common.py 13.7 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# Copyright (c) Opendatalab. All rights reserved.
import io
import json
import os
import copy
from pathlib import Path

import pypdfium2 as pdfium
from loguru import logger

from mineru.data.data_reader_writer import FileBasedDataWriter
from mineru.utils.draw_bbox import draw_layout_bbox, draw_span_bbox, draw_line_sort_bbox
from mineru.utils.enum_class import MakeMode
from mineru.utils.guess_suffix_or_lang import guess_suffix_by_bytes
from mineru.utils.pdf_image_tools import images_bytes_to_pdf_bytes
from mineru.backend.vlm.vlm_middle_json_mkcontent import union_make as vlm_union_make
from mineru.backend.vlm.vlm_analyze import doc_analyze as vlm_doc_analyze
from mineru.backend.vlm.vlm_analyze import aio_doc_analyze as aio_vlm_doc_analyze

pdf_suffixes = ["pdf"]
image_suffixes = ["png", "jpeg", "jp2", "webp", "gif", "bmp", "jpg"]


def read_fn(path):
    if not isinstance(path, Path):
        path = Path(path)
    with open(str(path), "rb") as input_file:
        file_bytes = input_file.read()
        file_suffix = guess_suffix_by_bytes(file_bytes)
        if file_suffix in image_suffixes:
            return images_bytes_to_pdf_bytes(file_bytes)
        elif file_suffix in pdf_suffixes:
            return file_bytes
        else:
            raise Exception(f"Unknown file suffix: {file_suffix}")


def prepare_env(output_dir, pdf_file_name, parse_method):
    local_md_dir = str(os.path.join(output_dir, pdf_file_name, parse_method))
    local_image_dir = os.path.join(str(local_md_dir), "images")
    os.makedirs(local_image_dir, exist_ok=True)
    os.makedirs(local_md_dir, exist_ok=True)
    return local_image_dir, local_md_dir


def convert_pdf_bytes_to_bytes_by_pypdfium2(pdf_bytes, start_page_id=0, end_page_id=None):

    # 从字节数据加载PDF
    pdf = pdfium.PdfDocument(pdf_bytes)

    # 确定结束页
    end_page_id = end_page_id if end_page_id is not None and end_page_id >= 0 else len(pdf) - 1
    if end_page_id > len(pdf) - 1:
        logger.warning("end_page_id is out of range, use pdf_docs length")
        end_page_id = len(pdf) - 1

    # 创建一个新的PDF文档
    output_pdf = pdfium.PdfDocument.new()

    # 选择要导入的页面索引
    page_indices = list(range(start_page_id, end_page_id + 1))

    # 从原PDF导入页面到新PDF
    output_pdf.import_pages(pdf, page_indices)

    # 将新PDF保存到内存缓冲区
    output_buffer = io.BytesIO()
    output_pdf.save(output_buffer)

    # 获取字节数据
    output_bytes = output_buffer.getvalue()

    pdf.close()  # 关闭原PDF文档以释放资源
    output_pdf.close()  # 关闭新PDF文档以释放资源

    return output_bytes


def _prepare_pdf_bytes(pdf_bytes_list, start_page_id, end_page_id):
    """准备处理PDF字节数据"""
    result = []
    for pdf_bytes in pdf_bytes_list:
        new_pdf_bytes = convert_pdf_bytes_to_bytes_by_pypdfium2(pdf_bytes, start_page_id, end_page_id)
        result.append(new_pdf_bytes)
    return result


def _process_output(
        pdf_info,
        pdf_bytes,
        pdf_file_name,
        local_md_dir,
        local_image_dir,
        md_writer,
        f_draw_layout_bbox,
        f_draw_span_bbox,
        f_dump_orig_pdf,
        f_dump_md,
        f_dump_content_list,
        f_dump_middle_json,
        f_dump_model_output,
        f_make_md_mode,
        middle_json,
        model_output=None,
        is_pipeline=True
):
    f_draw_line_sort_bbox = False
    from mineru.backend.pipeline.pipeline_middle_json_mkcontent import union_make as pipeline_union_make
    """处理输出文件"""
    if f_draw_layout_bbox:
        draw_layout_bbox(pdf_info, pdf_bytes, local_md_dir, f"{pdf_file_name}_layout.pdf")

    if f_draw_span_bbox:
        draw_span_bbox(pdf_info, pdf_bytes, local_md_dir, f"{pdf_file_name}_span.pdf")

    if f_dump_orig_pdf:
        md_writer.write(
            f"{pdf_file_name}_origin.pdf",
            pdf_bytes,
        )

    if f_draw_line_sort_bbox:
        draw_line_sort_bbox(pdf_info, pdf_bytes, local_md_dir, f"{pdf_file_name}_line_sort.pdf")

    image_dir = str(os.path.basename(local_image_dir))

    if f_dump_md:
        make_func = pipeline_union_make if is_pipeline else vlm_union_make
        md_content_str = make_func(pdf_info, f_make_md_mode, image_dir)
        md_writer.write_string(
            f"{pdf_file_name}.md",
            md_content_str,
        )

