hint.py 11.1 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# AUTOGENERATED! DO NOT EDIT! File to edit: ../../nbs/models.hint.ipynb.

# %% auto 0
__all__ = ['get_bottomup_P', 'get_mintrace_ols_P', 'get_mintrace_wls_P', 'get_identity_P', 'HINT']

# %% ../../nbs/models.hint.ipynb 5
from typing import Optional

import numpy as np
import torch

# %% ../../nbs/models.hint.ipynb 7
def get_bottomup_P(S: np.ndarray):
    """BottomUp Reconciliation Matrix.

    Creates BottomUp hierarchical \"projection\" matrix is defined as:
    $$\mathbf{P}_{\\text{BU}} = [\mathbf{0}_{\mathrm{[b],[a]}}\;|\;\mathbf{I}_{\mathrm{[b][b]}}]$$

    **Parameters:**<br>
    `S`: Summing matrix of size (`base`, `bottom`).<br>

    **Returns:**<br>
    `P`: Reconciliation matrix of size (`bottom`, `base`).<br>

    **References:**<br>
    - [Orcutt, G.H., Watts, H.W., & Edwards, J.B.(1968). \"Data aggregation and information loss\". The American
    Economic Review, 58 , 773(787)](http://www.jstor.org/stable/1815532).
    """
    n_series = len(S)
    n_agg = n_series - S.shape[1]
    P = np.zeros_like(S)
    P[n_agg:, :] = S[n_agg:, :]
    P = P.T
    return P


def get_mintrace_ols_P(S: np.ndarray):
    """MinTraceOLS Reconciliation Matrix.

    Creates MinTraceOLS reconciliation matrix as proposed by Wickramasuriya et al.

    $$\mathbf{P}_{\\text{MinTraceOLS}}=\\left(\mathbf{S}^{\intercal}\mathbf{S}\\right)^{-1}\mathbf{S}^{\intercal}$$

    **Parameters:**<br>
    `S`: Summing matrix of size (`base`, `bottom`).<br>

    **Returns:**<br>
    `P`: Reconciliation matrix of size (`bottom`, `base`).<br>

    **References:**<br>
    - [Wickramasuriya, S.L., Turlach, B.A. & Hyndman, R.J. (2020). \"Optimal non-negative
    forecast reconciliation". Stat Comput 30, 1167–1182,
    https://doi.org/10.1007/s11222-020-09930-0](https://robjhyndman.com/publications/nnmint/).
    """
    n_hiers, n_bottom = S.shape
    n_agg = n_hiers - n_bottom

    W = np.eye(n_hiers)

    # We compute reconciliation matrix with
    # Equation 10 from https://robjhyndman.com/papers/MinT.pdf
    A = S[:n_agg, :]
    U = np.hstack((np.eye(n_agg), -A)).T
    J = np.hstack((np.zeros((n_bottom, n_agg)), np.eye(n_bottom)))
    P = J - (J @ W @ U) @ np.linalg.pinv(U.T @ W @ U) @ U.T
    return P


def get_mintrace_wls_P(S: np.ndarray):
    """MinTraceOLS Reconciliation Matrix.

    Creates MinTraceOLS reconciliation matrix as proposed by Wickramasuriya et al.
    Depending on a weighted GLS estimator and an estimator of the covariance matrix of the coherency errors $\mathbf{W}_{h}$.

    $$ \mathbf{W}_{h} = \mathrm{Diag}(\mathbf{S} \mathbb{1}_{[b]})$$

    $$\mathbf{P}_{\\text{MinTraceWLS}}=\\left(\mathbf{S}^{\intercal}\mathbf{W}_{h}\mathbf{S}\\right)^{-1}
    \mathbf{S}^{\intercal}\mathbf{W}^{-1}_{h}$$

    **Parameters:**<br>
    `S`: Summing matrix of size (`base`, `bottom`).<br>

    **Returns:**<br>
    `P`: Reconciliation matrix of size (`bottom`, `base`).<br>

    **References:**<br>
    - [Wickramasuriya, S.L., Turlach, B.A. & Hyndman, R.J. (2020). \"Optimal non-negative
    forecast reconciliation". Stat Comput 30, 1167–1182,
    https://doi.org/10.1007/s11222-020-09930-0](https://robjhyndman.com/publications/nnmint/).
    """
    n_hiers, n_bottom = S.shape
    n_agg = n_hiers - n_bottom

