// Copyright (c) 2017-2022 Advanced Micro Devices, Inc. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. #ifndef ROCPRIM_DEVICE_DEVICE_REDUCE_HPP_ #define ROCPRIM_DEVICE_DEVICE_REDUCE_HPP_ #include #include #include #include #include "../config.hpp" #include "../detail/various.hpp" #include "../detail/match_result_type.hpp" #include "device_reduce_config.hpp" #include "detail/device_reduce.hpp" BEGIN_ROCPRIM_NAMESPACE /// \addtogroup devicemodule /// @{ namespace detail { template< bool WithInitialValue, class Config, class ResultType, class InputIterator, class OutputIterator, class InitValueType, class BinaryFunction > ROCPRIM_KERNEL __launch_bounds__(ROCPRIM_DEFAULT_MAX_BLOCK_SIZE) void block_reduce_kernel(InputIterator input, const size_t size, OutputIterator output, InitValueType initial_value, BinaryFunction reduce_op) { block_reduce_kernel_impl( input, size, output, initial_value, reduce_op ); } #define ROCPRIM_DETAIL_HIP_SYNC(name, size, start) \ if(debug_synchronous) \ { \ std::cout << name << "(" << size << ")"; \ auto _error = cudaStreamSynchronize(stream); \ if(_error != cudaSuccess) return _error; \ auto _end = std::chrono::high_resolution_clock::now(); \ auto _d = std::chrono::duration_cast>(_end - start); \ std::cout << " " << _d.count() * 1000 << " ms" << '\n'; \ } #define ROCPRIM_DETAIL_HIP_SYNC_AND_RETURN_ON_ERROR(name, size, start) \ { \ auto _error = cudaGetLastError(); \ if(_error != cudaSuccess) return _error; \ if(debug_synchronous) \ { \ std::cout << name << "(" << size << ")"; \ auto __error = cudaStreamSynchronize(stream); \ if(__error != cudaSuccess) return __error; \ auto _end = std::chrono::high_resolution_clock::now(); \ auto _d = std::chrono::duration_cast>(_end - start); \ std::cout << " " << _d.count() * 1000 << " ms" << '\n'; \ } \ } template< bool WithInitialValue, // true when inital_value should be used in reduction class Config, class InputIterator, class OutputIterator, class InitValueType, class BinaryFunction > inline cudaError_t reduce_impl(void * temporary_storage, size_t& storage_size, InputIterator input, OutputIterator output, const InitValueType initial_value, const size_t size, BinaryFunction reduce_op, const cudaStream_t stream, bool debug_synchronous) { using input_type = typename std::iterator_traits::value_type; using result_type = typename ::rocprim::detail::match_result_type< input_type, BinaryFunction >::type; // Get default config if Config is default_config using config = default_or_custom_config< Config, default_reduce_config >; constexpr unsigned int block_size = config::block_size; constexpr unsigned int items_per_thread = config::items_per_thread; constexpr auto items_per_block = block_size * items_per_thread; if(temporary_storage == nullptr) { storage_size = reduce_get_temporary_storage_bytes(size, items_per_block); // Make sure user won't try to allocate 0 bytes memory storage_size = storage_size == 0 ? 4 : storage_size; return cudaSuccess; } // Start point for time measurements std::chrono::high_resolution_clock::time_point start; static constexpr auto size_limit = config::size_limit; static constexpr auto number_of_blocks_limit = ::rocprim::max(size_limit / items_per_block, 1); auto number_of_blocks = (size + items_per_block - 1)/items_per_block; if(debug_synchronous) { std::cout << "block_size " << block_size << '\n'; std::cout << "number of blocks " << number_of_blocks << '\n'; std::cout << "number of blocks limit " << number_of_blocks_limit << '\n'; std::cout << "items_per_block " << items_per_block << '\n'; } if(number_of_blocks > 1) { // Pointer to array with block_prefixes result_type * block_prefixes = static_cast(temporary_storage); static constexpr auto aligned_size_limit = number_of_blocks_limit * items_per_block; // Launch number_of_blocks_limit blocks while there is still at least as many blocks left as the limit const auto number_of_launch = (size + aligned_size_limit - 1) / aligned_size_limit; for(size_t i = 0, offset = 0; i < number_of_launch; ++i, offset += aligned_size_limit) { const auto current_size = std::min(size - offset, aligned_size_limit); const auto