"examples/onnxruntime/resnet50/README.txt" did not exist on "c04fbc926f05fcdd1a57f7ce87101d4fd3f80982"
device_reduce.hpp 19.6 KB
Newer Older
zhuwenwen's avatar
zhuwenwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
// Copyright (c) 2017-2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

#ifndef ROCPRIM_DEVICE_DEVICE_REDUCE_HPP_
#define ROCPRIM_DEVICE_DEVICE_REDUCE_HPP_

#include <type_traits>
#include <iterator>
#include <algorithm>
#include <chrono>

#include "../config.hpp"
#include "../detail/various.hpp"
#include "../detail/match_result_type.hpp"

#include "device_reduce_config.hpp"
#include "detail/device_reduce.hpp"

BEGIN_ROCPRIM_NAMESPACE

/// \addtogroup devicemodule
/// @{

namespace detail
{

template<
    bool WithInitialValue,
    class Config,
    class ResultType,
    class InputIterator,
    class OutputIterator,
    class InitValueType,
    class BinaryFunction
>
ROCPRIM_KERNEL
__launch_bounds__(ROCPRIM_DEFAULT_MAX_BLOCK_SIZE)
void block_reduce_kernel(InputIterator input,
                         const size_t size,
                         OutputIterator output,
                         InitValueType initial_value,
                         BinaryFunction reduce_op)
{
    block_reduce_kernel_impl<WithInitialValue, Config, ResultType>(
        input, size, output, initial_value, reduce_op
    );
}

#define ROCPRIM_DETAIL_HIP_SYNC(name, size, start) \
    if(debug_synchronous) \
    { \
        std::cout << name << "(" << size << ")"; \
        auto _error = cudaStreamSynchronize(stream); \
        if(_error != cudaSuccess) return _error; \
        auto _end = std::chrono::high_resolution_clock::now(); \
        auto _d = std::chrono::duration_cast<std::chrono::duration<double>>(_end - start); \
        std::cout << " " << _d.count() * 1000 << " ms" << '\n'; \
    }

#define ROCPRIM_DETAIL_HIP_SYNC_AND_RETURN_ON_ERROR(name, size, start) \
    { \
        auto _error = cudaGetLastError(); \
        if(_error != cudaSuccess) return _error; \
        if(debug_synchronous) \
        { \
            std::cout << name << "(" << size << ")"; \
            auto __error = cudaStreamSynchronize(stream); \
            if(__error != cudaSuccess) return __error; \
            auto _end = std::chrono::high_resolution_clock::now(); \
            auto _d = std::chrono::duration_cast<std::chrono::duration<double>>(_end - start); \
            std::cout << " " << _d.count() * 1000 << " ms" << '\n'; \
        } \
    }


template<
    bool WithInitialValue, // true when inital_value should be used in reduction
    class Config,
    class InputIterator,
    class OutputIterator,
    class InitValueType,
    class BinaryFunction
>
inline
cudaError_t reduce_impl(void * temporary_storage,
                       size_t& storage_size,
                       InputIterator input,
                       OutputIterator output,
                       const InitValueType initial_value,
                       const size_t size,
                       BinaryFunction reduce_op,
                       const cudaStream_t stream,
                       bool debug_synchronous)
{
    using input_type = typename std::iterator_traits<InputIterator>::value_type;
    using result_type = typename ::rocprim::detail::match_result_type<
        input_type, BinaryFunction
    >::type;

    // Get default config if Config is default_config
    using config = default_or_custom_config<
        Config,
        default_reduce_config<ROCPRIM_TARGET_ARCH, result_type>
    >;

    constexpr unsigned int block_size = config::block_size;
    constexpr unsigned int items_per_thread = config::items_per_thread;
    constexpr auto items_per_block = block_size * items_per_thread;

    if(temporary_storage == nullptr)
    {
        storage_size = reduce_get_temporary_storage_bytes<result_type>(size, items_per_block);
        // Make sure user won't try to allocate 0 bytes memory
        storage_size = storage_size == 0 ? 4 : storage_size;
        return cudaSuccess;
    }

    // Start point for time measurements
    std::chrono::high_resolution_clock::time_point start;

    static constexpr auto size_limit             = config::size_limit;
    static constexpr auto number_of_blocks_limit = ::rocprim::max<size_t>(size_limit / items_per_block, 1);

    auto number_of_blocks = (size + items_per_block - 1)/items_per_block;
    if(debug_synchronous)
    {
        std::cout << "block_size " << block_size << '\n';
        std::cout << "number of blocks " << number_of_blocks << '\n';
        std::cout << "number of blocks limit " << number_of_blocks_limit << '\n';
        std::cout << "items_per_block " << items_per_block << '\n';
    }

    if(number_of_blocks > 1)
    {
        // Pointer to array with block_prefixes
        result_type * block_prefixes = static_cast<result_type*>(temporary_storage);
        static constexpr auto aligned_size_limit = number_of_blocks_limit * items_per_block;

