speech_dataset_shard.py 17.5 KB
Newer Older
wangwei990215's avatar
wangwei990215 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import logging
import os
import random

import numpy as np
import torch
import torch.distributed as dist
from torch.utils.data import IterableDataset
from transformers import AutoFeatureExtractor

import mooer.datasets.speech_processor as processor
from mooer.utils.data_utils import PROMPT_DICT, PROMPT_TEMPLATE_DICT


def read_lists(list_file, num_epochs=1, shuffle=False):
    lists = []
    with open(list_file, 'r', encoding='utf8') as fin:
        for line in fin:
            lists.append(line.strip())
    lists = lists * num_epochs
    if shuffle:
        random.shuffle(lists)
    return lists


def load_cmvn(cmvn_file):
    with open(cmvn_file, "r", encoding="utf-8") as f:
        lines = f.readlines()
    means_list = []
    vars_list = []
    for i in range(len(lines)):
        line_item = lines[i].split()
        if line_item[0] == "<AddShift>":
            line_item = lines[i + 1].split()
            if line_item[0] == "<LearnRateCoef>":
                add_shift_line = line_item[3 : (len(line_item) - 1)]
                means_list = list(add_shift_line)
                continue
        elif line_item[0] == "<Rescale>":
            line_item = lines[i + 1].split()
            if line_item[0] == "<LearnRateCoef>":
                rescale_line = line_item[3 : (len(line_item) - 1)]
                vars_list = list(rescale_line)
                continue
    means = np.array(means_list).astype(np.float32)
    vars = np.array(vars_list).astype(np.float32)
    cmvn = np.array([means, vars])
    cmvn = torch.as_tensor(cmvn, dtype=torch.float32)
    return cmvn


class Processor(IterableDataset):
    def __init__(self, source, f, *args, **kw):
        assert callable(f)
        self.source = source
        self.f = f
        self.args = args
        self.kw = kw

    def set_epoch(self, epoch):
        self.source.set_epoch(epoch)

    def __iter__(self):
        """ Return an iterator over the source dataset processed by the
            given processor.
        """
        assert self.source is not None
        assert callable(self.f)
        return self.f(iter(self.source), *self.args, **self.kw)

    def apply(self, f):
        assert callable(f)
        return Processor(self, f, *self.args, **self.kw)


class DistributedSampler:
    def __init__(self, shuffle=True, partition=True):
        self.epoch = -1
        self.update()
        self.shuffle = shuffle
        self.partition = partition

    def update(self):
        assert dist.is_available()
        if dist.is_initialized():
            self.rank = dist.get_rank()
            self.world_size = dist.get_world_size()
        else:
            self.rank = 0
            self.world_size = 1
        worker_info = torch.utils.data.get_worker_info()
        if worker_info is None:
            self.worker_id = 0
            self.num_workers = 1
        else:
            self.worker_id = worker_info.id
            self.num_workers = worker_info.num_workers
        return dict(rank=self.rank,
                    world_size=self.world_size,
                    worker_id=self.worker_id,
                    num_workers=self.num_workers)

    def set_epoch(self, epoch):
        self.epoch = epoch

    def sample(self, data):
        """ Sample data according to rank/world_size/num_workers

            Args:
                data(List): input data list

            Returns:
                List: data list after sample
        """
        data = list(range(len(data)))
        if self.partition:
            if self.shuffle:
                random.Random(self.epoch).shuffle(data)
            data = data[self.rank::self.world_size]
        data = data[self.worker_id::self.num_workers]
        return data


class DataList(IterableDataset):
    def __init__(self, lists, shuffle=True, partition=True):
        self.lists = lists
        self.sampler = DistributedSampler(shuffle, partition)

    def set_epoch(self, epoch):
        self.sampler.set_epoch(epoch)

    def __iter__(self):
        sampler_info = self.sampler.update()
        indexes = self.sampler.sample(self.lists)
        for index in indexes:
            # yield dict(src=src)
            data = dict(src=self.lists[index])
            data.update(sampler_info)
            yield data