current_blocks = (current_size + items_per_block - 1) / items_per_block; if(debug_synchronous) start = std::chrono::high_resolution_clock::now(); detail::block_reduce_kernel <<>>( input + offset, current_size, block_prefixes + i * number_of_blocks_limit, initial_value, reduce_op); ROCPRIM_DETAIL_HIP_SYNC_AND_RETURN_ON_ERROR("block_reduce_kernel", current_size, start); } void * nested_temp_storage = static_cast(block_prefixes + number_of_blocks); auto nested_temp_storage_size = storage_size - (number_of_blocks * sizeof(result_type)); if(debug_synchronous) start = std::chrono::high_resolution_clock::now(); auto error = reduce_impl( nested_temp_storage, nested_temp_storage_size, block_prefixes, // input output, // output initial_value, number_of_blocks, // input size reduce_op, stream, debug_synchronous ); if(error != cudaSuccess) return error; ROCPRIM_DETAIL_HIP_SYNC("nested_device_reduce", number_of_blocks, start); } else { if(debug_synchronous) start = std::chrono::high_resolution_clock::now(); detail::block_reduce_kernel <<>>( input, size, output, initial_value, reduce_op ); ROCPRIM_DETAIL_HIP_SYNC_AND_RETURN_ON_ERROR("block_reduce_kernel", size, start); } return cudaSuccess; } #undef ROCPRIM_DETAIL_HIP_SYNC_AND_RETURN_ON_ERROR #undef ROCPRIM_DETAIL_HIP_SYNC } // end of detail namespace /// \brief Parallel reduction primitive for device level. /// /// reduce function performs a device-wide reduction operation /// using binary \p reduce_op operator. /// /// \par Overview /// * Does not support non-commutative reduction operators. Reduction operator should also be /// associative. When used with non-associative functions the results may be non-deterministic /// and/or vary in precision. /// * Returns the required size of \p temporary_storage in \p storage_size /// if \p temporary_storage in a null pointer. /// * Ranges specified by \p input must have at least \p size elements, while \p output /// only needs one element. /// * By default, the input type is used for accumulation. A custom type /// can be specified using rocprim::transform_iterator, see the example below. /// /// \tparam Config - [optional] configuration of the primitive. It can be \p reduce_config or /// a custom class with the same members. /// \tparam InputIterator - random-access iterator type of the input range. Must meet the /// requirements of a C++ InputIterator concept. It can be a simple pointer type. /// \tparam OutputIterator - random-access iterator type of the output range. Must meet the /// requirements of a C++ OutputIterator concept. It can be a simple pointer type. /// \tparam InitValueType - type of the initial value. /// \tparam BinaryFunction - type of binary function used for reduction. Default type /// is \p rocprim::plus, where \p T is a \p value_type of \p InputIterator. /// /// \param [in] temporary_storage - pointer to a device-accessible temporary storage. When /// a null pointer is passed, the required allocation size (in bytes) is written to /// \p storage_size and function returns without performing the reduction operation. /// \param [in,out] storage_size - reference to a size (in bytes) of \p temporary_storage. /// \param [in] input - iterator to the first element in the range to reduce. /// \param [out] output - iterator to the first element in the output range. It can be /// same as \p input. /// \param [in] initial_value - initial value to start the reduction. /// \param [in] size - number of element in the input range. /// \param [in] reduce_op - binary operation function object that will be used for reduction. /// The signature of the function should be equivalent to the following: /// T f(const T &a, const T &b);. The signature does not need to have /// const &, but function object must not modify the objects passed to it. /// The default value is \p BinaryFunction(). /// \param [in] stream - [optional] HIP stream object. The default is \p 0 (default stream). /// \param [in] debug_synchronous - [optional] If true, synchronization after every kernel /// launch is forced in order to check for errors. The default value is \p false. /// /// \returns \p