models.lstm.ipynb 16.5 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| default_exp models.lstm"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide\n",
    "%load_ext autoreload\n",
    "%autoreload 2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# LSTM"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The Long Short-Term Memory Recurrent Neural Network (`LSTM`), uses a multilayer `LSTM` encoder and an `MLP` decoder. It builds upon the LSTM-cell that improves the exploding and vanishing gradients of classic `RNN`'s. This network has been extensively used in sequential prediction tasks like language modeling, phonetic labeling, and forecasting. The predictions are obtained by transforming the hidden states into contexts $\\mathbf{c}_{[t+1:t+H]}$, that are decoded and adapted into $\\mathbf{\\hat{y}}_{[t+1:t+H],[q]}$ through MLPs.\n",
    "\n",
    "\\begin{align}\n",
    " \\mathbf{h}_{t} &= \\textrm{LSTM}([\\mathbf{y}_{t},\\mathbf{x}^{(h)}_{t},\\mathbf{x}^{(s)}], \\mathbf{h}_{t-1})\\\\\n",
    "\\mathbf{c}_{[t+1:t+H]}&=\\textrm{Linear}([\\mathbf{h}_{t}, \\mathbf{x}^{(f)}_{[:t+H]}]) \\\\ \n",
    "\\hat{y}_{\\tau,[q]}&=\\textrm{MLP}([\\mathbf{c}_{\\tau},\\mathbf{x}^{(f)}_{\\tau}])\n",
    "\\end{align}\n",
    "\n",
    "where $\\mathbf{h}_{t}$, is the hidden state for time $t$, $\\mathbf{y}_{t}$ is the input at time $t$ and $\\mathbf{h}_{t-1}$ is the hidden state of the previous layer at $t-1$, $\\mathbf{x}^{(s)}$ are static exogenous inputs, $\\mathbf{x}^{(h)}_{t}$ historic exogenous, $\\mathbf{x}^{(f)}_{[:t+H]}$ are future exogenous available at the time of the prediction.\n",
    "\n",
    "**References**<br>-[Jeffrey L. Elman (1990). \"Finding Structure in Time\".](https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1)<br>-[Haşim Sak, Andrew Senior, Françoise Beaufays (2014). \"Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition.\"](https://arxiv.org/abs/1402.1128)<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "![Figure 1. Long Short-Term Memory Cell.](imgs_models/lstm.png)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide\n",
    "from nbdev.showdoc import show_doc"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| export\n",
    "from typing import Optional\n",
    "\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "\n",
    "from neuralforecast.losses.pytorch import MAE\n",
    "from neuralforecast.common._base_recurrent import BaseRecurrent\n",
    "from neuralforecast.common._modules import MLP"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| export\n",
    "class LSTM(BaseRecurrent):\n",
    "    \"\"\" LSTM\n",
    "\n",
    "    LSTM encoder, with MLP decoder.\n",
    "    The network has `tanh` or `relu` non-linearities, it is trained using \n",
    "    ADAM stochastic gradient descent. The network accepts static, historic \n",
    "    and future exogenous data.\n",
    "\n",
    "    **Parameters:**<br>\n",
    "    `h`: int, forecast horizon.<br>\n",
    "    `input_size`: int, maximum sequence length for truncated train backpropagation. Default -1 uses all history.<br>\n",
    "    `inference_input_size`: int, maximum sequence length for truncated inference. Default -1 uses all history.<br>\n",
    "    `encoder_n_layers`: int=2, number of layers for the LSTM.<br>\n",
    "    `encoder_hidden_size`: int=200, units for the LSTM's hidden state size.<br>\n",
    "    `encoder_bias`: bool=True, whether or not to use biases b_ih, b_hh within LSTM units.<br>\n",
    "    `encoder_dropout`: float=0., dropout regularization applied to LSTM outputs.<br>\n",
    "    `context_size`: int=10, size of context vector for each timestamp on the forecasting window.<br>\n",
    "    `decoder_hidden_size`: int=200, size of hidden layer for the MLP decoder.<br>\n",
    "    `decoder_layers`: int=2, number of layers for the MLP decoder.<br>\n",
    "    `futr_exog_list`: str list, future exogenous columns.<br>\n",
    "    `hist_exog_list`: str list, historic exogenous columns.<br>\n",
    "    `stat_exog_list`: str list, static exogenous columns.<br>\n",
    "    `loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).<br>\n",
    "    `valid_loss`: PyTorch module=`loss`, instantiated valid loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).<br>\n",
    "    `max_steps`: int=1000, maximum number of training steps.<br>\n",
    "    `learning_rate`: float=1e-3, Learning rate between (0, 1).<br>\n",
    "    `num_lr_decays`: int=-1, Number of learning rate decays, evenly distributed across max_steps.<br>\n",
    "    `early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.<br>\n",
    "    `val_check_steps`: int=100, Number of training steps between every validation loss check.<br>\n",
    "    `batch_size`: int=32, number of differentseries in each batch.<br>\n",
    "    `valid_batch_size`: int=None, number of different series in each validation and test batch.<br>\n",
    "    `scaler_type`: str='robust', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).<br>\n",
    "    `random_seed`: int=1, random_seed for pytorch initializer and numpy generators.<br>\n",
