mmiu.jsonl 6.3 MB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_0_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_0_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_0_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_0_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_0_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_0_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_0_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_0_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_0_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_0_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_0_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_0_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_0_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_0_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_0_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_0_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_1_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_1_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_1_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_1_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_1_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_1_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_1_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_1_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_1_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_1_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_1_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_1_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_1_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_1_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_1_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_1_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "G"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_2_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_2_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_2_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_2_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_2_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_2_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_2_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_2_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_2_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_2_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_2_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_2_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_2_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_2_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_2_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_2_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_3_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_3_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_3_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_3_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_3_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_3_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_3_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_3_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_3_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_3_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_3_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_3_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_3_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_3_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_3_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_3_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_4_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_4_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_4_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_4_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_4_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_4_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_4_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_4_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_4_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_4_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_4_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_4_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_4_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_4_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_4_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_4_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_5_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_5_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_5_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_5_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_5_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_5_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_5_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_5_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_5_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_5_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_5_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_5_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_5_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_5_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_5_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_5_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_6_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_6_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_6_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_6_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_6_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_6_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_6_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_6_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_6_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_6_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_6_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_6_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_6_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_6_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_6_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_6_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_7_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_7_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_7_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_7_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_7_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_7_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_7_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_7_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_7_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_7_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_7_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_7_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_7_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_7_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_7_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_7_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_8_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_8_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_8_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_8_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_8_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_8_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_8_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_8_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_8_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_8_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_8_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_8_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_8_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_8_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_8_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_8_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_9_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_9_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_9_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_9_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_9_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_9_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_9_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_9_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_9_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_9_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_9_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_9_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_9_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_9_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_9_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_9_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_10_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_10_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_10_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_10_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_10_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_10_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_10_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_10_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_10_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_10_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_10_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_10_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_10_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_10_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_10_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_10_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_11_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_11_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_11_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_11_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_11_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_11_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_11_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_11_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_11_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_11_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_11_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_11_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_11_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_11_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_11_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_11_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "E"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_12_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_12_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_12_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_12_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_12_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_12_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_12_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_12_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_12_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_12_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_12_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_12_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_12_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_12_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_12_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_12_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_13_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_13_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_13_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_13_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_13_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_13_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_13_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_13_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_13_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_13_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_13_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_13_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_13_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_13_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_13_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_13_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_14_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_14_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_14_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_14_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_14_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_14_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_14_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_14_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_14_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_14_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_14_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_14_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_14_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_14_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_14_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_14_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_15_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_15_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_15_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_15_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_15_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_15_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_15_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_15_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_15_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_15_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_15_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_15_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_15_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_15_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_15_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_15_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_16_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_16_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_16_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_16_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_16_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_16_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_16_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_16_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_16_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_16_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_16_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_16_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_16_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_16_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_16_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_16_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_17_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_17_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_17_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_17_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_17_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_17_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_17_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_17_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_17_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_17_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_17_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_17_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_17_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_17_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_17_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_17_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "G"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_18_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_18_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_18_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_18_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_18_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_18_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_18_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_18_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_18_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_18_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_18_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_18_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_18_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_18_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_18_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_18_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_19_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_19_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_19_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_19_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_19_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_19_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_19_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_19_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_19_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_19_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_19_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_19_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_19_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_19_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_19_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_19_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_20_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_20_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_20_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_20_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_20_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_20_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_20_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_20_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_20_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_20_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_20_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_20_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_20_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_20_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_20_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_20_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "G"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_21_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_21_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_21_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_21_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_21_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_21_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_21_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_21_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_21_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_21_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_21_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_21_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_21_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_21_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_21_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_21_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "G"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_22_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_22_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_22_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_22_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_22_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_22_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_22_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_22_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_22_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_22_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_22_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_22_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_22_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_22_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_22_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_22_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_23_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_23_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_23_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_23_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_23_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_23_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_23_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_23_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_23_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_23_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_23_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_23_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_23_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_23_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_23_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_23_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_24_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_24_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_24_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_24_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_24_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_24_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_24_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_24_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_24_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_24_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_24_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_24_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_24_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_24_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_24_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_24_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "E"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_25_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_25_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_25_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_25_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_25_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_25_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_25_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_25_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_25_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_25_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_25_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_25_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_25_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_25_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_25_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_25_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "E"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_26_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_26_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_26_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_26_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_26_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_26_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_26_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_26_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_26_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_26_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_26_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_26_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_26_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_26_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_26_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_26_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_27_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_27_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_27_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_27_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_27_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_27_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_27_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_27_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_27_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_27_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_27_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_27_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_27_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_27_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_27_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_27_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "E"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_28_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_28_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_28_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_28_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_28_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_28_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_28_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_28_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_28_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_28_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_28_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_28_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_28_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_28_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_28_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_28_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_29_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_29_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_29_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_29_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_29_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_29_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_29_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_29_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_29_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_29_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_29_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_29_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_29_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_29_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_29_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_29_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_30_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_30_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_30_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_30_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_30_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_30_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_30_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_30_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_30_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_30_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_30_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_30_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_30_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_30_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_30_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_30_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_31_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_31_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_31_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_31_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_31_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_31_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_31_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_31_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_31_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_31_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_31_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_31_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_31_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_31_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_31_