LPRNet_migraphx_infer.py 3.22 KB
Newer Older
liuhy's avatar
liuhy committed
1
2
3
4
5
6
7
# -*- coding: utf-8 -*-
"""
MIGraphX示例程序
"""
import cv2
import numpy as np
import migraphx
liuhy's avatar
liuhy committed
8
9
import argparse
import os
liuhy's avatar
liuhy committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
         '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
         '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁',
         '新',
         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
         'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K',
         'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
         'W', 'X', 'Y', 'Z', 'I', 'O', '-'
         ]

def LPRNetPreprocess(image):
    img = cv2.imread(image)
    img = cv2.resize(img, (94, 24)).astype('float32')
    img -= 127.5
    img *= 0.0078125
    img = np.expand_dims(img.transpose(2, 0, 1), 0)
    return img

def LPRNetPostprocess(infer_res):
    preb_label = []
    for j in range(infer_res.shape[1]):
        preb_label.append(np.argmax(infer_res[:, j], axis=0))
    no_repeat_blank_label = []
    pre_c = preb_label[0]
    if pre_c != len(CHARS) - 1:
        no_repeat_blank_label.append(pre_c)
    for c in preb_label:  # dropout repeate label and blank label
        if (pre_c == c) or (c == len(CHARS) - 1):
            if c == len(CHARS) - 1:
                pre_c = c
            continue
        no_repeat_blank_label.append(c)
        pre_c = c
    result = ''.join(list(map(lambda x: CHARS[x], no_repeat_blank_label)))
    return result

liuhy's avatar
liuhy committed
47
def LPRNetInference(args):
liuhy's avatar
liuhy committed
48
    # 加载模型
liuhy's avatar
liuhy committed
49
50
    if args.model[-3:] == 'mxr':
        model = migraphx.load(args.model)
liuhy's avatar
liuhy committed
51
    else:
liuhy's avatar
liuhy committed
52
        print('convert onnx to mxr...')
liuhy's avatar
liuhy committed
53
        model = migraphx.parse_onnx(args.model)
liuhy's avatar
liuhy committed
54
        model.compile(t=migraphx.get_target("gpu"),device_id=0) # device_id: 设置GPU设备,默认为0号设备(>=1.2版本中支持)
liuhy's avatar
liuhy committed
55
        migraphx.save(model, args.savepath)
liuhy's avatar
liuhy committed
56

liuhy's avatar
liuhy committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    if os.path.isdir(args.imgpath):
        images = os.listdir(args.imgpath)
        for image in images:
            img = LPRNetPreprocess(os.path.join(args.imgpath, image))
            inputName=model.get_parameter_names()[0]
            inputShape=model.get_parameter_shapes()[inputName].lens()
            # print("inputName:{0} \ninputShape:{1}".format(inputName,inputShape))
            results = model.run({inputName: migraphx.argument(img)})
            result = LPRNetPostprocess(np.array(results[0]))
            print('Inference Result:', result)
    else:
        img = LPRNetPreprocess(args.imgpath)
        inputName=model.get_parameter_names()[0]
        inputShape=model.get_parameter_shapes()[inputName].lens()
        # print("inputName:{0} \ninputShape:{1}".format(inputName,inputShape))
        results = model.run({inputName: migraphx.argument(img)})
        result = LPRNetPostprocess(np.array(results[0]))
        print('Inference Result:', result)
liuhy's avatar
liuhy committed
75
76

if __name__ == '__main__':
liuhy's avatar
liuhy committed
77
78
79
80
81
82
83
    parser = argparse.ArgumentParser(description='parameters to vaildate net')
    parser.add_argument('--model', default='model/LPRNet.mxr', help='model path to inference')
    parser.add_argument('--imgpath', default='imgs/川JK0707.jpg', help='the image path')
    parser.add_argument('--savepath', default='model/LPRNet.mxr', help='mxr model save path and name')
    args = parser.parse_args()

    LPRNetInference(args)