live_portrait_pipeline.py 22.1 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
# coding: utf-8

"""
Pipeline of LivePortrait
"""

import torch
torch.backends.cudnn.benchmark = True # disable CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR warning

import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
import numpy as np
import os
import os.path as osp
from rich.progress import track

from .config.argument_config import ArgumentConfig
from .config.inference_config import InferenceConfig
from .config.crop_config import CropConfig
from .utils.cropper import Cropper
from .utils.camera import get_rotation_matrix
from .utils.video import images2video, concat_frames, get_fps, add_audio_to_video, has_audio_stream
from .utils.crop import _transform_img, prepare_paste_back, paste_back
from .utils.io import load_image_rgb, load_video, resize_to_limit, dump, load
from .utils.helper import mkdir, basename, dct2device, is_video, is_template, remove_suffix, is_image
from .utils.filter import smooth
from .utils.rprint import rlog as log
# from .utils.viz import viz_lmk
from .live_portrait_wrapper import LivePortraitWrapper


def make_abs_path(fn):
    return osp.join(osp.dirname(osp.realpath(__file__)), fn)


class LivePortraitPipeline(object):

    def __init__(self, inference_cfg: InferenceConfig, crop_cfg: CropConfig):
        self.live_portrait_wrapper: LivePortraitWrapper = LivePortraitWrapper(inference_cfg=inference_cfg)
        self.cropper: Cropper = Cropper(crop_cfg=crop_cfg)

    def make_motion_template(self, I_lst, c_eyes_lst, c_lip_lst, **kwargs):
        n_frames = I_lst.shape[0]
        template_dct = {
            'n_frames': n_frames,
            'output_fps': kwargs.get('output_fps', 25),
            'motion': [],
            'c_eyes_lst': [],
            'c_lip_lst': [],
            'x_i_info_lst': [],
        }

        for i in track(range(n_frames), description='Making motion templates...', total=n_frames):
            # collect s, R, δ and t for inference
            I_i = I_lst[i]
            x_i_info = self.live_portrait_wrapper.get_kp_info(I_i)
            R_i = get_rotation_matrix(x_i_info['pitch'], x_i_info['yaw'], x_i_info['roll'])

            item_dct = {
                'scale': x_i_info['scale'].cpu().numpy().astype(np.float32),
                'R': R_i.cpu().numpy().astype(np.float32),
                'exp': x_i_info['exp'].cpu().numpy().astype(np.float32),
                't': x_i_info['t'].cpu().numpy().astype(np.float32),
            }

            template_dct['motion'].append(item_dct)

            c_eyes = c_eyes_lst[i].astype(np.float32)
            template_dct['c_eyes_lst'].append(c_eyes)

            c_lip = c_lip_lst[i].astype(np.float32)
            template_dct['c_lip_lst'].append(c_lip)

            template_dct['x_i_info_lst'].append(x_i_info)

        return template_dct

    def execute(self, args: ArgumentConfig):
        # for convenience
        inf_cfg = self.live_portrait_wrapper.inference_cfg
        device = self.live_portrait_wrapper.device
        crop_cfg = self.cropper.crop_cfg

        ######## load source input ########
        flag_is_source_video = False
        source_fps = None
        if is_image(args.source):
            flag_is_source_video = False
            img_rgb = load_image_rgb(args.source)
            img_rgb = resize_to_limit(img_rgb, inf_cfg.source_max_dim, inf_cfg.source_division)
            log(f"Load source image from {args.source}")
            source_rgb_lst = [img_rgb]
        elif is_video(args.source):
            flag_is_source_video = True
            source_rgb_lst = load_video(args.source)
            source_rgb_lst = [resize_to_limit(img, inf_cfg.source_max_dim, inf_cfg.source_division) for img in source_rgb_lst]
            source_fps = int(get_fps(args.source))
            log(f"Load source video from {args.source}, FPS is {source_fps}")
        else:  # source input is an unknown format
            raise Exception(f"Unknown source format: {args.source}")

