# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from functools import partial import paddle import paddle.nn.functional as F from data import convert_example, create_dataloader, read_text_pair from paddlenlp.data import Pad, Tuple from paddlenlp.datasets import load_dataset from paddlenlp.transformers import AutoModelForSequenceClassification, AutoTokenizer # yapf: disable parser = argparse.ArgumentParser() parser.add_argument("--params_path", type=str, required=True, default="checkpoints/model_900/model_state.pdparams", help="The path to model parameters to be loaded.") parser.add_argument("--max_seq_length", type=int, default=128, help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.") parser.add_argument("--batch_size", type=int, default=32, help="Batch size per GPU/CPU for training.") parser.add_argument("--test_set", type=str, required=True, help="The full path of test_set.") parser.add_argument("--topk", type=int, default=10, help="The Topk texts.") parser.add_argument('--device', choices=['cpu', 'gpu', 'xpu', 'npu'], default="gpu", help="Select which device to train model, defaults to gpu.") parser.add_argument('--model_name_or_path', default="rocketqa-base-cross-encoder", help="The pretrained model used for training") args = parser.parse_args() # yapf: enable @paddle.no_grad() def predict(model, data_loader): results = [] model.eval() with paddle.no_grad(): for batch in data_loader: input_ids, token_type_ids = batch logits = model(input_ids, token_type_ids) probs = F.softmax(logits) probs = probs.numpy() results.extend(probs[:, 1]) return results if __name__ == "__main__": paddle.set_device(args.device) test_ds = load_dataset(read_text_pair, data_path=args.test_set, lazy=False) model = AutoModelForSequenceClassification.from_pretrained(args.model_name_or_path, num_classes=2) tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path) trans_func = partial( convert_example, tokenizer=tokenizer, max_seq_length=args.max_seq_length, is_test=True, is_pair=True ) batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"), # input Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"), # segment ): [data for data in fn(samples)] test_data_loader = create_dataloader( test_ds, mode="predict", batch_size=args.batch_size, batchify_fn=batchify_fn, trans_fn=trans_func ) if args.params_path and os.path.isfile(args.params_path): state_dict = paddle.load(args.params_path) model.set_dict(state_dict) print("Loaded parameters from %s" % args.params_path) else: raise ValueError("Please set --params_path with correct pretrained model file") results = predict(model, test_data_loader) test_ds = load_dataset(read_text_pair, data_path=args.test_set, lazy=False) text_pairs = [] for idx, prob in enumerate(results): text_pair = test_ds[idx] text_pair["pred_prob"] = prob text_pairs.append(text_pair) text_pairs = sorted(text_pairs, key=lambda x: x["pred_prob"], reverse=True)[: args.topk] for item in text_pairs: print(item)