compute-wer.py 21.1 KB
Newer Older
wangwei990215's avatar
wangwei990215 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import re, sys, unicodedata
import codecs

remove_tag = True
spacelist= [' ', '\t', '\r', '\n']
puncts = ['!', ',', '?',
          '、', '。', '!', ',', ';', '?',
          ':', '「', '」', '︰',  '『', '』', '《', '》']

def characterize(string) :
  res = []
  i = 0
  while i < len(string):
    char = string[i]
    if char in puncts:
      i += 1
      continue
    cat1 = unicodedata.category(char)
    #https://unicodebook.readthedocs.io/unicode.html#unicode-categories
    if cat1 == 'Zs' or cat1 == 'Cn' or char in spacelist: # space or not assigned
       i += 1
       continue
    if cat1 == 'Lo': # letter-other
       res.append(char)
       i += 1
    else:
       # some input looks like: <unk><noise>, we want to separate it to two words.
       sep = ' '
       if char == '<': sep = '>'
       j = i+1
       while j < len(string):
         c = string[j]
         if ord(c) >= 128 or (c in spacelist) or (c==sep):
           break
         j += 1
       if j < len(string) and string[j] == '>':
         j += 1
       res.append(string[i:j])
       i = j
  return res

def stripoff_tags(x):
  if not x: return ''
  chars = []
  i = 0; T=len(x)
  while i < T:
    if x[i] == '<':
      while i < T and x[i] != '>':
         i += 1
      i += 1
    else:
      chars.append(x[i])
      i += 1
  return ''.join(chars)


def normalize(sentence, ignore_words, cs, split=None):
    """ sentence, ignore_words are both in unicode
    """
    new_sentence = []
    for token in sentence:
        x = token
        if not cs:
           x = x.upper()
        if x in ignore_words:
           continue
        if remove_tag:
          x = stripoff_tags(x)
        if not x:
          continue
        if split and x in split:
          new_sentence += split[x]
        else:
          new_sentence.append(x)
    return new_sentence

