ocr_utils.py 15.1 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
# Copyright (c) Opendatalab. All rights reserved.
import copy
import cv2
import numpy as np


class OcrConfidence:
    min_confidence = 0.5
    min_width = 3

LINE_WIDTH_TO_HEIGHT_RATIO_THRESHOLD = 4  # 一般情况下,行宽度超过高度4倍时才是一个正常的横向文本块


def merge_spans_to_line(spans, threshold=0.6):
    if len(spans) == 0:
        return []
    else:
        # 按照y0坐标排序
        spans.sort(key=lambda span: span['bbox'][1])

        lines = []
        current_line = [spans[0]]
        for span in spans[1:]:
            # 如果当前的span与当前行的最后一个span在y轴上重叠,则添加到当前行
            if _is_overlaps_y_exceeds_threshold(span['bbox'], current_line[-1]['bbox'], threshold):
                current_line.append(span)
            else:
                # 否则,开始新行
                lines.append(current_line)
                current_line = [span]

        # 添加最后一行
        if current_line:
            lines.append(current_line)

        return lines

def _is_overlaps_y_exceeds_threshold(bbox1,
                                     bbox2,
                                     overlap_ratio_threshold=0.8):
    """检查两个bbox在y轴上是否有重叠,并且该重叠区域的高度占两个bbox高度更低的那个超过80%"""
    _, y0_1, _, y1_1 = bbox1
    _, y0_2, _, y1_2 = bbox2

    overlap = max(0, min(y1_1, y1_2) - max(y0_1, y0_2))
    height1, height2 = y1_1 - y0_1, y1_2 - y0_2
    # max_height = max(height1, height2)
    min_height = min(height1, height2)

    return (overlap / min_height) > overlap_ratio_threshold if min_height > 0 else False


def _is_overlaps_x_exceeds_threshold(bbox1,
                                     bbox2,
                                     overlap_ratio_threshold=0.8):
    """检查两个bbox在x轴上是否有重叠,并且该重叠区域的宽度占两个bbox宽度更低的那个超过指定阈值"""
    x0_1, _, x1_1, _ = bbox1
    x0_2, _, x1_2, _ = bbox2

    overlap = max(0, min(x1_1, x1_2) - max(x0_1, x0_2))
    width1, width2 = x1_1 - x0_1, x1_2 - x0_2
    min_width = min(width1, width2)

    return (overlap / min_width) > overlap_ratio_threshold if min_width > 0 else False


def img_decode(content: bytes):
    np_arr = np.frombuffer(content, dtype=np.uint8)
    return cv2.imdecode(np_arr, cv2.IMREAD_UNCHANGED)

def check_img(img):
    if isinstance(img, bytes):
        img = img_decode(img)
    if isinstance(img, np.ndarray) and len(img.shape) == 2:
        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
    return img


def alpha_to_color(img, alpha_color=(255, 255, 255)):
    if len(img.shape) == 3 and img.shape[2] == 4:
        B, G, R, A = cv2.split(img)
        alpha = A / 255

        R = (alpha_color[0] * (1 - alpha) + R * alpha).astype(np.uint8)
        G = (alpha_color[1] * (1 - alpha) + G * alpha).astype(np.uint8)
        B = (alpha_color[2] * (1 - alpha) + B * alpha).astype(np.uint8)

        img = cv2.merge((B, G, R))
    return img


def preprocess_image(_image):
    alpha_color = (255, 255, 255)
    _image = alpha_to_color(_image, alpha_color)
    return _image


def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
        dt_boxes(array):detected text boxes with shape [4, 2]
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
        for j in range(i, -1, -1):
            if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \
                    (_boxes[j + 1][0][0] < _boxes[j][0][0]):
                tmp = _boxes[j]
                _boxes[j] = _boxes[j + 1]
                _boxes[j + 1] = tmp
            else:
                break
    return _boxes


def bbox_to_points(bbox):
    """ 将bbox格式转换为四个顶点的数组 """
    x0, y0, x1, y1 = bbox
    return np.array([[x0, y0], [x1, y0], [x1, y1], [x0, y1]]).astype('float32')


def points_to_bbox(points):
    """ 将四个顶点的数组转换为bbox格式 """
    x0, y0 = points[0]
    x1, _ = points[1]
    _, y1 = points[2]
    return [x0, y0, x1, y1]


def merge_intervals(intervals):
    # Sort the intervals based on the start value
    intervals.sort(key=lambda x: x[0])

    merged = []
    for interval in intervals:
        # If the list of merged intervals is empty or if the current
        # interval does not overlap with the previous, simply append it.
        if not merged or merged[-1][1] < interval[0]:
            merged.append(interval)
        else:
            # Otherwise, there is overlap, so we merge the current and previous intervals.
            merged[-1][1] = max(merged[-1][1], interval[1])

    return merged


def remove_intervals(original, masks):
    # Merge all mask intervals
    merged_masks = merge_intervals(masks)

    result = []
    original_start, original_end = original

    for mask in merged_masks:
        mask_start, mask_end = mask

        # If the mask starts after the original range, ignore it
        if mask_start > original_end:
            continue

        # If the mask ends before the original range starts, ignore it
        if mask_end < original_start:
            continue