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_31_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_32_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_32_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_32_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_32_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_32_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_32_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_32_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_32_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_32_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_32_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_32_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_32_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_32_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_32_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_32_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_32_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_33_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_33_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_33_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_33_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_33_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_33_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_33_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_33_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_33_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_33_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_33_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_33_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_33_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_33_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_33_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_33_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "E"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_34_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_34_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_34_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_34_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_34_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_34_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_34_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_34_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_34_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_34_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_34_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_34_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_34_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_34_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_34_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_34_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "G"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_35_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_35_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_35_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_35_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_35_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_35_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_35_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_35_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_35_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_35_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_35_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_35_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_35_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_35_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_35_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_35_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "E"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_36_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_36_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_36_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_36_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_36_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_36_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_36_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_36_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_36_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_36_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_36_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_36_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_36_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_36_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_36_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_36_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_37_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_37_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_37_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_37_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_37_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_37_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_37_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_37_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_37_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_37_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_37_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_37_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_37_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_37_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_37_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_37_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_38_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_38_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_38_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_38_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_38_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_38_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_38_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_38_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_38_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_38_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_38_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_38_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_38_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_38_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_38_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_38_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_39_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_39_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_39_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_39_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_39_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_39_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_39_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_39_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_39_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_39_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_39_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_39_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_39_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_39_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_39_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_39_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_40_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_40_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_40_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_40_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_40_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_40_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_40_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_40_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_40_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_40_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_40_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_40_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_40_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_40_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_40_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_40_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "G"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_41_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_41_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_41_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_41_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_41_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_41_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_41_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_41_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_41_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_41_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_41_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_41_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_41_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_41_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_41_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_41_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_42_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_42_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_42_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_42_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_42_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_42_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_42_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_42_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_42_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_42_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_42_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_42_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_42_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_42_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_42_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_42_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_43_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_43_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_43_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_43_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_43_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_43_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_43_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_43_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_43_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_43_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_43_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_43_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_43_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_43_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_43_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_43_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "G"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_44_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_44_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_44_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_44_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_44_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_44_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_44_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_44_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_44_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_44_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_44_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_44_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_44_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_44_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_44_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_44_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_45_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_45_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_45_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_45_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_45_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_45_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_45_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_45_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_45_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_45_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_45_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_45_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_45_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_45_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_45_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_45_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_46_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_46_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_46_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_46_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_46_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_46_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_46_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_46_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_46_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_46_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_46_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_46_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_46_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_46_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_46_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_46_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "E"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_47_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_47_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_47_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_47_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_47_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_47_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_47_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_47_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_47_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_47_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_47_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_47_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_47_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_47_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_47_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_47_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "G"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_48_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_48_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_48_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_48_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_48_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_48_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_48_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_48_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_48_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_48_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_48_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_48_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_48_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_48_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_48_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_48_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_49_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_49_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_49_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_49_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_49_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_49_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_49_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_49_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_49_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_49_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_49_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_49_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_49_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_49_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_49_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_49_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_50_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_50_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_50_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_50_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_50_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_50_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_50_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_50_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_50_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_50_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_50_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_50_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_50_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_50_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_50_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_50_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_51_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_51_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_51_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_51_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_51_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_51_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_51_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_51_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_51_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_51_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_51_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_51_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_51_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_51_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_51_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_51_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_52_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_52_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_52_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_52_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_52_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_52_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_52_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_52_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_52_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_52_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_52_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_52_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_52_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_52_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_52_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_52_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_53_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_53_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_53_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_53_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_53_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_53_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_53_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_53_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_53_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_53_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_53_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_53_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_53_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_53_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_53_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_53_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_54_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_54_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_54_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_54_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_54_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_54_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_54_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_54_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_54_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_54_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_54_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_54_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_54_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_54_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_54_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_54_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_55_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_55_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_55_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_55_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_55_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_55_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_55_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_55_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_55_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_55_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_55_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_55_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_55_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_55_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_55_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_55_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_56_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_56_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_56_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_56_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_56_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_56_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_56_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_56_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_56_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_56_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_56_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_56_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_56_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_56_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_56_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_56_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "G"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_57_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_57_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_57_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_57_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_57_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_57_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_57_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_57_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_57_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_57_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_57_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_57_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_57_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_57_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_57_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_57_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_58_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_58_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_58_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_58_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_58_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_58_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_58_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_58_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_58_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_58_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_58_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_58_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_58_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_58_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_58_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_58_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_59_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_59_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_59_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_59_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_59_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_59_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_59_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_59_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_59_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_59_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_59_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_59_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_59_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_59_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_59_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_59_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_60_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_60_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_60_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_60_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_60_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_60_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_60_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_60_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_60_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_60_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_60_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_60_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_60_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_60_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_60_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_60_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_61_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_61_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_61_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_61_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_61_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_61_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_61_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_61_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_61_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_61_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_61_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_61_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_61_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_61_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_61_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_61_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_62_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_62_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_62_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_62_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_62_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_62_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_62_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_62_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_62_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_62_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_62_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_62_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_62_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_62_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_62_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_62_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_63_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_63_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_63_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_63_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_63_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_63_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_63_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_63_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_63_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_63_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_63_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_63_