class Calculator :
  def __init__(self) :
    self.data = {}
    self.space = []
    self.cost = {}
    self.cost['cor'] = 0
    self.cost['sub'] = 1
    self.cost['del'] = 1
    self.cost['ins'] = 1
  def calculate(self, lab, rec) :
    # Initialization
    lab.insert(0, '')
    rec.insert(0, '')
    while len(self.space) < len(lab) :
      self.space.append([])
    for row in self.space :
      for element in row :
        element['dist'] = 0
        element['error'] = 'non'
      while len(row) < len(rec) :
        row.append({'dist' : 0, 'error' : 'non'})
    for i in range(len(lab)) :
      self.space[i][0]['dist'] = i
      self.space[i][0]['error'] = 'del'
    for j in range(len(rec)) :
      self.space[0][j]['dist'] = j
      self.space[0][j]['error'] = 'ins'
    self.space[0][0]['error'] = 'non'
    for token in lab :
      if token not in self.data and len(token) > 0 :
        self.data[token] = {'all' : 0, 'cor' : 0, 'sub' : 0, 'ins' : 0, 'del' : 0}
    for token in rec :
      if token not in self.data and len(token) > 0 :
        self.data[token] = {'all' : 0, 'cor' : 0, 'sub' : 0, 'ins' : 0, 'del' : 0}
    # Computing edit distance
    for i, lab_token in enumerate(lab) :
      for j, rec_token in enumerate(rec) :
        if i == 0 or j == 0 :
          continue
        min_dist = sys.maxsize
        min_error = 'none'
        dist = self.space[i-1][j]['dist'] + self.cost['del']
        error = 'del'
        if dist < min_dist :
          min_dist = dist
          min_error = error
        dist = self.space[i][j-1]['dist'] + self.cost['ins']
        error = 'ins'
        if dist < min_dist :
          min_dist = dist
          min_error = error
        if lab_token == rec_token :
          dist = self.space[i-1][j-1]['dist'] + self.cost['cor']
          error = 'cor'
        else :
          dist = self.space[i-1][j-1]['dist'] + self.cost['sub']
          error = 'sub'
        if dist < min_dist :
          min_dist = dist
          min_error = error
        self.space[i][j]['dist'] = min_dist
        self.space[i][j]['error'] = min_error
    # Tracing back
    result = {'lab':[], 'rec':[], 'all':0, 'cor':0, 'sub':0, 'ins':0, 'del':0}
    i = len(lab) - 1
    j = len(rec) - 1
    while True :
      if self.space[i][j]['error'] == 'cor' : # correct
        if len(lab[i]) > 0 :
          self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
          self.data[lab[i]]['cor'] = self.data[lab[i]]['cor'] + 1
          result['all'] = result['all'] + 1
          result['cor'] = result['cor'] + 1
        result['lab'].insert(0, lab[i])
        result['rec'].insert(0, rec[j])
        i = i - 1
        j = j - 1
      elif self.space[i][j]['error'] == 'sub' : # substitution
        if len(lab[i]) > 0 :
          self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
          self.data[lab[i]]['sub'] = self.data[lab[i]]['sub'] + 1
          result['all'] = result['all'] + 1
          result['sub'] = result['sub'] + 1
        result['lab'].insert(0, lab[i])
        result['rec'].insert(0, rec[j])
        i = i - 1
        j = j - 1
      elif self.space[i][j]['error'] == 'del' : # deletion
        if len(lab[i]) > 0 :
          self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
          self.data[lab[i]]['del'] = self.data[lab[i]]['del'] + 1
          result['all'] = result['all'] + 1
          result['del'] = result['del'] + 1
        result['lab'].insert(0, lab[i])
        result['rec'].insert(0, "")
        i = i - 1
      elif self.space[i][j]['error'] == 'ins' : # insertion
        if len(rec[j]) > 0 :
          self.data[rec[j]]['ins'] = self.data[rec[j]]['ins'] + 1
          result['ins'] = result['ins'] + 1
        result['lab'].insert(0, "")
        result['rec'].insert(0, rec[j])
        j = j - 1
      elif self.space[i][j]['error'] == 'non' : # starting point
        break
      else : # shouldn't reach here
        print('this should not happen , i = {i} , j = {j} , error = {error}'.format(i = i, j = j, error = self.space[i][j]['error']))
    return result
  def overall(self) :
    result = {'all':0, 'cor':0, 'sub':0, 'ins':0, 'del':0}
    for token in self.data :
      result['all'] = result['all'] + self.data[token]['all']
      result['cor'] = result['cor'] + self.data[token]['cor']
      result['sub'] = result['sub'] + self.data[token]['sub']
      result['ins'] = result['ins'] + self.data[token]['ins']
      result['del'] = result['del'] + self.data[token]['del']
    return result
  def cluster(self, data) :
    result = {'all':0, 'cor':0, 'sub':0, 'ins':0, 'del':0}
    for token in data :
      if token in self.data :
        result['all'] = result['all'] + self.data[token]['all']
        result['cor'] = result['cor'] + self.data[token]['cor']
        result['sub'] = result['sub'] + self.data[token]['sub']
        result['ins'] = result['ins'] + self.data[token]['ins']
        result['del'] = result['del'] + self.data[token]['del']
    return result
  def keys(self) :
      return list(self.data.keys())

def width(string):
  return sum(1 + (unicodedata.east_asian_width(c) in "AFW") for c in string)

def default_cluster(word) :
  unicode_names = [ unicodedata.name(char) for char in word ]
  for i in reversed(range(len(unicode_names))) :
    if unicode_names[i].startswith('DIGIT') :  # 1
      unicode_names[i] = 'Number'  # 'DIGIT'
    elif (unicode_names[i].startswith('CJK UNIFIED IDEOGRAPH') or
          unicode_names[i].startswith('CJK COMPATIBILITY IDEOGRAPH')) :
      # 明 / 郎
      unicode_names[i] = 'Mandarin'  # 'CJK IDEOGRAPH'
    elif (unicode_names[i].startswith('LATIN CAPITAL LETTER') or
          unicode_names[i].startswith('LATIN SMALL LETTER')) :
      # A / a
      unicode_names[i] = 'English'  # 'LATIN LETTER'
    elif unicode_names[i].startswith('HIRAGANA LETTER') :  # は こ め
      unicode_names[i] = 'Japanese'  # 'GANA LETTER'
    elif (unicode_names[i].startswith('AMPERSAND') or
          unicode_names[i].startswith('APOSTROPHE') or
          unicode_names[i].startswith('COMMERCIAL AT') or
          unicode_names[i].startswith('DEGREE CELSIUS') or
          unicode_names[i].startswith('EQUALS SIGN') or
          unicode_names[i].startswith('FULL STOP') or
          unicode_names[i].startswith('HYPHEN-MINUS') or
          unicode_names[i].startswith('LOW LINE') or
          unicode_names[i].startswith('NUMBER SIGN') or
          unicode_names[i].startswith('PLUS SIGN') or
          unicode_names[i].startswith('SEMICOLON')) :
      # & / ' / @ / ℃ / = / . / - / _ / # / + / ;
      del unicode_names[i]
    else :
      return 'Other'
  if len(unicode_names) == 0 :
      return 'Other'
  if len(unicode_names) == 1 :
      return unicode_names[0]
  for i in range(len(unicode_names)-1) :
    if unicode_names[i] != unicode_names[i+1] :
      return 'Other'
  return unicode_names[0]