        // Launch number_of_blocks_limit blocks while there is still at least as many blocks left as the limit
        const auto number_of_launch = (size + aligned_size_limit - 1) / aligned_size_limit;
        for(size_t i = 0, offset = 0; i < number_of_launch; ++i, offset += aligned_size_limit) {
            const auto current_size = std::min<size_t>(size - offset, aligned_size_limit);
            const auto current_blocks = (current_size + items_per_block - 1) / items_per_block;

            if(debug_synchronous) start = std::chrono::high_resolution_clock::now();
            detail::block_reduce_kernel<false, config, result_type>
                <<<dim3(current_blocks),
                dim3(block_size),
                0,
                stream>>>(
                input + offset,
                current_size,
                block_prefixes + i * number_of_blocks_limit,
                initial_value,
                reduce_op);
            ROCPRIM_DETAIL_HIP_SYNC_AND_RETURN_ON_ERROR("block_reduce_kernel", current_size, start);
        }

        void * nested_temp_storage = static_cast<void*>(block_prefixes + number_of_blocks);
        auto nested_temp_storage_size = storage_size - (number_of_blocks * sizeof(result_type));

        if(debug_synchronous) start = std::chrono::high_resolution_clock::now();
        auto error = reduce_impl<WithInitialValue, config>(
            nested_temp_storage,
            nested_temp_storage_size,
            block_prefixes, // input
            output, // output
            initial_value,
            number_of_blocks, // input size
            reduce_op,
            stream,
            debug_synchronous
        );
        if(error != cudaSuccess) return error;
        ROCPRIM_DETAIL_HIP_SYNC("nested_device_reduce", number_of_blocks, start);
    }
    else
    {
        if(debug_synchronous) start = std::chrono::high_resolution_clock::now();
        detail::block_reduce_kernel<WithInitialValue, config, result_type>
            <<<dim3(1), dim3(block_size), 0, stream>>>(
            input, size, output, initial_value, reduce_op
        );
        ROCPRIM_DETAIL_HIP_SYNC_AND_RETURN_ON_ERROR("block_reduce_kernel", size, start);
    }