class SpeechDatasetShard(torch.utils.data.Dataset):
    def __init__(self,
                 dataset_config,
                 normalize=True,
                 mel_size=128,
                 tokenizer=None):
        super().__init__()
        self.dataset_config = dataset_config
        self.tokenizer = tokenizer
        self.IGNORE_INDEX = -100
        self.normalize = normalize
        self.mel_size = mel_size
        self.max_length = dataset_config.get('max_length', 2000)
        self.min_length = dataset_config.get('min_length', 20)
        self.prompt_template_key = dataset_config.get('prompt_template_key', 'qwen')
        self.prompt_template = PROMPT_TEMPLATE_DICT[self.prompt_template_key]
        self.prompt_key = dataset_config.get('prompt_key', 'asr')
        if self.prompt_key == 'instruction':
            self.prompt = PROMPT_DICT
        else:
            self.prompt = PROMPT_DICT[self.prompt_key]
        logging.info(f"Use LLM Type {self.prompt_template_key}, "
                     f"Prompt template {self.prompt_template}, "
                     f"Use task type {self.prompt_key}, "
                     f"Prompt {self.prompt}")
        self.is_inference = dataset_config.get('is_inference', False)
        if (dataset_config.get('w2v_bert_path', None) is not None) and (os.path.exists(dataset_config.w2v_bert_path)):
            self.auto_processer = AutoFeatureExtractor.from_pretrained(dataset_config.w2v_bert_path)
        else:
            self.auto_processer = None
        if (dataset_config.get('cmvn_path', None) is not None) and (os.path.exists(dataset_config.cmvn_path)):
            self.cmvn = load_cmvn(dataset_config.cmvn_path)
        else:
            assert self.dataset_config.encoder_name != 'paraformer', 'paraformer must use cmvn'
            self.cmvn = None
        self.num_epochs = dataset_config.get('num_epochs', 1)
        self.adapter_downsample_rate = dataset_config.get('adapter_downsample_rate', 2)
        self.sort = dataset_config.get('sort', True)
        self.replace_text_table = None
        self.replace_text_path = dataset_config.get('replace_text_path', '')
        self.replace_type = dataset_config.get('replace_type', 'replace')
        if self.prompt_key == 'instruction':
            self.replace_type = 'instruction'
        if os.path.exists(self.replace_text_path):
            logging.info(f"Parsing replaced table {self.replace_text_path}..., Method {self.replace_type}")
            self.replace_text_table = self.parse_txt2dict(self.replace_text_path)
        if self.dataset_config.encoder_name in ['paraformer', 'whisper', 'w2v_bert2.0']:
            self.input_type = 'mel'
        else:
            self.input_type = 'raw'
            
    @classmethod
    def parse_txt2dict(cls, txt_path):
        result = {}
        with open(txt_path, 'r') as r:
            for line in r.readlines():
                line = line.strip()
                if line == '':
                    continue
                line = line.split(maxsplit=1)
                if len(line) != 2:
                    continue
                key, text = line
                result[key] = text
        return result
        
    def dataset(self,
                data_type,
                data_list_file,
                shuffle=True,
                partition=True):
        assert data_type in ['raw', 'shard']
        lists = read_lists(data_list_file, num_epochs=self.num_epochs, shuffle=shuffle)
        dataset = DataList(lists, shuffle=shuffle, partition=partition)
        if data_type == 'shard':
            dataset = Processor(dataset, processor.url_opener)
            dataset = Processor(dataset, processor.tar_file_and_group)
        else:
            dataset = Processor(dataset, processor.parse_raw)
        if not self.is_inference:
            dataset = Processor(dataset, processor.filter,
                                max_length=self.max_length,
                                min_length=self.min_length)
        if self.replace_text_table is not None:
            dataset = Processor(dataset, processor.refine_text,
                                replaced_table=self.replace_text_table,
                                replace_type=self.replace_type)
        dataset = Processor(dataset, processor.gen_llm_inputs,
                            tokenizer=self.tokenizer,
                            ignore_index=self.IGNORE_INDEX,
                            normalize=self.normalize,
                            mel_size=self.mel_size,
                            input_type=self.input_type,
                            is_paraformer=self.dataset_config.encoder_name == 'paraformer',
                            prompt_template=self.prompt_template,
                            is_inference=self.is_inference,
                            autoprocesser=self.auto_processer,
                            cmvn=self.cmvn,
                            prompt_org=self.prompt,
                            adapter_downsample_rate=self.adapter_downsample_rate,
                            instruction=self.prompt_key == 'instruction')
        if not self.is_inference:
            # add shuffle
            dataset = Processor(dataset, processor.shuffle)
        if self.sort:
            dataset = Processor(dataset, processor.sort, sort_size=2000, key='audio'
                if self.dataset_config.encoder_name == 'hubert' else 'audio_mel')
        return dataset