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_63_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_63_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_63_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_63_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_64_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_64_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_64_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_64_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_64_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_64_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_64_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_64_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_64_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_64_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_64_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_64_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_64_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_64_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_64_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_64_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_65_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_65_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_65_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_65_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_65_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_65_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_65_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_65_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_65_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_65_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_65_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_65_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_65_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_65_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_65_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_65_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_66_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_66_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_66_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_66_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_66_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_66_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_66_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_66_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_66_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_66_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_66_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_66_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_66_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_66_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_66_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_66_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_67_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_67_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_67_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_67_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_67_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_67_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_67_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_67_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_67_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_67_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_67_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_67_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_67_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_67_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_67_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_67_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_68_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_68_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_68_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_68_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_68_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_68_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_68_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_68_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_68_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_68_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_68_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_68_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_68_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_68_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_68_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_68_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_69_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_69_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_69_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_69_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_69_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_69_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_69_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_69_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_69_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_69_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_69_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_69_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_69_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_69_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_69_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_69_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_70_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_70_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_70_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_70_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_70_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_70_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_70_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_70_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_70_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_70_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_70_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_70_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_70_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_70_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_70_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_70_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "E"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_71_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_71_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_71_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_71_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_71_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_71_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_71_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_71_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_71_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_71_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_71_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_71_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_71_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_71_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_71_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_71_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "E"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_72_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_72_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_72_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_72_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_72_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_72_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_72_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_72_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_72_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_72_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_72_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_72_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_72_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_72_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_72_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_72_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_73_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_73_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_73_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_73_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_73_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_73_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_73_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_73_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_73_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_73_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_73_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_73_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_73_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_73_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_73_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_73_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_74_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_74_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_74_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_74_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_74_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_74_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_74_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_74_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_74_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_74_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_74_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_74_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_74_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_74_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_74_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_74_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_75_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_75_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_75_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_75_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_75_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_75_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_75_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_75_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_75_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_75_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_75_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_75_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_75_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_75_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_75_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_75_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_76_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_76_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_76_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_76_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_76_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_76_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_76_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_76_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_76_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_76_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_76_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_76_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_76_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_76_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_76_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_76_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_77_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_77_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_77_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_77_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_77_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_77_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_77_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_77_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_77_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_77_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_77_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_77_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_77_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_77_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_77_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_77_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_78_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_78_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_78_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_78_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_78_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_78_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_78_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_78_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_78_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_78_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_78_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_78_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_78_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_78_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_78_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_78_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "E"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_79_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_79_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_79_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_79_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_79_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_79_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_79_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_79_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_79_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_79_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_79_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_79_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_79_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_79_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_79_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_79_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_80_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_80_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_80_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_80_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_80_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_80_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_80_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_80_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_80_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_80_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_80_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_80_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_80_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_80_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_80_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_80_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_81_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_81_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_81_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_81_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_81_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_81_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_81_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_81_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_81_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_81_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_81_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_81_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_81_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_81_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_81_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_81_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_82_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_82_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_82_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_82_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_82_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_82_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_82_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_82_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_82_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_82_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_82_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_82_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_82_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_82_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_82_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_82_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_83_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_83_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_83_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_83_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_83_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_83_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_83_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_83_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_83_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_83_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_83_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_83_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_83_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_83_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_83_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_83_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_84_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_84_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_84_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_84_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_84_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_84_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_84_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_84_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_84_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_84_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_84_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_84_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_84_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_84_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_84_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_84_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "G"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_85_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_85_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_85_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_85_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_85_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_85_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_85_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_85_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_85_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_85_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_85_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_85_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_85_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_85_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_85_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_85_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_86_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_86_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_86_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_86_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_86_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_86_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_86_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_86_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_86_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_86_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_86_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_86_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_86_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_86_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_86_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_86_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_87_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_87_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_87_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_87_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_87_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_87_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_87_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_87_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_87_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_87_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_87_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_87_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_87_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_87_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_87_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_87_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_88_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_88_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_88_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_88_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_88_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_88_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_88_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_88_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_88_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_88_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_88_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_88_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_88_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_88_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_88_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_88_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_89_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_89_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_89_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_89_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_89_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_89_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_89_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_89_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_89_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_89_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_89_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_89_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_89_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_89_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_89_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_89_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_90_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_90_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_90_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_90_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_90_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_90_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_90_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_90_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_90_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_90_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_90_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_90_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_90_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_90_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_90_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_90_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "G"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_91_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_91_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_91_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_91_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_91_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_91_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_91_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_91_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_91_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_91_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_91_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_91_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_91_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_91_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_91_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_91_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_92_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_92_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_92_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_92_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_92_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_92_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_92_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_92_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_92_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_92_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_92_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_92_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_92_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_92_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_92_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_92_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_93_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_93_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_93_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_93_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_93_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_93_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_93_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_93_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_93_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_93_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_93_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_93_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_93_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_93_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_93_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_93_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "E"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_94_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_94_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_94_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_94_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_94_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_94_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_94_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_94_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_94_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_94_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_94_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_94_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_94_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_94_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_94_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_94_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "G"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_95_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_95_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_95_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_95_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_95_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_95_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_95_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_95_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_95_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_95_