        ######## process driving info ########
        flag_load_from_template = is_template(args.driving)
        driving_rgb_crop_256x256_lst = None
        wfp_template = None

        if flag_load_from_template:
            # NOTE: load from template, it is fast, but the cropping video is None
            log(f"Load from template: {args.driving}, NOT the video, so the cropping video and audio are both NULL.", style='bold green')
            driving_template_dct = load(args.driving)
            c_d_eyes_lst = driving_template_dct['c_eyes_lst'] if 'c_eyes_lst' in driving_template_dct.keys() else driving_template_dct['c_d_eyes_lst'] # compatible with previous keys
            c_d_lip_lst = driving_template_dct['c_lip_lst'] if 'c_lip_lst' in driving_template_dct.keys() else driving_template_dct['c_d_lip_lst']
            driving_n_frames = driving_template_dct['n_frames']
            if flag_is_source_video:
                n_frames = min(len(source_rgb_lst), driving_n_frames)  # minimum number as the number of the animated frames
            else:
                n_frames = driving_n_frames

            # set output_fps
            output_fps = driving_template_dct.get('output_fps', inf_cfg.output_fps)
            log(f'The FPS of template: {output_fps}')

            if args.flag_crop_driving_video:
                log("Warning: flag_crop_driving_video is True, but the driving info is a template, so it is ignored.")

        elif osp.exists(args.driving) and is_video(args.driving):
            # load from video file, AND make motion template
            output_fps = int(get_fps(args.driving))
            log(f"Load driving video from: {args.driving}, FPS is {output_fps}")

            driving_rgb_lst = load_video(args.driving)
            driving_n_frames = len(driving_rgb_lst)

            ######## make motion template ########
            log("Start making driving motion template...")
            if flag_is_source_video:
                n_frames = min(len(source_rgb_lst), driving_n_frames)  # minimum number as the number of the animated frames
                driving_rgb_lst = driving_rgb_lst[:n_frames]
            else:
                n_frames = driving_n_frames
            if inf_cfg.flag_crop_driving_video:
                ret_d = self.cropper.crop_driving_video(driving_rgb_lst)
                log(f'Driving video is cropped, {len(ret_d["frame_crop_lst"])} frames are processed.')
                if len(ret_d["frame_crop_lst"]) is not n_frames:
                    n_frames = min(n_frames, len(ret_d["frame_crop_lst"]))
                driving_rgb_crop_lst, driving_lmk_crop_lst = ret_d['frame_crop_lst'], ret_d['lmk_crop_lst']
                driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_crop_lst]
            else:
                driving_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(driving_rgb_lst)
                driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_lst]  # force to resize to 256x256
            #######################################

            c_d_eyes_lst, c_d_lip_lst = self.live_portrait_wrapper.calc_ratio(driving_lmk_crop_lst)
            # save the motion template
            I_d_lst = self.live_portrait_wrapper.prepare_videos(driving_rgb_crop_256x256_lst)
            driving_template_dct = self.make_motion_template(I_d_lst, c_d_eyes_lst, c_d_lip_lst, output_fps=output_fps)

            wfp_template = remove_suffix(args.driving) + '.pkl'
            dump(wfp_template, driving_template_dct)
            log(f"Dump motion template to {wfp_template}")

        else:
            raise Exception(f"{args.driving} not exists or unsupported driving info types!")

        ######## prepare for pasteback ########
        I_p_pstbk_lst = None
        if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
            I_p_pstbk_lst = []
            log("Prepared pasteback mask done.")

        I_p_lst = []
        R_d_0, x_d_0_info = None, None
        flag_normalize_lip = inf_cfg.flag_normalize_lip  # not overwrite
        flag_source_video_eye_retargeting = inf_cfg.flag_source_video_eye_retargeting  # not overwrite
        lip_delta_before_animation, eye_delta_before_animation = None, None

        ######## process source info ########
        if flag_is_source_video:
            log(f"Start making source motion template...")