def is_ch(char):
    if '\u4e00' <= char <= '\u9fa5':
        return True
    return False

def is_en(char):
    if (u'\u0041' <= char <= u'\u005a') or (u'\u0061' <= char <= u'\u007a'):
        return True
    return False

def merge_en_single2word(text):
    new_text = ''
    en_word = ''
    for word in text.strip().split():
        if word is '':
            continue
        if len(word) > 1 or is_ch(word[0]):
            if len(en_word) > 0:
                if len(new_text) > 0 and is_en(new_text[-1]) and is_en(new_text[-2]):
                    new_text += ' '
                new_text += en_word
                en_word = ''
                if is_en(word[0]) and not is_en(word[1]):
                    new_text += word[0]
                    word = word[1:]
                elif is_en(word[0]) and is_en(word[1]):
                    word = ' ' + word
            elif is_en(word[0]) and (len(new_text) > 0 and is_en(new_text[-1])):
                word = ' ' + word
            new_text += word
        elif len(word) == 1 and is_en(word[0]):
            en_word += word
        else:
            raise KeyError
    if len(en_word) > 0:
        if len(new_text) > 0 and is_en(new_text[-1]) and is_en(new_text[-2]):
            new_text += ' '
        new_text += en_word
    return new_text

def usage() :
  print("compute-wer.py : compute word error rate (WER) and align recognition results and references.")
  print("         usage : python compute-wer.py [--cs={0,1}] [--cluster=foo] [--ig=ignore_file] [--char={0,1}] [--v={0,1}] [--padding-symbol={space,underline}] test.ref test.hyp > test.wer")

if __name__ == '__main__':
  if len(sys.argv) == 1 :
    usage()
    sys.exit(0)
  calculator = Calculator()
  cluster_file = ''
  ignore_words = set()
  tochar = False
  verbose= 1
  padding_symbol= ' '
  case_sensitive = False
  max_words_per_line = sys.maxsize
  split = None
  concat_all = False
  merge_en_single = False
  while len(sys.argv) > 3:
     a = '--maxw='
     if sys.argv[1].startswith(a):
        b = sys.argv[1][len(a):]
        del sys.argv[1]
        max_words_per_line = int(b)
        continue
     a = '--rt='
     if sys.argv[1].startswith(a):
        b = sys.argv[1][len(a):].lower()
        del sys.argv[1]
        remove_tag = (b == 'true') or (b != '0')
        continue
     a = '--cs='
     if sys.argv[1].startswith(a):
        b = sys.argv[1][len(a):].lower()
        del sys.argv[1]
        case_sensitive = (b == 'true') or (b != '0')
        continue
     a = '--cluster='
     if sys.argv[1].startswith(a):
       cluster_file = sys.argv[1][len(a):]
       del sys.argv[1]
       continue
     a = '--splitfile='
     if sys.argv[1].startswith(a):
       split_file = sys.argv[1][len(a):]
       del sys.argv[1]
       split = dict()
       with codecs.open(split_file, 'r', 'utf-8') as fh:
         for line in fh:  # line in unicode
           words = line.strip().split()
           if len(words) >= 2:
             split[words[0]] = words[1:]
       continue
     a = '--ig='
     if sys.argv[1].startswith(a):
       ignore_file = sys.argv[1][len(a):]
       del sys.argv[1]
       with codecs.open(ignore_file, 'r', 'utf-8') as fh:
         for line in fh:  # line in unicode
           line = line.strip()
           if len(line) > 0:
             ignore_words.add(line)
       continue
     a = '--char='
     if sys.argv[1].startswith(a):
        b = sys.argv[1][len(a):].lower()
        del sys.argv[1]
        tochar = (b == 'true') or (b != '0')
        continue
     a = '--v='
     if sys.argv[1].startswith(a):
        b = sys.argv[1][len(a):].lower()
        del sys.argv[1]
        verbose=0
        try:
          verbose=int(b)
        except:
           if b == 'true' or b != '0':
              verbose = 1
        continue
     a = '--padding-symbol='
     if sys.argv[1].startswith(a):
        b = sys.argv[1][len(a):].lower()
        del sys.argv[1]
        if b == 'space':
          padding_symbol= ' '
        elif b == 'underline':
          padding_symbol= '_'
        continue
     a = '--concat-all='
     if sys.argv[1].startswith(a):
         concat_all = sys.argv[1][len(a):]
         del sys.argv[1]
         continue
     a = '--merge_en_single='
     if sys.argv[1].startswith(a):
         merge_en_single = sys.argv[1][len(a):]
         del sys.argv[1]
         continue
     
