README.md 4.83 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
# iTransformer
传统Transformer模型在一个时间步上查看所有特征,不能高效利用长程时序特征,iTransformer可以跨多个时间步查看一个特征,能同时预测多个指标。
## 论文
chenzk's avatar
v1.0.1  
chenzk committed
4
5
`iTransformer: Inverted Transformers Are Effective for Time Series Forecasting`
- https://arxiv.org/pdf/2310.06625
chenzk's avatar
v1.0  
chenzk committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

## 模型结构
采用标准的transformer decoder结构,对于backbone,无需修改transformer标准结构的代码即可实现本算法。
<div align=center>
    <img src="./doc/transformer.png"/>
</div>

## 算法原理
iTransformer通过简单地转置输入的形状来实现跨多个时间步查看一个特征,模型不是对输入的子序列进行令牌化,而是对整个输入序列进行令牌化,通过这种方式,注意力层可以专注于学习多元相关性,而前馈网络则负责对整个输入序列进行编码。
<div align=center>
    <img src="./doc/iTransformer.png"/>
</div>

## 环境配置
```
mv itransformer_pytorch iTransformer # 去框架名后缀
```

### Docker(方法一)
```
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-centos7.6-dtk23.10-py38
# <your IMAGE ID>为以上拉取的docker的镜像ID替换,本镜像为:ffa1f63239fc
docker run -it --shm-size=32G -v $PWD/iTransformer:/home/iTransformer -v /opt/hyhal:/opt/hyhal --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name itransformer <your IMAGE ID> bash
cd /home/iTransformer
pip install -r requirements.txt # requirements.txt
```
### Dockerfile(方法二)
```
cd iTransformer/docker
docker build --no-cache -t itransformer:latest .
docker run --shm-size=32G --name itransformer -v /opt/hyhal:/opt/hyhal:ro --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video -v $PWD/../../iTransformer:/home/iTransformer -it itransformer bash
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:pip install -r requirements.txt。
```
### Anaconda(方法三)
1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装:
- https://developer.hpccube.com/tool/
```
DTK驱动:dtk23.10
python:python3.8
torch:2.1.0
torchvision:0.16.0
```

`Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应。`

2、其它非特殊库参照requirements.txt安装
```
pip install -r requirements.txt # requirements.txt
```

## 数据集
本步骤说明采用ETT-small中的`ETTm2`
- https://cloud.tsinghua.edu.cn/f/2ea5ca3d621e4e5ba36a/?dl=1

数据目录结构如下:
```
dataset/ETT-small
    ├── ETTh1.csv
    ├── ETTh2.csv
    ├── ETTm1.csv
    └── ETTm2.csv
```
更多资料可参考源项目的[`README_origin`](./README_origin.md)

## 训练
### 单机单卡
```
export HIP_VISIBLE_DEVICES=0
cd iTransformer
sh ./scripts/multivariate_forecasting/ETT/iTransformer_ETTm2_train.sh
```
更多资料可参考源项目的[`README_origin`](./README_origin.md)

## 推理
修改[`run.py`](./run.py)末尾几行如下:
```
# exp.test(setting, test=1)
exp.predict(setting, load=True)
```
```
export HIP_VISIBLE_DEVICES=0
sh ./scripts/multivariate_forecasting/ETT/iTransformer_ETTm2_infer.sh
# 默认按天预测, 故pred_len为96。
```

## result
chenzk's avatar
v1.0.5  
chenzk committed
92
`输入:`
chenzk's avatar
v1.0  
chenzk committed
93
94
95
96
97
98
99
```
2018-06-26 08:45:00,38.198001861572266,12.314000129699707,50.18000030517578,13.37600040435791,-11.53600025177002,-2.5910000801086426,42.03099822998047
2018-06-26 09:00:00,38.36600112915039,11.47599983215332,50.26100158691406,12.62600040435791,-11.53600025177002,-2.5910000801086426,42.69049835205078
...
2018-06-26 19:30:00,40.459999084472656,11.392000198364258,51.84199905395508,11.928999900817873,-11.53600025177002,-1.4179999828338623,45.54650115966797
2018-06-26 19:45:00,43.2239990234375,12.145999908447266,54.73699951171875,12.678999900817873,-11.53600025177002,-1.4179999828338623,45.32699966430664
```
chenzk's avatar
v1.0.5  
chenzk committed
100
`输出:`
chenzk's avatar
v1.0  
chenzk committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
```
# shape: (1, 96, 7)
[[[ 0.34952432  0.52950954  0.60350233  0.88908595 -1.1544497 0.14222175  1.547624  ]
  [ 0.33467558  0.5304026   0.5766822   0.8634169  -1.1414794 0.15061441  1.5383883 ]
  ...
  [ 0.38313037  0.55777836  0.58653885  0.8580381  -1.0596789 0.18568955  1.5027612 ]
  [ 0.3644999   0.55291736  0.57515836  0.8770145  -1.0512501 0.18641812  1.5099163 ]]]
```

### 精度
测试数据:[`ETTm2`](./dataset/ETT-small/ETTm2.csv)中划出一部分作验证集,推理框架:pytorch。

|  device   | train_loss |  mse | mae |
|:---------:|:----------:|:----------:|:----------:|
| DCU Z100L |   0.2107   |   0.1852   |   0.2718   |
| GPU V100S |   0.2107   |   0.1852   |   0.2718   |

## 应用场景
### 算法类别
`时序预测`
### 热点应用行业
`金融,运维,电商,制造,能源,医疗`
## 源码仓库及问题反馈
chenzk's avatar
v1.0.2  
chenzk committed
124
- http://developer.hpccube.com/codes/modelzoo/itransformer_pytorch.git
chenzk's avatar
v1.0  
chenzk committed
125
126
## 参考资料
- https://github.com/thuml/iTransformer.git