            source_rgb_lst = source_rgb_lst[:n_frames]
            if inf_cfg.flag_do_crop:
                ret_s = self.cropper.crop_source_video(source_rgb_lst, crop_cfg)
                log(f'Source video is cropped, {len(ret_s["frame_crop_lst"])} frames are processed.')
                if len(ret_s["frame_crop_lst"]) is not n_frames:
                    n_frames = min(n_frames, len(ret_s["frame_crop_lst"]))
                img_crop_256x256_lst, source_lmk_crop_lst, source_M_c2o_lst = ret_s['frame_crop_lst'], ret_s['lmk_crop_lst'], ret_s['M_c2o_lst']
            else:
                source_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(source_rgb_lst)
                img_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in source_rgb_lst]  # force to resize to 256x256

            c_s_eyes_lst, c_s_lip_lst = self.live_portrait_wrapper.calc_ratio(source_lmk_crop_lst)
            # save the motion template
            I_s_lst = self.live_portrait_wrapper.prepare_videos(img_crop_256x256_lst)
            source_template_dct = self.make_motion_template(I_s_lst, c_s_eyes_lst, c_s_lip_lst, output_fps=source_fps)

            x_d_exp_lst = [source_template_dct['motion'][i]['exp'] + driving_template_dct['motion'][i]['exp'] - driving_template_dct['motion'][0]['exp'] for i in range(n_frames)]
            x_d_exp_lst_smooth = smooth(x_d_exp_lst, source_template_dct['motion'][0]['exp'].shape, device, inf_cfg.driving_smooth_observation_variance)
            if inf_cfg.flag_video_editing_head_rotation:
                key_r = 'R' if 'R' in driving_template_dct['motion'][0].keys() else 'R_d'  # compatible with previous keys
                x_d_r_lst = [(np.dot(driving_template_dct['motion'][i][key_r], driving_template_dct['motion'][0][key_r].transpose(0, 2, 1))) @ source_template_dct['motion'][i]['R'] for i in range(n_frames)]
                x_d_r_lst_smooth = smooth(x_d_r_lst, source_template_dct['motion'][0]['R'].shape, device, inf_cfg.driving_smooth_observation_variance)
        else:  # if the input is a source image, process it only once
            crop_info = self.cropper.crop_source_image(source_rgb_lst[0], crop_cfg)
            if crop_info is None:
                raise Exception("No face detected in the source image!")
            source_lmk = crop_info['lmk_crop']
            img_crop_256x256 = crop_info['img_crop_256x256']

            if inf_cfg.flag_do_crop:
                I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
            else:
                img_crop_256x256 = cv2.resize(source_rgb_lst[0], (256, 256))  # force to resize to 256x256
                I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
            x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
            x_c_s = x_s_info['kp']
            R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
            f_s = self.live_portrait_wrapper.extract_feature_3d(I_s)
            x_s = self.live_portrait_wrapper.transform_keypoint(x_s_info)

            # let lip-open scalar to be 0 at first
            if flag_normalize_lip:
                c_d_lip_before_animation = [0.]
                combined_lip_ratio_tensor_before_animation = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_before_animation, source_lmk)
                if combined_lip_ratio_tensor_before_animation[0][0] >= inf_cfg.lip_normalize_threshold:
                    lip_delta_before_animation = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor_before_animation)

            if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
                mask_ori_float = prepare_paste_back(inf_cfg.mask_crop, crop_info['M_c2o'], dsize=(source_rgb_lst[0].shape[1], source_rgb_lst[0].shape[0]))

        ######## animate ########
        log(f"The animated video consists of {n_frames} frames.")
        for i in track(range(n_frames), description='🚀Animating...', total=n_frames):
            if flag_is_source_video:  # source video
                x_s_info_tiny = source_template_dct['motion'][i]
                x_s_info_tiny = dct2device(x_s_info_tiny, device)

                source_lmk = source_lmk_crop_lst[i]
                img_crop_256x256 = img_crop_256x256_lst[i]
                I_s = I_s_lst[i]

                x_s_info = source_template_dct['x_i_info_lst'][i]
                x_c_s = x_s_info['kp']
                R_s = x_s_info_tiny['R']
                f_s = self.live_portrait_wrapper.extract_feature_3d(I_s)
                x_s = self.live_portrait_wrapper.transform_keypoint(x_s_info)