    def pad(self, sequence, max_length, padding_idx=0):
        if isinstance(sequence, (int, list, tuple)):
            if len(sequence) < max_length:
                sequence = sequence + [padding_idx] * (max_length - len(sequence))
            else:
                sequence = sequence[:max_length]
        elif isinstance(sequence, torch.Tensor):
            if len(sequence) < max_length:
                sequence = torch.cat(
                    (sequence, torch.full(([max_length - len(sequence)] + list(sequence.size())[1:]), padding_idx)))
            else:
                sequence = sequence[:max_length]
        elif isinstance(sequence, np.ndarray):
            if len(sequence) < max_length:
                sequence = np.concatenate(
                    (sequence, np.full((max_length - len(sequence),) + sequence.shape[1:], padding_idx)))
            else:
                sequence = sequence[:max_length]
        else:
            raise Exception("Type mismatch during padding!")
        return sequence

    @classmethod
    def padding(cls, sequence, padding_length, padding_idx=0, padding_side="right"):
        if isinstance(sequence, (int, list, tuple)):
            if padding_length >= 0:
                sequence = sequence + [padding_idx] * padding_length
            else:
                sequence = sequence[:padding_length]
        elif isinstance(sequence, torch.Tensor):
            if sequence.ndimension() == 2:
                if padding_length >= 0:
                    sequence = torch.nn.functional.pad(sequence, (0, padding_length))
                else:
                    sequence = sequence[:, :padding_length]
            else:
                if padding_length >= 0:
                    if padding_side == "left":
                        sequence = torch.cat(
                            (torch.full(([padding_length] + list(sequence.size())[1:]), padding_idx), sequence))
                    else:
                        sequence = torch.cat(
                            (sequence, torch.full(([padding_length] + list(sequence.size())[1:]), padding_idx)))
                else:
                    sequence = sequence[:padding_length]
        elif isinstance(sequence, np.ndarray):
            if padding_length >= 0:
                sequence = np.concatenate(
                    (sequence, np.full((padding_length,) + sequence.shape[1:], padding_idx)))
            else:
                sequence = sequence[:padding_length]
        else:
            raise Exception("Type mismatch during padding!")
        return sequence

    def collator(self, samples):
        assert samples is not None
        input_prompt_lengths = [s["audio_length"] + s['prompt_length'] for s in samples]  # [120, 48, 82, 42]
        input_answer_lengths = [len(s["input_ids"]) - s["audio_length"] - s['prompt_length'] for s in
                                samples]  # [0, 0, 0, 0]
    
        input_prompt_max_length = max(input_prompt_lengths)
        input_answer_max_length = max(input_answer_lengths)
    
        input_ids = torch.stack([
            self.padding(
                self.padding(samples[index]["input_ids"], input_prompt_max_length - input_prompt_lengths[index],
                             self.tokenizer.pad_token_id, padding_side="left"),
                input_answer_max_length - input_answer_lengths[index], self.tokenizer.pad_token_id
            ) for index in range(len(samples))
        ])
    
        attention_mask = torch.stack([
            self.padding(
                self.padding(samples[index]["attention_mask"], input_prompt_max_length - input_prompt_lengths[index],
                             False, padding_side="left"),
                input_answer_max_length - input_answer_lengths[index], False
            ) for index in range(len(samples))
        ])
    
