"torch_geometric_autoscale/models/gcn.py" did not exist on "ac165af30fcad9350a1a054f3deaa561494a87b6"
model_init.py 8.24 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os

import torch
from loguru import logger

from .model_list import AtomicModel
from ...model.layout.doclayoutyolo import DocLayoutYOLOModel
from ...model.mfd.yolo_v8 import YOLOv8MFDModel
from ...model.mfr.unimernet.Unimernet import UnimernetModel
from ...model.ocr.paddleocr2pytorch.pytorch_paddle import PytorchPaddleOCR
from ...model.ori_cls.paddle_ori_cls import PaddleOrientationClsModel
from ...model.table.cls.paddle_table_cls import PaddleTableClsModel
# from ...model.table.rec.RapidTable import RapidTableModel
from ...model.table.rec.slanet_plus.main import RapidTableModel
from ...model.table.rec.unet_table.main import UnetTableModel
from ...utils.enum_class import ModelPath
from ...utils.models_download_utils import auto_download_and_get_model_root_path


def img_orientation_cls_model_init():
    atom_model_manager = AtomModelSingleton()
    ocr_engine = atom_model_manager.get_atom_model(
        atom_model_name=AtomicModel.OCR,
        det_db_box_thresh=0.5,
        det_db_unclip_ratio=1.6,
        lang="ch_lite",
        enable_merge_det_boxes=False
    )
    cls_model = PaddleOrientationClsModel(ocr_engine)
    return cls_model


def table_cls_model_init():
    return PaddleTableClsModel()


def wired_table_model_init(lang=None):
    atom_model_manager = AtomModelSingleton()
    ocr_engine = atom_model_manager.get_atom_model(
        atom_model_name=AtomicModel.OCR,
        det_db_box_thresh=0.5,
        det_db_unclip_ratio=1.6,
        lang=lang,
        enable_merge_det_boxes=False
    )
    table_model = UnetTableModel(ocr_engine)
    return table_model


def wireless_table_model_init(lang=None):
    atom_model_manager = AtomModelSingleton()
    ocr_engine = atom_model_manager.get_atom_model(
        atom_model_name=AtomicModel.OCR,
        det_db_box_thresh=0.5,
        det_db_unclip_ratio=1.6,
        lang=lang,
        enable_merge_det_boxes=False
    )
    table_model = RapidTableModel(ocr_engine)
    return table_model


def mfd_model_init(weight, device='cpu'):
    if str(device).startswith('npu'):
        device = torch.device(device)
    mfd_model = YOLOv8MFDModel(weight, device)
    return mfd_model


def mfr_model_init(weight_dir, device='cpu'):
    mfr_model = UnimernetModel(weight_dir, device)
    return mfr_model


def doclayout_yolo_model_init(weight, device='cpu'):
    if str(device).startswith('npu'):
        device = torch.device(device)
    model = DocLayoutYOLOModel(weight, device)
    return model

def ocr_model_init(det_db_box_thresh=0.3,
                   lang=None,
                   det_db_unclip_ratio=1.8,
                   enable_merge_det_boxes=True
                   ):
    if lang is not None and lang != '':
        model = PytorchPaddleOCR(
            det_db_box_thresh=det_db_box_thresh,
            lang=lang,
            use_dilation=True,
            det_db_unclip_ratio=det_db_unclip_ratio,
            enable_merge_det_boxes=enable_merge_det_boxes,
        )
    else:
        model = PytorchPaddleOCR(
            det_db_box_thresh=det_db_box_thresh,
            use_dilation=True,
            det_db_unclip_ratio=det_db_unclip_ratio,
            enable_merge_det_boxes=enable_merge_det_boxes,
        )
    return model


class AtomModelSingleton:
    _instance = None
    _models = {}

    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance

    def get_atom_model(self, atom_model_name: str, **kwargs):

        lang = kwargs.get('lang', None)

        if atom_model_name in [AtomicModel.WiredTable, AtomicModel.WirelessTable]:
            key = (
                atom_model_name,
                lang
            )
        elif atom_model_name in [AtomicModel.OCR]:
            key = (
                atom_model_name,
                kwargs.get('det_db_box_thresh', 0.3),
                lang,
                kwargs.get('det_db_unclip_ratio', 1.8),
                kwargs.get('enable_merge_det_boxes', True)
            )
        else:
            key = atom_model_name

        if key not in self._models:
            self._models[key] = atom_model_init(model_name=atom_model_name, **kwargs)
        return self._models[key]

def atom_model_init(model_name: str, **kwargs):
    atom_model = None
    if model_name == AtomicModel.Layout:
        atom_model = doclayout_yolo_model_init(
            kwargs.get('doclayout_yolo_weights'),
            kwargs.get('device')
        )
    elif model_name == AtomicModel.MFD:
        atom_model = mfd_model_init(
            kwargs.get('mfd_weights'),
            kwargs.get('device')
        )
    elif model_name == AtomicModel.MFR:
        atom_model = mfr_model_init(
            kwargs.get('mfr_weight_dir'),
            kwargs.get('device')
        )
    elif model_name == AtomicModel.OCR:
        atom_model = ocr_model_init(
            kwargs.get('det_db_box_thresh', 0.3),
            kwargs.get('lang'),
            kwargs.get('det_db_unclip_ratio', 1.8),
            kwargs.get('enable_merge_det_boxes', True)
        )
    elif model_name == AtomicModel.WirelessTable:
        atom_model = wireless_table_model_init(
            kwargs.get('lang'),
        )
    elif model_name == AtomicModel.WiredTable:
        atom_model = wired_table_model_init(
            kwargs.get('lang'),
        )
    elif model_name == AtomicModel.TableCls:
        atom_model = table_cls_model_init()
    elif model_name == AtomicModel.ImgOrientationCls:
        atom_model = img_orientation_cls_model_init()
    else:
        logger.error('model name not allow')
        exit(1)

    if atom_model is None:
        logger.error('model init failed')
        exit(1)
    else:
        return atom_model


class MineruPipelineModel:
    def __init__(self, **kwargs):
        self.formula_config = kwargs.get('formula_config')
        self.apply_formula = self.formula_config.get('enable', True)
        self.table_config = kwargs.get('table_config')
        self.apply_table = self.table_config.get('enable', True)
        self.lang = kwargs.get('lang', None)
        self.device = kwargs.get('device', 'cpu')
        logger.info(
            'DocAnalysis init, this may take some times......'
        )
        atom_model_manager = AtomModelSingleton()

        if self.apply_formula:
            # 初始化公式检测模型
            self.mfd_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFD,
                mfd_weights=str(
                    os.path.join(auto_download_and_get_model_root_path(ModelPath.yolo_v8_mfd), ModelPath.yolo_v8_mfd)
                ),
                device=self.device,
            )

            # 初始化公式解析模型
            mfr_weight_dir = os.path.join(auto_download_and_get_model_root_path(ModelPath.unimernet_small), ModelPath.unimernet_small)

            self.mfr_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFR,
                mfr_weight_dir=mfr_weight_dir,
                device=self.device,
            )

        # 初始化layout模型
        self.layout_model = atom_model_manager.get_atom_model(
            atom_model_name=AtomicModel.Layout,
            doclayout_yolo_weights=str(
                os.path.join(auto_download_and_get_model_root_path(ModelPath.doclayout_yolo), ModelPath.doclayout_yolo)
            ),
            device=self.device,
        )
        # 初始化ocr
        self.ocr_model = atom_model_manager.get_atom_model(
            atom_model_name=AtomicModel.OCR,
            det_db_box_thresh=0.3,
            lang=self.lang
        )
        # init table model
        if self.apply_table:
            self.wired_table_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.WiredTable,
                lang=self.lang,
            )
            self.wireless_table_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.WirelessTable,
                lang=self.lang,
            )
            self.table_cls_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.TableCls,
            )
            self.img_orientation_cls_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.ImgOrientationCls,
                lang=self.lang,
            )

        logger.info('DocAnalysis init done!')