cudaSuccess (\p 0) after successful reduction; otherwise a HIP runtime error of /// type \p cudaError_t. /// /// \par Example /// \parblock /// In this example a device-level min-reduction operation is performed on an array of /// integer values (shorts are reduced into ints) using custom operator. /// /// \code{.cpp} /// #include /// /// // custom reduce function /// auto min_op = /// [] __device__ (int a, int b) -> int /// { /// return a < b ? a : b; /// }; /// /// // Prepare input and output (declare pointers, allocate device memory etc.) /// size_t input_size; // e.g., 8 /// short * input; // e.g., [4, 7, 6, 2, 5, 1, 3, 8] /// int * output; // empty array of 1 element /// int start_value; // e.g., 9 /// /// size_t temporary_storage_size_bytes; /// void * temporary_storage_ptr = nullptr; /// // Get required size of the temporary storage /// rocprim::reduce( /// temporary_storage_ptr, temporary_storage_size_bytes, /// input, output, start_value, input_size, min_op /// ); /// /// // allocate temporary storage /// cudaMalloc(&temporary_storage_ptr, temporary_storage_size_bytes); /// /// // perform reduce /// rocprim::reduce( /// temporary_storage_ptr, temporary_storage_size_bytes, /// input, output, start_value, input_size, min_op /// ); /// // output: [1] /// \endcode /// /// The same example as above, but now a custom accumulator type is specified. /// /// \code{.cpp} /// #include /// /// auto min_op = /// [] __device__ (int a, int b) -> int /// { /// return a < b ? a : b; /// }; /// /// size_t input_size; /// short * input; /// int * output; /// int start_value; /// /// // Use a transform iterator to specifiy a custom accumulator type /// auto input_iterator = rocprim::make_transform_iterator( /// input, [] __device__ (T in) { return static_cast(in); }); /// /// size_t temporary_storage_size_bytes; /// void * temporary_storage_ptr = nullptr; /// // Use the transform iterator /// rocprim::reduce( /// temporary_storage_ptr, temporary_storage_size_bytes, /// input_iterator, output, start_value, input_size, min_op /// ); /// /// cudaMalloc(&temporary_storage_ptr, temporary_storage_size_bytes); /// /// rocprim::reduce( /// temporary_storage_ptr, temporary_storage_size_bytes, /// input_iterator, output, start_value, input_size, min_op /// ); /// \endcode /// \endparblock template< class Config = default_config, class InputIterator, class OutputIterator, class InitValueType, class BinaryFunction = ::rocprim::plus::value_type> > inline cudaError_t reduce(void * temporary_storage, size_t& storage_size, InputIterator input, OutputIterator output, const InitValueType initial_value, const size_t size, BinaryFunction reduce_op = BinaryFunction(), const cudaStream_t stream = 0, bool debug_synchronous = false) { return detail::reduce_impl( temporary_storage, storage_size, input, output, initial_value, size, reduce_op, stream, debug_synchronous ); } /// \brief Parallel reduce primitive for device level. /// /// reduce function performs a device-wide reduction operation /// using binary \p reduce_op operator. /// /// \par Overview /// * Does not support non-commutative reduction operators. Reduction operator should also be /// associative. When used with non-associative functions the results may be non-deterministic /// and/or vary in precision. /// * Returns the required size of \p temporary_storage in \p storage_size /// if \p temporary_storage in a null pointer. /// * Ranges specified by \p input must have at least \p size elements, while \p output /// only needs one element. /// * By default, the input type is used for accumulation. A custom type /// can be specified using rocprim::transform_iterator, see the example below. /// /// \tparam Config - [optional] configuration of the primitive. It can be \p reduce_config or /// a custom class with the same members. /// \tparam InputIterator - random-access iterator type of the input range. Must meet the /// requirements of a C++ InputIterator concept. It can be a simple pointer type. /// \tparam OutputIterator - random-access iterator type of the output range. Must meet the /// requirements of a C++ OutputIterator