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_95_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_95_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_95_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_95_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_95_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_95_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_96_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_96_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_96_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_96_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_96_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_96_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_96_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_96_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_96_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_96_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_96_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_96_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_96_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_96_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_96_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_96_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_97_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_97_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_97_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_97_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_97_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_97_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_97_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_97_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_97_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_97_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_97_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_97_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_97_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_97_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_97_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_97_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_98_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_98_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_98_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_98_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_98_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_98_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_98_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_98_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_98_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_98_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_98_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_98_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_98_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_98_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_98_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_98_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_99_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_99_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_99_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_99_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_99_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_99_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_99_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_99_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_99_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_99_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_99_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_99_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_99_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_99_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_99_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_99_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_100_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_100_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_100_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_100_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_100_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_100_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_100_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_100_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_100_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_100_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_100_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_100_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_100_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_100_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_100_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_100_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_101_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_101_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_101_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_101_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_101_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_101_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_101_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_101_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_101_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_101_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_101_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_101_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_101_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_101_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_101_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_101_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_102_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_102_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_102_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_102_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_102_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_102_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_102_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_102_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_102_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_102_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_102_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_102_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_102_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_102_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_102_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_102_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_103_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_103_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_103_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_103_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_103_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_103_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_103_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_103_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_103_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_103_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_103_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_103_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_103_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_103_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_103_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_103_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_104_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_104_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_104_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_104_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_104_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_104_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_104_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_104_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_104_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_104_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_104_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_104_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_104_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_104_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_104_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_104_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_105_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_105_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_105_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_105_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_105_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_105_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_105_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_105_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_105_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_105_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_105_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_105_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_105_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_105_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_105_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_105_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_106_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_106_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_106_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_106_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_106_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_106_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_106_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_106_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_106_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_106_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_106_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_106_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_106_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_106_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_106_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_106_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_107_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_107_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_107_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_107_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_107_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_107_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_107_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_107_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_107_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_107_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_107_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_107_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_107_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_107_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_107_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_107_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_108_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_108_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_108_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_108_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_108_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_108_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_108_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_108_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_108_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_108_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_108_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_108_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_108_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_108_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_108_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_108_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_109_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_109_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_109_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_109_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_109_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_109_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_109_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_109_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_109_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_109_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_109_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_109_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_109_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_109_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_109_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_109_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_110_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_110_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_110_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_110_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_110_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_110_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_110_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_110_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_110_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_110_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_110_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_110_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_110_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_110_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_110_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_110_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_111_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_111_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_111_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_111_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_111_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_111_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_111_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_111_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_111_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_111_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_111_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_111_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_111_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_111_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_111_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_111_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_112_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_112_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_112_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_112_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_112_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_112_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_112_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_112_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_112_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_112_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_112_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_112_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_112_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_112_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_112_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_112_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_113_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_113_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_113_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_113_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_113_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_113_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_113_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_113_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_113_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_113_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_113_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_113_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_113_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_113_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_113_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_113_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_114_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_114_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_114_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_114_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_114_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_114_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_114_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_114_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_114_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_114_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_114_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_114_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_114_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_114_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_114_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_114_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_115_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_115_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_115_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_115_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_115_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_115_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_115_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_115_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_115_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_115_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_115_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_115_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_115_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_115_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_115_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_115_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_116_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_116_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_116_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_116_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_116_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_116_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_116_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_116_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_116_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_116_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_116_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_116_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_116_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_116_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_116_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_116_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "G"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_117_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_117_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_117_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_117_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_117_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_117_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_117_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_117_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_117_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_117_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_117_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_117_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_117_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_117_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_117_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_117_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_118_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_118_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_118_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_118_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_118_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_118_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_118_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_118_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_118_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_118_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_118_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_118_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_118_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_118_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_118_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_118_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_119_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_119_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_119_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_119_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_119_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_119_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_119_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_119_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_119_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_119_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_119_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_119_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_119_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_119_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_119_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_119_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "G"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_120_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_120_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_120_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_120_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_120_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_120_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_120_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_120_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_120_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_120_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_120_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_120_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_120_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_120_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_120_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_120_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_121_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_121_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_121_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_121_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_121_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_121_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_121_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_121_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_121_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_121_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_121_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_121_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_121_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_121_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_121_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_121_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "E"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_122_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_122_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_122_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_122_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_122_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_122_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_122_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_122_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_122_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_122_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_122_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_122_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_122_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_122_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_122_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_122_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_123_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_123_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_123_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_123_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_123_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_123_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_123_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_123_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_123_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_123_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_123_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_123_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_123_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_123_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_123_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_123_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_124_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_124_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_124_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_124_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_124_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_124_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_124_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_124_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_124_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_124_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_124_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_124_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_124_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_124_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_124_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_124_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_125_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_125_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_125_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_125_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_125_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_125_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_125_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_125_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_125_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_125_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_125_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_125_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_125_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_125_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_125_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_125_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_126_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_126_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_126_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_126_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_126_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_126_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_126_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_126_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_126_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_126_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_126_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_126_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_126_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_126_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_126_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_126_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_127_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_127_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_127_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_127_