SelfAttention_Family.py 12.5 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import torch
import torch.nn as nn
import numpy as np
from math import sqrt
from utils.masking import TriangularCausalMask, ProbMask
from reformer_pytorch import LSHSelfAttention
from einops import rearrange


# Code implementation from https://github.com/thuml/Flowformer
class FlowAttention(nn.Module):
    def __init__(self, attention_dropout=0.1):
        super(FlowAttention, self).__init__()
        self.dropout = nn.Dropout(attention_dropout)

    def kernel_method(self, x):
        return torch.sigmoid(x)

    def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
        queries = queries.transpose(1, 2)
        keys = keys.transpose(1, 2)
        values = values.transpose(1, 2)
        # kernel
        queries = self.kernel_method(queries)
        keys = self.kernel_method(keys)
        # incoming and outgoing
        normalizer_row = 1.0 / (torch.einsum("nhld,nhd->nhl", queries + 1e-6, keys.sum(dim=2) + 1e-6))
        normalizer_col = 1.0 / (torch.einsum("nhsd,nhd->nhs", keys + 1e-6, queries.sum(dim=2) + 1e-6))
        # reweighting
        normalizer_row_refine = (
            torch.einsum("nhld,nhd->nhl", queries + 1e-6, (keys * normalizer_col[:, :, :, None]).sum(dim=2) + 1e-6))
        normalizer_col_refine = (
            torch.einsum("nhsd,nhd->nhs", keys + 1e-6, (queries * normalizer_row[:, :, :, None]).sum(dim=2) + 1e-6))
        # competition and allocation
        normalizer_row_refine = torch.sigmoid(
            normalizer_row_refine * (float(queries.shape[2]) / float(keys.shape[2])))
        normalizer_col_refine = torch.softmax(normalizer_col_refine, dim=-1) * keys.shape[2]  # B h L vis
        # multiply
        kv = keys.transpose(-2, -1) @ (values * normalizer_col_refine[:, :, :, None])
        x = (((queries @ kv) * normalizer_row[:, :, :, None]) * normalizer_row_refine[:, :, :, None]).transpose(1,
                                                                                                                2).contiguous()
        return x, None


# Code implementation from https://github.com/shreyansh26/FlashAttention-PyTorch
class FlashAttention(nn.Module):
    def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
        super(FlashAttention, self).__init__()
        self.scale = scale
        self.mask_flag = mask_flag
        self.output_attention = output_attention
        self.dropout = nn.Dropout(attention_dropout)

    def flash_attention_forward(self, Q, K, V, mask=None):
        BLOCK_SIZE = 32
        NEG_INF = -1e10  # -infinity
        EPSILON = 1e-10
        # mask = torch.randint(0, 2, (128, 8)).to(device='cuda')
        O = torch.zeros_like(Q, requires_grad=True)
        l = torch.zeros(Q.shape[:-1])[..., None]
        m = torch.ones(Q.shape[:-1])[..., None] * NEG_INF

        O = O.to(device='cuda')
        l = l.to(device='cuda')
        m = m.to(device='cuda')

        Q_BLOCK_SIZE = min(BLOCK_SIZE, Q.shape[-1])
        KV_BLOCK_SIZE = BLOCK_SIZE

        Q_BLOCKS = torch.split(Q, Q_BLOCK_SIZE, dim=2)
        K_BLOCKS = torch.split(K, KV_BLOCK_SIZE, dim=2)
        V_BLOCKS = torch.split(V, KV_BLOCK_SIZE, dim=2)
        if mask is not None:
            mask_BLOCKS = list(torch.split(mask, KV_BLOCK_SIZE, dim=1))

        Tr = len(Q_BLOCKS)
        Tc = len(K_BLOCKS)

        O_BLOCKS = list(torch.split(O, Q_BLOCK_SIZE, dim=2))
        l_BLOCKS = list(torch.split(l, Q_BLOCK_SIZE, dim=2))
        m_BLOCKS = list(torch.split(m, Q_BLOCK_SIZE, dim=2))

        for j in range(Tc):
            Kj = K_BLOCKS[j]
            Vj = V_BLOCKS[j]
            if mask is not None:
                maskj = mask_BLOCKS[j]

            for i in range(Tr):
                Qi = Q_BLOCKS[i]
                Oi = O_BLOCKS[i]
                li = l_BLOCKS[i]
                mi = m_BLOCKS[i]

                scale = 1 / np.sqrt(Q.shape[-1])
                Qi_scaled = Qi * scale

                S_ij = torch.einsum('... i d, ... j d -> ... i j', Qi_scaled, Kj)
                if mask is not None:
                    # Masking
                    maskj_temp = rearrange(maskj, 'b j -> b 1 1 j')
                    S_ij = torch.where(maskj_temp > 0, S_ij, NEG_INF)

                m_block_ij, _ = torch.max(S_ij, dim=-1, keepdims=True)
                P_ij = torch.exp(S_ij - m_block_ij)
                if mask is not None:
                    # Masking
                    P_ij = torch.where(maskj_temp > 0, P_ij, 0.)