concept. It can be a simple pointer type. /// \tparam BinaryFunction - type of binary function used for reduction. Default type /// is \p rocprim::plus, where \p T is a \p value_type of \p InputIterator. /// /// \param [in] temporary_storage - pointer to a device-accessible temporary storage. When /// a null pointer is passed, the required allocation size (in bytes) is written to /// \p storage_size and function returns without performing the reduction operation. /// \param [in,out] storage_size - reference to a size (in bytes) of \p temporary_storage. /// \param [in] input - iterator to the first element in the range to reduce. /// \param [out] output - iterator to the first element in the output range. It can be /// same as \p input. /// \param [in] size - number of element in the input range. /// \param [in] reduce_op - binary operation function object that will be used for reduction. /// The signature of the function should be equivalent to the following: /// T f(const T &a, const T &b);. The signature does not need to have /// const &, but function object must not modify the objects passed to it. /// Default is BinaryFunction(). /// \param [in] stream - [optional] HIP stream object. Default is \p 0 (default stream). /// \param [in] debug_synchronous - [optional] If true, synchronization after every kernel /// launch is forced in order to check for errors. Default value is \p false. /// /// \returns \p cudaSuccess (\p 0) after successful reduction; otherwise a HIP runtime error of /// type \p cudaError_t. /// /// \par Example /// \parblock /// In this example a device-level sum operation is performed on an array of /// integer values (shorts are reduced into ints). /// /// \code{.cpp} /// #include /// /// // Prepare input and output (declare pointers, allocate device memory etc.) /// size_t input_size; // e.g., 8 /// short * input; // e.g., [1, 2, 3, 4, 5, 6, 7, 8] /// int * output; // empty array of 1 element /// /// size_t temporary_storage_size_bytes; /// void * temporary_storage_ptr = nullptr; /// // Get required size of the temporary storage /// rocprim::reduce( /// temporary_storage_ptr, temporary_storage_size_bytes, /// input, output, input_size, rocprim::plus() /// ); /// /// // allocate temporary storage /// cudaMalloc(&temporary_storage_ptr, temporary_storage_size_bytes); /// /// // perform reduce /// rocprim::reduce( /// temporary_storage_ptr, temporary_storage_size_bytes, /// input, output, input_size, rocprim::plus() /// ); /// // output: [36] /// \endcode /// /// The same example as above, but now a custom accumulator type is specified. /// /// \code{.cpp} /// #include /// /// size_t input_size; /// short * input; /// int * output; /// /// // Use a transform iterator to specifiy a custom accumulator type /// auto input_iterator = rocprim::make_transform_iterator( /// input, [] __device__ (T in) { return static_cast(in); }); /// /// size_t temporary_storage_size_bytes; /// void * temporary_storage_ptr = nullptr; /// // Use the transform iterator /// rocprim::reduce( /// temporary_storage_ptr, temporary_storage_size_bytes, /// input_iterator, output, start_value, input_size, rocprim::plus() /// ); /// /// cudaMalloc(&temporary_storage_ptr, temporary_storage_size_bytes); /// /// rocprim::reduce( /// temporary_storage_ptr, temporary_storage_size_bytes, /// input_iterator, output, start_value, input_size, rocprim::plus() /// ); /// \endcode /// \endparblock template< class Config = default_config, class InputIterator, class OutputIterator, class BinaryFunction = ::rocprim::plus::value_type> > inline cudaError_t reduce(void * temporary_storage, size_t& storage_size, InputIterator input, OutputIterator output, const size_t size, BinaryFunction reduce_op = BinaryFunction(), const cudaStream_t stream = 0, bool debug_synchronous = false) { using input_type = typename std::iterator_traits::value_type; return detail::reduce_impl( temporary_storage, storage_size, input, output, input_type(), size, reduce_op, stream, debug_synchronous ); } /// @} // end of group devicemodule END_ROCPRIM_NAMESPACE #endif // ROCPRIM_DEVICE_DEVICE_REDUCE_HPP_