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_127_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_127_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_127_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_127_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_127_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_127_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_127_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_127_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_127_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_127_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_127_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_127_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "G"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_128_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_128_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_128_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_128_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_128_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_128_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_128_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_128_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_128_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_128_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_128_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_128_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_128_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_128_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_128_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_128_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "G"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_129_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_129_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_129_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_129_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_129_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_129_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_129_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_129_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_129_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_129_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_129_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_129_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_129_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_129_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_129_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_129_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_130_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_130_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_130_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_130_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_130_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_130_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_130_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_130_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_130_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_130_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_130_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_130_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_130_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_130_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_130_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_130_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_131_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_131_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_131_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_131_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_131_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_131_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_131_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_131_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_131_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_131_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_131_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_131_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_131_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_131_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_131_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_131_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_132_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_132_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_132_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_132_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_132_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_132_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_132_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_132_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_132_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_132_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_132_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_132_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_132_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_132_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_132_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_132_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_133_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_133_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_133_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_133_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_133_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_133_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_133_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_133_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_133_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_133_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_133_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_133_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_133_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_133_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_133_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_133_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_134_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_134_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_134_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_134_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_134_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_134_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_134_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_134_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_134_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_134_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_134_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_134_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_134_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_134_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_134_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_134_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_135_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_135_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_135_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_135_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_135_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_135_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_135_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_135_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_135_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_135_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_135_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_135_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_135_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_135_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_135_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_135_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_136_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_136_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_136_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_136_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_136_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_136_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_136_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_136_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_136_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_136_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_136_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_136_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_136_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_136_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_136_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_136_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_137_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_137_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_137_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_137_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_137_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_137_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_137_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_137_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_137_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_137_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_137_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_137_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_137_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_137_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_137_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_137_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_138_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_138_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_138_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_138_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_138_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_138_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_138_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_138_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_138_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_138_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_138_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_138_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_138_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_138_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_138_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_138_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_139_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_139_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_139_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_139_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_139_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_139_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_139_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_139_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_139_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_139_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_139_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_139_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_139_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_139_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_139_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_139_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_140_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_140_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_140_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_140_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_140_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_140_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_140_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_140_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_140_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_140_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_140_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_140_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_140_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_140_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_140_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_140_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_141_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_141_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_141_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_141_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_141_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_141_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_141_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_141_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_141_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_141_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_141_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_141_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_141_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_141_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_141_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_141_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_142_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_142_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_142_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_142_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_142_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_142_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_142_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_142_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_142_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_142_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_142_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_142_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_142_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_142_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_142_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_142_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_143_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_143_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_143_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_143_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_143_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_143_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_143_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_143_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_143_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_143_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_143_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_143_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_143_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_143_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_143_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_143_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "G"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_144_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_144_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_144_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_144_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_144_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_144_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_144_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_144_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_144_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_144_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_144_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_144_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_144_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_144_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_144_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_144_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_145_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_145_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_145_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_145_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_145_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_145_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_145_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_145_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_145_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_145_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_145_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_145_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_145_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_145_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_145_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_145_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_146_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_146_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_146_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_146_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_146_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_146_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_146_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_146_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_146_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_146_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_146_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_146_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_146_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_146_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_146_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_146_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_147_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_147_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_147_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_147_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_147_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_147_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_147_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_147_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_147_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_147_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_147_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_147_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_147_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_147_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_147_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_147_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_148_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_148_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_148_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_148_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_148_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_148_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_148_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_148_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_148_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_148_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_148_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_148_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_148_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_148_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_148_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_148_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_149_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_149_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_149_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_149_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_149_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_149_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_149_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_149_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_149_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_149_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_149_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_149_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_149_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_149_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_149_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_149_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "E"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_150_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_150_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_150_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_150_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_150_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_150_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_150_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_150_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_150_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_150_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_150_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_150_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_150_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_150_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_150_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_150_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_151_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_151_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_151_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_151_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_151_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_151_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_151_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_151_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_151_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_151_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_151_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_151_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_151_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_151_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_151_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_151_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "E"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_152_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_152_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_152_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_152_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_152_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_152_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_152_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_152_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_152_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_152_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_152_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_152_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_152_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_152_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_152_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_152_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_153_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_153_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_153_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_153_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_153_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_153_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_153_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_153_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_153_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_153_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_153_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_153_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_153_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_153_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_153_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_153_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_154_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_154_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_154_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_154_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_154_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_154_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_154_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_154_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_154_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_154_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_154_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_154_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_154_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_154_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_154_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_154_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_155_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_155_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_155_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_155_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_155_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_155_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_155_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_155_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_155_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_155_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_155_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_155_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_155_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_155_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_155_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_155_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_156_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_156_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_156_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_156_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_156_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_156_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_156_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_156_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_156_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_156_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_156_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_156_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_156_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_156_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_156_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_156_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "E"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_157_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_157_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_157_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_157_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_157_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_157_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_157_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_157_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_157_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_157_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_157_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_157_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_157_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_157_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_157_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_157_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_158_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_158_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_158_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_158_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_158_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_158_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_158_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_158_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_158_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_158_