        # Remove the masked part from the original range
        if original_start < mask_start:
            result.append([original_start, mask_start - 1])

        original_start = max(mask_end + 1, original_start)

    # Add the remaining part of the original range, if any
    if original_start <= original_end:
        result.append([original_start, original_end])

    return result


def update_det_boxes(dt_boxes, mfd_res):
    new_dt_boxes = []
    angle_boxes_list = []
    for text_box in dt_boxes:

        if calculate_is_angle(text_box):
            angle_boxes_list.append(text_box)
            continue

        text_bbox = points_to_bbox(text_box)
        masks_list = []
        for mf_box in mfd_res:
            mf_bbox = mf_box['bbox']
            if _is_overlaps_y_exceeds_threshold(text_bbox, mf_bbox):
                masks_list.append([mf_bbox[0], mf_bbox[2]])
        text_x_range = [text_bbox[0], text_bbox[2]]
        text_remove_mask_range = remove_intervals(text_x_range, masks_list)
        temp_dt_box = []
        for text_remove_mask in text_remove_mask_range:
            temp_dt_box.append(bbox_to_points([text_remove_mask[0], text_bbox[1], text_remove_mask[1], text_bbox[3]]))
        if len(temp_dt_box) > 0:
            new_dt_boxes.extend(temp_dt_box)

    new_dt_boxes.extend(angle_boxes_list)

    return new_dt_boxes


def merge_overlapping_spans(spans):
    """
    Merges overlapping spans on the same line.

    :param spans: A list of span coordinates [(x1, y1, x2, y2), ...]
    :return: A list of merged spans
    """
    # Return an empty list if the input spans list is empty
    if not spans:
        return []

    # Sort spans by their starting x-coordinate
    spans.sort(key=lambda x: x[0])

    # Initialize the list of merged spans
    merged = []
    for span in spans:
        # Unpack span coordinates
        x1, y1, x2, y2 = span
        # If the merged list is empty or there's no horizontal overlap, add the span directly
        if not merged or merged[-1][2] < x1:
            merged.append(span)
        else:
            # If there is horizontal overlap, merge the current span with the previous one
            last_span = merged.pop()
            # Update the merged span's top-left corner to the smaller (x1, y1) and bottom-right to the larger (x2, y2)
            x1 = min(last_span[0], x1)
            y1 = min(last_span[1], y1)
            x2 = max(last_span[2], x2)
            y2 = max(last_span[3], y2)
            # Add the merged span back to the list
            merged.append((x1, y1, x2, y2))

    # Return the list of merged spans
    return merged


def merge_det_boxes(dt_boxes):
    """
    Merge detection boxes.

    This function takes a list of detected bounding boxes, each represented by four corner points.
    The goal is to merge these bounding boxes into larger text regions.

    Parameters:
    dt_boxes (list): A list containing multiple text detection boxes, where each box is defined by four corner points.

    Returns:
    list: A list containing the merged text regions, where each region is represented by four corner points.
    """
    # Convert the detection boxes into a dictionary format with bounding boxes and type
    dt_boxes_dict_list = []
    angle_boxes_list = []
    for text_box in dt_boxes:
        text_bbox = points_to_bbox(text_box)

        if calculate_is_angle(text_box):
            angle_boxes_list.append(text_box)
            continue

        text_box_dict = {'bbox': text_bbox}
        dt_boxes_dict_list.append(text_box_dict)

    # Merge adjacent text regions into lines
    lines = merge_spans_to_line(dt_boxes_dict_list)

    # Initialize a new list for storing the merged text regions
    new_dt_boxes = []
    for line in lines:
        line_bbox_list = []
        for span in line:
            line_bbox_list.append(span['bbox'])

        # 计算整行的宽度和高度
        min_x = min(bbox[0] for bbox in line_bbox_list)
        max_x = max(bbox[2] for bbox in line_bbox_list)
        min_y = min(bbox[1] for bbox in line_bbox_list)
        max_y = max(bbox[3] for bbox in line_bbox_list)
        line_width = max_x - min_x
        line_height = max_y - min_y

