'''MobileNetV2 in PyTorch. See the paper "Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation" for more details. ''' import torch import torch.nn as nn import torch.nn.functional as F import time conv1_first_time = 0 bn1_first_time = 0 relu1_first_time = 0 conv1_time = 0 bn1_time = 0 relu1_time = 0 conv2_time = 0 bn2_time = 0 relu2_time = 0 conv3_time = 0 bn3_time = 0 conv2_last_time = 0 bn2_last_time = 0 relu2_last_time = 0 avg_pool_time = 0 linear_time = 0 class Block(nn.Module): '''expand + depthwise + one''' def __init__(self, in_planes, out_planes, expansion, stride): super(Block, self).__init__() self.stride = stride planes = expansion * in_planes self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, groups=planes, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False) self.bn3 = nn.BatchNorm2d(out_planes) self.shortcut = nn.Sequential() if stride == 1 and in_planes != out_planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_planes), ) def forward(self, x): global conv1_time, bn1_time, relu1_time, conv2_time, bn2_time, \ relu2_time, conv3_time, bn3_time # Expand start = time.time() out = self.conv1(x) conv1_time += (time.time() - start) start = time.time() out = self.bn1(out) bn1_time += (time.time() - start) start = time.time() out = F.relu6(out) relu1_time += (time.time() - start) # Depthwise Conv start = time.time() out = self.conv2(out) conv2_time += (time.time() - start) start = time.time() out = self.bn2(out) bn2_time += (time.time() - start) start = time.time() out = F.relu6(out) relu2_time += (time.time() - start) # Pointwise Conv start = time.time() out = self.conv3(out) conv3_time += (time.time() - start) start = time.time() out = self.bn3(out) bn3_time += (time.time() - start) # Residual # shortcut time? out = out + self.shortcut(x) if self.stride==1 else out return out class MobileNetV2(nn.Module): # (expansion, out_planes, num_blocks, stride) cfg = [(1, 16, 1, 1), (6, 24, 2, 1), # NOTE: change stride 2 -> 1 for CIFAR10 (6, 32, 3, 2), (6, 64, 4, 2), (6, 96, 3, 1), (6, 160, 3, 2), (6, 320, 1, 1)] def __init__(self, num_classes=10): super(MobileNetV2, self).__init__() # NOTE: change conv1 stride 2 -> 1 for CIFAR10 self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(32) self.layers = self._make_layers(in_planes=32) self.conv2 = nn.Conv2d(320, 1280, kernel_size=1, stride=1, padding=0, bias=False) self.bn2 = nn.BatchNorm2d(1280) self.linear = nn.Linear(1280, num_classes) self.mode = 1 def change_mode(self): self.mode = 2 def _make_layers(self, in_planes): layers = [] for expansion, out_planes, num_blocks, stride in self.cfg: strides = [stride] + [1]*(num_blocks-1) for stride in strides: layers.append(Block(in_planes, out_planes, expansion, stride)) in_planes = out_planes return nn.Sequential(*layers) def forward(self, x): global conv1_first_time, bn1_first_time, relu1_first_time, conv1_time, \ bn1_time, relu1_time, conv2_time, bn2_time, relu2_time, conv3_time, bn3_time, \ conv2_last_time, bn2_last_time, relu2_last_time, avg_pool_time, linear_time # first start = time.time() out = self.conv1(x) conv1_first_time += (time.time() - start) start = time.time() out = self.bn1(out) bn1_first_time += (time.time() - start) start = time.time() out = F.relu6(out) relu1_first_time += (time.time() - start) # blocks out = self.layers(out) # 1x1 Conv start = time.time() out = self.conv2(out) conv2_last_time += (time.time() - start) start = time.time() out = self.bn2(out) bn2_last_time += (time.time() - start) start = time.time() out = F.relu6(out) relu2_last_time += (time.time() - start) # Avg Pooling # NOTE: change pooling kernel_size 7 -> 4 for CIFAR10 start = time.time() out = F.avg_pool2d(out, 4) avg_pool_time += (time.time() - start) out = out.view(out.size(0), -1) # Linear start = time.time() out = self.linear(out) linear_time += (time.time() - start) # Pruning if self.mode == 1: return out # Measurement return out, conv1_first_time, bn1_first_time, relu1_first_time, conv1_time, \ bn1_time, relu1_time, conv2_time, bn2_time, relu2_time, conv3_time, bn3_time, \ conv2_last_time, bn2_last_time, relu2_last_time, avg_pool_time, linear_time def test(): net = MobileNetV2() x = torch.randn(2,3,32,32) y = net(x) print(y.size()) # test() def mobilenetv2(num_classes=10): return MobileNetV2(num_classes=num_classes)