    "    `num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.<br>\n",
    "    `drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.<br>\n",
    "    `alias`: str, optional,  Custom name of the model.<br>\n",
    "    `optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).<br>\n",
    "    `optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.<br>\n",
    "    `**trainer_kwargs`: int,  keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).<br>    \n",
    "    \"\"\"\n",
    "    # Class attributes\n",
    "    SAMPLING_TYPE = 'recurrent'\n",
    "    \n",
    "    def __init__(self,\n",
    "                 h: int,\n",
    "                 input_size: int = -1,\n",
    "                 inference_input_size: int = -1,\n",
    "                 encoder_n_layers: int = 2,\n",
    "                 encoder_hidden_size: int = 200,\n",
    "                 encoder_bias: bool = True,\n",
    "                 encoder_dropout: float = 0.,\n",
    "                 context_size: int = 10,\n",
    "                 decoder_hidden_size: int = 200,\n",
    "                 decoder_layers: int = 2,\n",
    "                 futr_exog_list = None,\n",
    "                 hist_exog_list = None,\n",
    "                 stat_exog_list = None,\n",
    "                 loss = MAE(),\n",
    "                 valid_loss = None,\n",
    "                 max_steps: int = 1000,\n",
    "                 learning_rate: float = 1e-3,\n",
    "                 num_lr_decays: int = -1,\n",
    "                 early_stop_patience_steps: int =-1,\n",
    "                 val_check_steps: int = 100,\n",
    "                 batch_size = 32,\n",
    "                 valid_batch_size: Optional[int] = None,\n",
    "                 scaler_type: str = 'robust',\n",
    "                 random_seed = 1,\n",
    "                 num_workers_loader = 0,\n",
    "                 drop_last_loader = False,\n",
    "                 optimizer=None,\n",
    "                 optimizer_kwargs=None,\n",
    "                 **trainer_kwargs):\n",
    "        super(LSTM, self).__init__(\n",
    "            h=h,\n",
    "            input_size=input_size,\n",
    "            inference_input_size=inference_input_size,\n",
    "            loss=loss,\n",
    "            valid_loss=valid_loss,\n",
    "            max_steps=max_steps,\n",
    "            learning_rate=learning_rate,\n",
    "            num_lr_decays=num_lr_decays,\n",
    "            early_stop_patience_steps=early_stop_patience_steps,\n",
    "            val_check_steps=val_check_steps,\n",
    "            batch_size=batch_size,\n",
    "            valid_batch_size=valid_batch_size,\n",
    "            scaler_type=scaler_type,\n",
    "            futr_exog_list=futr_exog_list,\n",
    "            hist_exog_list=hist_exog_list,\n",
    "            stat_exog_list=stat_exog_list,\n",
    "            num_workers_loader=num_workers_loader,\n",
    "            drop_last_loader=drop_last_loader,\n",
    "            random_seed=random_seed,\n",
    "            optimizer=optimizer,\n",
    "            optimizer_kwargs=optimizer_kwargs,\n",
    "            **trainer_kwargs\n",
    "        )\n",
    "\n",
    "        # LSTM\n",
    "        self.encoder_n_layers = encoder_n_layers\n",
    "        self.encoder_hidden_size = encoder_hidden_size\n",
    "        self.encoder_bias = encoder_bias\n",
    "        self.encoder_dropout = encoder_dropout\n",
    "        \n",
    "        # Context adapter\n",
    "        self.context_size = context_size\n",
    "\n",
    "        # MLP decoder\n",
    "        self.decoder_hidden_size = decoder_hidden_size\n",
    "        self.decoder_layers = decoder_layers\n",
    "\n",
    "        self.futr_exog_size = len(self.futr_exog_list)\n",
    "        self.hist_exog_size = len(self.hist_exog_list)\n",
    "        self.stat_exog_size = len(self.stat_exog_list)\n",
    "        \n",
    "        # LSTM input size (1 for target variable y)\n",
    "        input_encoder = 1 + self.hist_exog_size + self.stat_exog_size\n",
    "\n",
    "        # Instantiate model\n",
    "        self.hist_encoder = nn.LSTM(input_size=input_encoder,\n",
    "                                    hidden_size=self.encoder_hidden_size,\n",
    "                                    num_layers=self.encoder_n_layers,\n",
    "                                    bias=self.encoder_bias,\n",
    "                                    dropout=self.encoder_dropout,\n",
    "                                    batch_first=True)\n",
    "\n",
    "        # Context adapter\n",
    "        self.context_adapter = nn.Linear(in_features=self.encoder_hidden_size + self.futr_exog_size * h,\n",
    "                                         out_features=self.context_size * h)\n",
    "\n",
    "        # Decoder MLP\n",
    "        self.mlp_decoder = MLP(in_features=self.context_size + self.futr_exog_size,\n",
    "                               out_features=self.loss.outputsize_multiplier,\n",
    "                               hidden_size=self.decoder_hidden_size,\n",
