README.md 4.26 KB
Newer Older
sunxx1's avatar
sunxx1 committed
1
2
# Mobilenetv2

sunxx1's avatar
sunxx1 committed
3
4
5
6
7
8
## 论文

MobileNetV2: Inverted Residuals and Linear Bottlenecks

- https://openaccess.thecvf.com/content_cvpr_2018/papers/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.pdf

sunxx1's avatar
sunxx1 committed
9
## 模型结构
sunxx1's avatar
sunxx1 committed
10
11
12

MobileNetV2是一种轻量级的卷积神经网络模型,由Google在2018年提出。它是MobileNet系列中的第二个版本,主要用于移动设备和嵌入式设备等资源受限的环境中进行图像分类、目标检测等计算机视觉任务。

renzhc's avatar
renzhc committed
13
![loading-ag-535](./images/d15a0e56517b4f7284a862f1d6eaef9a.png)
sunxx1's avatar
sunxx1 committed
14
15
16



sunxx1's avatar
sunxx1 committed
17
## 算法原理
sunxx1's avatar
sunxx1 committed
18

sunxx1's avatar
sunxx1 committed
19
MobileNetV2的网络结构主要由两部分组成:特征提取层和分类器。
sunxx1's avatar
sunxx1 committed
20

sunxx1's avatar
sunxx1 committed
21
![20231124104337](./images/20231124104337.png)
sunxx1's avatar
sunxx1 committed
22

sunxx1's avatar
sunxx1 committed
23
## 环境配置
sunxx1's avatar
sunxx1 committed
24

sunxx1's avatar
sunxx1 committed
25
### Docker(方法一)
sunxx1's avatar
sunxx1 committed
26

renzhc's avatar
renzhc committed
27
28
29
推荐使用docker方式运行,拉取提供的docker镜像

```shell
renzhc's avatar
renzhc committed
30
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-ubuntu20.04-dtk24.04.1-py3.10
renzhc's avatar
renzhc committed
31
32
33
34
35
36
37
38
39
40
```

基于拉取的镜像创建容器

```shell
# <your IMAGE ID or NAME>用以上拉取的docker的镜像ID或名称替换
docker run -it --name=mobilenetv2 --network=host --ipc=host --shm-size=16g  --device=/dev/kfd --device=/dev/dri --device=/dev/mkfd --group-add video --privileged --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v /opt/hyhal:/opt/hyhal:ro -v $PWD/mobilenetv2_mmcv:/home/mobilenetv2_mmcv <your IMAGE ID> bash
```

克隆git仓库,并安装相关依赖
sunxx1's avatar
sunxx1 committed
41

renzhc's avatar
renzhc committed
42
43
```python
git clone --recursive http://developer.hpccube.com/codes/modelzoo/mobilenetv2_mmcv.git
renzhc's avatar
renzhc committed
44
cd mobilenetv2_mmcv/mmpretrain-mmcv
sunxx1's avatar
sunxx1 committed
45
46
47
48
49
pip install -r requirements.txt
```

### Dockerfile(方法二)

renzhc's avatar
renzhc committed
50
```shell
sunxx1's avatar
sunxx1 committed
51
52
cd mobilenetv2_mmcv/docker
docker build --no-cache -t mobilenetv2_mmcv:latest .
renzhc's avatar
renzhc committed
53
docker run -it --name=mobilenetv2 --network=host --ipc=host --shm-size=16g  --device=/dev/kfd --device=/dev/dri --device=/dev/mkfd --group-add video --privileged --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v /opt/hyhal:/opt/hyhal:ro -v $PWD/mobilenetv2_mmcv:/home/mobilenetv2_mmcv <your IMAGE ID> bash
sunxx1's avatar
sunxx1 committed
54
55
56
57
58
59
60
61
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:pip install -r requirements.txt
```

### Anaconda(方法三)

1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.hpccube.com/tool/

```plaintext
renzhc's avatar
renzhc committed
62
63
64
65
66
DTK驱动: DTK-24.04.1
python==3.10
torch==2.1.0
torchvision==0.16.0+das1.1.git7d45932.abi1.dtk2404.torch2.1
mmcv==2.0.1+das1.1.gite58da25.abi1.dtk2404.torch2.1.0
sunxx1's avatar
sunxx1 committed
67
68
69
70
Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应
```

2、其它非特殊库参照requirements.txt安装
sunxx1's avatar
sunxx1 committed
71

renzhc's avatar
renzhc committed
72
```shell
sunxx1's avatar
sunxx1 committed
73
74
pip install -r requirements.txt
```
sunxx1's avatar
sunxx1 committed
75

sunxx1's avatar
sunxx1 committed
76
## 数据集
sunxx1's avatar
sunxx1 committed
77

renzhc's avatar
renzhc committed
78
在本测试中可以使用ImageNet数据集。下载ImageNet数据集:https://image-net.org/
sunxx1's avatar
sunxx1 committed
79

renzhc's avatar
renzhc committed
80
imagenet完整数据集较大,也可以使用[tiny-imagenet-200](http://cs231n.stanford.edu/tiny-imagenet-200.zip),但此时需要对配置脚本进行一些修改,在mmpretrain-mmcv中提供了使用tinyimagenet进行训练的配置脚本。
sunxx1's avatar
sunxx1 committed
81

renzhc's avatar
renzhc committed
82
将数据集解压后放置于mmpretrain-mmcv/data/,目录结构如下:
sunxx1's avatar
sunxx1 committed
83

sunxx1's avatar
sunxx1 committed
84
```
dcuai's avatar
dcuai committed
85
data
renzhc's avatar
renzhc committed
86
87
88
89
90
91
└── imagenet
    ├── test/
    ├── train/
    ├── val/
    ├── wnids.txt
    └── words.txt
renzhc's avatar
renzhc committed
92

sunxx1's avatar
sunxx1 committed
93
```
renzhc's avatar
renzhc committed
94

renzhc's avatar
renzhc committed
95
SCNet快速下载链接[imagenet-2012](http://113.200.138.88:18080/aidatasets/project-dependency/imagenet-2012)
renzhc's avatar
renzhc committed
96

sunxx1's avatar
sunxx1 committed
97
## 训练
sunxx1's avatar
sunxx1 committed
98
99
100

将训练数据解压到data目录下。

sunxx1's avatar
sunxx1 committed
101
### 单机8卡
sunxx1's avatar
sunxx1 committed
102

renzhc's avatar
renzhc committed
103
104
105
```shell
bash tools/dist_train.sh configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py 8
```
sunxx1's avatar
sunxx1 committed
106

dcuai's avatar
dcuai committed
107
108
## result

renzhc's avatar
renzhc committed
109
110
111
112
| 模型                        | 预训练  | Params (M) | Flops (G) | Top-1 (%) | Top-5 (%) | 配置文件                                            |
| ------------------------- | ---- | ---------- | --------- | --------- | --------- | ----------------------------------------------- |
| `mobilenet-v2_8xb32_in1k` | 从头训练 | 3.50       | 0.32      | 71.86     | 90.42     | configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py |

dcuai's avatar
dcuai committed
113
114
![img](https://developer.hpccube.com/codes/modelzoo/vit_pytorch/-/raw/master/image/README/1695381570003.png)

sunxx1's avatar
sunxx1 committed
115

sunxx1's avatar
sunxx1 committed
116

sunxx1's avatar
sunxx1 committed
117
118
119
120
121
122
123
124
## 应用场景

### 算法类别

图像分类

### 热点行业

sunxx1's avatar
sunxx1 committed
125
制造,能源,交通,网安
sunxx1's avatar
sunxx1 committed
126

dcuai's avatar
dcuai committed
127
## 源码仓库及问题反馈
sunxx1's avatar
sunxx1 committed
128

sunxx1's avatar
sunxx1 committed
129
https://developer.hpccube.com/codes/modelzoo/mobilenetv2_mmcv
sunxx1's avatar
sunxx1 committed
130

dcuai's avatar
dcuai committed
131
## 参考资料
sunxx1's avatar
sunxx1 committed
132

dcuai's avatar
dcuai committed
133
https://github.com/open-mmlab/mmpretrain