    if f_dump_content_list:
        make_func = pipeline_union_make if is_pipeline else vlm_union_make
        content_list = make_func(pdf_info, MakeMode.CONTENT_LIST, image_dir)
        md_writer.write_string(
            f"{pdf_file_name}_content_list.json",
            json.dumps(content_list, ensure_ascii=False, indent=4),
        )

    if f_dump_middle_json:
        md_writer.write_string(
            f"{pdf_file_name}_middle.json",
            json.dumps(middle_json, ensure_ascii=False, indent=4),
        )

    if f_dump_model_output:
        md_writer.write_string(
            f"{pdf_file_name}_model.json",
            json.dumps(model_output, ensure_ascii=False, indent=4),
        )

    logger.info(f"local output dir is {local_md_dir}")


def _process_pipeline(
        output_dir,
        pdf_file_names,
        pdf_bytes_list,
        p_lang_list,
        parse_method,
        p_formula_enable,
        p_table_enable,
        f_draw_layout_bbox,
        f_draw_span_bbox,
        f_dump_md,
        f_dump_middle_json,
        f_dump_model_output,
        f_dump_orig_pdf,
        f_dump_content_list,
        f_make_md_mode,
):
    """处理pipeline后端逻辑"""
    from mineru.backend.pipeline.model_json_to_middle_json import result_to_middle_json as pipeline_result_to_middle_json
    from mineru.backend.pipeline.pipeline_analyze import doc_analyze as pipeline_doc_analyze

    infer_results, all_image_lists, all_pdf_docs, lang_list, ocr_enabled_list = (
        pipeline_doc_analyze(
            pdf_bytes_list, p_lang_list, parse_method=parse_method,
            formula_enable=p_formula_enable, table_enable=p_table_enable
        )
    )

    for idx, model_list in enumerate(infer_results):
        model_json = copy.deepcopy(model_list)
        pdf_file_name = pdf_file_names[idx]
        local_image_dir, local_md_dir = prepare_env(output_dir, pdf_file_name, parse_method)
        image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter(local_md_dir)

        images_list = all_image_lists[idx]
        pdf_doc = all_pdf_docs[idx]
        _lang = lang_list[idx]
        _ocr_enable = ocr_enabled_list[idx]

        middle_json = pipeline_result_to_middle_json(
            model_list, images_list, pdf_doc, image_writer,
            _lang, _ocr_enable, p_formula_enable
        )

        pdf_info = middle_json["pdf_info"]
        pdf_bytes = pdf_bytes_list[idx]

        _process_output(
            pdf_info, pdf_bytes, pdf_file_name, local_md_dir, local_image_dir,
            md_writer, f_draw_layout_bbox, f_draw_span_bbox, f_dump_orig_pdf,
            f_dump_md, f_dump_content_list, f_dump_middle_json, f_dump_model_output,
            f_make_md_mode, middle_json, model_json, is_pipeline=True
        )


async def _async_process_vlm(
        output_dir,
        pdf_file_names,
        pdf_bytes_list,
        backend,
        f_draw_layout_bbox,
        f_draw_span_bbox,
        f_dump_md,
        f_dump_middle_json,
        f_dump_model_output,
        f_dump_orig_pdf,
        f_dump_content_list,
        f_make_md_mode,
        server_url=None,
        **kwargs,
):
    """异步处理VLM后端逻辑"""
    parse_method = "vlm"
    f_draw_span_bbox = False
    if not backend.endswith("client"):
        server_url = None

    for idx, pdf_bytes in enumerate(pdf_bytes_list):
        pdf_file_name = pdf_file_names[idx]
        local_image_dir, local_md_dir = prepare_env(output_dir, pdf_file_name, parse_method)
        image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter(local_md_dir)

        middle_json, infer_result = await aio_vlm_doc_analyze(
            pdf_bytes, image_writer=image_writer, backend=backend, server_url=server_url, **kwargs,
        )

        pdf_info = middle_json["pdf_info"]

        _process_output(
            pdf_info, pdf_bytes, pdf_file_name, local_md_dir, local_image_dir,
            md_writer, f_draw_layout_bbox, f_draw_span_bbox, f_dump_orig_pdf,
            f_dump_md, f_dump_content_list, f_dump_middle_json, f_dump_model_output,
            f_make_md_mode, middle_json, infer_result, is_pipeline=False
        )


def _process_vlm(
        output_dir,
        pdf_file_names,
        pdf_bytes_list,
        backend,
        f_draw_layout_bbox,
        f_draw_span_bbox,
        f_dump_md,
        f_dump_middle_json,
        f_dump_model_output,
        f_dump_orig_pdf,
        f_dump_content_list,
        f_make_md_mode,
        server_url=None,
        **kwargs,
):
    """同步处理VLM后端逻辑"""
    parse_method = "vlm"
    f_draw_span_bbox = False
    if not backend.endswith("client"):
        server_url = None

    for idx, pdf_bytes in enumerate(pdf_bytes_list):
        pdf_file_name = pdf_file_names[idx]
        local_image_dir, local_md_dir = prepare_env(output_dir, pdf_file_name, parse_method)
        image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter(local_md_dir)

        middle_json, infer_result = vlm_doc_analyze(
            pdf_bytes, image_writer=image_writer, backend=backend, server_url=server_url, **kwargs,
        )

        pdf_info = middle_json["pdf_info"]