     if True or sys.argv[1].startswith('-'):
        #ignore invalid switch
        del sys.argv[1]
        continue

  if not case_sensitive:
     ig=set([w.upper() for w in ignore_words])
     ignore_words = ig

  default_clusters = {}
  default_words = {}

  ref_file = sys.argv[1]
  hyp_file = sys.argv[2]
  
  if concat_all:
      ref_file_cat = ref_file + '.cat'
      hyp_file_cat = hyp_file + '.cat'
      os.system('rm %s %s' % (ref_file_cat, hyp_file_cat))
      ref_cat = {}
      hyp_cat = {}
      with open(ref_file, 'r') as rr:
          for line in rr.readlines():
              line = line.strip()
              if line == '':
                  continue
              line = line.split(maxsplit=1)
              if len(line) == 2:
                  ref_cat[line[0].strip()] = line[1].strip()
              else:
                  ref_cat[line[0].strip()] = ''
      with open(hyp_file, 'r') as rh:
          for line in rh.readlines():
              line = line.strip()
              if line == '':
                  continue
              line = line.split(maxsplit=1)
              if len(line) == 2:
                  hyp_cat[line[0].strip()] = line[1].strip()
              else:
                  hyp_cat[line[0].strip()] = ''
      ref_cat = list(sorted(ref_cat.items(), key=lambda x: int(x[0].split('_')[-1])))
      hyp_cat = list(sorted(hyp_cat.items(), key=lambda x: int(x[0].split('_')[-1])))
      ref_cat = " ".join([x[1] for x in ref_cat])
      hyp_cat = " ".join([x[1] for x in hyp_cat])
      with open(ref_file_cat, 'w') as wr, open(hyp_file_cat, 'w') as wh:
          wr.write("concat %s" % ref_cat)
          wh.write("concat %s" % hyp_cat)
      ref_file = ref_file_cat
      hyp_file = hyp_file_cat

  if merge_en_single:
      ref_file_merge = ref_file + '.merge'
      hyp_file_merge = hyp_file + '.merge'
      os.system('rm %s %s' % (ref_file_merge, hyp_file_merge))
      with open(ref_file, 'r') as rr, open(ref_file_merge, 'w') as wr:
          for line in rr.readlines():
              line = line.strip()
              if line == '':
                  continue
              line = line.split(maxsplit=1)
              if len(line) == 2:
                  wr.write("%s %s\n" % (line[0].strip(), merge_en_single2word(line[1].strip())))
              else:
                  wr.write("%s %s\n" % (line[0].strip(), ''))
                  
      with open(hyp_file, 'r') as rh, open(hyp_file_merge, 'w') as wh:
          for line in rh.readlines():
              line = line.strip()
              if line == '':
                  continue
              line = line.split(maxsplit=1)
              if len(line) == 2:
                  wh.write("%s %s\n" % (line[0].strip(), merge_en_single2word(line[1].strip())))
              else:
                  wh.write("%s %s\n" % (line[0].strip(), ''))
      ref_file = ref_file_merge
      hyp_file = hyp_file_merge
  
  rec_set = {}
  if split and not case_sensitive:
     newsplit = dict()
     for w in split:
        words = split[w]
        for i in range(len(words)):
           words[i] = words[i].upper()
        newsplit[w.upper()] = words
     split = newsplit

  with codecs.open(hyp_file, 'r', 'utf-8') as fh:
     for line in fh:
        if tochar:
            array = characterize(line)
        else:
            array = line.strip().split()
        if len(array)==0: continue
        fid = array[0]
        rec_set[fid] = normalize(array[1:], ignore_words, case_sensitive, split)