                # let lip-open scalar to be 0 at first if the input is a video
                if flag_normalize_lip:
                    c_d_lip_before_animation = [0.]
                    combined_lip_ratio_tensor_before_animation = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_before_animation, source_lmk)
                    if combined_lip_ratio_tensor_before_animation[0][0] >= inf_cfg.lip_normalize_threshold:
                        lip_delta_before_animation = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor_before_animation)

                # let eye-open scalar to be the same as the first frame if the latter is eye-open state
                if flag_source_video_eye_retargeting:
                    if i == 0:
                        combined_eye_ratio_tensor_frame_zero = c_s_eyes_lst[0]
                        c_d_eye_before_animation_frame_zero = [[combined_eye_ratio_tensor_frame_zero[0][:2].mean()]]
                        if c_d_eye_before_animation_frame_zero[0][0] < inf_cfg.source_video_eye_retargeting_threshold:
                            c_d_eye_before_animation_frame_zero = [[0.39]]
                    combined_eye_ratio_tensor_before_animation = self.live_portrait_wrapper.calc_combined_eye_ratio(c_d_eye_before_animation_frame_zero, source_lmk)
                    eye_delta_before_animation = self.live_portrait_wrapper.retarget_eye(x_s, combined_eye_ratio_tensor_before_animation)

                if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:  # prepare for paste back
                    mask_ori_float = prepare_paste_back(inf_cfg.mask_crop, source_M_c2o_lst[i], dsize=(source_rgb_lst[i].shape[1], source_rgb_lst[i].shape[0]))

            x_d_i_info = driving_template_dct['motion'][i]
            x_d_i_info = dct2device(x_d_i_info, device)
            R_d_i = x_d_i_info['R'] if 'R' in x_d_i_info.keys() else x_d_i_info['R_d']  # compatible with previous keys

            if i == 0:  # cache the first frame
                R_d_0 = R_d_i
                x_d_0_info = x_d_i_info

            if inf_cfg.flag_relative_motion:
                if flag_is_source_video:
                    if inf_cfg.flag_video_editing_head_rotation:
                        R_new = x_d_r_lst_smooth[i]
                    else:
                        R_new = R_s
                else:
                    R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s

                delta_new = x_d_exp_lst_smooth[i] if flag_is_source_video else x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp'])
                scale_new = x_s_info['scale'] if flag_is_source_video else x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
                t_new = x_s_info['t'] if flag_is_source_video else x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
            else:
                R_new = R_d_i
                delta_new = x_d_i_info['exp']
                scale_new = x_s_info['scale']
                t_new = x_d_i_info['t']

            t_new[..., 2].fill_(0)  # zero tz
            x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new

            # Algorithm 1:
            if not inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
                # without stitching or retargeting
                if flag_normalize_lip and lip_delta_before_animation is not None:
                    x_d_i_new += lip_delta_before_animation
                if flag_source_video_eye_retargeting and eye_delta_before_animation is not None:
                    x_d_i_new += eye_delta_before_animation
                else:
                    pass
            elif inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
                # with stitching and without retargeting
                if flag_normalize_lip and lip_delta_before_animation is not None:
                    x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new) + lip_delta_before_animation
                else:
                    x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)
                if flag_source_video_eye_retargeting and eye_delta_before_animation is not None:
                    x_d_i_new += eye_delta_before_animation
            else:
                eyes_delta, lip_delta = None, None
                if inf_cfg.flag_eye_retargeting:
                    c_d_eyes_i = c_d_eyes_lst[i]
                    combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio(c_d_eyes_i, source_lmk)
                    # ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
                    eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s, combined_eye_ratio_tensor)
                if inf_cfg.flag_lip_retargeting:
                    c_d_lip_i = c_d_lip_lst[i]
                    combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_i, source_lmk)
                    # ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
                    lip_delta = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor)