    W = np.diag(S @ np.ones((n_bottom,)))

    # We compute reconciliation matrix with
    # Equation 10 from https://robjhyndman.com/papers/MinT.pdf
    A = S[:n_agg, :]
    U = np.hstack((np.eye(n_agg), -A)).T
    J = np.hstack((np.zeros((n_bottom, n_agg)), np.eye(n_bottom)))
    P = J - (J @ W @ U) @ np.linalg.pinv(U.T @ W @ U) @ U.T
    return P


def get_identity_P(S: np.ndarray):
    # Placeholder function for identity P (no reconciliation).
    pass

# %% ../../nbs/models.hint.ipynb 12
class HINT:
    """HINT

    The Hierarchical Mixture Networks (HINT) are a highly modular framework that
    combines SoTA neural forecast architectures with a task-specialized mixture
    probability and advanced hierarchical reconciliation strategies. This powerful
    combination allows HINT to produce accurate and coherent probabilistic forecasts.

    HINT's incorporates a `TemporalNorm` module into any neural forecast architecture,
    the module normalizes inputs into the network's non-linearities operating range
    and recomposes its output's scales through a global skip connection, improving
    accuracy and training robustness. HINT ensures the forecast coherence via bootstrap
    sample reconciliation that restores the aggregation constraints into its base samples.

    Available reconciliations:<br>
    - BottomUp<br>
    - MinTraceOLS<br>
    - MinTraceWLS<br>
    - Identity

    **Parameters:**<br>
    `h`: int, Forecast horizon. <br>
    `model`: NeuralForecast model, instantiated model class from [architecture collection](https://nixtla.github.io/neuralforecast/models.pytorch.html).<br>
    `S`: np.ndarray, dumming matrix of size (`base`, `bottom`) see HierarchicalForecast's [aggregate method](https://nixtla.github.io/hierarchicalforecast/utils.html#aggregate).<br>
    `reconciliation`: str, HINT's reconciliation method from ['BottomUp', 'MinTraceOLS', 'MinTraceWLS'].<br>
    `alias`: str, optional,  Custom name of the model.<br>
    """

    def __init__(
        self,
        h: int,
        S: np.ndarray,
        model,
        reconciliation: str,
        alias: Optional[str] = None,
    ):

        if model.h != h:
            raise Exception(f"Model h {model.h} does not match HINT h {h}")

        if not model.loss.is_distribution_output:
            raise Exception(
                f"The NeuralForecast model's loss {model.loss} is not a probabilistic objective"
            )

        self.h = h
        self.model = model
        self.early_stop_patience_steps = model.early_stop_patience_steps
        self.S = S
        self.reconciliation = reconciliation
        self.loss = model.loss

        available_reconciliations = dict(
            BottomUp=get_bottomup_P,
            MinTraceOLS=get_mintrace_ols_P,
            MinTraceWLS=get_mintrace_wls_P,
            Identity=get_identity_P,
        )

        if reconciliation not in available_reconciliations:
            raise Exception(f"Reconciliation {reconciliation} not available")

        # Get SP matrix
        self.reconciliation = reconciliation
        if reconciliation == "Identity":
            self.SP = None
        else:
            P = available_reconciliations[reconciliation](S=S)
            self.SP = S @ P

        qs = torch.Tensor((np.arange(self.loss.num_samples) / self.loss.num_samples))
        self.sample_quantiles = torch.nn.Parameter(qs, requires_grad=False)
        self.alias = alias

    def __repr__(self):
        return type(self).__name__ if self.alias is None else self.alias

    def fit(
        self,
        dataset,
        val_size=0,
        test_size=0,
        random_seed=None,
        distributed_config=None,
    ):
        """HINT.fit

        HINT trains on the entire hierarchical dataset, by minimizing a composite log likelihood objective.
        HINT framework integrates `TemporalNorm` into the neural forecast architecture for a scale-decoupled
        optimization that robustifies cross-learning the hierachy's series scales.

