LPRNet_migraphx_infer.py 3.69 KB
Newer Older
liuhy's avatar
liuhy committed
1
2
3
4
5
6
7
# -*- coding: utf-8 -*-
"""
MIGraphX示例程序
"""
import cv2
import numpy as np
import migraphx
liuhy's avatar
liuhy committed
8
9
import argparse
import os
liuhy's avatar
liuhy committed
10
import time
liuhy's avatar
liuhy committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
         '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
         '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁',
         '新',
         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
         'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K',
         'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
         'W', 'X', 'Y', 'Z', 'I', 'O', '-'
         ]

def LPRNetPreprocess(image):
    img = cv2.imread(image)
    img = cv2.resize(img, (94, 24)).astype('float32')
    img -= 127.5
    img *= 0.0078125
    img = np.expand_dims(img.transpose(2, 0, 1), 0)
    return img

def LPRNetPostprocess(infer_res):
liuhy's avatar
liuhy committed
31
    preb_label = np.argmax(infer_res, axis=0)
liuhy's avatar
liuhy committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    no_repeat_blank_label = []
    pre_c = preb_label[0]
    if pre_c != len(CHARS) - 1:
        no_repeat_blank_label.append(pre_c)
    for c in preb_label:  # dropout repeate label and blank label
        if (pre_c == c) or (c == len(CHARS) - 1):
            if c == len(CHARS) - 1:
                pre_c = c
            continue
        no_repeat_blank_label.append(c)
        pre_c = c
    result = ''.join(list(map(lambda x: CHARS[x], no_repeat_blank_label)))
    return result

liuhy's avatar
liuhy committed
46
def LPRNetInference(args):
liuhy's avatar
liuhy committed
47
    # 加载模型
liuhy's avatar
liuhy committed
48
49
    if args.model[-3:] == 'mxr':
        model = migraphx.load(args.model)
liuhy's avatar
liuhy committed
50
    else:
liuhy's avatar
liuhy committed
51
        print('convert onnx to mxr...')
liuhy's avatar
liuhy committed
52
        model = migraphx.parse_onnx(args.model)
liuhy's avatar
liuhy committed
53
        model.compile(t=migraphx.get_target("gpu"),device_id=0) # device_id: 设置GPU设备,默认为0号设备(>=1.2版本中支持)
liuhy's avatar
liuhy committed
54
        migraphx.save(model, args.savepath)
liuhy's avatar
liuhy committed
55

liuhy's avatar
liuhy committed
56
57
    if os.path.isdir(args.imgpath):
        images = os.listdir(args.imgpath)
liuhy's avatar
liuhy committed
58
59
60
        Tp = 0
        Tn_1 = 0
        Tn_2 = 0
liuhy's avatar
liuhy committed
61
        time1 = time.perf_counter()
liuhy's avatar
liuhy committed
62
63
        for image in images:
            img = LPRNetPreprocess(os.path.join(args.imgpath, image))
liuhy's avatar
liuhy committed
64
65
            inputName = model.get_parameter_names()[0]
            inputShape = model.get_parameter_shapes()[inputName].lens()
liuhy's avatar
liuhy committed
66
67
68
            # print("inputName:{0} \ninputShape:{1}".format(inputName,inputShape))
            results = model.run({inputName: migraphx.argument(img)})
            result = LPRNetPostprocess(np.array(results[0]))
liuhy's avatar
liuhy committed
69
            if result == image[:-4]:
liuhy's avatar
liuhy committed
70
71
72
73
74
75
                Tp += 1
            elif len(result) != len(image[:-4]):
                Tn_1 += 1
            else:
                Tn_2 += 1
            print(image + ' Inference Result:', result)
liuhy's avatar
liuhy committed
76
        time2 = time.perf_counter()
liuhy's avatar
liuhy committed
77
78
79
        Acc = Tp * 1.0 / (Tp + Tn_1 + Tn_2)
        print("[Info] Test Accuracy: {} [{}:{}:{}:{}]".format(Acc, Tp, Tn_1, Tn_2, (Tp+Tn_1+Tn_2)))
        print("[Info] Test Speed: {}s 1/{}]".format((time2 - time1) / len(images), len(images))) 
liuhy's avatar
liuhy committed
80
81
82
83
84
85
86
87
    else:
        img = LPRNetPreprocess(args.imgpath)
        inputName=model.get_parameter_names()[0]
        inputShape=model.get_parameter_shapes()[inputName].lens()
        # print("inputName:{0} \ninputShape:{1}".format(inputName,inputShape))
        results = model.run({inputName: migraphx.argument(img)})
        result = LPRNetPostprocess(np.array(results[0]))
        print('Inference Result:', result)
liuhy's avatar
liuhy committed
88
89

if __name__ == '__main__':
liuhy's avatar
liuhy committed
90
    parser = argparse.ArgumentParser(description='parameters to vaildate net')
liuhy's avatar
liuhy committed
91
    parser.add_argument('--model', default='model/LPRNet.onnx', help='model path to inference')
liuhy's avatar
liuhy committed
92
    parser.add_argument('--imgpath', default='imgs', help='the image path')
liuhy's avatar
liuhy committed
93
94
95
96
    parser.add_argument('--savepath', default='model/LPRNet.mxr', help='mxr model save path and name')
    args = parser.parse_args()

    LPRNetInference(args)