                if inf_cfg.flag_relative_motion:  # use x_s
                    x_d_i_new = x_s + \
                        (eyes_delta if eyes_delta is not None else 0) + \
                        (lip_delta if lip_delta is not None else 0)
                else:  # use x_d,i
                    x_d_i_new = x_d_i_new + \
                        (eyes_delta if eyes_delta is not None else 0) + \
                        (lip_delta if lip_delta is not None else 0)

                if inf_cfg.flag_stitching:
                    x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)

            out = self.live_portrait_wrapper.warp_decode(f_s, x_s, x_d_i_new)
            I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0]
            I_p_lst.append(I_p_i)

            if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
                # TODO: the paste back procedure is slow, considering optimize it using multi-threading or GPU
                if flag_is_source_video:
                    I_p_pstbk = paste_back(I_p_i, source_M_c2o_lst[i], source_rgb_lst[i], mask_ori_float)
                else:
                    I_p_pstbk = paste_back(I_p_i, crop_info['M_c2o'], source_rgb_lst[0], mask_ori_float)
                I_p_pstbk_lst.append(I_p_pstbk)

        mkdir(args.output_dir)
        wfp_concat = None
        flag_source_has_audio = flag_is_source_video and has_audio_stream(args.source)
        flag_driving_has_audio = (not flag_load_from_template) and has_audio_stream(args.driving)

        ######### build the final concatenation result #########
        # driving frame | source frame | generation, or source frame | generation
        if flag_is_source_video:
            frames_concatenated = concat_frames(driving_rgb_crop_256x256_lst, img_crop_256x256_lst, I_p_lst)
        else:
            frames_concatenated = concat_frames(driving_rgb_crop_256x256_lst, [img_crop_256x256], I_p_lst)
        wfp_concat = osp.join(args.output_dir, f'{basename(args.source)}--{basename(args.driving)}_concat.mp4')

        # NOTE: update output fps
        output_fps = source_fps if flag_is_source_video else output_fps
        images2video(frames_concatenated, wfp=wfp_concat, fps=output_fps)

        if flag_source_has_audio or flag_driving_has_audio:
            # final result with concatenation
            wfp_concat_with_audio = osp.join(args.output_dir, f'{basename(args.source)}--{basename(args.driving)}_concat_with_audio.mp4')
            # audio_from_which_video = args.source if flag_source_has_audio else args.driving # default source audio
            audio_from_which_video = args.driving if flag_driving_has_audio else args.source # default driving audio
            log(f"Audio is selected from {audio_from_which_video}, concat mode")
            add_audio_to_video(wfp_concat, audio_from_which_video, wfp_concat_with_audio)
            os.replace(wfp_concat_with_audio, wfp_concat)
            log(f"Replace {wfp_concat} with {wfp_concat_with_audio}")

        # save the animated result
        wfp = osp.join(args.output_dir, f'{basename(args.source)}--{basename(args.driving)}.mp4')
        if I_p_pstbk_lst is not None and len(I_p_pstbk_lst) > 0:
            images2video(I_p_pstbk_lst, wfp=wfp, fps=output_fps)
        else:
            images2video(I_p_lst, wfp=wfp, fps=output_fps)

        ######### build the final result #########
        if flag_source_has_audio or flag_driving_has_audio:
            wfp_with_audio = osp.join(args.output_dir, f'{basename(args.source)}--{basename(args.driving)}_with_audio.mp4')
            # audio_from_which_video = args.source if flag_source_has_audio else args.driving # default source audio
            audio_from_which_video = args.driving if flag_driving_has_audio else args.source # default driving audio
            log(f"Audio is selected from {audio_from_which_video}")
            add_audio_to_video(wfp, audio_from_which_video, wfp_with_audio)
            os.replace(wfp_with_audio, wfp)
            log(f"Replace {wfp} with {wfp_with_audio}")

        # final log
        if wfp_template not in (None, ''):
            log(f'Animated template: {wfp_template}, you can specify `-d` argument with this template path next time to avoid cropping video, motion making and protecting privacy.', style='bold green')
        log(f'Animated video: {wfp}')
        log(f'Animated video with concat: {wfp_concat}')

        return wfp, wfp_concat