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_158_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_158_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_158_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_158_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_158_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_158_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_159_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_159_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_159_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_159_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_159_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_159_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_159_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_159_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_159_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_159_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_159_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_159_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_159_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_159_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_159_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_159_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_160_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_160_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_160_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_160_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_160_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_160_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_160_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_160_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_160_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_160_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_160_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_160_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_160_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_160_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_160_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_160_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "E"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_161_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_161_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_161_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_161_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_161_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_161_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_161_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_161_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_161_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_161_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_161_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_161_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_161_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_161_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_161_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_161_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_162_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_162_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_162_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_162_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_162_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_162_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_162_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_162_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_162_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_162_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_162_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_162_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_162_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_162_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_162_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_162_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_163_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_163_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_163_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_163_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_163_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_163_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_163_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_163_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_163_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_163_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_163_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_163_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_163_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_163_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_163_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_163_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_164_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_164_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_164_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_164_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_164_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_164_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_164_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_164_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_164_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_164_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_164_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_164_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_164_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_164_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_164_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_164_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_165_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_165_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_165_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_165_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_165_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_165_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_165_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_165_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_165_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_165_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_165_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_165_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_165_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_165_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_165_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_165_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_166_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_166_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_166_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_166_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_166_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_166_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_166_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_166_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_166_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_166_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_166_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_166_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_166_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_166_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_166_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_166_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_167_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_167_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_167_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_167_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_167_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_167_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_167_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_167_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_167_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_167_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_167_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_167_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_167_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_167_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_167_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_167_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_168_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_168_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_168_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_168_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_168_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_168_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_168_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_168_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_168_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_168_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_168_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_168_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_168_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_168_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_168_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_168_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "G"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_169_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_169_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_169_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_169_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_169_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_169_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_169_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_169_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_169_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_169_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_169_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_169_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_169_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_169_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_169_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_169_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_170_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_170_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_170_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_170_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_170_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_170_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_170_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_170_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_170_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_170_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_170_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_170_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_170_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_170_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_170_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_170_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_171_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_171_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_171_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_171_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_171_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_171_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_171_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_171_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_171_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_171_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_171_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_171_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_171_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_171_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_171_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_171_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_172_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_172_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_172_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_172_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_172_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_172_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_172_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_172_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_172_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_172_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_172_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_172_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_172_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_172_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_172_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_172_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_173_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_173_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_173_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_173_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_173_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_173_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_173_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_173_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_173_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_173_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_173_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_173_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_173_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_173_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_173_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_173_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_174_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_174_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_174_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_174_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_174_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_174_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_174_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_174_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_174_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_174_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_174_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_174_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_174_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_174_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_174_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_174_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_175_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_175_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_175_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_175_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_175_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_175_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_175_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_175_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_175_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_175_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_175_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_175_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_175_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_175_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_175_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_175_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_176_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_176_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_176_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_176_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_176_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_176_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_176_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_176_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_176_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_176_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_176_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_176_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_176_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_176_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_176_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_176_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_177_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_177_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_177_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_177_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_177_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_177_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_177_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_177_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_177_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_177_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_177_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_177_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_177_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_177_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_177_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_177_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_178_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_178_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_178_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_178_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_178_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_178_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_178_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_178_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_178_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_178_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_178_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_178_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_178_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_178_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_178_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_178_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_179_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_179_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_179_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_179_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_179_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_179_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_179_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_179_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_179_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_179_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_179_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_179_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_179_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_179_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_179_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_179_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_180_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_180_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_180_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_180_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_180_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_180_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_180_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_180_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_180_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_180_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_180_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_180_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_180_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_180_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_180_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_180_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_181_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_181_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_181_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_181_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_181_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_181_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_181_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_181_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_181_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_181_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_181_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_181_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_181_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_181_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_181_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_181_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "E"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_182_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_182_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_182_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_182_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_182_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_182_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_182_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_182_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_182_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_182_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_182_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_182_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_182_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_182_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_182_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_182_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_183_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_183_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_183_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_183_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_183_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_183_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_183_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_183_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_183_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_183_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_183_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_183_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_183_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_183_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_183_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_183_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "E"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_184_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_184_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_184_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_184_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_184_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_184_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_184_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_184_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_184_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_184_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_184_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_184_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_184_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_184_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_184_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_184_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_185_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_185_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_185_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_185_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_185_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_185_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_185_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_185_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_185_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_185_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_185_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_185_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_185_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_185_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_185_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_185_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_186_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_186_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_186_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_186_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_186_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_186_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_186_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_186_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_186_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_186_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_186_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_186_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_186_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_186_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_186_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_186_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_187_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_187_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_187_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_187_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_187_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_187_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_187_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_187_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_187_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_187_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_187_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_187_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_187_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_187_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_187_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_187_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_188_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_188_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_188_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_188_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_188_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_188_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_188_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_188_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_188_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_188_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_188_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_188_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_188_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_188_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_188_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_188_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_189_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_189_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_189_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_189_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_189_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_189_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_189_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_189_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_189_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_189_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_189_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_189_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_189_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_189_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_189_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_189_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "E"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_190_