                l_block_ij = torch.sum(P_ij, dim=-1, keepdims=True) + EPSILON

                P_ij_Vj = torch.einsum('... i j, ... j d -> ... i d', P_ij, Vj)

                mi_new = torch.maximum(m_block_ij, mi)
                li_new = torch.exp(mi - mi_new) * li + torch.exp(m_block_ij - mi_new) * l_block_ij

                O_BLOCKS[i] = (li / li_new) * torch.exp(mi - mi_new) * Oi + (
                        torch.exp(m_block_ij - mi_new) / li_new) * P_ij_Vj
                l_BLOCKS[i] = li_new
                m_BLOCKS[i] = mi_new

        O = torch.cat(O_BLOCKS, dim=2)
        l = torch.cat(l_BLOCKS, dim=2)
        m = torch.cat(m_BLOCKS, dim=2)
        return O, l, m

    def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
        res = \
        self.flash_attention_forward(queries.permute(0, 2, 1, 3), keys.permute(0, 2, 1, 3), values.permute(0, 2, 1, 3),
                                     attn_mask)[0]
        return res.permute(0, 2, 1, 3).contiguous(), None


class FullAttention(nn.Module):
    def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
        super(FullAttention, self).__init__()
        self.scale = scale
        self.mask_flag = mask_flag
        self.output_attention = output_attention
        self.dropout = nn.Dropout(attention_dropout)

    def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
        B, L, H, E = queries.shape
        _, S, _, D = values.shape
        scale = self.scale or 1. / sqrt(E)

        scores = torch.einsum("blhe,bshe->bhls", queries, keys)

        if self.mask_flag:
            if attn_mask is None:
                attn_mask = TriangularCausalMask(B, L, device=queries.device)

            scores.masked_fill_(attn_mask.mask, -np.inf)

        A = self.dropout(torch.softmax(scale * scores, dim=-1))
        V = torch.einsum("bhls,bshd->blhd", A, values)

        if self.output_attention:
            return (V.contiguous(), A)
        else:
            return (V.contiguous(), None)


# Code implementation from https://github.com/zhouhaoyi/Informer2020
class ProbAttention(nn.Module):
    def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
        super(ProbAttention, self).__init__()
        self.factor = factor
        self.scale = scale
        self.mask_flag = mask_flag
        self.output_attention = output_attention
        self.dropout = nn.Dropout(attention_dropout)

    def _prob_QK(self, Q, K, sample_k, n_top):  # n_top: c*ln(L_q)
        # Q [B, H, L, D]
        B, H, L_K, E = K.shape
        _, _, L_Q, _ = Q.shape

        # calculate the sampled Q_K
        K_expand = K.unsqueeze(-3).expand(B, H, L_Q, L_K, E)
        # real U = U_part(factor*ln(L_k))*L_q
        index_sample = torch.randint(L_K, (L_Q, sample_k))
        K_sample = K_expand[:, :, torch.arange(
            L_Q).unsqueeze(1), index_sample, :]
        Q_K_sample = torch.matmul(
            Q.unsqueeze(-2), K_sample.transpose(-2, -1)).squeeze()

        # find the Top_k query with sparisty measurement
        M = Q_K_sample.max(-1)[0] - torch.div(Q_K_sample.sum(-1), L_K)
        M_top = M.topk(n_top, sorted=False)[1]