    return cudaSuccess;
}

#undef ROCPRIM_DETAIL_HIP_SYNC_AND_RETURN_ON_ERROR
#undef ROCPRIM_DETAIL_HIP_SYNC

} // end of detail namespace

/// \brief Parallel reduction primitive for device level.
///
/// reduce function performs a device-wide reduction operation
/// using binary \p reduce_op operator.
///
/// \par Overview
/// * Does not support non-commutative reduction operators. Reduction operator should also be
/// associative. When used with non-associative functions the results may be non-deterministic
/// and/or vary in precision.
/// * Returns the required size of \p temporary_storage in \p storage_size
/// if \p temporary_storage in a null pointer.
/// * Ranges specified by \p input must have at least \p size elements, while \p output
/// only needs one element.
/// * By default, the input type is used for accumulation. A custom type
/// can be specified using <tt>rocprim::transform_iterator</tt>, see the example below.
///
/// \tparam Config - [optional] configuration of the primitive. It can be \p reduce_config or
/// a custom class with the same members.
/// \tparam InputIterator - random-access iterator type of the input range. Must meet the
/// requirements of a C++ InputIterator concept. It can be a simple pointer type.
/// \tparam OutputIterator - random-access iterator type of the output range. Must meet the
/// requirements of a C++ OutputIterator concept. It can be a simple pointer type.
/// \tparam InitValueType - type of the initial value.
/// \tparam BinaryFunction - type of binary function used for reduction. Default type
/// is \p rocprim::plus<T>, where \p T is a \p value_type of \p InputIterator.
///
/// \param [in] temporary_storage - pointer to a device-accessible temporary storage. When
/// a null pointer is passed, the required allocation size (in bytes) is written to
/// \p storage_size and function returns without performing the reduction operation.
/// \param [in,out] storage_size - reference to a size (in bytes) of \p temporary_storage.
/// \param [in] input - iterator to the first element in the range to reduce.
/// \param [out] output - iterator to the first element in the output range. It can be
/// same as \p input.
/// \param [in] initial_value - initial value to start the reduction.
/// \param [in] size - number of element in the input range.
/// \param [in] reduce_op - binary operation function object that will be used for reduction.
/// The signature of the function should be equivalent to the following:
/// <tt>T f(const T &a, const T &b);</tt>. The signature does not need to have
/// <tt>const &</tt>, but function object must not modify the objects passed to it.
/// The default value is \p BinaryFunction().
/// \param [in] stream - [optional] HIP stream object. The default is \p 0 (default stream).
/// \param [in] debug_synchronous - [optional] If true, synchronization after every kernel
/// launch is forced in order to check for errors. The default value is \p false.
///
/// \returns \p cudaSuccess (\p 0) after successful reduction; otherwise a HIP runtime error of
/// type \p cudaError_t.
///
/// \par Example
/// \parblock
/// In this example a device-level min-reduction operation is performed on an array of
/// integer values (<tt>short</tt>s are reduced into <tt>int</tt>s) using custom operator.
///
/// \code{.cpp}
/// #include <rocprim/rocprim.hpp>
///
/// // custom reduce function
/// auto min_op =
///     [] __device__ (int a, int b) -> int
///     {
///         return a < b ? a : b;
///     };
///
/// // Prepare input and output (declare pointers, allocate device memory etc.)
/// size_t input_size;    // e.g., 8
/// short * input;        // e.g., [4, 7, 6, 2, 5, 1, 3, 8]
/// int * output;         // empty array of 1 element
/// int start_value;      // e.g., 9
///
/// size_t temporary_storage_size_bytes;
/// void * temporary_storage_ptr = nullptr;
/// // Get required size of the temporary storage
/// rocprim::reduce(
///     temporary_storage_ptr, temporary_storage_size_bytes,
///     input, output, start_value, input_size, min_op
/// );
///
/// // allocate temporary storage
/// cudaMalloc(&temporary_storage_ptr, temporary_storage_size_bytes);
///
/// // perform reduce
/// rocprim::reduce(
///     temporary_storage_ptr, temporary_storage_size_bytes,
///     input, output, start_value, input_size, min_op
/// );
/// // output: [1]
/// \endcode
///
/// The same example as above, but now a custom accumulator type is specified.
///
/// \code{.cpp}
/// #include <rocprim/rocprim.hpp>
///
/// auto min_op =
///     [] __device__ (int a, int b) -> int
///     {
///         return a < b ? a : b;
///     };
///
/// size_t input_size;
/// short * input;
/// int * output;
/// int start_value;
///
/// // Use a transform iterator to specifiy a custom accumulator type
/// auto input_iterator = rocprim::make_transform_iterator(
///     input, [] __device__ (T in) { return static_cast<int>(in); });
///
/// size_t temporary_storage_size_bytes;
/// void * temporary_storage_ptr = nullptr;
/// // Use the transform iterator
/// rocprim::reduce(
///     temporary_storage_ptr, temporary_storage_size_bytes,
///     input_iterator, output, start_value, input_size, min_op
/// );
///
/// cudaMalloc(&temporary_storage_ptr, temporary_storage_size_bytes);
///
/// rocprim::reduce(
///     temporary_storage_ptr, temporary_storage_size_bytes,
///     input_iterator, output, start_value, input_size, min_op
/// );
/// \endcode
/// \endparblock
template<
    class Config = default_config,
    class InputIterator,
    class OutputIterator,
    class InitValueType,
    class BinaryFunction = ::rocprim::plus<typename std::iterator_traits<InputIterator>::value_type>
>
inline
cudaError_t reduce(void * temporary_storage,
                 size_t& storage_size,
                 InputIterator input,
                 OutputIterator output,
                 const InitValueType initial_value,
                 const size_t size,
                 BinaryFunction reduce_op = BinaryFunction(),
                 const cudaStream_t stream = 0,
                 bool debug_synchronous = false)
{
    return detail::reduce_impl<true, Config>(
        temporary_storage, storage_size,
        input, output, initial_value, size,
        reduce_op, stream, debug_synchronous
    );
}

