run.sh 4.23 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#!/usr/bin/env bash

WORK_DIR=$(cd "$(dirname "$0")";pwd)
export PYTHONPATH=${WORK_DIR}

ARCH=$1
TASK=$2
case ${TASK} in
    "pretrain-finetune-test")
        cd ${WORK_DIR}
        OUTPUT_DIR=${WORK_DIR}/outputs/${ARCH}_$(date +"%Y%m%d_%H%M%S")
        mkdir -p ${OUTPUT_DIR}
        LANGUAGE_MODEL=$3
        VISION_MODEL=$4
        bash run.sh ${ARCH} pretrain ${LANGUAGE_MODEL} ${VISION_MODEL} ${OUTPUT_DIR}
        bash run.sh ${ARCH} finetune ${LANGUAGE_MODEL} ${VISION_MODEL} ${OUTPUT_DIR}
        bash run.sh ${ARCH} test ${OUTPUT_DIR}/mobilevlm_v2-2.finetune
    ;;
    "pretrain")
        echo ">>> Start Pre-training ..."
        cd ${WORK_DIR}
        LANGUAGE_MODEL=$3
        VISION_MODEL=$4
        OUTPUT_DIR=$5
        OUTPUT_DIR_PT=${OUTPUT_DIR}/mobilevlm_v2-1.pretrain
        mkdir -p ${OUTPUT_DIR_PT}
        deepspeed mobilevlm/train/train_mem.py \
            --deepspeed scripts/deepspeed/zero2.json \
            --model_name_or_path ${LANGUAGE_MODEL} \
            --version plain \
            --data_path data/pretrain_data/share-captioner_coco_lcs_sam_1246k_1107.json \
            --image_folder data/pretrain_data \
            --vision_tower ${VISION_MODEL} \
            --vision_tower_type clip \
            --mm_projector_type ldpnetv2 \
            --mm_projector_lr 1e-3 \
            --mm_vision_select_layer -2 \
            --mm_use_im_start_end False \
            --mm_use_im_patch_token False \
            --fp16 True \
            --output_dir ${OUTPUT_DIR_PT} \
            --num_train_epochs 1 \
            --per_device_train_batch_size 32 \
            --per_device_eval_batch_size 4 \
            --gradient_accumulation_steps 1 \
            --evaluation_strategy "no" \
            --save_strategy "steps" \
            --save_steps 24000 \
            --save_total_limit 1 \
            --learning_rate 2e-5 \
            --weight_decay 0. \
            --warmup_ratio 0.03 \
            --lr_scheduler_type "cosine" \
            --logging_steps 1 \
            --tf32 False \
            --model_max_length 2048 \
            --gradient_checkpointing True \
            --dataloader_num_workers 4 \
            --lazy_preprocess True \
            --report_to none \
            2>&1 | tee ${OUTPUT_DIR_PT}/log.txt &&
        echo "Done."
    ;;
    "finetune")
        echo ">>> Start Multi-task Training ..."
        cd ${WORK_DIR}
        LANGUAGE_MODEL=$3
        VISION_MODEL=$4
        OUTPUT_DIR=$5
        OUTPUT_DIR_PT=${OUTPUT_DIR}/mobilevlm_v2-1.pretrain
        OUTPUT_DIR_FT=${OUTPUT_DIR}/mobilevlm_v2-2.finetune
        mkdir -p ${OUTPUT_DIR_FT}
        deepspeed mobilevlm/train/train_mem.py \
            --deepspeed scripts/deepspeed/zero3.json \
            --model_name_or_path ${OUTPUT_DIR_PT} \
            --version v1 \
            --data_path data/finetune_data/MobileVLM_V2_FT_Mix2M.json \
            --image_folder data/finetune_data \
            --vision_tower ${VISION_MODEL} \
            --vision_tower_type clip \
            --mm_projector_type ldpnetv2 \
            --mm_vision_select_layer -2 \
            --mm_use_im_start_end False \
            --mm_use_im_patch_token False \
            --image_aspect_ratio pad \
            --group_by_modality_length True \
            --fp16 True \
            --output_dir ${OUTPUT_DIR_FT} \
            --num_train_epochs 1 \
            --per_device_train_batch_size 16 \
            --per_device_eval_batch_size 4 \
            --gradient_accumulation_steps 1 \
            --evaluation_strategy "no" \
            --save_strategy "steps" \
            --save_steps 2000 \
            --save_total_limit 1 \
            --learning_rate 4e-5 \
            --weight_decay 0. \
            --warmup_ratio 0.03 \
            --lr_scheduler_type "cosine" \
            --logging_steps 1 \
            --tf32 False \
            --model_max_length 2048 \
            --gradient_checkpointing True \
            --dataloader_num_workers 4 \
            --lazy_preprocess True \
            --report_to none \
            2>&1 | tee -a ${OUTPUT_DIR_FT}/log.txt &&
        echo "Done."
    ;;
    "test")
        echo ">>> Start Evaluation ..."
        cd ${WORK_DIR}
        OUTPUT_DIR=$3
        bash scripts/benchmark.sh ${OUTPUT_DIR}
    ;;
    *)
        echo "error with ${DATASET_ID}"
esac