        # use the reduced Q to calculate Q_K
        Q_reduce = Q[torch.arange(B)[:, None, None],
                   torch.arange(H)[None, :, None],
                   M_top, :]  # factor*ln(L_q)
        Q_K = torch.matmul(Q_reduce, K.transpose(-2, -1))  # factor*ln(L_q)*L_k

        return Q_K, M_top

    def _get_initial_context(self, V, L_Q):
        B, H, L_V, D = V.shape
        if not self.mask_flag:
            # V_sum = V.sum(dim=-2)
            V_sum = V.mean(dim=-2)
            contex = V_sum.unsqueeze(-2).expand(B, H,
                                                L_Q, V_sum.shape[-1]).clone()
        else:  # use mask
            # requires that L_Q == L_V, i.e. for self-attention only
            assert (L_Q == L_V)
            contex = V.cumsum(dim=-2)
        return contex

    def _update_context(self, context_in, V, scores, index, L_Q, attn_mask):
        B, H, L_V, D = V.shape

        if self.mask_flag:
            attn_mask = ProbMask(B, H, L_Q, index, scores, device=V.device)
            scores.masked_fill_(attn_mask.mask, -np.inf)

        attn = torch.softmax(scores, dim=-1)  # nn.Softmax(dim=-1)(scores)

        context_in[torch.arange(B)[:, None, None],
        torch.arange(H)[None, :, None],
        index, :] = torch.matmul(attn, V).type_as(context_in)
        if self.output_attention:
            attns = (torch.ones([B, H, L_V, L_V]) /
                     L_V).type_as(attn).to(attn.device)
            attns[torch.arange(B)[:, None, None], torch.arange(H)[
                                                  None, :, None], index, :] = attn
            return (context_in, attns)
        else:
            return (context_in, None)

    def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
        B, L_Q, H, D = queries.shape
        _, L_K, _, _ = keys.shape

        queries = queries.transpose(2, 1)
        keys = keys.transpose(2, 1)
        values = values.transpose(2, 1)

        U_part = self.factor * \
                 np.ceil(np.log(L_K)).astype('int').item()  # c*ln(L_k)
        u = self.factor * \
            np.ceil(np.log(L_Q)).astype('int').item()  # c*ln(L_q)

        U_part = U_part if U_part < L_K else L_K
        u = u if u < L_Q else L_Q

        scores_top, index = self._prob_QK(
            queries, keys, sample_k=U_part, n_top=u)

        # add scale factor
        scale = self.scale or 1. / sqrt(D)
        if scale is not None:
            scores_top = scores_top * scale
        # get the context
        context = self._get_initial_context(values, L_Q)
        # update the context with selected top_k queries
        context, attn = self._update_context(
            context, values, scores_top, index, L_Q, attn_mask)

        return context.contiguous(), attn


class AttentionLayer(nn.Module):
    def __init__(self, attention, d_model, n_heads, d_keys=None,
                 d_values=None):
        super(AttentionLayer, self).__init__()

        d_keys = d_keys or (d_model // n_heads)
        d_values = d_values or (d_model // n_heads)

        self.inner_attention = attention
        self.query_projection = nn.Linear(d_model, d_keys * n_heads)
        self.key_projection = nn.Linear(d_model, d_keys * n_heads)
        self.value_projection = nn.Linear(d_model, d_values * n_heads)
        self.out_projection = nn.Linear(d_values * n_heads, d_model)
        self.n_heads = n_heads

    def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
        B, L, _ = queries.shape
        _, S, _ = keys.shape
        H = self.n_heads

        queries = self.query_projection(queries).view(B, L, H, -1)
        keys = self.key_projection(keys).view(B, S, H, -1)
        values = self.value_projection(values).view(B, S, H, -1)

        out, attn = self.inner_attention(
            queries,
            keys,
            values,
            attn_mask,
            tau=tau,
            delta=delta
        )
        out = out.view(B, L, -1)

        return self.out_projection(out), attn


class ReformerLayer(nn.Module):
    def __init__(self, attention, d_model, n_heads, d_keys=None,
                 d_values=None, causal=False, bucket_size=4, n_hashes=4):
        super().__init__()
        self.bucket_size = bucket_size
        self.attn = LSHSelfAttention(
            dim=d_model,
            heads=n_heads,
            bucket_size=bucket_size,
            n_hashes=n_hashes,
            causal=causal
        )

    def fit_length(self, queries):
        # inside reformer: assert N % (bucket_size * 2) == 0
        B, N, C = queries.shape
        if N % (self.bucket_size * 2) == 0:
            return queries
        else:
            # fill the time series
            fill_len = (self.bucket_size * 2) - (N % (self.bucket_size * 2))
            return torch.cat([queries, torch.zeros([B, fill_len, C]).to(queries.device)], dim=1)

    def forward(self, queries, keys, values, attn_mask, tau, delta):
        # in Reformer: defalut queries=keys
        B, N, C = queries.shape
        queries = self.attn(self.fit_length(queries))[:, :N, :]
        return queries, None