/// \brief Parallel reduce primitive for device level.
///
/// reduce function performs a device-wide reduction operation
/// using binary \p reduce_op operator.
///
/// \par Overview
/// * Does not support non-commutative reduction operators. Reduction operator should also be
/// associative. When used with non-associative functions the results may be non-deterministic
/// and/or vary in precision.
/// * Returns the required size of \p temporary_storage in \p storage_size
/// if \p temporary_storage in a null pointer.
/// * Ranges specified by \p input must have at least \p size elements, while \p output
/// only needs one element.
/// * By default, the input type is used for accumulation. A custom type
/// can be specified using <tt>rocprim::transform_iterator</tt>, see the example below.
///
/// \tparam Config - [optional] configuration of the primitive. It can be \p reduce_config or
/// a custom class with the same members.
/// \tparam InputIterator - random-access iterator type of the input range. Must meet the
/// requirements of a C++ InputIterator concept. It can be a simple pointer type.
/// \tparam OutputIterator - random-access iterator type of the output range. Must meet the
/// requirements of a C++ OutputIterator concept. It can be a simple pointer type.
/// \tparam BinaryFunction - type of binary function used for reduction. Default type
/// is \p rocprim::plus<T>, where \p T is a \p value_type of \p InputIterator.
///
/// \param [in] temporary_storage - pointer to a device-accessible temporary storage. When
/// a null pointer is passed, the required allocation size (in bytes) is written to
/// \p storage_size and function returns without performing the reduction operation.
/// \param [in,out] storage_size - reference to a size (in bytes) of \p temporary_storage.
/// \param [in] input - iterator to the first element in the range to reduce.
/// \param [out] output - iterator to the first element in the output range. It can be
/// same as \p input.
/// \param [in] size - number of element in the input range.
/// \param [in] reduce_op - binary operation function object that will be used for reduction.
/// The signature of the function should be equivalent to the following:
/// <tt>T f(const T &a, const T &b);</tt>. The signature does not need to have
/// <tt>const &</tt>, but function object must not modify the objects passed to it.
/// Default is BinaryFunction().
/// \param [in] stream - [optional] HIP stream object. Default is \p 0 (default stream).
/// \param [in] debug_synchronous - [optional] If true, synchronization after every kernel
/// launch is forced in order to check for errors. Default value is \p false.
///
/// \returns \p cudaSuccess (\p 0) after successful reduction; otherwise a HIP runtime error of
/// type \p cudaError_t.
///
/// \par Example
/// \parblock
/// In this example a device-level sum operation is performed on an array of
/// integer values (<tt>short</tt>s are reduced into <tt>int</tt>s).
///
/// \code{.cpp}
/// #include <rocprim/rocprim.hpp>
///
/// // Prepare input and output (declare pointers, allocate device memory etc.)
/// size_t input_size;    // e.g., 8
/// short * input;        // e.g., [1, 2, 3, 4, 5, 6, 7, 8]
/// int * output;         // empty array of 1 element
///
/// size_t temporary_storage_size_bytes;
/// void * temporary_storage_ptr = nullptr;
/// // Get required size of the temporary storage
/// rocprim::reduce(
///     temporary_storage_ptr, temporary_storage_size_bytes,
///     input, output, input_size, rocprim::plus<int>()
/// );
///
/// // allocate temporary storage
/// cudaMalloc(&temporary_storage_ptr, temporary_storage_size_bytes);
///
/// // perform reduce
/// rocprim::reduce(
///     temporary_storage_ptr, temporary_storage_size_bytes,
///     input, output, input_size, rocprim::plus<int>()
/// );
/// // output: [36]
/// \endcode
///
/// The same example as above, but now a custom accumulator type is specified.
///
/// \code{.cpp}
/// #include <rocprim/rocprim.hpp>
///
/// size_t input_size;
/// short * input;
/// int * output;
///
/// // Use a transform iterator to specifiy a custom accumulator type
/// auto input_iterator = rocprim::make_transform_iterator(
///     input, [] __device__ (T in) { return static_cast<int>(in); });
///
/// size_t temporary_storage_size_bytes;
/// void * temporary_storage_ptr = nullptr;
/// // Use the transform iterator
/// rocprim::reduce(
///     temporary_storage_ptr, temporary_storage_size_bytes,
///     input_iterator, output, start_value, input_size, rocprim::plus<int>()
/// );
///
/// cudaMalloc(&temporary_storage_ptr, temporary_storage_size_bytes);
///
/// rocprim::reduce(
///     temporary_storage_ptr, temporary_storage_size_bytes,
///     input_iterator, output, start_value, input_size, rocprim::plus<int>()
/// );
/// \endcode
/// \endparblock
template<
    class Config = default_config,
    class InputIterator,
    class OutputIterator,
    class BinaryFunction = ::rocprim::plus<typename std::iterator_traits<InputIterator>::value_type>
>
inline
cudaError_t reduce(void * temporary_storage,
                  size_t& storage_size,
                  InputIterator input,
                  OutputIterator output,
                  const size_t size,
                  BinaryFunction reduce_op = BinaryFunction(),
                  const cudaStream_t stream = 0,
                  bool debug_synchronous = false)
{
    using input_type = typename std::iterator_traits<InputIterator>::value_type;

    return detail::reduce_impl<false, Config>(
        temporary_storage, storage_size,
        input, output, input_type(), size,
        reduce_op, stream, debug_synchronous
    );
}

/// @}
// end of group devicemodule

END_ROCPRIM_NAMESPACE

#endif // ROCPRIM_DEVICE_DEVICE_REDUCE_HPP_