Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
MobileNetV2_mmcv
Commits
766dadab
Commit
766dadab
authored
Sep 03, 2024
by
renzhc
Browse files
update README.md
parent
79fc8596
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
41 additions
and
32 deletions
+41
-32
README.md
README.md
+40
-31
mmpretrain-mmcv
mmpretrain-mmcv
+1
-1
No files found.
README.md
View file @
766dadab
...
...
@@ -24,22 +24,33 @@ MobileNetV2的网络结构主要由两部分组成:特征提取层和分类器
### Docker(方法一)
```
python
git
clone
--
recursive
http
:
//
developer
.
hpccube
.
com
/
codes
/
modelzoo
/
mobilenetv2_mmcv
.
git
推荐使用docker方式运行,拉取提供的docker镜像
```
shell
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-ubuntu20.04-dtk24.04.1-py3.10
# <your IMAGE ID>用以上拉取的docker的镜像ID替换
docker
run
-
it
--
shm
-
size
16
g
--
network
=
host
--
name
=
mobilenetv2
--
privileged
--
device
=/
dev
/
kfd
--
device
=/
dev
/
dri
--
device
=/
dev
/
mkfd
--
group
-
add
video
--
cap
-
add
=
SYS_PTRACE
--
security
-
opt
seccomp
=
unconfined
-
v
/
opt
/
hyhal
:
/
opt
/
hyhal
:
ro
-
v
$
PWD
/
mobilenetv2_mmcv
:
/
home
/
mobilenetv2_mmcv
<
your
IMAGE
ID
>
bash
```
基于拉取的镜像创建容器
```
shell
# <your IMAGE ID or NAME>用以上拉取的docker的镜像ID或名称替换
docker run
-it
--name
=
mobilenetv2
--network
=
host
--ipc
=
host
--shm-size
=
16g
--device
=
/dev/kfd
--device
=
/dev/dri
--device
=
/dev/mkfd
--group-add
video
--privileged
--cap-add
=
SYS_PTRACE
--security-opt
seccomp
=
unconfined
-v
/opt/hyhal:/opt/hyhal:ro
-v
$PWD
/mobilenetv2_mmcv:/home/mobilenetv2_mmcv <your IMAGE ID> bash
```
克隆git仓库,并安装相关依赖
```
python
git
clone
--
recursive
http
:
//
developer
.
hpccube
.
com
/
codes
/
modelzoo
/
mobilenetv2_mmcv
.
git
cd
mobilenetv2_mmcv
/
mmpretrain
-
mmcv
pip
install
-
r
requirements
.
txt
```
### Dockerfile(方法二)
```
plaintext
```
shell
cd
mobilenetv2_mmcv/docker
docker build
--no-cache
-t
mobilenetv2_mmcv:latest
.
docker run -it --
shm-size 16g
--network=host --
name=mobilenetv2 --privileged
--device=/dev/kfd --device=/dev/dri --device=/dev/mkfd --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v /opt/hyhal:/opt/hyhal:ro -v $PWD/mobilenetv2_mmcv:/home/mobilenetv2_mmcv <your IMAGE ID> bash
docker run
-it
--
name
=
mobilenetv2
--network
=
host
--
ipc
=
host
--shm-size
=
16g
--device
=
/dev/kfd
--device
=
/dev/dri
--device
=
/dev/mkfd
--group-add
video
--privileged
--cap-add
=
SYS_PTRACE
--security-opt
seccomp
=
unconfined
-v
/opt/hyhal:/opt/hyhal:ro
-v
$PWD
/mobilenetv2_mmcv:/home/mobilenetv2_mmcv <your IMAGE ID> bash
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:pip install -r requirements.txt
```
...
...
@@ -48,46 +59,40 @@ docker run -it --shm-size 16g --network=host --name=mobilenetv2 --privileged --d
1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.hpccube.com/tool/
```
plaintext
DTK驱动: dtk24.04.1
python: python3.10
torch: 2.1.0
torchvision: 0.16.0
mmcv: 2.0.1
mmengine: 0.10.4
DTK驱动: DTK-24.04.1
python==3.10
torch==2.1.0
torchvision==0.16.0+das1.1.git7d45932.abi1.dtk2404.torch2.1
mmcv==2.0.1+das1.1.gite58da25.abi1.dtk2404.torch2.1.0
Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应
```
2、其它非特殊库参照requirements.txt安装
```
plaintext
```
shell
pip
install
-r
requirements.txt
```
## 数据集
在本测试中可以使用ImageNet数据集。
在本测试中可以使用ImageNet数据集。
下载ImageNet数据集:https://image-net.org/
下载I
mage
N
et数据集
:
http
s
://image
-
net
.org/
i
mage
n
et
完整
数据集
较大,也可以使用
[
tiny-imagenet-200
](
http://
cs231n.stanford.edu/tiny-
imagenet
-200.zip
)
,但此时需要对配置脚本进行一些修改,在mmpretrain-mmcv中提供了使用tinyimagenet进行训练的配置脚本。
下载val数据:链接:https://pan.baidu.com/s/1oXsmsYahGVG3uOZ8e535LA?pwd=c3bc 提取码:c3bc 替换ImageNet数据集中的val目录,处理后的数据
结构如下:
将数据集解压后放置于mmpretrain-mmcv/data/,目录
结构如下:
```
data
├──imagenet
├── meta
├──val.txt
├──train.txt
...
├── train
├── val
└── imagenet
├── test/
├── train/
├── val/
├── wnids.txt
└── words.txt
```
SCNet快速下载链接
[
http://113.200.138.88:18080/aidatasets/project-dependency/imagenet-2012
](
http://113.200.138.88:18080/aidatasets/project-dependency/imagenet-2012
)
如果imagenet数据集较大,则可以使用tiny-imagenet-200,但此时需要对配置文件进行修改。
SCNet快速下载链接
[
imagenet-2012
](
http://113.200.138.88:18080/aidatasets/project-dependency/imagenet-2012
)
## 训练
...
...
@@ -95,15 +100,19 @@ SCNet快速下载链接[http://113.200.138.88:18080/aidatasets/project-dependenc
### 单机8卡
bash tools/dist_train.sh <PYTHON配置文件> 8
```
shell
bash tools/dist_train.sh configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py 8
```
## result
| 模型 | 预训练 | Params (M) | Flops (G) | Top-1 (%) | Top-5 (%) | 配置文件 |
| ------------------------- | ---- | ---------- | --------- | --------- | --------- | ----------------------------------------------- |
|
`mobilenet-v2_8xb32_in1k`
| 从头训练 | 3.50 | 0.32 | 71.86 | 90.42 | configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py |

### 精度
未测试
## 应用场景
...
...
mmpretrain-mmcv
@
8c112561
Subproject commit 8
b36aa0fe12b0f077ea1f5fe97bb91d6ebd24bbb
Subproject commit 8
c11256107d7cf162b93b93e2960005ed3fbd493
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment