LPRNet_migraphx_infer.py 3.48 KB
Newer Older
liuhy's avatar
liuhy committed
1
2
3
4
5
6
7
# -*- coding: utf-8 -*-
"""
MIGraphX示例程序
"""
import cv2
import numpy as np
import migraphx
liuhy's avatar
liuhy committed
8
9
import argparse
import os
liuhy's avatar
liuhy committed
10
import time
liuhy's avatar
liuhy committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
         '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
         '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁',
         '新',
         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
         'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K',
         'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
         'W', 'X', 'Y', 'Z', 'I', 'O', '-'
         ]

def LPRNetPreprocess(image):
    img = cv2.imread(image)
    img = cv2.resize(img, (94, 24)).astype('float32')
    img -= 127.5
    img *= 0.0078125
    img = np.expand_dims(img.transpose(2, 0, 1), 0)
    return img

def LPRNetPostprocess(infer_res):
    preb_label = []
    for j in range(infer_res.shape[1]):
        preb_label.append(np.argmax(infer_res[:, j], axis=0))
    no_repeat_blank_label = []
    pre_c = preb_label[0]
    if pre_c != len(CHARS) - 1:
        no_repeat_blank_label.append(pre_c)
    for c in preb_label:  # dropout repeate label and blank label
        if (pre_c == c) or (c == len(CHARS) - 1):
            if c == len(CHARS) - 1:
                pre_c = c
            continue
        no_repeat_blank_label.append(c)
        pre_c = c
    result = ''.join(list(map(lambda x: CHARS[x], no_repeat_blank_label)))
    return result

liuhy's avatar
liuhy committed
48
def LPRNetInference(args):
liuhy's avatar
liuhy committed
49
    # 加载模型
liuhy's avatar
liuhy committed
50
51
    if args.model[-3:] == 'mxr':
        model = migraphx.load(args.model)
liuhy's avatar
liuhy committed
52
    else:
liuhy's avatar
liuhy committed
53
        print('convert onnx to mxr...')
liuhy's avatar
liuhy committed
54
        model = migraphx.parse_onnx(args.model)
liuhy's avatar
liuhy committed
55
        model.compile(t=migraphx.get_target("gpu"),device_id=0) # device_id: 设置GPU设备,默认为0号设备(>=1.2版本中支持)
liuhy's avatar
liuhy committed
56
        migraphx.save(model, args.savepath)
liuhy's avatar
liuhy committed
57

liuhy's avatar
liuhy committed
58
59
    if os.path.isdir(args.imgpath):
        images = os.listdir(args.imgpath)
liuhy's avatar
liuhy committed
60
61
        count = 0
        time1 = time.perf_counter()
liuhy's avatar
liuhy committed
62
63
        for image in images:
            img = LPRNetPreprocess(os.path.join(args.imgpath, image))
liuhy's avatar
liuhy committed
64
65
            inputName = model.get_parameter_names()[0]
            inputShape = model.get_parameter_shapes()[inputName].lens()
liuhy's avatar
liuhy committed
66
67
68
            # print("inputName:{0} \ninputShape:{1}".format(inputName,inputShape))
            results = model.run({inputName: migraphx.argument(img)})
            result = LPRNetPostprocess(np.array(results[0]))
liuhy's avatar
liuhy committed
69
70
            if result == image[:-4]:
                count += 1
liuhy's avatar
liuhy committed
71
            print('Inference Result:', result)
liuhy's avatar
liuhy committed
72
73
74
        time2 = time.perf_counter()
        print('accuracy rate:', count / len(images))
        print('average time', (time2 - time1)/count*1000) 
liuhy's avatar
liuhy committed
75
76
77
78
79
80
81
82
    else:
        img = LPRNetPreprocess(args.imgpath)
        inputName=model.get_parameter_names()[0]
        inputShape=model.get_parameter_shapes()[inputName].lens()
        # print("inputName:{0} \ninputShape:{1}".format(inputName,inputShape))
        results = model.run({inputName: migraphx.argument(img)})
        result = LPRNetPostprocess(np.array(results[0]))
        print('Inference Result:', result)
liuhy's avatar
liuhy committed
83
84

if __name__ == '__main__':
liuhy's avatar
liuhy committed
85
    parser = argparse.ArgumentParser(description='parameters to vaildate net')
liuhy's avatar
liuhy committed
86
    parser.add_argument('--model', default='model/LPRNet.onnx', help='model path to inference')
liuhy's avatar
liuhy committed
87
    parser.add_argument('--imgpath', default='imgs', help='the image path')
liuhy's avatar
liuhy committed
88
89
90
91
    parser.add_argument('--savepath', default='model/LPRNet.mxr', help='mxr model save path and name')
    args = parser.parse_args()

    LPRNetInference(args)