autoregressive features y[t-input_size:t] if True.<br>
    `encoder_layers`: int, number of layers for encoder.<br>
    `n_heads`: int=16, number of multi-head's attention.<br>
    `hidden_size`: int=128, units of embeddings and encoders.<br>
    `linear_hidden_size`: int=256, units of linear layer.<br>
    `dropout`: float=0.1, dropout rate for residual connection.<br>
    `fc_dropout`: float=0.1, dropout rate for linear layer.<br>
    `head_dropout`: float=0.1, dropout rate for Flatten head layer.<br>
    `attn_dropout`: float=0.1, dropout rate for attention layer.<br>
    `patch_len`: int=32, length of patch. Note: patch_len = min(patch_len, input_size + stride).<br>
    `stride`: int=16, stride of patch.<br>
    `revin`: bool=True, bool to use RevIn.<br>
    `revin_affine`: bool=False, bool to use affine in RevIn.<br>
    `revin_substract_last`: bool=False, bool to use substract last in RevIn.<br>
    `activation`: str='ReLU', activation from ['gelu','relu'].<br>
    `res_attention`: bool=False, bool to use residual attention.<br>
    `batch_normalization`: bool=False, bool to use batch normalization.<br>
    `learn_pos_embedding`: bool=True, bool to learn positional embedding.<br>
    `loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).<br>
    `valid_loss`: PyTorch module=`loss`, instantiated valid loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).<br>
    `max_steps`: int=1000, maximum number of training steps.<br>
    `learning_rate`: float=1e-3, Learning rate between (0, 1).<br>
    `num_lr_decays`: int=-1, Number of learning rate decays, evenly distributed across max_steps.<br>
    `early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.<br>
    `val_check_steps`: int=100, Number of training steps between every validation loss check.<br>
    `batch_size`: int=32, number of different series in each batch.<br>
    `valid_batch_size`: int=None, number of different series in each validation and test batch, if None uses batch_size.<br>
    `windows_batch_size`: int=1024, number of windows to sample in each training batch, default uses all.<br>
    `inference_windows_batch_size`: int=1024, number of windows to sample in each inference batch.<br>
    `start_padding_enabled`: bool=False, if True, the model will pad the time series with zeros at the beginning, by input size.<br>
    `step_size`: int=1, step size between each window of temporal data.<br>
    `scaler_type`: str='identity', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).<br>
    `random_seed`: int, random_seed for pytorch initializer and numpy generators.<br>
    `num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.<br>
    `drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.<br>
    `alias`: str, optional,  Custom name of the model.<br>
    `optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).<br>
    `optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.<br>
    `**trainer_kwargs`: int,  keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).<br>

    **References:**<br>
    -[Nie, Y., Nguyen, N. H., Sinthong, P., & Kalagnanam, J. (2022). "A Time Series is Worth 64 Words: Long-term Forecasting with Transformers"](https://arxiv.org/pdf/2211.14730.pdf)
    """

