cropper.py 10.4 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# coding: utf-8

import os.path as osp
from dataclasses import dataclass, field
from typing import List, Tuple, Union

import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
import numpy as np
import torch

from ..config.crop_config import CropConfig
from .crop import (
    average_bbox_lst,
    crop_image,
    crop_image_by_bbox,
    parse_bbox_from_landmark,
)
from .io import contiguous
from .rprint import rlog as log
from .face_analysis_diy import FaceAnalysisDIY
from .landmark_runner import LandmarkRunner


def make_abs_path(fn):
    return osp.join(osp.dirname(osp.realpath(__file__)), fn)


@dataclass
class Trajectory:
    start: int = -1  # start frame
    end: int = -1  # end frame
    lmk_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list)  # lmk list
    bbox_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list)  # bbox list
    M_c2o_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list)  # M_c2o list

    frame_rgb_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list)  # frame list
    lmk_crop_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list)  # lmk list
    frame_rgb_crop_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list)  # frame crop list


class Cropper(object):
    def __init__(self, **kwargs) -> None:
        self.crop_cfg: CropConfig = kwargs.get("crop_cfg", None)
        device_id = kwargs.get("device_id", 0)
        flag_force_cpu = kwargs.get("flag_force_cpu", False)
        if flag_force_cpu:
            device = "cpu"
            face_analysis_wrapper_provider = ["CPUExecutionProvider"]
        else:
            if torch.backends.mps.is_available():
                # Shape inference currently fails with CoreMLExecutionProvider
                # for the retinaface model
                device = "mps"
                face_analysis_wrapper_provider = ["CPUExecutionProvider"]
            else:
                device = "cuda"
                face_analysis_wrapper_provider = ["CUDAExecutionProvider"]
        self.landmark_runner = LandmarkRunner(
            ckpt_path=make_abs_path(self.crop_cfg.landmark_ckpt_path),
            onnx_provider=device,
            device_id=device_id,
        )
        self.landmark_runner.warmup()

        self.face_analysis_wrapper = FaceAnalysisDIY(
            name="buffalo_l",
            root=make_abs_path(self.crop_cfg.insightface_root),
            providers=face_analysis_wrapper_provider,
        )
        self.face_analysis_wrapper.prepare(ctx_id=device_id, det_size=(512, 512))
        self.face_analysis_wrapper.warmup()

    def update_config(self, user_args):
        for k, v in user_args.items():
            if hasattr(self.crop_cfg, k):
                setattr(self.crop_cfg, k, v)

    def crop_source_image(self, img_rgb_: np.ndarray, crop_cfg: CropConfig):
        # crop a source image and get neccessary information
        img_rgb = img_rgb_.copy()  # copy it

        img_bgr = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR)
        src_face = self.face_analysis_wrapper.get(
            img_bgr,
            flag_do_landmark_2d_106=True,
            direction=crop_cfg.direction,
            max_face_num=crop_cfg.max_face_num,
        )

        if len(src_face) == 0:
            log("No face detected in the source image.")
            return None
        elif len(src_face) > 1:
            log(f"More than one face detected in the image, only pick one face by rule {crop_cfg.direction}.")

        # NOTE: temporarily only pick the first face, to support multiple face in the future
        src_face = src_face[0]
        lmk = src_face.landmark_2d_106  # this is the 106 landmarks from insightface

        # crop the face
        ret_dct = crop_image(
            img_rgb,  # ndarray
            lmk,  # 106x2 or Nx2
            dsize=crop_cfg.dsize,
            scale=crop_cfg.scale,
            vx_ratio=crop_cfg.vx_ratio,
            vy_ratio=crop_cfg.vy_ratio,
            flag_do_rot=crop_cfg.flag_do_rot,
        )

        lmk = self.landmark_runner.run(img_rgb, lmk)
        ret_dct["lmk_crop"] = lmk

        # update a 256x256 version for network input
        ret_dct["img_crop_256x256"] = cv2.resize(ret_dct["img_crop"], (256, 256), interpolation=cv2.INTER_AREA)
        ret_dct["lmk_crop_256x256"] = ret_dct["lmk_crop"] * 256 / crop_cfg.dsize

        return ret_dct

    def crop_source_video(self, source_rgb_lst, crop_cfg: CropConfig, **kwargs):
        """Tracking based landmarks/alignment and cropping"""
        trajectory = Trajectory()
        direction = kwargs.get("direction", "large-small")
        for idx, frame_rgb in enumerate(source_rgb_lst):
            if idx == 0 or trajectory.start == -1:
                src_face = self.face_analysis_wrapper.get(
                    contiguous(frame_rgb[..., ::-1]),
                    flag_do_landmark_2d_106=True,
                    direction=crop_cfg.direction,
                    max_face_num=crop_cfg.max_face_num,
                )
                if len(src_face) == 0:
                    log(f"No face detected in the frame #{idx}")
                    continue
                elif len(src_face) > 1:
                    log(f"More than one face detected in the source frame_{idx}, only pick one face by rule {direction}.")
                src_face = src_face[0]
                lmk = src_face.landmark_2d_106
                lmk = self.landmark_runner.run(frame_rgb, lmk)
                trajectory.start, trajectory.end = idx, idx
            else:
                lmk = self.landmark_runner.run(frame_rgb, trajectory.lmk_lst[-1])
                trajectory.end = idx
            trajectory.lmk_lst.append(lmk)