    "                               num_layers=self.decoder_layers,\n",
    "                               activation='ReLU',\n",
    "                               dropout=0.0)\n",
    "\n",
    "    def forward(self, windows_batch):\n",
    "        \n",
    "        # Parse windows_batch\n",
    "        encoder_input = windows_batch['insample_y'] # [B, seq_len, 1]\n",
    "        futr_exog     = windows_batch['futr_exog']\n",
    "        hist_exog     = windows_batch['hist_exog']\n",
    "        stat_exog     = windows_batch['stat_exog']\n",
    "\n",
    "        # Concatenate y, historic and static inputs\n",
    "        # [B, C, seq_len, 1] -> [B, seq_len, C]\n",
    "        # Contatenate [ Y_t, | X_{t-L},..., X_{t} | S ]\n",
    "        batch_size, seq_len = encoder_input.shape[:2]\n",
    "        if self.hist_exog_size > 0:\n",
    "            hist_exog = hist_exog.permute(0,2,1,3).squeeze(-1) # [B, X, seq_len, 1] -> [B, seq_len, X]\n",
    "            encoder_input = torch.cat((encoder_input, hist_exog), dim=2)\n",
    "\n",
    "        if self.stat_exog_size > 0:\n",
    "            stat_exog = stat_exog.unsqueeze(1).repeat(1, seq_len, 1) # [B, S] -> [B, seq_len, S]\n",
    "            encoder_input = torch.cat((encoder_input, stat_exog), dim=2)\n",
    "\n",
    "        # RNN forward\n",
    "        hidden_state, _ = self.hist_encoder(encoder_input) # [B, seq_len, rnn_hidden_state]\n",
    "\n",
    "        if self.futr_exog_size > 0:\n",
    "            futr_exog = futr_exog.permute(0,2,3,1)[:,:,1:,:]  # [B, F, seq_len, 1+H] -> [B, seq_len, H, F]\n",
    "            hidden_state = torch.cat(( hidden_state, futr_exog.reshape(batch_size, seq_len, -1)), dim=2)\n",
    "\n",
    "        # Context adapter\n",
    "        context = self.context_adapter(hidden_state)\n",
    "        context = context.reshape(batch_size, seq_len, self.h, self.context_size)\n",
    "\n",
    "        # Residual connection with futr_exog\n",
    "        if self.futr_exog_size > 0:\n",
    "            context = torch.cat((context, futr_exog), dim=-1)\n",
    "\n",
    "        # Final forecast\n",
    "        output = self.mlp_decoder(context)\n",
    "        output = self.loss.domain_map(output)\n",
    "        \n",
    "        return output"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "show_doc(LSTM)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "show_doc(LSTM.fit, name='LSTM.fit')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "show_doc(LSTM.predict, name='LSTM.predict')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Usage Example"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| eval: false\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import pytorch_lightning as pl\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "from neuralforecast import NeuralForecast\n",
    "from neuralforecast.models import LSTM\n",
    "from neuralforecast.losses.pytorch import MQLoss, DistributionLoss\n",
    "from neuralforecast.utils import AirPassengersPanel, AirPassengersStatic\n",
    "from neuralforecast.tsdataset import TimeSeriesDataset, TimeSeriesLoader\n",
    "\n",
    "Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassengersPanel['ds'].values[-12]] # 132 train\n",
    "Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12 test\n",
    "\n",
    "nf = NeuralForecast(\n",
    "    models=[LSTM(h=12, input_size=-1,\n",
    "                 loss=DistributionLoss(distribution='Normal', level=[80, 90]),\n",
    "                 scaler_type='robust',\n",
    "                 encoder_n_layers=2,\n",
    "                 encoder_hidden_size=128,\n",
    "                 context_size=10,\n",
    "                 decoder_hidden_size=128,\n",
    "                 decoder_layers=2,\n",
    "                 max_steps=200,\n",
    "                 futr_exog_list=['y_[lag12]'],\n",
    "                 #hist_exog_list=['y_[lag12]'],\n",
    "                 stat_exog_list=['airline1'],\n",
    "                 )\n",
    "    ],\n",
    "    freq='M'\n",
    ")\n",
    "nf.fit(df=Y_train_df, static_df=AirPassengersStatic)\n",
    "Y_hat_df = nf.predict(futr_df=Y_test_df)\n",
    "\n",
    "Y_hat_df = Y_hat_df.reset_index(drop=False).drop(columns=['unique_id','ds'])\n",
    "plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)\n",
    "plot_df = pd.concat([Y_train_df, plot_df])\n",
    "\n",
    "plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)\n",
    "plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')\n",
    "plt.plot(plot_df['ds'], plot_df['LSTM'], c='purple', label='mean')\n",
    "plt.plot(plot_df['ds'], plot_df['LSTM-median'], c='blue', label='median')\n",
    "plt.fill_between(x=plot_df['ds'][-12:], \n",
    "                 y1=plot_df['LSTM-lo-90'][-12:].values, \n",
    "                 y2=plot_df['LSTM-hi-90'][-12:].values,\n",
    "                 alpha=0.4, label='level 90')\n",
    "plt.legend()\n",
    "plt.grid()\n",
    "plt.plot()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "python3",
   "language": "python",
   "name": "python3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}