README.md 3.57 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# llama3
## 论文
[llama3](https://llama.meta.com/llama3/)

## 模型结构
Llama-3中选择了一个相对标准的decoder-only的transformer架构。与Llama-2相比,我们做了几个关键的改进。Llama 3使用了一个带有128K个标记的标记器,可以更有效地对语言进行编码,从而大大提高了模型的性能。为了提高Llama 3模型的推理效率,我们在8B和70B两个尺寸上都采用了分组查询关注(GQA)。我们在8,192个标记的序列上训练模型,使用掩码来确保self-attention不会跨越文档边界。

## 算法原理

<div align=center>
    <img src="./doc/method.png"/>
</div>

## 环境配置
-v 路径、docker_name和imageID根据实际情况修改

### Docker(方法一)

```bash
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-centos7.6-dtk23.10.1-py38
docker run -it -v /path/your_code_data/:/path/your_code_data/ -v /opt/hyhal/:/opt/hyhal/:ro --shm-size=32G --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name docker_name imageID bash

cd /your_code_path/llama3_pytorch
pip install -e .
```

### Dockerfile(方法二)

```bash
docker build --no-cache -t llama3:latest .
docker run -it -v /path/your_code_data/:/path/your_code_data/ -v /opt/hyhal/:/opt/hyhal/:ro --shm-size=32G --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name docker_name imageID bash

cd /your_code_path/llama3_pytorch
pip install -e .
```

### Anaconda(方法三)
关于本项目DCU显卡所需的特殊深度学习库可从[光合](https://developer.hpccube.com/tool/)开发者社区下载安装。
```bash
DTK驱动:dtk23.10.1
python:python3.8
torch:2.1.0
```
`Tips:以上dtk驱动、python、paddle等DCU相关工具版本需要严格一一对应`

其它非深度学习库安装方式如下:
```bash
pip install -e .
```

## 数据集
官方暂无

## 训练
暂无

## 推理
预训练模型下载方法请参考下面的[预训练权重](#预训练权重)章节,模型准备好后,执行
- Meta-Llama-3-8B-Instruct 模型
```bash
torchrun --nproc_per_node 1 example_chat_completion.py \
    --ckpt_dir Meta-Llama-3-8B-Instruct/original/ \
    --tokenizer_path Meta-Llama-3-8B-Instruct/original/tokenizer.model \
    --max_seq_len 512 --max_batch_size 6
```

- Meta-Llama-3-8B 模型
```bash
torchrun --nproc_per_node 1 example_text_completion.py \
    --ckpt_dir Meta-Llama-3-8B/original/ \
    --tokenizer_path Meta-Llama-3-8B/original/tokenizer.model \
    --max_seq_len 128 --max_batch_size 4
```

## result
- Meta-Llama-3-8B-Instruct
<div align=center>
    <img src="./doc/Meta-Llama-3-8B-Instruct.png"/>
</div>

- Meta-Llama-3-8B
<div align=center>
    <img src="./doc/Meta-Llama-3-8B.png"/>
</div>

### 精度
暂无


## 应用场景
### 算法类别
对话问答

### 热点应用行业
制造,广媒,家居,教育

## 预训练权重
1. 环境安装
```bash
pip install -U huggingface_hub hf_transfer
export HF_ENDPOINT=https://hf-mirror.com
```

2. 预训练模型下载,**token**参数通过huggingface账号获取
- Meta-Llama-3-8B-Instruct 模型
```bash
mkdir Meta-Llama-3-8B-Instruct
huggingface-cli download --resume-download meta-llama/Meta-Llama-3-8B-Instruct --include "original/*" --local-dir Meta-Llama-3-8B-Instruct --token hf_*
```
- Meta-Llama-3-8B 模型
```bash
mkdir Meta-Llama-3-8B
huggingface-cli download --resume-download meta-llama/Meta-Llama-3-8B --include "original/*" --local-dir Meta-Llama-3-8B --token hf_*
```

## 源码仓库及问题反馈
- https://developer.hpccube.com/codes/modelzoo/llama3_pytorch

## 参考资料
- https://github.com/meta-llama/llama3