predict.py 3.86 KB
Newer Older
yuguo-Jack's avatar
yuguo-Jack committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
from functools import partial

import paddle
import paddle.nn.functional as F
from data import convert_example, create_dataloader, read_text_pair

from paddlenlp.data import Pad, Tuple
from paddlenlp.datasets import load_dataset
from paddlenlp.transformers import AutoModelForSequenceClassification, AutoTokenizer

# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--params_path", type=str, required=True, default="checkpoints/model_900/model_state.pdparams", help="The path to model parameters to be loaded.")
parser.add_argument("--max_seq_length", type=int, default=128, help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--batch_size", type=int, default=32, help="Batch size per GPU/CPU for training.")
parser.add_argument("--test_set", type=str, required=True, help="The full path of test_set.")
parser.add_argument("--topk", type=int, default=10, help="The Topk texts.")
parser.add_argument('--device', choices=['cpu', 'gpu', 'xpu', 'npu'], default="gpu", help="Select which device to train model, defaults to gpu.")
parser.add_argument('--model_name_or_path', default="rocketqa-base-cross-encoder", help="The pretrained model used for training")
args = parser.parse_args()
# yapf: enable


@paddle.no_grad()
def predict(model, data_loader):
    results = []
    model.eval()
    with paddle.no_grad():
        for batch in data_loader:
            input_ids, token_type_ids = batch
            logits = model(input_ids, token_type_ids)
            probs = F.softmax(logits)
            probs = probs.numpy()
            results.extend(probs[:, 1])
    return results


if __name__ == "__main__":
    paddle.set_device(args.device)

    test_ds = load_dataset(read_text_pair, data_path=args.test_set, lazy=False)
    model = AutoModelForSequenceClassification.from_pretrained(args.model_name_or_path, num_classes=2)
    tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)

    trans_func = partial(
        convert_example, tokenizer=tokenizer, max_seq_length=args.max_seq_length, is_test=True, is_pair=True
    )

    batchify_fn = lambda samples, fn=Tuple(
        Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"),  # input
        Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"),  # segment
    ): [data for data in fn(samples)]

    test_data_loader = create_dataloader(
        test_ds, mode="predict", batch_size=args.batch_size, batchify_fn=batchify_fn, trans_fn=trans_func
    )

    if args.params_path and os.path.isfile(args.params_path):
        state_dict = paddle.load(args.params_path)
        model.set_dict(state_dict)
        print("Loaded parameters from %s" % args.params_path)
    else:
        raise ValueError("Please set --params_path with correct pretrained model file")
    results = predict(model, test_data_loader)
    test_ds = load_dataset(read_text_pair, data_path=args.test_set, lazy=False)
    text_pairs = []
    for idx, prob in enumerate(results):
        text_pair = test_ds[idx]
        text_pair["pred_prob"] = prob
        text_pairs.append(text_pair)
    text_pairs = sorted(text_pairs, key=lambda x: x["pred_prob"], reverse=True)[: args.topk]
    for item in text_pairs:
        print(item)