        _process_output(
            pdf_info, pdf_bytes, pdf_file_name, local_md_dir, local_image_dir,
            md_writer, f_draw_layout_bbox, f_draw_span_bbox, f_dump_orig_pdf,
            f_dump_md, f_dump_content_list, f_dump_middle_json, f_dump_model_output,
            f_make_md_mode, middle_json, infer_result, is_pipeline=False
        )


def do_parse(
        output_dir,
        pdf_file_names: list[str],
        pdf_bytes_list: list[bytes],
        p_lang_list: list[str],
        backend="pipeline",
        parse_method="auto",
        formula_enable=True,
        table_enable=True,
        server_url=None,
        f_draw_layout_bbox=True,
        f_draw_span_bbox=True,
        f_dump_md=True,
        f_dump_middle_json=True,
        f_dump_model_output=True,
        f_dump_orig_pdf=True,
        f_dump_content_list=True,
        f_make_md_mode=MakeMode.MM_MD,
        start_page_id=0,
        end_page_id=None,
        **kwargs,
):
    # 预处理PDF字节数据
    pdf_bytes_list = _prepare_pdf_bytes(pdf_bytes_list, start_page_id, end_page_id)

    if backend == "pipeline":
        _process_pipeline(
            output_dir, pdf_file_names, pdf_bytes_list, p_lang_list,
            parse_method, formula_enable, table_enable,
            f_draw_layout_bbox, f_draw_span_bbox, f_dump_md, f_dump_middle_json,
            f_dump_model_output, f_dump_orig_pdf, f_dump_content_list, f_make_md_mode
        )
    else:
        if backend.startswith("vlm-"):
            backend = backend[4:]

        if backend == "vllm-async-engine":
            raise Exception("vlm-vllm-async-engine backend is not supported in sync mode, please use vlm-vllm-engine backend")

        os.environ['MINERU_VLM_FORMULA_ENABLE'] = str(formula_enable)
        os.environ['MINERU_VLM_TABLE_ENABLE'] = str(table_enable)

        _process_vlm(
            output_dir, pdf_file_names, pdf_bytes_list, backend,
            f_draw_layout_bbox, f_draw_span_bbox, f_dump_md, f_dump_middle_json,
            f_dump_model_output, f_dump_orig_pdf, f_dump_content_list, f_make_md_mode,
            server_url, **kwargs,
        )


async def aio_do_parse(
        output_dir,
        pdf_file_names: list[str],
        pdf_bytes_list: list[bytes],
        p_lang_list: list[str],
        backend="pipeline",
        parse_method="auto",
        formula_enable=True,
        table_enable=True,
        server_url=None,
        f_draw_layout_bbox=True,
        f_draw_span_bbox=True,
        f_dump_md=True,
        f_dump_middle_json=True,
        f_dump_model_output=True,
        f_dump_orig_pdf=True,
        f_dump_content_list=True,
        f_make_md_mode=MakeMode.MM_MD,
        start_page_id=0,
        end_page_id=None,
        **kwargs,
):
    # 预处理PDF字节数据
    pdf_bytes_list = _prepare_pdf_bytes(pdf_bytes_list, start_page_id, end_page_id)

    if backend == "pipeline":
        # pipeline模式暂不支持异步,使用同步处理方式
        _process_pipeline(
            output_dir, pdf_file_names, pdf_bytes_list, p_lang_list,
            parse_method, formula_enable, table_enable,
            f_draw_layout_bbox, f_draw_span_bbox, f_dump_md, f_dump_middle_json,
            f_dump_model_output, f_dump_orig_pdf, f_dump_content_list, f_make_md_mode
        )
    else:
        if backend.startswith("vlm-"):
            backend = backend[4:]

        if backend == "vllm-engine":
            raise Exception("vlm-vllm-engine backend is not supported in async mode, please use vlm-vllm-async-engine backend")

        os.environ['MINERU_VLM_FORMULA_ENABLE'] = str(formula_enable)
        os.environ['MINERU_VLM_TABLE_ENABLE'] = str(table_enable)

        await _async_process_vlm(
            output_dir, pdf_file_names, pdf_bytes_list, backend,
            f_draw_layout_bbox, f_draw_span_bbox, f_dump_md, f_dump_middle_json,
            f_dump_model_output, f_dump_orig_pdf, f_dump_content_list, f_make_md_mode,
            server_url, **kwargs,
        )



if __name__ == "__main__":
    # pdf_path = "../../demo/pdfs/demo3.pdf"
    pdf_path = "C:/Users/zhaoxiaomeng/Downloads/4546d0e2-ba60-40a5-a17e-b68555cec741.pdf"

    try:
       do_parse("./output", [Path(pdf_path).stem], [read_fn(Path(pdf_path))],["ch"],
                end_page_id=10,
                backend='vlm-huggingface'
                # backend = 'pipeline'
                )
    except Exception as e:
        logger.exception(e)