"projects/configs/_base_/datasets/range100_lyft-3d.py" did not exist on "a9a1fe81764d781f5f355c10a4d551e3092a1180"
main.py 7.47 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
import copy
import time
import html
from dataclasses import asdict, dataclass
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union

import cv2
import numpy as np
from loguru import logger
from tqdm import tqdm

from .matcher import TableMatch
from .table_structure import TableStructurer
from mineru.utils.enum_class import ModelPath
from mineru.utils.models_download_utils import auto_download_and_get_model_root_path


@dataclass
class RapidTableInput:
    model_type: Optional[str] = "slanet_plus"
    model_path: Union[str, Path, None, Dict[str, str]] = None
    use_cuda: bool = False
    device: str = "cpu"


@dataclass
class RapidTableOutput:
    pred_html: Optional[str] = None
    cell_bboxes: Optional[np.ndarray] = None
    logic_points: Optional[np.ndarray] = None
    elapse: Optional[float] = None


class RapidTable:
    def __init__(self, config: RapidTableInput):
        self.table_structure = TableStructurer(asdict(config))
        self.table_matcher = TableMatch()

    def predict(
        self,
        img: np.ndarray,
        ocr_result: List[Union[List[List[float]], str, str]] = None,
    ) -> RapidTableOutput:
        if ocr_result is None:
            raise ValueError("OCR result is None")

        s = time.perf_counter()
        h, w = img.shape[:2]

        dt_boxes, rec_res = self.get_boxes_recs(ocr_result, h, w)

        pred_structures, cell_bboxes, _ = self.table_structure.process(
            copy.deepcopy(img)
        )

        # 适配slanet-plus模型输出的box缩放还原
        cell_bboxes = self.adapt_slanet_plus(img, cell_bboxes)

        pred_html = self.table_matcher(pred_structures, cell_bboxes, dt_boxes, rec_res)

        # 过滤掉占位的bbox
        mask = ~np.all(cell_bboxes == 0, axis=1)
        cell_bboxes = cell_bboxes[mask]

        logic_points = self.table_matcher.decode_logic_points(pred_structures)
        elapse = time.perf_counter() - s
        return RapidTableOutput(pred_html, cell_bboxes, logic_points, elapse)

    def batch_predict(
        self,
        images: List[np.ndarray],
        ocr_results: List[List[Union[List[List[float]], str, str]]],
        batch_size: int = 4,
    ) -> List[RapidTableOutput]:
        """批量处理图像"""
        s = time.perf_counter()

        batch_dt_boxes = []
        batch_rec_res = []

        for i, img in enumerate(images):
            h, w = img.shape[:2]
            dt_boxes, rec_res = self.get_boxes_recs(ocr_results[i], h, w)
            batch_dt_boxes.append(dt_boxes)
            batch_rec_res.append(rec_res)

        # 批量表格结构识别
        batch_results = self.table_structure.batch_process(images)

        output_results = []
        for i, (img, ocr_result, (pred_structures, cell_bboxes, _)) in enumerate(
            zip(images, ocr_results, batch_results)
        ):
            # 适配slanet-plus模型输出的box缩放还原
            cell_bboxes = self.adapt_slanet_plus(img, cell_bboxes)
            pred_html = self.table_matcher(
                pred_structures, cell_bboxes, batch_dt_boxes[i], batch_rec_res[i]
            )
            # 过滤掉占位的bbox
            mask = ~np.all(cell_bboxes == 0, axis=1)
            cell_bboxes = cell_bboxes[mask]

            logic_points = self.table_matcher.decode_logic_points(pred_structures)
            result = RapidTableOutput(pred_html, cell_bboxes, logic_points, 0)
            output_results.append(result)

        total_elapse = time.perf_counter() - s
        for result in output_results:
            result.elapse = total_elapse / len(output_results)

        return output_results

    def get_boxes_recs(
        self, ocr_result: List[Union[List[List[float]], str, str]], h: int, w: int
    ) -> Tuple[np.ndarray, Tuple[str, str]]:
        dt_boxes, rec_res, scores = list(zip(*ocr_result))
        rec_res = list(zip(rec_res, scores))

        r_boxes = []
        for box in dt_boxes:
            box = np.array(box)
            x_min = max(0, box[:, 0].min() - 1)
            x_max = min(w, box[:, 0].max() + 1)
            y_min = max(0, box[:, 1].min() - 1)
            y_max = min(h, box[:, 1].max() + 1)
            box = [x_min, y_min, x_max, y_max]
            r_boxes.append(box)
        dt_boxes = np.array(r_boxes)
        return dt_boxes, rec_res

    def adapt_slanet_plus(self, img: np.ndarray, cell_bboxes: np.ndarray) -> np.ndarray:
        h, w = img.shape[:2]
        resized = 488
        ratio = min(resized / h, resized / w)
        w_ratio = resized / (w * ratio)
        h_ratio = resized / (h * ratio)
        cell_bboxes[:, 0::2] *= w_ratio
        cell_bboxes[:, 1::2] *= h_ratio
        return cell_bboxes


def escape_html(input_string):
    """Escape HTML Entities."""
    return html.escape(input_string)


class RapidTableModel(object):
    def __init__(self, ocr_engine):
        slanet_plus_model_path = os.path.join(
            auto_download_and_get_model_root_path(ModelPath.slanet_plus),
            ModelPath.slanet_plus,
        )
        input_args = RapidTableInput(
            model_type="slanet_plus", model_path=slanet_plus_model_path
        )
        self.table_model = RapidTable(input_args)
        self.ocr_engine = ocr_engine

    def predict(self, image, ocr_result=None):
        bgr_image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
        # Continue with OCR on potentially rotated image

        if not ocr_result:
            ocr_result = self.ocr_engine.ocr(bgr_image)[0]
            ocr_result = [
                [item[0], escape_html(item[1][0]), item[1][1]]
                for item in ocr_result
                if len(item) == 2 and isinstance(item[1], tuple)
            ]

        if ocr_result:
            try:
                table_results = self.table_model.predict(np.asarray(image), ocr_result)
                html_code = table_results.pred_html
                table_cell_bboxes = table_results.cell_bboxes
                logic_points = table_results.logic_points
                elapse = table_results.elapse
                return html_code, table_cell_bboxes, logic_points, elapse
            except Exception as e:
                logger.exception(e)

        return None, None, None, None

    def batch_predict(self, table_res_list: List[Dict], batch_size: int = 4) -> None:
        """对传入的字典列表进行批量预测,无返回值"""

        not_none_table_res_list = []
        for table_res in table_res_list:
            if table_res.get("ocr_result", None):
                not_none_table_res_list.append(table_res)

        with tqdm(total=len(not_none_table_res_list), desc="Table-wireless Predict") as pbar:
            for index in range(0, len(not_none_table_res_list), batch_size):
                batch_imgs = [
                    cv2.cvtColor(np.asarray(not_none_table_res_list[i]["table_img"]), cv2.COLOR_RGB2BGR)
                    for i in range(index, min(index + batch_size, len(not_none_table_res_list)))
                ]
                batch_ocrs = [
                    not_none_table_res_list[i]["ocr_result"]
                    for i in range(index, min(index + batch_size, len(not_none_table_res_list)))
                ]
                results = self.table_model.batch_predict(
                    batch_imgs, batch_ocrs, batch_size=batch_size
                )
                for i, result in enumerate(results):
                    if result.pred_html:
                        not_none_table_res_list[index + i]['table_res']['html'] = result.pred_html

                # 更新进度条
                pbar.update(len(results))