        # 只有当行宽度超过高度4倍时才进行合并
        if line_width > line_height * LINE_WIDTH_TO_HEIGHT_RATIO_THRESHOLD:

            # Merge overlapping text regions within the same line
            merged_spans = merge_overlapping_spans(line_bbox_list)

            # Convert the merged text regions back to point format and add them to the new detection box list
            for span in merged_spans:
                new_dt_boxes.append(bbox_to_points(span))
        else:
            # 不进行合并,直接添加原始区域
            for bbox in line_bbox_list:
                new_dt_boxes.append(bbox_to_points(bbox))

    new_dt_boxes.extend(angle_boxes_list)

    return new_dt_boxes


def get_adjusted_mfdetrec_res(single_page_mfdetrec_res, useful_list):
    paste_x, paste_y, xmin, ymin, xmax, ymax, new_width, new_height = useful_list
    # Adjust the coordinates of the formula area
    adjusted_mfdetrec_res = []
    for mf_res in single_page_mfdetrec_res:
        mf_xmin, mf_ymin, mf_xmax, mf_ymax = mf_res["bbox"]
        # Adjust the coordinates of the formula area to the coordinates relative to the cropping area
        x0 = mf_xmin - xmin + paste_x
        y0 = mf_ymin - ymin + paste_y
        x1 = mf_xmax - xmin + paste_x
        y1 = mf_ymax - ymin + paste_y
        # Filter formula blocks outside the graph
        if any([x1 < 0, y1 < 0]) or any([x0 > new_width, y0 > new_height]):
            continue
        else:
            adjusted_mfdetrec_res.append({
                "bbox": [x0, y0, x1, y1],
            })
    return adjusted_mfdetrec_res


def get_ocr_result_list(ocr_res, useful_list, ocr_enable, bgr_image, lang):
    paste_x, paste_y, xmin, ymin, xmax, ymax, new_width, new_height = useful_list
    ocr_result_list = []
    ori_im = bgr_image.copy()
    for box_ocr_res in ocr_res:

        if len(box_ocr_res) == 2:
            p1, p2, p3, p4 = box_ocr_res[0]
            text, score = box_ocr_res[1]
            # logger.info(f"text: {text}, score: {score}")
            if score < OcrConfidence.min_confidence:  # 过滤低置信度的结果
                continue
        else:
            p1, p2, p3, p4 = box_ocr_res
            text, score = "", 1

            if ocr_enable:
                tmp_box = copy.deepcopy(np.array([p1, p2, p3, p4]).astype('float32'))
                img_crop = get_rotate_crop_image(ori_im, tmp_box)

        # average_angle_degrees = calculate_angle_degrees(box_ocr_res[0])
        # if average_angle_degrees > 0.5:
        poly = [p1, p2, p3, p4]

        if (p3[0] - p1[0]) < OcrConfidence.min_width:
            # logger.info(f"width too small: {p3[0] - p1[0]}, text: {text}")
            continue

        if calculate_is_angle(poly):
            # logger.info(f"average_angle_degrees: {average_angle_degrees}, text: {text}")
            # 与x轴的夹角超过0.5度,对边界做一下矫正
            # 计算几何中心
            x_center = sum(point[0] for point in poly) / 4
            y_center = sum(point[1] for point in poly) / 4
            new_height = ((p4[1] - p1[1]) + (p3[1] - p2[1])) / 2
            new_width = p3[0] - p1[0]
            p1 = [x_center - new_width / 2, y_center - new_height / 2]
            p2 = [x_center + new_width / 2, y_center - new_height / 2]
            p3 = [x_center + new_width / 2, y_center + new_height / 2]
            p4 = [x_center - new_width / 2, y_center + new_height / 2]

        # Convert the coordinates back to the original coordinate system
        p1 = [p1[0] - paste_x + xmin, p1[1] - paste_y + ymin]
        p2 = [p2[0] - paste_x + xmin, p2[1] - paste_y + ymin]
        p3 = [p3[0] - paste_x + xmin, p3[1] - paste_y + ymin]
        p4 = [p4[0] - paste_x + xmin, p4[1] - paste_y + ymin]

        if ocr_enable:
            ocr_result_list.append({
                'category_id': 15,
                'poly': p1 + p2 + p3 + p4,
                'score': 1,
                'text': text,
                'np_img': img_crop,
                'lang': lang,
            })
        else:
            ocr_result_list.append({
                'category_id': 15,
                'poly': p1 + p2 + p3 + p4,
                'score': float(round(score, 2)),
                'text': text,
            })

    return ocr_result_list


def calculate_is_angle(poly):
    p1, p2, p3, p4 = poly
    height = ((p4[1] - p1[1]) + (p3[1] - p2[1])) / 2
    if 0.8 * height <= (p3[1] - p1[1]) <= 1.2 * height:
        return False
    else:
        # logger.info((p3[1] - p1[1])/height)
        return True


def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    rotate_radio = 2
    if dst_img_height * 1.0 / dst_img_width >= rotate_radio:
        dst_img = np.rot90(dst_img)
    return dst_img