    # Class attributes
    SAMPLING_TYPE = "windows"

    def __init__(
        self,
        h,
        input_size,
        stat_exog_list=None,
        hist_exog_list=None,
        futr_exog_list=None,
        exclude_insample_y=False,
        encoder_layers: int = 3,
        n_heads: int = 16,
        hidden_size: int = 128,
        linear_hidden_size: int = 256,
        dropout: float = 0.2,
        fc_dropout: float = 0.2,
        head_dropout: float = 0.0,
        attn_dropout: float = 0.0,
        patch_len: int = 16,
        stride: int = 8,
        revin: bool = True,
        revin_affine: bool = False,
        revin_subtract_last: bool = True,
        activation: str = "gelu",
        res_attention: bool = True,
        batch_normalization: bool = False,
        learn_pos_embed: bool = True,
        loss=MAE(),
        valid_loss=None,
        max_steps: int = 5000,
        learning_rate: float = 1e-4,
        num_lr_decays: int = -1,
        early_stop_patience_steps: int = -1,
        val_check_steps: int = 100,
        batch_size: int = 32,
        valid_batch_size: Optional[int] = None,
        windows_batch_size=1024,
        inference_windows_batch_size: int = 1024,
        start_padding_enabled=False,
        step_size: int = 1,
        scaler_type: str = "identity",
        random_seed: int = 1,
        num_workers_loader: int = 0,
        drop_last_loader: bool = False,
        optimizer=None,
        optimizer_kwargs=None,
        **trainer_kwargs
    ):
        super(PatchTST, self).__init__(
            h=h,
            input_size=input_size,
            hist_exog_list=hist_exog_list,
            stat_exog_list=stat_exog_list,
            futr_exog_list=futr_exog_list,
            exclude_insample_y=exclude_insample_y,
            loss=loss,
            valid_loss=valid_loss,
            max_steps=max_steps,
            learning_rate=learning_rate,
            num_lr_decays=num_lr_decays,
            early_stop_patience_steps=early_stop_patience_steps,
            val_check_steps=val_check_steps,
            batch_size=batch_size,
            valid_batch_size=valid_batch_size,
            windows_batch_size=windows_batch_size,
            inference_windows_batch_size=inference_windows_batch_size,
            start_padding_enabled=start_padding_enabled,
            step_size=step_size,
            scaler_type=scaler_type,
            num_workers_loader=num_workers_loader,
            drop_last_loader=drop_last_loader,
            random_seed=random_seed,
            optimizer=optimizer,
            optimizer_kwargs=optimizer_kwargs,
            **trainer_kwargs
        )
        # Asserts
        if stat_exog_list is not None:
            raise Exception("PatchTST does not yet support static exogenous variables")
        if futr_exog_list is not None:
            raise Exception("PatchTST does not yet support future exogenous variables")
        if hist_exog_list is not None:
            raise Exception(
                "PatchTST does not yet support historical exogenous variables"
            )

        # Enforce correct patch_len, regardless of user input
        patch_len = min(input_size + stride, patch_len)

        c_out = self.loss.outputsize_multiplier

        # Fixed hyperparameters
        c_in = 1  # Always univariate
        padding_patch = "end"  # Padding at the end
        pretrain_head = False  # No pretrained head
        norm = "BatchNorm"  # Use BatchNorm (if batch_normalization is True)
        pe = "zeros"  # Initial zeros for positional encoding
        d_k = None  # Key dimension
        d_v = None  # Value dimension
        store_attn = False  # Store attention weights
        head_type = "flatten"  # Head type
        individual = False  # Separate heads for each time series
        max_seq_len = 1024  # Not used
        key_padding_mask = "auto"  # Not used
        padding_var = None  # Not used
        attn_mask = None  # Not used

        self.model = PatchTST_backbone(
            c_in=c_in,
            c_out=c_out,
            input_size=input_size,
            h=h,
            patch_len=patch_len,
            stride=stride,
            max_seq_len=max_seq_len,
            n_layers=encoder_layers,
            hidden_size=hidden_size,
            n_heads=n_heads,
            d_k=d_k,
            d_v=d_v,
            linear_hidden_size=linear_hidden_size,
            norm=norm,
            attn_dropout=attn_dropout,
            dropout=dropout,
            act=activation,
            key_padding_mask=key_padding_mask,
            padding_var=padding_var,
            attn_mask=attn_mask,
            res_attention=res_attention,
            pre_norm=batch_normalization,
            store_attn=store_attn,
            pe=pe,
            learn_pe=learn_pos_embed,
            fc_dropout=fc_dropout,
            head_dropout=head_dropout,
            padding_patch=padding_patch,
            pretrain_head=pretrain_head,
            head_type=head_type,
            individual=individual,
            revin=revin,
            affine=revin_affine,
            subtract_last=revin_subtract_last,
        )

    def forward(self, windows_batch):  # x: [batch, input_size]

        # Parse windows_batch
        insample_y = windows_batch["insample_y"]
        # insample_mask = windows_batch['insample_mask']
        # hist_exog     = windows_batch['hist_exog']
        # stat_exog     = windows_batch['stat_exog']
        # futr_exog     = windows_batch['futr_exog']

        # Add dimension for channel
        x = insample_y.unsqueeze(-1)  # [Ws,L,1]

        x = x.permute(0, 2, 1)  # x: [Batch, 1, input_size]
        x = self.model(x)
        x = x.reshape(x.shape[0], self.h, -1)  # x: [Batch, h, c_out]

        # Domain map
        forecast = self.loss.domain_map(x)

        return forecast