        **Parameters:**<br>
        `dataset`: NeuralForecast's `TimeSeriesDataset` see details [here](https://nixtla.github.io/neuralforecast/tsdataset.html)<br>
        `val_size`: int, size of the validation set, (default 0).<br>
        `test_size`: int, size of the test set, (default 0).<br>
        `random_seed`: int, random seed for the prediction.<br>

        **Returns:**<br>
        `self`: A fitted base `NeuralForecast` model.<br>
        """
        model = self.model.fit(
            dataset=dataset,
            val_size=val_size,
            test_size=test_size,
            random_seed=random_seed,
            distributed_config=distributed_config,
        )

        # Added attributes for compatibility with NeuralForecast core
        self.futr_exog_list = self.model.futr_exog_list
        self.hist_exog_list = self.model.hist_exog_list
        self.stat_exog_list = self.model.stat_exog_list
        return model

    def predict(self, dataset, step_size=1, random_seed=None, **data_module_kwargs):
        """HINT.predict

        After fitting a base model on the entire hierarchical dataset.
        HINT restores the hierarchical aggregation constraints using
        bootstrapped sample reconciliation.

        **Parameters:**<br>
        `dataset`: NeuralForecast's `TimeSeriesDataset` see details [here](https://nixtla.github.io/neuralforecast/tsdataset.html)<br>
        `step_size`: int, steps between sequential predictions, (default 1).<br>
        `random_seed`: int, random seed for the prediction.<br>
        `**data_kwarg`: additional parameters for the dataset module.<br>

        **Returns:**<br>
        `y_hat`: numpy predictions of the `NeuralForecast` model.<br>
        """
        # Non-reconciled predictions
        if self.reconciliation == "Identity":
            forecasts = self.model.predict(
                dataset=dataset,
                step_size=step_size,
                random_seed=random_seed,
                **data_module_kwargs,
            )
            return forecasts

        num_samples = self.model.loss.num_samples

        # Hack to get samples by simulating quantiles (samples will be ordered)
        # Mysterious parsing associated to default [mean,quantiles] output
        quantiles_old = self.model.loss.quantiles
        names_old = self.model.loss.output_names
        self.model.loss.quantiles = self.sample_quantiles
        self.model.loss.output_names = ["1"] * (1 + num_samples)
        samples = self.model.predict(
            dataset=dataset,
            step_size=step_size,
            random_seed=random_seed,
            **data_module_kwargs,
        )
        samples = samples[:, 1:]  # Eliminate mean from quantiles
        self.model.loss.quantiles = quantiles_old
        self.model.loss.output_names = names_old

        # Hack requires to break quantiles correlations between samples
        idxs = np.random.choice(num_samples, size=samples.shape, replace=True)
        aux_col_idx = np.arange(len(samples))[:, None] * num_samples
        idxs = idxs + aux_col_idx
        samples = samples.flatten()[idxs]
        samples = samples.reshape(dataset.n_groups, -1, self.h, num_samples)

        # Bootstrap Sample Reconciliation
        # Default output [mean, quantiles]
        samples = np.einsum("ij, jwhp -> iwhp", self.SP, samples)

        sample_mean = np.mean(samples, axis=-1, keepdims=True)
        sample_mean = sample_mean.reshape(-1, 1)

        forecasts = np.quantile(samples, self.model.loss.quantiles, axis=-1)
        forecasts = forecasts.transpose(1, 2, 3, 0)  # [...,samples]
        forecasts = forecasts.reshape(-1, len(self.model.loss.quantiles))

        forecasts = np.concatenate([sample_mean, forecasts], axis=-1)
        return forecasts

    def set_test_size(self, test_size):
        self.model.test_size = test_size

    def get_test_size(self):
        return self.model.test_size

    def save(self, path):
        """HINT.save

        Save the HINT fitted model to disk.

        **Parameters:**<br>
        `path`: str, path to save the model.<br>
        """
        self.model.save(path)