mobilenetv2.py 5.65 KB
Newer Older
sugon_cxj's avatar
sugon_cxj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
'''MobileNetV2 in PyTorch.

See the paper "Inverted Residuals and Linear Bottlenecks:
Mobile Networks for Classification, Detection and Segmentation" for more details.
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
import time

conv1_first_time = 0
bn1_first_time = 0
relu1_first_time = 0
conv1_time = 0
bn1_time = 0
relu1_time = 0
conv2_time = 0
bn2_time = 0
relu2_time = 0
conv3_time = 0
bn3_time = 0
conv2_last_time = 0
bn2_last_time = 0
relu2_last_time = 0
avg_pool_time = 0
linear_time = 0

class Block(nn.Module):
    '''expand + depthwise + one'''
    def __init__(self, in_planes, out_planes, expansion, stride):
        super(Block, self).__init__()
        self.stride = stride

        planes = expansion * in_planes
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, groups=planes, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn3 = nn.BatchNorm2d(out_planes)

        self.shortcut = nn.Sequential()
        if stride == 1 and in_planes != out_planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False),
                nn.BatchNorm2d(out_planes),
            )

    def forward(self, x):
        global conv1_time, bn1_time, relu1_time, conv2_time, bn2_time, \
            relu2_time, conv3_time, bn3_time

        # Expand
        start = time.time()
        out = self.conv1(x)
        conv1_time += (time.time() - start)
        start = time.time()
        out = self.bn1(out)
        bn1_time += (time.time() - start)
        start = time.time()
        out = F.relu6(out)
        relu1_time += (time.time() - start)
        # Depthwise Conv
        start = time.time()
        out = self.conv2(out)
        conv2_time += (time.time() - start)
        start = time.time()
        out = self.bn2(out)
        bn2_time += (time.time() - start)
        start = time.time()
        out = F.relu6(out)
        relu2_time += (time.time() - start)
        # Pointwise Conv
        start = time.time()
        out = self.conv3(out)
        conv3_time += (time.time() - start)
        start = time.time()
        out = self.bn3(out)
        bn3_time += (time.time() - start)
        # Residual
        # shortcut time?
        out = out + self.shortcut(x) if self.stride==1 else out
        return out


class MobileNetV2(nn.Module):
    # (expansion, out_planes, num_blocks, stride)
    cfg = [(1,  16, 1, 1),
           (6,  24, 2, 1),  # NOTE: change stride 2 -> 1 for CIFAR10
           (6,  32, 3, 2),
           (6,  64, 4, 2),
           (6,  96, 3, 1),
           (6, 160, 3, 2),
           (6, 320, 1, 1)]

    def __init__(self, num_classes=10):
        super(MobileNetV2, self).__init__()
        # NOTE: change conv1 stride 2 -> 1 for CIFAR10
        self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(32)
        self.layers = self._make_layers(in_planes=32)
        self.conv2 = nn.Conv2d(320, 1280, kernel_size=1, stride=1, padding=0, bias=False)
        self.bn2 = nn.BatchNorm2d(1280)
        self.linear = nn.Linear(1280, num_classes)

        self.mode = 1

    def change_mode(self):
        self.mode = 2

    def _make_layers(self, in_planes):
        layers = []
        for expansion, out_planes, num_blocks, stride in self.cfg:
            strides = [stride] + [1]*(num_blocks-1)
            for stride in strides:
                layers.append(Block(in_planes, out_planes, expansion, stride))
                in_planes = out_planes
        return nn.Sequential(*layers)

    def forward(self, x):
        global conv1_first_time, bn1_first_time, relu1_first_time, conv1_time, \
            bn1_time, relu1_time, conv2_time, bn2_time, relu2_time, conv3_time, bn3_time, \
            conv2_last_time, bn2_last_time, relu2_last_time, avg_pool_time, linear_time

        # first
        start = time.time()
        out = self.conv1(x)
        conv1_first_time += (time.time() - start)
        start = time.time()
        out = self.bn1(out)
        bn1_first_time += (time.time() - start)
        start = time.time()
        out = F.relu6(out)
        relu1_first_time += (time.time() - start)
        # blocks
        out = self.layers(out)
        # 1x1 Conv
        start = time.time()
        out = self.conv2(out)
        conv2_last_time += (time.time() - start)
        start = time.time()
        out = self.bn2(out)
        bn2_last_time += (time.time() - start)
        start = time.time()
        out = F.relu6(out)
        relu2_last_time += (time.time() - start)
        # Avg Pooling
        # NOTE: change pooling kernel_size 7 -> 4 for CIFAR10
        start = time.time()
        out = F.avg_pool2d(out, 4)
        avg_pool_time += (time.time() - start)
        out = out.view(out.size(0), -1)
        # Linear
        start = time.time()
        out = self.linear(out)
        linear_time += (time.time() - start)

        # Pruning
        if self.mode == 1:
            return out

        # Measurement
        return out, conv1_first_time, bn1_first_time, relu1_first_time, conv1_time, \
            bn1_time, relu1_time, conv2_time, bn2_time, relu2_time, conv3_time, bn3_time, \
            conv2_last_time, bn2_last_time, relu2_last_time, avg_pool_time, linear_time


def test():
    net = MobileNetV2()
    x = torch.randn(2,3,32,32)
    y = net(x)
    print(y.size())

# test()

def mobilenetv2(num_classes=10):
    return MobileNetV2(num_classes=num_classes)