  # compute error rate on the interaction of reference file and hyp file
  for line in open(ref_file, 'r', encoding='utf-8') :
    if tochar:
          array = characterize(line)
    else:
          array = line.rstrip('\n').split()
    if len(array)==0: continue
    fid = array[0]
    if fid not in rec_set:
       continue
    lab = normalize(array[1:], ignore_words, case_sensitive, split)
    rec = rec_set[fid]
    if verbose:
      print('\nutt: %s' % fid)

    for word in rec + lab :
      if word not in default_words :
         default_cluster_name = default_cluster(word)
         if default_cluster_name not in default_clusters :
           default_clusters[default_cluster_name] = {}
         if word not in default_clusters[default_cluster_name] :
           default_clusters[default_cluster_name][word] = 1
         default_words[word] = default_cluster_name

    result = calculator.calculate(lab, rec)
    if verbose:
      if result['all'] != 0 :
        wer = float(result['ins'] + result['sub'] + result['del']) * 100.0 / result['all']
      else :
        wer = 0.0
      print('WER: %4.2f %%' % wer, end = ' ')
      print('N=%d C=%d S=%d D=%d I=%d' %
          (result['all'], result['cor'], result['sub'], result['del'], result['ins']))
      space = {}
      space['lab'] = []
      space['rec'] = []
      for idx in range(len(result['lab'])) :
        len_lab = width(result['lab'][idx])
        len_rec = width(result['rec'][idx])
        length = max(len_lab, len_rec)
        space['lab'].append(length-len_lab)
        space['rec'].append(length-len_rec)
      upper_lab = len(result['lab'])
      upper_rec = len(result['rec'])
      lab1, rec1 = 0, 0
      while lab1 < upper_lab or rec1 < upper_rec:
         if verbose > 1:
             print('lab(%s):' % fid.encode('utf-8'), end = ' ')
         else:
             print('lab:', end = ' ')
         lab2 = min(upper_lab, lab1 + max_words_per_line)
         for idx in range(lab1, lab2):
           token = result['lab'][idx]
           print('{token}'.format(token = token), end = '')
           for n in range(space['lab'][idx]) :
             print(padding_symbol, end = '')
           print(' ',end='')
         print()
         if verbose > 1:
            print('rec(%s):' % fid.encode('utf-8'), end = ' ')
         else:
            print('rec:', end = ' ')
         rec2 = min(upper_rec, rec1 + max_words_per_line)
         for idx in range(rec1, rec2):
           token = result['rec'][idx]
           print('{token}'.format(token = token), end = '')
           for n in range(space['rec'][idx]) :
             print(padding_symbol, end = '')
           print(' ',end='')
         print('\n', end='\n')
         lab1 = lab2
         rec1 = rec2

  if verbose:
    print('===========================================================================')
    print()

  result = calculator.overall()
  if result['all'] != 0 :
    wer = float(result['ins'] + result['sub'] + result['del']) * 100.0 / result['all']
  else :
    wer = 0.0
  print('Overall -> %4.2f %%' % wer, end = ' ')
  print('N=%d C=%d S=%d D=%d I=%d' %
        (result['all'], result['cor'], result['sub'], result['del'], result['ins']))
  if not verbose:
     print()

  if verbose:
   for cluster_id in default_clusters :
     result = calculator.cluster([ k for k in default_clusters[cluster_id] ])
     if result['all'] != 0 :
        wer = float(result['ins'] + result['sub'] + result['del']) * 100.0 / result['all']
     else :
        wer = 0.0
     print('%s -> %4.2f %%' % (cluster_id, wer), end = ' ')
     print('N=%d C=%d S=%d D=%d I=%d' %
          (result['all'], result['cor'], result['sub'], result['del'], result['ins']))
   if len(cluster_file) > 0 : # compute separated WERs for word clusters
     cluster_id = ''
     cluster = []
     for line in open(cluster_file, 'r', encoding='utf-8') :
       for token in line.decode('utf-8').rstrip('\n').split() :
        # end of cluster reached, like </Keyword>
        if token[0:2] == '</' and token[len(token)-1] == '>' and \
           token.lstrip('</').rstrip('>') == cluster_id :
          result = calculator.cluster(cluster)
          if result['all'] != 0 :
            wer = float(result['ins'] + result['sub'] + result['del']) * 100.0 / result['all']
          else :
            wer = 0.0
          print('%s -> %4.2f %%' % (cluster_id, wer), end = ' ')
          print('N=%d C=%d S=%d D=%d I=%d' %
                (result['all'], result['cor'], result['sub'], result['del'], result['ins']))
          cluster_id = ''
          cluster = []
        # begin of cluster reached, like <Keyword>
        elif token[0] == '<' and token[len(token)-1] == '>' and \
             cluster_id == '' :
          cluster_id = token.lstrip('<').rstrip('>')
          cluster = []
        # general terms, like WEATHER / CAR / ...
        else :
          cluster.append(token)
   print()
   print('===========================================================================')