        if self.auto_processer is not None:
            audio_mel_max_length = max([s['audio_mel'].shape[0] for s in samples])
            audio_mel = torch.stack([self.pad(s['audio_mel'], audio_mel_max_length, 0)
                                     for s in samples])
            audio_mel_post_mask = torch.zeros(len(samples), (
                audio_mel_max_length))  # w2v-bert
            for line, sample in enumerate(samples):
                audio_mel_post_mask[line, :(sample['audio_mel'].shape[0])] = 1
        elif self.dataset_config.encoder_name == 'paraformer':
            audio_mel_reallen = [s['audio_mel'].shape[0] for s in samples]
            audio_mel_max_length = max(audio_mel_reallen)
            audio_mel = torch.stack([self.pad(s['audio_mel'], audio_mel_max_length, 0)
                                     for s in samples])
            audio_mel_post_mask = torch.zeros(len(samples), (
                audio_mel_max_length))  # paraformer
            for line, sample in enumerate(samples):
                audio_mel_post_mask[line, :(sample['audio_mel'].shape[0])] = 1
            audio_mel_reallen = torch.tensor(audio_mel_reallen, dtype=torch.int32)
        elif self.dataset_config.encoder_name == 'hubert':
            audio_raw_max_length = max([s['audio'].shape[0] for s in samples])
            audio_raw = torch.stack([self.pad(s['audio'], audio_raw_max_length, 0)
                                     for s in samples])
            audio_mask = torch.zeros(len(samples), audio_raw_max_length)
            for line, sample in enumerate(samples):
                audio_mask[line, :sample['audio'].shape[0]] = 1
        elif self.dataset_config.encoder_name == 'whisper':
            audio_mel_max_length = max([s['audio_mel'].shape[0] for s in samples])
            audio_mel = torch.stack([self.pad(s['audio_mel'], audio_mel_max_length, 0)
                                     for s in samples])
            audio_mel_post_mask = torch.zeros(len(samples), (
                    audio_mel_max_length + 1) // 2)  # ad-hoc for whisper for 2x downsample from mel to feats
            for line, sample in enumerate(samples):
                audio_mel_post_mask[line, :(sample['audio_mel'].shape[0] + 1) // 2] = 1
        modality_mask = torch.zeros_like(attention_mask)
        for index in range(len(samples)):
            padding_left = input_prompt_max_length - input_prompt_lengths[index]
            modality_mask[index, padding_left:padding_left + samples[index]["audio_length"]] = True

        keys = [s['key'] for s in samples]
        if self.is_inference:
            targets = [s['target'] for s in samples]
            return {
                "input_ids": input_ids,
                "attention_mask": attention_mask,
                "audio": audio_raw if self.input_type == "raw" else None,
                "audio_mask": audio_mask if self.input_type == "raw" else None,
                "audio_mel": audio_mel if self.input_type == "mel" else None,
                "audio_mel_post_mask": audio_mel_post_mask if self.input_type == "mel" else None,
                "modality_mask": modality_mask,
                "keys": keys,
                "targets": targets,
                "audio_mel_reallen": audio_mel_reallen if self.dataset_config.encoder_name == 'paraformer' else None
            }
    
        labels = torch.stack([
            self.padding(
                self.padding(samples[index]['labels'], input_prompt_max_length - input_prompt_lengths[index],
                             self.IGNORE_INDEX, padding_side="left"),
                input_answer_max_length - input_answer_lengths[index], self.IGNORE_INDEX)
            for index in range(len(samples))
        ])
        return {
            "input_ids": input_ids,
            "labels": labels,
            "attention_mask": attention_mask,
            "audio": audio_raw if self.input_type == "raw" else None,
            "audio_mask": audio_mask if self.input_type == "raw" else None,
            "audio_mel": audio_mel if self.input_type == "mel" else None,
            "audio_mel_post_mask": audio_mel_post_mask if self.input_type == "mel" else None,
            "modality_mask": modality_mask,
            "audio_mel_reallen": audio_mel_reallen if self.dataset_config.encoder_name == 'paraformer' else None,
            "keys": keys,
        }