            # crop the face
            ret_dct = crop_image(
                frame_rgb,  # ndarray
                lmk,  # 106x2 or Nx2
                dsize=crop_cfg.dsize,
                scale=crop_cfg.scale,
                vx_ratio=crop_cfg.vx_ratio,
                vy_ratio=crop_cfg.vy_ratio,
                flag_do_rot=crop_cfg.flag_do_rot,
            )
            lmk = self.landmark_runner.run(frame_rgb, lmk)
            ret_dct["lmk_crop"] = lmk

            # update a 256x256 version for network input
            ret_dct["img_crop_256x256"] = cv2.resize(ret_dct["img_crop"], (256, 256), interpolation=cv2.INTER_AREA)
            ret_dct["lmk_crop_256x256"] = ret_dct["lmk_crop"] * 256 / crop_cfg.dsize

            trajectory.frame_rgb_crop_lst.append(ret_dct["img_crop_256x256"])
            trajectory.lmk_crop_lst.append(ret_dct["lmk_crop_256x256"])
            trajectory.M_c2o_lst.append(ret_dct['M_c2o'])

        return {
            "frame_crop_lst": trajectory.frame_rgb_crop_lst,
            "lmk_crop_lst": trajectory.lmk_crop_lst,
            "M_c2o_lst": trajectory.M_c2o_lst,
        }

    def crop_driving_video(self, driving_rgb_lst, **kwargs):
        """Tracking based landmarks/alignment and cropping"""
        trajectory = Trajectory()
        direction = kwargs.get("direction", "large-small")
        for idx, frame_rgb in enumerate(driving_rgb_lst):
            if idx == 0 or trajectory.start == -1:
                src_face = self.face_analysis_wrapper.get(
                    contiguous(frame_rgb[..., ::-1]),
                    flag_do_landmark_2d_106=True,
                    direction=direction,
                )
                if len(src_face) == 0:
                    log(f"No face detected in the frame #{idx}")
                    continue
                elif len(src_face) > 1:
                    log(f"More than one face detected in the driving frame_{idx}, only pick one face by rule {direction}.")
                src_face = src_face[0]
                lmk = src_face.landmark_2d_106
                lmk = self.landmark_runner.run(frame_rgb, lmk)
                trajectory.start, trajectory.end = idx, idx
            else:
                lmk = self.landmark_runner.run(frame_rgb, trajectory.lmk_lst[-1])
                trajectory.end = idx

            trajectory.lmk_lst.append(lmk)
            ret_bbox = parse_bbox_from_landmark(
                lmk,
                scale=self.crop_cfg.scale_crop_driving_video,
                vx_ratio_crop_driving_video=self.crop_cfg.vx_ratio_crop_driving_video,
                vy_ratio=self.crop_cfg.vy_ratio_crop_driving_video,
            )["bbox"]
            bbox = [
                ret_bbox[0, 0],
                ret_bbox[0, 1],
                ret_bbox[2, 0],
                ret_bbox[2, 1],
            ]  # 4,
            trajectory.bbox_lst.append(bbox)  # bbox
            trajectory.frame_rgb_lst.append(frame_rgb)

        global_bbox = average_bbox_lst(trajectory.bbox_lst)

        for idx, (frame_rgb, lmk) in enumerate(zip(trajectory.frame_rgb_lst, trajectory.lmk_lst)):
            ret_dct = crop_image_by_bbox(
                frame_rgb,
                global_bbox,
                lmk=lmk,
                dsize=kwargs.get("dsize", 512),
                flag_rot=False,
                borderValue=(0, 0, 0),
            )
            trajectory.frame_rgb_crop_lst.append(ret_dct["img_crop"])
            trajectory.lmk_crop_lst.append(ret_dct["lmk_crop"])

        return {
            "frame_crop_lst": trajectory.frame_rgb_crop_lst,
            "lmk_crop_lst": trajectory.lmk_crop_lst,
        }


    def calc_lmks_from_cropped_video(self, driving_rgb_crop_lst, **kwargs):
        """Tracking based landmarks/alignment"""
        trajectory = Trajectory()
        direction = kwargs.get("direction", "large-small")

        for idx, frame_rgb_crop in enumerate(driving_rgb_crop_lst):
            if idx == 0 or trajectory.start == -1:
                src_face = self.face_analysis_wrapper.get(
                    contiguous(frame_rgb_crop[..., ::-1]),  # convert to BGR
                    flag_do_landmark_2d_106=True,
                    direction=direction,
                )
                if len(src_face) == 0:
                    log(f"No face detected in the frame #{idx}")
                    raise Exception(f"No face detected in the frame #{idx}")
                elif len(src_face) > 1:
                    log(f"More than one face detected in the driving frame_{idx}, only pick one face by rule {direction}.")
                src_face = src_face[0]
                lmk = src_face.landmark_2d_106
                lmk = self.landmark_runner.run(frame_rgb_crop, lmk)
                trajectory.start, trajectory.end = idx, idx
            else:
                lmk = self.landmark_runner.run(frame_rgb_crop, trajectory.lmk_lst[-1])
                trajectory.end = idx

            trajectory.lmk_lst.append(lmk)
        return trajectory.lmk_lst