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_190_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_190_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_190_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_190_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_190_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_190_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_190_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_190_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_190_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_190_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_190_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_190_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_190_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_190_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_190_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "G"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_191_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_191_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_191_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_191_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_191_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_191_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_191_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_191_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_191_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_191_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_191_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_191_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_191_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_191_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_191_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_191_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "D"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_192_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_192_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_192_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_192_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_192_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_192_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_192_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_192_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_192_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_192_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_192_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_192_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_192_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_192_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_192_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_192_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_193_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_193_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_193_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_193_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_193_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_193_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_193_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_193_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_193_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_193_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_193_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_193_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_193_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_193_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_193_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_193_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "H"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_194_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_194_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_194_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_194_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_194_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_194_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_194_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_194_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_194_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_194_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_194_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_194_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_194_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_194_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_194_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_194_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "G"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_195_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_195_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_195_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_195_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_195_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_195_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_195_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_195_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_195_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_195_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_195_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_195_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_195_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_195_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_195_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_195_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "F"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_196_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_196_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_196_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_196_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_196_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_196_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_196_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_196_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_196_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_196_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_196_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_196_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_196_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_196_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_196_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_196_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "C"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_197_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_197_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_197_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_197_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_197_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_197_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_197_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_197_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_197_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_197_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_197_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_197_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_197_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_197_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_197_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_197_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "B"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_198_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_198_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_198_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_198_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_198_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_198_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_198_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_198_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_198_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_198_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_198_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_198_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_198_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_198_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_198_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_198_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "E"}, "task": "ravens_progressive_matrices"}
{"source": "RAVEN_10000", "options": "A: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image", "visual_input_component": ["synthetic image"], "input": {"input_image_path": ["2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_199_0.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_199_1.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_199_2.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_199_3.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_199_4.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_199_5.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_199_6.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_199_7.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_199_8.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_199_9.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_199_10.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_199_11.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_199_12.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_199_13.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_199_14.png", "2D-spatial/ravens_progressive_matrices/ravens_progressive_matrices_199_15.png"], "question": "Following the structural and analogical relations, which image best completes the problem matrix?", "context": "In the input images, the first 8 are the images from the question, and the last 8 are the images for the choices.Select from the following choices.\nA: The 9th image\nB: The 10th image\nC: The 11th image\nD: The 12th image\nE: The 13th image\nF: The 14th image\nG: The 15th image\nH: The 16th image"}, "output": {"output_text": "A"}, "task": "ravens_progressive_matrices"}
{"source": "Hpatches", "options": "A: 1.1529 0.012747 244.44\n0.41529 1.1943 -155.59\n0.00087156 5.6224e-05 1.0092\n\nB: 0.54693 0.20925 -108.35\n-0.082341 1.1176 -236.48\n-0.0006026 0.0001769 1.0001\n\nC: 1.2108 -0.031741 47.374\n0.20996 1.0345 -107.36\n0.00054926 -6.3631e-06 1.0004\n\nD: 1.7761 -0.053427 263.17\n0.41751 1.5987 -329.46\n0.00069677 3.1372e-05 1.0014\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_0_0.png", "2D-spatial/Homography_estimation/Homography_estimation_0_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.1529 0.012747 244.44\n0.41529 1.1943 -155.59\n0.00087156 5.6224e-05 1.0092\n\nB: 0.54693 0.20925 -108.35\n-0.082341 1.1176 -236.48\n-0.0006026 0.0001769 1.0001\n\nC: 1.2108 -0.031741 47.374\n0.20996 1.0345 -107.36\n0.00054926 -6.3631e-06 1.0004\n\nD: 1.7761 -0.053427 263.17\n0.41751 1.5987 -329.46\n0.00069677 3.1372e-05 1.0014\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.91628 -0.19782 70.502\n0.072414 0.68419 -33.187\n5.7127e-06 -0.00025258 0.99947\n\nB: 1.2895 0.43518 -118.46\n-0.025956 1.4233 161.89\n-3.0413e-05 0.00069874 1.0013\n\nC: 4.3722 0.14407 -818.24\n-0.25209 3.9595 -549.15\n0.001718 0.0010825 0.97985\n\nD: 0.40245 -0.33938 102.29\n-0.2125 0.62381 216.78\n-0.00033866 -1.5855e-05 1.0018\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_1_0.png", "2D-spatial/Homography_estimation/Homography_estimation_1_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.91628 -0.19782 70.502\n0.072414 0.68419 -33.187\n5.7127e-06 -0.00025258 0.99947\n\nB: 1.2895 0.43518 -118.46\n-0.025956 1.4233 161.89\n-3.0413e-05 0.00069874 1.0013\n\nC: 4.3722 0.14407 -818.24\n-0.25209 3.9595 -549.15\n0.001718 0.0010825 0.97985\n\nD: 0.40245 -0.33938 102.29\n-0.2125 0.62381 216.78\n-0.00033866 -1.5855e-05 1.0018\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.74922 -0.0014388 -75.597\n-0.074158 0.94323 40.455\n-0.00018126 -6.2301e-06 1\n\nB: 0.29858 0.0403 -122.67\n-0.38113 0.61838 172.03\n-0.00071255 -1.0448e-06 0.97348\n\nC: 1.0669 0.31109 194.1\n-0.019953 0.9209 79.624\n0.000135 -7.6705e-05 0.99977\n\nD: 0.37694 0.049406 111.53\n-0.16444 0.72986 84.602\n-0.00037753 4.0247e-05 0.99869\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_2_0.png", "2D-spatial/Homography_estimation/Homography_estimation_2_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.74922 -0.0014388 -75.597\n-0.074158 0.94323 40.455\n-0.00018126 -6.2301e-06 1\n\nB: 0.29858 0.0403 -122.67\n-0.38113 0.61838 172.03\n-0.00071255 -1.0448e-06 0.97348\n\nC: 1.0669 0.31109 194.1\n-0.019953 0.9209 79.624\n0.000135 -7.6705e-05 0.99977\n\nD: 0.37694 0.049406 111.53\n-0.16444 0.72986 84.602\n-0.00037753 4.0247e-05 0.99869\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.9861 0.031586 27.893\n0.62141 1.9607 -531.99\n0.0011993 -1.9815e-05 0.99978\n\nB: -0.21679 -0.12572 585.55\n0.12463 -0.21699 355.1\n-1.085e-06 -1.8818e-06 1.0002\n\nC: 0.44469 -0.1629 197.72\n-0.090792 0.33606 37.55\n-0.00032851 -0.00028415 1.0004\n\nD: 5.1051 0.34986 -885.86\n1.0306 5.9768 -2733.1\n0.0033649 0.00099216 1\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_3_0.png", "2D-spatial/Homography_estimation/Homography_estimation_3_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.9861 0.031586 27.893\n0.62141 1.9607 -531.99\n0.0011993 -1.9815e-05 0.99978\n\nB: -0.21679 -0.12572 585.55\n0.12463 -0.21699 355.1\n-1.085e-06 -1.8818e-06 1.0002\n\nC: 0.44469 -0.1629 197.72\n-0.090792 0.33606 37.55\n-0.00032851 -0.00028415 1.0004\n\nD: 5.1051 0.34986 -885.86\n1.0306 5.9768 -2733.1\n0.0033649 0.00099216 1\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.48275 -0.12831 276.04\n-0.19138 0.40711 199.19\n-5.6548e-05 -0.00023367 0.99912\n\nB: 1.6408 -0.0013389 -221.64\n0.1704 1.44 -155.56\n0.00036369 -3.22e-05 1.0003\n\nC: 2.4144 -0.0022023 -199.3\n0.52146 2.0547 -569.49\n0.0010423 8.4489e-05 1.0043\n\nD: 2.9599 0.00703 244.64\n0.78405 1.8789 -438.29\n0.0018411 4.4095e-05 0.99694\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_4_0.png", "2D-spatial/Homography_estimation/Homography_estimation_4_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.48275 -0.12831 276.04\n-0.19138 0.40711 199.19\n-5.6548e-05 -0.00023367 0.99912\n\nB: 1.6408 -0.0013389 -221.64\n0.1704 1.44 -155.56\n0.00036369 -3.22e-05 1.0003\n\nC: 2.4144 -0.0022023 -199.3\n0.52146 2.0547 -569.49\n0.0010423 8.4489e-05 1.0043\n\nD: 2.9599 0.00703 244.64\n0.78405 1.8789 -438.29\n0.0018411 4.4095e-05 0.99694\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 2.4144 -0.0022023 -199.3\n0.52146 2.0547 -569.49\n0.0010423 8.4489e-05 1.0043\n\nB: 1.547 0.11677 155.75\n0.40373 1.373 -170.1\n0.00090791 8.8782e-05 1.0012\n\nC: 1.3951 0.13641 136.74\n0.31704 1.2758 -219.28\n0.00053511 0.00013896 0.99675\n\nD: 0.72201 0.13445 62.975\n0.059719 0.85126 46.305\n-1.7322e-05 0.00018166 1.0001\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_5_0.png", "2D-spatial/Homography_estimation/Homography_estimation_5_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 2.4144 -0.0022023 -199.3\n0.52146 2.0547 -569.49\n0.0010423 8.4489e-05 1.0043\n\nB: 1.547 0.11677 155.75\n0.40373 1.373 -170.1\n0.00090791 8.8782e-05 1.0012\n\nC: 1.3951 0.13641 136.74\n0.31704 1.2758 -219.28\n0.00053511 0.00013896 0.99675\n\nD: 0.72201 0.13445 62.975\n0.059719 0.85126 46.305\n-1.7322e-05 0.00018166 1.0001\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.4932 0.01661 231.74\n0.45676 1.4341 -212.29\n0.0013256 9.9938e-05 0.99686\n\nB: 0.012717 0.014394 193.52\n-0.12386 0.60301 126.7\n-0.00063953 7.9665e-05 1.0012\n\nC: 0.27317 0.041297 84.951\n-0.22859 0.68736 124.47\n-0.00041264 5.2763e-05 1.0003\n\nD: 2.2078 0.054458 63.617\n0.67654 2.2557 -637.98\n0.0013191 8.5079e-05 1.0033\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_6_0.png", "2D-spatial/Homography_estimation/Homography_estimation_6_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.4932 0.01661 231.74\n0.45676 1.4341 -212.29\n0.0013256 9.9938e-05 0.99686\n\nB: 0.012717 0.014394 193.52\n-0.12386 0.60301 126.7\n-0.00063953 7.9665e-05 1.0012\n\nC: 0.27317 0.041297 84.951\n-0.22859 0.68736 124.47\n-0.00041264 5.2763e-05 1.0003\n\nD: 2.2078 0.054458 63.617\n0.67654 2.2557 -637.98\n0.0013191 8.5079e-05 1.0033\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.60879 -0.35761 289.93\n0.34822 0.61653 -30.949\n-2.0912e-05 1.3527e-06 1.014\n\nB: 1.1901 -0.048587 107.72\n0.14488 1.1926 -121.84\n0.00033622 1.1241e-05 1.0001\n\nC: 2.2787 0.023843 -30.321\n0.58793 1.9158 -459.28\n0.0012782 -6.6868e-06 0.99971\n\nD: 1.8454 -0.0093839 117.6\n0.8533 1.9335 -566.11\n0.0016091 6.8147e-05 1.0105\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_7_0.png", "2D-spatial/Homography_estimation/Homography_estimation_7_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.60879 -0.35761 289.93\n0.34822 0.61653 -30.949\n-2.0912e-05 1.3527e-06 1.014\n\nB: 1.1901 -0.048587 107.72\n0.14488 1.1926 -121.84\n0.00033622 1.1241e-05 1.0001\n\nC: 2.2787 0.023843 -30.321\n0.58793 1.9158 -459.28\n0.0012782 -6.6868e-06 0.99971\n\nD: 1.8454 -0.0093839 117.6\n0.8533 1.9335 -566.11\n0.0016091 6.8147e-05 1.0105\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.37083 -0.024499 139.16\n-0.094573 0.62749 65.353\n-0.00053805 -2.2225e-05 0.99885\n\nB: 0.75268 -0.0092452 -71.273\n-0.17607 0.97566 6.3105\n-0.00029582 -1.5187e-05 0.99957\n\nC: 0.98278 -0.0048237 22.209\n-0.012055 0.97088 45.658\n-7.6753e-06 -2.3467e-05 1.0001\n\nD: 1.0499 0.025643 108.77\n0.19467 1.0054 -7.8895\n0.0011218 -3.184e-05 1.0021\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_8_0.png", "2D-spatial/Homography_estimation/Homography_estimation_8_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.37083 -0.024499 139.16\n-0.094573 0.62749 65.353\n-0.00053805 -2.2225e-05 0.99885\n\nB: 0.75268 -0.0092452 -71.273\n-0.17607 0.97566 6.3105\n-0.00029582 -1.5187e-05 0.99957\n\nC: 0.98278 -0.0048237 22.209\n-0.012055 0.97088 45.658\n-7.6753e-06 -2.3467e-05 1.0001\n\nD: 1.0499 0.025643 108.77\n0.19467 1.0054 -7.8895\n0.0011218 -3.184e-05 1.0021\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.3184 0.1614 32.607\n0.092973 1.2239 -454.36\n-0.00072537 0.00028453 0.99713\n\nB: 0.85555 -0.17378 91.59\n0.17068 0.85755 -31.264\n-5.1182e-06 2.0966e-06 1.0023\n\nC: 0.87235 0.023622 101.75\n0.12982 0.76075 59.456\n0.0005519 9.0915e-05 1.0016\n\nD: 0.37083 -0.024499 139.16\n-0.094573 0.62749 65.353\n-0.00053805 -2.2225e-05 0.99885\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_9_0.png", "2D-spatial/Homography_estimation/Homography_estimation_9_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.3184 0.1614 32.607\n0.092973 1.2239 -454.36\n-0.00072537 0.00028453 0.99713\n\nB: 0.85555 -0.17378 91.59\n0.17068 0.85755 -31.264\n-5.1182e-06 2.0966e-06 1.0023\n\nC: 0.87235 0.023622 101.75\n0.12982 0.76075 59.456\n0.0005519 9.0915e-05 1.0016\n\nD: 0.37083 -0.024499 139.16\n-0.094573 0.62749 65.353\n-0.00053805 -2.2225e-05 0.99885\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.88184 0.31397 -39.976\n-0.18167 0.93621 153.25\n0.00020118 -1.9028e-05 0.99997\n\nB: 0.33414 0.069646 90.22\n-0.25229 0.73446 157.67\n-0.00038885 2.2582e-06 1.0024\n\nC: 0.15114 -0.00089399 241.66\n-0.078633 0.45918 14.453\n-0.00033245 3.1152e-05 0.99996\n\nD: 0.54864 -0.010797 -6.1494\n-0.11876 0.86651 111.28\n-0.00026448 -1.8961e-05 1\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_10_0.png", "2D-spatial/Homography_estimation/Homography_estimation_10_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.88184 0.31397 -39.976\n-0.18167 0.93621 153.25\n0.00020118 -1.9028e-05 0.99997\n\nB: 0.33414 0.069646 90.22\n-0.25229 0.73446 157.67\n-0.00038885 2.2582e-06 1.0024\n\nC: 0.15114 -0.00089399 241.66\n-0.078633 0.45918 14.453\n-0.00033245 3.1152e-05 0.99996\n\nD: 0.54864 -0.010797 -6.1494\n-0.11876 0.86651 111.28\n-0.00026448 -1.8961e-05 1\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.29858 0.0403 -122.67\n-0.38113 0.61838 172.03\n-0.00071255 -1.0448e-06 0.97348\n\nB: 0.44469 -0.1629 197.72\n-0.090792 0.33606 37.55\n-0.00032851 -0.00028415 1.0004\n\nC: 1.1198 0.031669 158.94\n0.13747 0.986 -24.458\n0.00036259 4.1267e-05 0.99658\n\nD: 0.52949 -0.028655 46.849\n-0.2451 0.79991 158.44\n-0.00032499 -1.8164e-05 0.99959\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_11_0.png", "2D-spatial/Homography_estimation/Homography_estimation_11_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.29858 0.0403 -122.67\n-0.38113 0.61838 172.03\n-0.00071255 -1.0448e-06 0.97348\n\nB: 0.44469 -0.1629 197.72\n-0.090792 0.33606 37.55\n-0.00032851 -0.00028415 1.0004\n\nC: 1.1198 0.031669 158.94\n0.13747 0.986 -24.458\n0.00036259 4.1267e-05 0.99658\n\nD: 0.52949 -0.028655 46.849\n-0.2451 0.79991 158.44\n-0.00032499 -1.8164e-05 0.99959\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.1529 0.012747 244.44\n0.41529 1.1943 -155.59\n0.00087156 5.6224e-05 1.0092\n\nB: 0.1857 -0.0018512 147.73\n-0.094288 0.35154 277.67\n-0.00019671 -1.563e-05 0.9996\n\nC: 0.57079 0.0076829 -45.295\n-0.15447 0.93183 62.276\n-0.00028402 -5.8827e-06 0.99996\n\nD: 0.77105 -0.097833 -3.6994\n-0.092675 0.81167 92.799\n-0.0001392 -0.00012806 0.99964\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_12_0.png", "2D-spatial/Homography_estimation/Homography_estimation_12_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.1529 0.012747 244.44\n0.41529 1.1943 -155.59\n0.00087156 5.6224e-05 1.0092\n\nB: 0.1857 -0.0018512 147.73\n-0.094288 0.35154 277.67\n-0.00019671 -1.563e-05 0.9996\n\nC: 0.57079 0.0076829 -45.295\n-0.15447 0.93183 62.276\n-0.00028402 -5.8827e-06 0.99996\n\nD: 0.77105 -0.097833 -3.6994\n-0.092675 0.81167 92.799\n-0.0001392 -0.00012806 0.99964\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 2.6481 0.070248 -423.11\n0.5002 2.6605 -906.39\n0.0012014 0.00025943 0.99533\n\nB: 0.58099 -0.029382 -20.47\n-0.29479 0.73128 188.62\n-0.00043803 -4.3076e-05 1.0007\n\nC: 0.34904 -0.0038637 -43.899\n-0.22316 0.99346 45.579\n-0.00041195 -1.2246e-05 1\n\nD: 0.38854 -0.073106 92.576\n-0.1986 0.7319 139.21\n-0.00040811 -1.555e-05 0.99988\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_13_0.png", "2D-spatial/Homography_estimation/Homography_estimation_13_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 2.6481 0.070248 -423.11\n0.5002 2.6605 -906.39\n0.0012014 0.00025943 0.99533\n\nB: 0.58099 -0.029382 -20.47\n-0.29479 0.73128 188.62\n-0.00043803 -4.3076e-05 1.0007\n\nC: 0.34904 -0.0038637 -43.899\n-0.22316 0.99346 45.579\n-0.00041195 -1.2246e-05 1\n\nD: 0.38854 -0.073106 92.576\n-0.1986 0.7319 139.21\n-0.00040811 -1.555e-05 0.99988\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 2.2078 0.054458 63.617\n0.67654 2.2557 -637.98\n0.0013191 8.5079e-05 1.0033\n\nB: 1.141 -0.024147 186.42\n0.29573 0.97376 -60.872\n0.00082251 -1.0843e-05 0.99973\n\nC: 3.6199 0.1243 -2.4307\n0.35256 5.1536 -1935.2\n0.0029372 0.0011148 1\n\nD: 1.3308 -0.060097 223.54\n0.17906 0.94189 -10.999\n0.00034146 -4.4675e-05 0.99983\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_14_0.png", "2D-spatial/Homography_estimation/Homography_estimation_14_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 2.2078 0.054458 63.617\n0.67654 2.2557 -637.98\n0.0013191 8.5079e-05 1.0033\n\nB: 1.141 -0.024147 186.42\n0.29573 0.97376 -60.872\n0.00082251 -1.0843e-05 0.99973\n\nC: 3.6199 0.1243 -2.4307\n0.35256 5.1536 -1935.2\n0.0029372 0.0011148 1\n\nD: 1.3308 -0.060097 223.54\n0.17906 0.94189 -10.999\n0.00034146 -4.4675e-05 0.99983\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.6408 -0.0013389 -221.64\n0.1704 1.44 -155.56\n0.00036369 -3.22e-05 1.0003\n\nB: 0.3184 0.1614 32.607\n0.092973 1.2239 -454.36\n-0.00072537 0.00028453 0.99713\n\nC: 0.47208 0.021042 63.836\n-0.16332 0.73028 126.94\n-0.00030371 2.4606e-05 0.99981\n\nD: 0.47589 0.042551 60.888\n-0.21388 0.80238 62.033\n-0.0003663 2.6901e-05 1.001\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_15_0.png", "2D-spatial/Homography_estimation/Homography_estimation_15_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.6408 -0.0013389 -221.64\n0.1704 1.44 -155.56\n0.00036369 -3.22e-05 1.0003\n\nB: 0.3184 0.1614 32.607\n0.092973 1.2239 -454.36\n-0.00072537 0.00028453 0.99713\n\nC: 0.47208 0.021042 63.836\n-0.16332 0.73028 126.94\n-0.00030371 2.4606e-05 0.99981\n\nD: 0.47589 0.042551 60.888\n-0.21388 0.80238 62.033\n-0.0003663 2.6901e-05 1.001\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.44469 -0.1629 197.72\n-0.090792 0.33606 37.55\n-0.00032851 -0.00028415 1.0004\n\nB: 0.7088 -0.010965 -26.07\n-0.13602 0.83489 103.19\n-0.00023352 -1.5615e-05 1.0004\n\nC: 0.54304 0.026384 236.48\n-0.041921 0.64806 87.13\n-5.8662e-05 1.5685e-05 1\n\nD: 0.37107 -0.09213 318.73\n0.086334 0.37505 188.02\n-1.0814e-05 -3.6548e-06 1\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_16_0.png", "2D-spatial/Homography_estimation/Homography_estimation_16_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.44469 -0.1629 197.72\n-0.090792 0.33606 37.55\n-0.00032851 -0.00028415 1.0004\n\nB: 0.7088 -0.010965 -26.07\n-0.13602 0.83489 103.19\n-0.00023352 -1.5615e-05 1.0004\n\nC: 0.54304 0.026384 236.48\n-0.041921 0.64806 87.13\n-5.8662e-05 1.5685e-05 1\n\nD: 0.37107 -0.09213 318.73\n0.086334 0.37505 188.02\n-1.0814e-05 -3.6548e-06 1\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.77105 -0.097833 -3.6994\n-0.092675 0.81167 92.799\n-0.0001392 -0.00012806 0.99964\n\nB: 0.1857 -0.0018512 147.73\n-0.094288 0.35154 277.67\n-0.00019671 -1.563e-05 0.9996\n\nC: 0.13896 0.020204 194.37\n-0.25201 0.63798 118.99\n-0.00052359 2.2762e-05 0.9996\n\nD: 1.4403 0.27154 10.734\n0.071471 1.5534 -44.533\n0.00030432 0.00049723 1.001\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_17_0.png", "2D-spatial/Homography_estimation/Homography_estimation_17_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.77105 -0.097833 -3.6994\n-0.092675 0.81167 92.799\n-0.0001392 -0.00012806 0.99964\n\nB: 0.1857 -0.0018512 147.73\n-0.094288 0.35154 277.67\n-0.00019671 -1.563e-05 0.9996\n\nC: 0.13896 0.020204 194.37\n-0.25201 0.63798 118.99\n-0.00052359 2.2762e-05 0.9996\n\nD: 1.4403 0.27154 10.734\n0.071471 1.5534 -44.533\n0.00030432 0.00049723 1.001\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 3.6199 0.1243 -2.4307\n0.35256 5.1536 -1935.2\n0.0029372 0.0011148 1\n\nB: 0.45287 0.0061881 100.32\n-0.053734 0.66556 61.961\n-0.00023168 -5.8559e-06 1.0005\n\nC: 1.0478 0.035143 64.843\n0.063507 1.0349 21.701\n0.00023044 -6.878e-06 0.99998\n\nD: 0.69134 -0.0063829 116.24\n0.0053381 0.71985 83.96\n-1.8171e-05 2.7124e-05 1\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_18_0.png", "2D-spatial/Homography_estimation/Homography_estimation_18_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 3.6199 0.1243 -2.4307\n0.35256 5.1536 -1935.2\n0.0029372 0.0011148 1\n\nB: 0.45287 0.0061881 100.32\n-0.053734 0.66556 61.961\n-0.00023168 -5.8559e-06 1.0005\n\nC: 1.0478 0.035143 64.843\n0.063507 1.0349 21.701\n0.00023044 -6.878e-06 0.99998\n\nD: 0.69134 -0.0063829 116.24\n0.0053381 0.71985 83.96\n-1.8171e-05 2.7124e-05 1\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.55616 0.0088234 83.342\n-0.19782 0.70845 195.76\n-0.00029305 -3.175e-05 0.99884\n\nB: 0.85799 0.21669 9.4839\n-0.21177 0.85855 130.48\n1.5015e-06 9.2033e-07 1\n\nC: 5.1051 0.34986 -885.86\n1.0306 5.9768 -2733.1\n0.0033649 0.00099216 1\n\nD: 1.4259 0.070724 58.865\n0.39243 1.3442 -170.04\n0.00084248 0.00011346 0.98851\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_19_0.png", "2D-spatial/Homography_estimation/Homography_estimation_19_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.55616 0.0088234 83.342\n-0.19782 0.70845 195.76\n-0.00029305 -3.175e-05 0.99884\n\nB: 0.85799 0.21669 9.4839\n-0.21177 0.85855 130.48\n1.5015e-06 9.2033e-07 1\n\nC: 5.1051 0.34986 -885.86\n1.0306 5.9768 -2733.1\n0.0033649 0.00099216 1\n\nD: 1.4259 0.070724 58.865\n0.39243 1.3442 -170.04\n0.00084248 0.00011346 0.98851\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.032608 0.010774 198.34\n-0.16134 0.44659 114.31\n-0.00057725 -5.1566e-07 1.0017\n\nB: 0.18178 0.033268 82.883\n-0.24959 0.68306 123.62\n-0.0004688 5.3047e-05 1.0005\n\nC: 0.79208 0.010314 26.019\n-0.023778 0.92337 43.513\n-0.00011513 1.2161e-05 1.0003\n\nD: 1.4259 0.070724 58.865\n0.39243 1.3442 -170.04\n0.00084248 0.00011346 0.98851\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_20_0.png", "2D-spatial/Homography_estimation/Homography_estimation_20_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.032608 0.010774 198.34\n-0.16134 0.44659 114.31\n-0.00057725 -5.1566e-07 1.0017\n\nB: 0.18178 0.033268 82.883\n-0.24959 0.68306 123.62\n-0.0004688 5.3047e-05 1.0005\n\nC: 0.79208 0.010314 26.019\n-0.023778 0.92337 43.513\n-0.00011513 1.2161e-05 1.0003\n\nD: 1.4259 0.070724 58.865\n0.39243 1.3442 -170.04\n0.00084248 0.00011346 0.98851\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.0669 0.31109 194.1\n-0.019953 0.9209 79.624\n0.000135 -7.6705e-05 0.99977\n\nB: 0.20876 0.015221 174.06\n-0.13382 0.55012 11.64\n-0.00044084 3.575e-05 1.0177\n\nC: 1.6408 -0.0013389 -221.64\n0.1704 1.44 -155.56\n0.00036369 -3.22e-05 1.0003\n\nD: 1.3903 -0.069797 29.319\n0.18963 1.0284 22.049\n0.00052989 -9.8197e-05 1.0021\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_21_0.png", "2D-spatial/Homography_estimation/Homography_estimation_21_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.0669 0.31109 194.1\n-0.019953 0.9209 79.624\n0.000135 -7.6705e-05 0.99977\n\nB: 0.20876 0.015221 174.06\n-0.13382 0.55012 11.64\n-0.00044084 3.575e-05 1.0177\n\nC: 1.6408 -0.0013389 -221.64\n0.1704 1.44 -155.56\n0.00036369 -3.22e-05 1.0003\n\nD: 1.3903 -0.069797 29.319\n0.18963 1.0284 22.049\n0.00052989 -9.8197e-05 1.0021\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.69134 -0.0063829 116.24\n0.0053381 0.71985 83.96\n-1.8171e-05 2.7124e-05 1\n\nB: 0.1857 -0.0018512 147.73\n-0.094288 0.35154 277.67\n-0.00019671 -1.563e-05 0.9996\n\nC: 0.012717 0.014394 193.52\n-0.12386 0.60301 126.7\n-0.00063953 7.9665e-05 1.0012\n\nD: 0.29858 0.0403 -122.67\n-0.38113 0.61838 172.03\n-0.00071255 -1.0448e-06 0.97348\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_22_0.png", "2D-spatial/Homography_estimation/Homography_estimation_22_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.69134 -0.0063829 116.24\n0.0053381 0.71985 83.96\n-1.8171e-05 2.7124e-05 1\n\nB: 0.1857 -0.0018512 147.73\n-0.094288 0.35154 277.67\n-0.00019671 -1.563e-05 0.9996\n\nC: 0.012717 0.014394 193.52\n-0.12386 0.60301 126.7\n-0.00063953 7.9665e-05 1.0012\n\nD: 0.29858 0.0403 -122.67\n-0.38113 0.61838 172.03\n-0.00071255 -1.0448e-06 0.97348\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.8851 0.028166 274.85\n0.48185 1.6951 -326.97\n0.0011778 8.455e-05 0.99801\n\nB: 0.4849 -0.15095 280.72\n-0.18568 0.38797 170.57\n-4.9965e-05 -0.00024428 0.99985\n\nC: 0.98278 -0.0048237 22.209\n-0.012055 0.97088 45.658\n-7.6753e-06 -2.3467e-05 1.0001\n\nD: 1.6284 1.0346 -954.33\n-0.096789 2.5434 -782.98\n-0.00078653 0.0011044 1\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_23_0.png", "2D-spatial/Homography_estimation/Homography_estimation_23_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.8851 0.028166 274.85\n0.48185 1.6951 -326.97\n0.0011778 8.455e-05 0.99801\n\nB: 0.4849 -0.15095 280.72\n-0.18568 0.38797 170.57\n-4.9965e-05 -0.00024428 0.99985\n\nC: 0.98278 -0.0048237 22.209\n-0.012055 0.97088 45.658\n-7.6753e-06 -2.3467e-05 1.0001\n\nD: 1.6284 1.0346 -954.33\n-0.096789 2.5434 -782.98\n-0.00078653 0.0011044 1\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.9207 0.17258 153.68\n0.62581 1.7293 -542.33\n0.0010509 0.0001244 0.99848\n\nB: 0.70212 0.43231 -128.54\n-0.42351 0.70276 199.3\n6.3285e-06 1.2175e-05 0.99997\n\nC: 0.91628 -0.19782 70.502\n0.072414 0.68419 -33.187\n5.7127e-06 -0.00025258 0.99947\n\nD: 0.22888 0.0058691 272.09\n-0.077153 0.3923 203.08\n-0.00024299 -4.5827e-06 1.0015\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_24_0.png", "2D-spatial/Homography_estimation/Homography_estimation_24_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.9207 0.17258 153.68\n0.62581 1.7293 -542.33\n0.0010509 0.0001244 0.99848\n\nB: 0.70212 0.43231 -128.54\n-0.42351 0.70276 199.3\n6.3285e-06 1.2175e-05 0.99997\n\nC: 0.91628 -0.19782 70.502\n0.072414 0.68419 -33.187\n5.7127e-06 -0.00025258 0.99947\n\nD: 0.22888 0.0058691 272.09\n-0.077153 0.3923 203.08\n-0.00024299 -4.5827e-06 1.0015\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.6477 -0.037624 101.59\n0.49962 1.5725 -364.98\n0.00090272 4.6589e-05 1.0037\n\nB: 0.18178 0.033268 82.883\n-0.24959 0.68306 123.62\n-0.0004688 5.3047e-05 1.0005\n\nC: 0.13416 0.073075 56.977\n-0.21333 0.70433 84.528\n-0.00055481 6.1106e-05 1\n\nD: 1.0499 0.025643 108.77\n0.19467 1.0054 -7.8895\n0.0011218 -3.184e-05 1.0021\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_25_0.png", "2D-spatial/Homography_estimation/Homography_estimation_25_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.6477 -0.037624 101.59\n0.49962 1.5725 -364.98\n0.00090272 4.6589e-05 1.0037\n\nB: 0.18178 0.033268 82.883\n-0.24959 0.68306 123.62\n-0.0004688 5.3047e-05 1.0005\n\nC: 0.13416 0.073075 56.977\n-0.21333 0.70433 84.528\n-0.00055481 6.1106e-05 1\n\nD: 1.0499 0.025643 108.77\n0.19467 1.0054 -7.8895\n0.0011218 -3.184e-05 1.0021\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.38914 0.285 169.51\n-0.28531 0.39347 340.1\n-6.4617e-06 5.0341e-06 1\n\nB: 0.13416 0.073075 56.977\n-0.21333 0.70433 84.528\n-0.00055481 6.1106e-05 1\n\nC: 2.4665 0.083695 233.31\n0.87021 2.8235 -936.68\n0.0017821 0.0001592 0.98707\n\nD: 1.4259 0.070724 58.865\n0.39243 1.3442 -170.04\n0.00084248 0.00011346 0.98851\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_26_0.png", "2D-spatial/Homography_estimation/Homography_estimation_26_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.38914 0.285 169.51\n-0.28531 0.39347 340.1\n-6.4617e-06 5.0341e-06 1\n\nB: 0.13416 0.073075 56.977\n-0.21333 0.70433 84.528\n-0.00055481 6.1106e-05 1\n\nC: 2.4665 0.083695 233.31\n0.87021 2.8235 -936.68\n0.0017821 0.0001592 0.98707\n\nD: 1.4259 0.070724 58.865\n0.39243 1.3442 -170.04\n0.00084248 0.00011346 0.98851\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.3231 -0.10518 226.69\n0.35118 1.4445 -217.52\n0.00076877 -2.4515e-05 0.99903\n\nB: 0.85555 -0.17378 91.59\n0.17068 0.85755 -31.264\n-5.1182e-06 2.0966e-06 1.0023\n\nC: 0.57125 -0.095863 127.19\n0.050302 0.75099 -13.911\n-0.00020485 1.2421e-06 0.9999\n\nD: 1.3186 -0.0097277 -143.16\n0.094663 1.1956 -58.383\n0.00019153 -2.0281e-05 0.99989\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_27_0.png", "2D-spatial/Homography_estimation/Homography_estimation_27_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.3231 -0.10518 226.69\n0.35118 1.4445 -217.52\n0.00076877 -2.4515e-05 0.99903\n\nB: 0.85555 -0.17378 91.59\n0.17068 0.85755 -31.264\n-5.1182e-06 2.0966e-06 1.0023\n\nC: 0.57125 -0.095863 127.19\n0.050302 0.75099 -13.911\n-0.00020485 1.2421e-06 0.9999\n\nD: 1.3186 -0.0097277 -143.16\n0.094663 1.1956 -58.383\n0.00019153 -2.0281e-05 0.99989\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.6996 0.02142 200.09\n0.31149 1.4251 -246.25\n0.00053609 -6.8541e-05 0.99889\n\nB: 0.4591 -0.47767 436.55\n0.46479 0.46941 -27.514\n-2.7182e-05 -1.2668e-06 1.0191\n\nC: 0.55202 0.096567 108.66\n-0.35774 1.4927 -276.32\n-0.00068886 0.0001065 0.98986\n\nD: 1.0499 0.025643 108.77\n0.19467 1.0054 -7.8895\n0.0011218 -3.184e-05 1.0021\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_28_0.png", "2D-spatial/Homography_estimation/Homography_estimation_28_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.6996 0.02142 200.09\n0.31149 1.4251 -246.25\n0.00053609 -6.8541e-05 0.99889\n\nB: 0.4591 -0.47767 436.55\n0.46479 0.46941 -27.514\n-2.7182e-05 -1.2668e-06 1.0191\n\nC: 0.55202 0.096567 108.66\n-0.35774 1.4927 -276.32\n-0.00068886 0.0001065 0.98986\n\nD: 1.0499 0.025643 108.77\n0.19467 1.0054 -7.8895\n0.0011218 -3.184e-05 1.0021\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.13896 0.020204 194.37\n-0.25201 0.63798 118.99\n-0.00052359 2.2762e-05 0.9996\n\nB: 1.6477 -0.037624 101.59\n0.49962 1.5725 -364.98\n0.00090272 4.6589e-05 1.0037\n\nC: 0.091252 0.0066749 132.72\n-0.14667 0.47258 88.51\n-0.00056772 8.3791e-06 1.0029\n\nD: 0.30367 0.12862 200.05\n-0.12888 0.30356 134.47\n2.6855e-07 -3.4026e-07 1\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_29_0.png", "2D-spatial/Homography_estimation/Homography_estimation_29_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.13896 0.020204 194.37\n-0.25201 0.63798 118.99\n-0.00052359 2.2762e-05 0.9996\n\nB: 1.6477 -0.037624 101.59\n0.49962 1.5725 -364.98\n0.00090272 4.6589e-05 1.0037\n\nC: 0.091252 0.0066749 132.72\n-0.14667 0.47258 88.51\n-0.00056772 8.3791e-06 1.0029\n\nD: 0.30367 0.12862 200.05\n-0.12888 0.30356 134.47\n2.6855e-07 -3.4026e-07 1\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.31483 0.11583 690.51\n0.17546 0.70637 14.497\n0.00026712 0.00012691 1\n\nB: 0.10472 0.069057 99.841\n-0.17731 0.5329 107.18\n-0.00051255 -1.3734e-05 0.98616\n\nC: 0.76922 -0.28498 222.68\n0.33855 1.0341 -81.069\n0.00035349 1.2014e-05 0.99834\n\nD: -0.47246 -0.28359 869.57\n0.29041 -0.47016 396.67\n5.0949e-06 1.2499e-05 0.99998\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_30_0.png", "2D-spatial/Homography_estimation/Homography_estimation_30_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.31483 0.11583 690.51\n0.17546 0.70637 14.497\n0.00026712 0.00012691 1\n\nB: 0.10472 0.069057 99.841\n-0.17731 0.5329 107.18\n-0.00051255 -1.3734e-05 0.98616\n\nC: 0.76922 -0.28498 222.68\n0.33855 1.0341 -81.069\n0.00035349 1.2014e-05 0.99834\n\nD: -0.47246 -0.28359 869.57\n0.29041 -0.47016 396.67\n5.0949e-06 1.2499e-05 0.99998\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.1198 0.031669 158.94\n0.13747 0.986 -24.458\n0.00036259 4.1267e-05 0.99658\n\nB: 1.3522 0.025037 96.693\n0.20588 1.5085 -279.44\n0.000418 4.2466e-05 1.0103\n\nC: 0.040904 -0.0023332 234.76\n-0.10713 0.35038 218.5\n-0.00028907 6.311e-06 1.0035\n\nD: 0.38266 -0.33125 122.6\n-0.21363 0.61581 225.35\n-0.00034121 -7.7515e-06 0.99865\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_31_0.png", "2D-spatial/Homography_estimation/Homography_estimation_31_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.1198 0.031669 158.94\n0.13747 0.986 -24.458\n0.00036259 4.1267e-05 0.99658\n\nB: 1.3522 0.025037 96.693\n0.20588 1.5085 -279.44\n0.000418 4.2466e-05 1.0103\n\nC: 0.040904 -0.0023332 234.76\n-0.10713 0.35038 218.5\n-0.00028907 6.311e-06 1.0035\n\nD: 0.38266 -0.33125 122.6\n-0.21363 0.61581 225.35\n-0.00034121 -7.7515e-06 0.99865\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.15114 -0.00089399 241.66\n-0.078633 0.45918 14.453\n-0.00033245 3.1152e-05 0.99996\n\nB: 0.87235 0.023622 101.75\n0.12982 0.76075 59.456\n0.0005519 9.0915e-05 1.0016\n\nC: 0.31483 0.11583 690.51\n0.17546 0.70637 14.497\n0.00026712 0.00012691 1\n\nD: 0.084461 -0.022036 252.3\n-0.21 0.51325 245.38\n-0.000447 -2.621e-05 1.0009\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_32_0.png", "2D-spatial/Homography_estimation/Homography_estimation_32_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.15114 -0.00089399 241.66\n-0.078633 0.45918 14.453\n-0.00033245 3.1152e-05 0.99996\n\nB: 0.87235 0.023622 101.75\n0.12982 0.76075 59.456\n0.0005519 9.0915e-05 1.0016\n\nC: 0.31483 0.11583 690.51\n0.17546 0.70637 14.497\n0.00026712 0.00012691 1\n\nD: 0.084461 -0.022036 252.3\n-0.21 0.51325 245.38\n-0.000447 -2.621e-05 1.0009\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 2.2078 0.054458 63.617\n0.67654 2.2557 -637.98\n0.0013191 8.5079e-05 1.0033\n\nB: 0.62091 -0.030805 57.622\n-0.22703 0.84222 -13.023\n-0.00037179 -4.2767e-05 0.99852\n\nC: 2.3515 0.16969 142.03\n1.0602 2.1465 -778.33\n0.0016806 -4.8949e-05 0.99537\n\nD: 0.056448 -0.012851 135.19\n-0.38625 0.54689 255.61\n-0.00066718 5.392e-05 1.0012\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_33_0.png", "2D-spatial/Homography_estimation/Homography_estimation_33_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 2.2078 0.054458 63.617\n0.67654 2.2557 -637.98\n0.0013191 8.5079e-05 1.0033\n\nB: 0.62091 -0.030805 57.622\n-0.22703 0.84222 -13.023\n-0.00037179 -4.2767e-05 0.99852\n\nC: 2.3515 0.16969 142.03\n1.0602 2.1465 -778.33\n0.0016806 -4.8949e-05 0.99537\n\nD: 0.056448 -0.012851 135.19\n-0.38625 0.54689 255.61\n-0.00066718 5.392e-05 1.0012\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.72201 0.13445 62.975\n0.059719 0.85126 46.305\n-1.7322e-05 0.00018166 1.0001\n\nB: 1.4862 -0.061679 54.577\n0.4606 1.2816 -147.5\n0.0007321 -7.3842e-05 0.99895\n\nC: 1.3231 -0.10518 226.69\n0.35118 1.4445 -217.52\n0.00076877 -2.4515e-05 0.99903\n\nD: 1.3522 0.025037 96.693\n0.20588 1.5085 -279.44\n0.000418 4.2466e-05 1.0103\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_34_0.png", "2D-spatial/Homography_estimation/Homography_estimation_34_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.72201 0.13445 62.975\n0.059719 0.85126 46.305\n-1.7322e-05 0.00018166 1.0001\n\nB: 1.4862 -0.061679 54.577\n0.4606 1.2816 -147.5\n0.0007321 -7.3842e-05 0.99895\n\nC: 1.3231 -0.10518 226.69\n0.35118 1.4445 -217.52\n0.00076877 -2.4515e-05 0.99903\n\nD: 1.3522 0.025037 96.693\n0.20588 1.5085 -279.44\n0.000418 4.2466e-05 1.0103\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.3794 0.089822 49.168\n-0.27745 0.88349 -5.6379\n-0.00046319 5.6849e-05 0.99886\n\nB: 0.88184 0.31397 -39.976\n-0.18167 0.93621 153.25\n0.00020118 -1.9028e-05 0.99997\n\nC: 1.0478 0.035143 64.843\n0.063507 1.0349 21.701\n0.00023044 -6.878e-06 0.99998\n\nD: 1.7761 -0.053427 263.17\n0.41751 1.5987 -329.46\n0.00069677 3.1372e-05 1.0014\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_35_0.png", "2D-spatial/Homography_estimation/Homography_estimation_35_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.3794 0.089822 49.168\n-0.27745 0.88349 -5.6379\n-0.00046319 5.6849e-05 0.99886\n\nB: 0.88184 0.31397 -39.976\n-0.18167 0.93621 153.25\n0.00020118 -1.9028e-05 0.99997\n\nC: 1.0478 0.035143 64.843\n0.063507 1.0349 21.701\n0.00023044 -6.878e-06 0.99998\n\nD: 1.7761 -0.053427 263.17\n0.41751 1.5987 -329.46\n0.00069677 3.1372e-05 1.0014\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.8278 -0.0075993 72.268\n0.68643 1.8832 -550.61\n0.0012853 4.1209e-05 1.006\n\nB: 0.4591 -0.47767 436.55\n0.46479 0.46941 -27.514\n-2.7182e-05 -1.2668e-06 1.0191\n\nC: 0.83129 0.00294 81.765\n-0.011403 0.83158 63.28\n-7.0021e-06 -1.5701e-05 1\n\nD: 1.0819 0.012805 66.799\n0.075853 1.006 5.6909\n0.00034273 -2.4626e-05 1.0003\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_36_0.png", "2D-spatial/Homography_estimation/Homography_estimation_36_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.8278 -0.0075993 72.268\n0.68643 1.8832 -550.61\n0.0012853 4.1209e-05 1.006\n\nB: 0.4591 -0.47767 436.55\n0.46479 0.46941 -27.514\n-2.7182e-05 -1.2668e-06 1.0191\n\nC: 0.83129 0.00294 81.765\n-0.011403 0.83158 63.28\n-7.0021e-06 -1.5701e-05 1\n\nD: 1.0819 0.012805 66.799\n0.075853 1.006 5.6909\n0.00034273 -2.4626e-05 1.0003\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.4932 0.01661 231.74\n0.45676 1.4341 -212.29\n0.0013256 9.9938e-05 0.99686\n\nB: 0.55202 0.096567 108.66\n-0.35774 1.4927 -276.32\n-0.00068886 0.0001065 0.98986\n\nC: 0.17608 -0.024321 273.19\n-0.19809 0.7405 74.826\n-0.00053318 1.2457e-05 1.0069\n\nD: 1.0063 -0.0054085 288.55\n0.23295 0.84053 7.8206\n0.0005941 1.4583e-05 1.0001\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_37_0.png", "2D-spatial/Homography_estimation/Homography_estimation_37_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.4932 0.01661 231.74\n0.45676 1.4341 -212.29\n0.0013256 9.9938e-05 0.99686\n\nB: 0.55202 0.096567 108.66\n-0.35774 1.4927 -276.32\n-0.00068886 0.0001065 0.98986\n\nC: 0.17608 -0.024321 273.19\n-0.19809 0.7405 74.826\n-0.00053318 1.2457e-05 1.0069\n\nD: 1.0063 -0.0054085 288.55\n0.23295 0.84053 7.8206\n0.0005941 1.4583e-05 1.0001\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.4403 0.27154 10.734\n0.071471 1.5534 -44.533\n0.00030432 0.00049723 1.001\n\nB: 0.87235 0.023622 101.75\n0.12982 0.76075 59.456\n0.0005519 9.0915e-05 1.0016\n\nC: 1.1198 0.031669 158.94\n0.13747 0.986 -24.458\n0.00036259 4.1267e-05 0.99658\n\nD: 0.29534 0.035751 -56.21\n-0.35718 0.5432 233.53\n-0.00064211 -1.1093e-05 0.97783\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_38_0.png", "2D-spatial/Homography_estimation/Homography_estimation_38_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.4403 0.27154 10.734\n0.071471 1.5534 -44.533\n0.00030432 0.00049723 1.001\n\nB: 0.87235 0.023622 101.75\n0.12982 0.76075 59.456\n0.0005519 9.0915e-05 1.0016\n\nC: 1.1198 0.031669 158.94\n0.13747 0.986 -24.458\n0.00036259 4.1267e-05 0.99658\n\nD: 0.29534 0.035751 -56.21\n-0.35718 0.5432 233.53\n-0.00064211 -1.1093e-05 0.97783\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.056448 -0.012851 135.19\n-0.38625 0.54689 255.61\n-0.00066718 5.392e-05 1.0012\n\nB: 1.6996 0.02142 200.09\n0.31149 1.4251 -246.25\n0.00053609 -6.8541e-05 0.99889\n\nC: 1.3186 -0.0097277 -143.16\n0.094663 1.1956 -58.383\n0.00019153 -2.0281e-05 0.99989\n\nD: 0.1268 -0.03963 330.5\n-0.1892 0.46973 254.2\n-0.00039857 -3.9641e-05 0.99971\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_39_0.png", "2D-spatial/Homography_estimation/Homography_estimation_39_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.056448 -0.012851 135.19\n-0.38625 0.54689 255.61\n-0.00066718 5.392e-05 1.0012\n\nB: 1.6996 0.02142 200.09\n0.31149 1.4251 -246.25\n0.00053609 -6.8541e-05 0.99889\n\nC: 1.3186 -0.0097277 -143.16\n0.094663 1.1956 -58.383\n0.00019153 -2.0281e-05 0.99989\n\nD: 0.1268 -0.03963 330.5\n-0.1892 0.46973 254.2\n-0.00039857 -3.9641e-05 0.99971\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.441 -0.037212 269.33\n0.73295 1.6438 -380.65\n0.0014226 4.1601e-05 1.0102\n\nB: 0.60665 -0.013034 217.78\n0.087451 0.52146 32.707\n0.00021516 2.9281e-07 1.0006\n\nC: 0.30367 0.12862 200.05\n-0.12888 0.30356 134.47\n2.6855e-07 -3.4026e-07 1\n\nD: 0.28973 0.014397 100.07\n-0.29955 0.64174 168.27\n-0.00067332 7.239e-06 1.0017\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_40_0.png", "2D-spatial/Homography_estimation/Homography_estimation_40_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.441 -0.037212 269.33\n0.73295 1.6438 -380.65\n0.0014226 4.1601e-05 1.0102\n\nB: 0.60665 -0.013034 217.78\n0.087451 0.52146 32.707\n0.00021516 2.9281e-07 1.0006\n\nC: 0.30367 0.12862 200.05\n-0.12888 0.30356 134.47\n2.6855e-07 -3.4026e-07 1\n\nD: 0.28973 0.014397 100.07\n-0.29955 0.64174 168.27\n-0.00067332 7.239e-06 1.0017\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.012717 0.014394 193.52\n-0.12386 0.60301 126.7\n-0.00063953 7.9665e-05 1.0012\n\nB: 0.7855 0.039826 119.05\n-0.25749 1.3451 -220.69\n-0.00047304 5.3677e-05 1.001\n\nC: 1.5134 -0.0029581 20.934\n0.2678 1.4062 -232.68\n0.00048583 -4.0311e-06 1.0006\n\nD: 0.85555 -0.17378 91.59\n0.17068 0.85755 -31.264\n-5.1182e-06 2.0966e-06 1.0023\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_41_0.png", "2D-spatial/Homography_estimation/Homography_estimation_41_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.012717 0.014394 193.52\n-0.12386 0.60301 126.7\n-0.00063953 7.9665e-05 1.0012\n\nB: 0.7855 0.039826 119.05\n-0.25749 1.3451 -220.69\n-0.00047304 5.3677e-05 1.001\n\nC: 1.5134 -0.0029581 20.934\n0.2678 1.4062 -232.68\n0.00048583 -4.0311e-06 1.0006\n\nD: 0.85555 -0.17378 91.59\n0.17068 0.85755 -31.264\n-5.1182e-06 2.0966e-06 1.0023\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.18178 0.033268 82.883\n-0.24959 0.68306 123.62\n-0.0004688 5.3047e-05 1.0005\n\nB: 0.60665 -0.013034 217.78\n0.087451 0.52146 32.707\n0.00021516 2.9281e-07 1.0006\n\nC: 0.62147 0.055609 221.79\n0.21978 1.1561 -23.942\n0.00048557 -4.4311e-05 0.99866\n\nD: 1.3186 -0.0097277 -143.16\n0.094663 1.1956 -58.383\n0.00019153 -2.0281e-05 0.99989\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_42_0.png", "2D-spatial/Homography_estimation/Homography_estimation_42_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.18178 0.033268 82.883\n-0.24959 0.68306 123.62\n-0.0004688 5.3047e-05 1.0005\n\nB: 0.60665 -0.013034 217.78\n0.087451 0.52146 32.707\n0.00021516 2.9281e-07 1.0006\n\nC: 0.62147 0.055609 221.79\n0.21978 1.1561 -23.942\n0.00048557 -4.4311e-05 0.99866\n\nD: 1.3186 -0.0097277 -143.16\n0.094663 1.1956 -58.383\n0.00019153 -2.0281e-05 0.99989\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.4849 -0.15095 280.72\n-0.18568 0.38797 170.57\n-4.9965e-05 -0.00024428 0.99985\n\nB: 0.81883 -0.28544 161.88\n0.010536 0.53499 62.327\n1.3163e-05 -0.00056443 1.0014\n\nC: 0.54304 0.026384 236.48\n-0.041921 0.64806 87.13\n-5.8662e-05 1.5685e-05 1\n\nD: 0.14705 0.061323 72.893\n-0.27582 0.69094 109.44\n-0.00056993 1.3825e-06 0.9981\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_43_0.png", "2D-spatial/Homography_estimation/Homography_estimation_43_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.4849 -0.15095 280.72\n-0.18568 0.38797 170.57\n-4.9965e-05 -0.00024428 0.99985\n\nB: 0.81883 -0.28544 161.88\n0.010536 0.53499 62.327\n1.3163e-05 -0.00056443 1.0014\n\nC: 0.54304 0.026384 236.48\n-0.041921 0.64806 87.13\n-5.8662e-05 1.5685e-05 1\n\nD: 0.14705 0.061323 72.893\n-0.27582 0.69094 109.44\n-0.00056993 1.3825e-06 0.9981\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.41873 -0.043533 -18.562\n-0.27021 0.88041 53.791\n-0.00050299 -2.2546e-05 0.99941\n\nB: 0.63669 0.0018872 137.9\n-0.00033285 0.63926 95.922\n-2.0441e-06 4.1104e-06 1\n\nC: 1.1884 0.015274 95.776\n0.23282 1.0681 -20.551\n0.00097623 0.00015903 1.0014\n\nD: 0.3794 0.089822 49.168\n-0.27745 0.88349 -5.6379\n-0.00046319 5.6849e-05 0.99886\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_44_0.png", "2D-spatial/Homography_estimation/Homography_estimation_44_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.41873 -0.043533 -18.562\n-0.27021 0.88041 53.791\n-0.00050299 -2.2546e-05 0.99941\n\nB: 0.63669 0.0018872 137.9\n-0.00033285 0.63926 95.922\n-2.0441e-06 4.1104e-06 1\n\nC: 1.1884 0.015274 95.776\n0.23282 1.0681 -20.551\n0.00097623 0.00015903 1.0014\n\nD: 0.3794 0.089822 49.168\n-0.27745 0.88349 -5.6379\n-0.00046319 5.6849e-05 0.99886\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.1268 -0.03963 330.5\n-0.1892 0.46973 254.2\n-0.00039857 -3.9641e-05 0.99971\n\nB: 4.3722 0.14407 -818.24\n-0.25209 3.9595 -549.15\n0.001718 0.0010825 0.97985\n\nC: 1.0582 -0.013384 562.45\n0.1807 0.93712 36.472\n0.00043718 5.9368e-06 0.99927\n\nD: 1.3903 -0.069797 29.319\n0.18963 1.0284 22.049\n0.00052989 -9.8197e-05 1.0021\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_45_0.png", "2D-spatial/Homography_estimation/Homography_estimation_45_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.1268 -0.03963 330.5\n-0.1892 0.46973 254.2\n-0.00039857 -3.9641e-05 0.99971\n\nB: 4.3722 0.14407 -818.24\n-0.25209 3.9595 -549.15\n0.001718 0.0010825 0.97985\n\nC: 1.0582 -0.013384 562.45\n0.1807 0.93712 36.472\n0.00043718 5.9368e-06 0.99927\n\nD: 1.3903 -0.069797 29.319\n0.18963 1.0284 22.049\n0.00052989 -9.8197e-05 1.0021\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.24117 0.068506 48.185\n-0.23318 0.79398 68.106\n-0.0005259 5.079e-05 0.99834\n\nB: 0.53266 0.0019756 44.297\n-0.18137 0.85955 61.945\n-0.00038035 1.4705e-06 0.9999\n\nC: 0.79208 0.010314 26.019\n-0.023778 0.92337 43.513\n-0.00011513 1.2161e-05 1.0003\n\nD: 0.48275 -0.12831 276.04\n-0.19138 0.40711 199.19\n-5.6548e-05 -0.00023367 0.99912\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_46_0.png", "2D-spatial/Homography_estimation/Homography_estimation_46_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.24117 0.068506 48.185\n-0.23318 0.79398 68.106\n-0.0005259 5.079e-05 0.99834\n\nB: 0.53266 0.0019756 44.297\n-0.18137 0.85955 61.945\n-0.00038035 1.4705e-06 0.9999\n\nC: 0.79208 0.010314 26.019\n-0.023778 0.92337 43.513\n-0.00011513 1.2161e-05 1.0003\n\nD: 0.48275 -0.12831 276.04\n-0.19138 0.40711 199.19\n-5.6548e-05 -0.00023367 0.99912\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.13416 0.073075 56.977\n-0.21333 0.70433 84.528\n-0.00055481 6.1106e-05 1\n\nB: 0.44469 -0.1629 197.72\n-0.090792 0.33606 37.55\n-0.00032851 -0.00028415 1.0004\n\nC: 1.0505 -0.0053825 276.45\n0.20631 0.92888 48.832\n0.00048841 -1.9251e-05 0.99878\n\nD: 0.62147 0.055609 221.79\n0.21978 1.1561 -23.942\n0.00048557 -4.4311e-05 0.99866\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_47_0.png", "2D-spatial/Homography_estimation/Homography_estimation_47_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.13416 0.073075 56.977\n-0.21333 0.70433 84.528\n-0.00055481 6.1106e-05 1\n\nB: 0.44469 -0.1629 197.72\n-0.090792 0.33606 37.55\n-0.00032851 -0.00028415 1.0004\n\nC: 1.0505 -0.0053825 276.45\n0.20631 0.92888 48.832\n0.00048841 -1.9251e-05 0.99878\n\nD: 0.62147 0.055609 221.79\n0.21978 1.1561 -23.942\n0.00048557 -4.4311e-05 0.99866\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.2108 -0.031741 47.374\n0.20996 1.0345 -107.36\n0.00054926 -6.3631e-06 1.0004\n\nB: 2.5614 0.083075 163.07\n0.94137 2.2586 -732.08\n0.0017783 2.1603e-05 0.99316\n\nC: 0.7855 0.039826 119.05\n-0.25749 1.3451 -220.69\n-0.00047304 5.3677e-05 1.001\n\nD: 0.15114 -0.00089399 241.66\n-0.078633 0.45918 14.453\n-0.00033245 3.1152e-05 0.99996\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_48_0.png", "2D-spatial/Homography_estimation/Homography_estimation_48_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.2108 -0.031741 47.374\n0.20996 1.0345 -107.36\n0.00054926 -6.3631e-06 1.0004\n\nB: 2.5614 0.083075 163.07\n0.94137 2.2586 -732.08\n0.0017783 2.1603e-05 0.99316\n\nC: 0.7855 0.039826 119.05\n-0.25749 1.3451 -220.69\n-0.00047304 5.3677e-05 1.001\n\nD: 0.15114 -0.00089399 241.66\n-0.078633 0.45918 14.453\n-0.00033245 3.1152e-05 0.99996\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.7088 -0.010965 -26.07\n-0.13602 0.83489 103.19\n-0.00023352 -1.5615e-05 1.0004\n\nB: 3.1418 0.21701 -576.91\n0.129 3.5039 -1062.5\n0.0014143 0.00082533 0.98844\n\nC: 0.70161 0.023304 -1.9207\n-0.10366 0.81239 71.251\n-0.00023167 -1.5062e-05 0.99976\n\nD: 0.36677 -0.019493 213.68\n-0.082321 0.47708 180.81\n-0.00021125 -4.1441e-05 1.0123\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_49_0.png", "2D-spatial/Homography_estimation/Homography_estimation_49_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.7088 -0.010965 -26.07\n-0.13602 0.83489 103.19\n-0.00023352 -1.5615e-05 1.0004\n\nB: 3.1418 0.21701 -576.91\n0.129 3.5039 -1062.5\n0.0014143 0.00082533 0.98844\n\nC: 0.70161 0.023304 -1.9207\n-0.10366 0.81239 71.251\n-0.00023167 -1.5062e-05 0.99976\n\nD: 0.36677 -0.019493 213.68\n-0.082321 0.47708 180.81\n-0.00021125 -4.1441e-05 1.0123\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.35568 0.079611 -21.49\n-0.17793 0.7199 62.24\n-0.00050458 1.9913e-05 0.9982\n\nB: 0.54372 0.011697 65.787\n-0.06271 0.8727 105.67\n-0.00025117 2.4814e-06 0.99967\n\nC: 1.0582 -0.013384 562.45\n0.1807 0.93712 36.472\n0.00043718 5.9368e-06 0.99927\n\nD: 0.47589 0.042551 60.888\n-0.21388 0.80238 62.033\n-0.0003663 2.6901e-05 1.001\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_50_0.png", "2D-spatial/Homography_estimation/Homography_estimation_50_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.35568 0.079611 -21.49\n-0.17793 0.7199 62.24\n-0.00050458 1.9913e-05 0.9982\n\nB: 0.54372 0.011697 65.787\n-0.06271 0.8727 105.67\n-0.00025117 2.4814e-06 0.99967\n\nC: 1.0582 -0.013384 562.45\n0.1807 0.93712 36.472\n0.00043718 5.9368e-06 0.99927\n\nD: 0.47589 0.042551 60.888\n-0.21388 0.80238 62.033\n-0.0003663 2.6901e-05 1.001\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 2.2787 0.023843 -30.321\n0.58793 1.9158 -459.28\n0.0012782 -6.6868e-06 0.99971\n\nB: 0.22888 0.0058691 272.09\n-0.077153 0.3923 203.08\n-0.00024299 -4.5827e-06 1.0015\n\nC: 0.38922 0.015343 55.85\n-0.1763 0.84543 87.344\n-0.00049385 -2.1034e-05 1.0072\n\nD: 2.4144 -0.0022023 -199.3\n0.52146 2.0547 -569.49\n0.0010423 8.4489e-05 1.0043\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_51_0.png", "2D-spatial/Homography_estimation/Homography_estimation_51_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 2.2787 0.023843 -30.321\n0.58793 1.9158 -459.28\n0.0012782 -6.6868e-06 0.99971\n\nB: 0.22888 0.0058691 272.09\n-0.077153 0.3923 203.08\n-0.00024299 -4.5827e-06 1.0015\n\nC: 0.38922 0.015343 55.85\n-0.1763 0.84543 87.344\n-0.00049385 -2.1034e-05 1.0072\n\nD: 2.4144 -0.0022023 -199.3\n0.52146 2.0547 -569.49\n0.0010423 8.4489e-05 1.0043\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.38922 0.015343 55.85\n-0.1763 0.84543 87.344\n-0.00049385 -2.1034e-05 1.0072\n\nB: 0.70212 0.43231 -128.54\n-0.42351 0.70276 199.3\n6.3285e-06 1.2175e-05 0.99997\n\nC: 0.42945 0.0071566 96.266\n-0.019537 0.48377 43.049\n-7.8698e-05 1.6013e-05 1.0001\n\nD: 0.70161 0.023304 -1.9207\n-0.10366 0.81239 71.251\n-0.00023167 -1.5062e-05 0.99976\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_52_0.png", "2D-spatial/Homography_estimation/Homography_estimation_52_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.38922 0.015343 55.85\n-0.1763 0.84543 87.344\n-0.00049385 -2.1034e-05 1.0072\n\nB: 0.70212 0.43231 -128.54\n-0.42351 0.70276 199.3\n6.3285e-06 1.2175e-05 0.99997\n\nC: 0.42945 0.0071566 96.266\n-0.019537 0.48377 43.049\n-7.8698e-05 1.6013e-05 1.0001\n\nD: 0.70161 0.023304 -1.9207\n-0.10366 0.81239 71.251\n-0.00023167 -1.5062e-05 0.99976\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 2.2787 0.023843 -30.321\n0.58793 1.9158 -459.28\n0.0012782 -6.6868e-06 0.99971\n\nB: 0.73597 -0.0032436 13.11\n0.017092 0.71039 36.002\n5.8878e-05 -9.3828e-06 0.99995\n\nC: 1.0478 0.035143 64.843\n0.063507 1.0349 21.701\n0.00023044 -6.878e-06 0.99998\n\nD: 0.52949 -0.028655 46.849\n-0.2451 0.79991 158.44\n-0.00032499 -1.8164e-05 0.99959\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_53_0.png", "2D-spatial/Homography_estimation/Homography_estimation_53_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 2.2787 0.023843 -30.321\n0.58793 1.9158 -459.28\n0.0012782 -6.6868e-06 0.99971\n\nB: 0.73597 -0.0032436 13.11\n0.017092 0.71039 36.002\n5.8878e-05 -9.3828e-06 0.99995\n\nC: 1.0478 0.035143 64.843\n0.063507 1.0349 21.701\n0.00023044 -6.878e-06 0.99998\n\nD: 0.52949 -0.028655 46.849\n-0.2451 0.79991 158.44\n-0.00032499 -1.8164e-05 0.99959\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.32788 -0.00026656 168.52\n-0.087696 0.49289 72.043\n-0.00025798 4.6006e-06 0.9984\n\nB: 0.84581 -0.039469 34.117\n-0.067529 0.81703 142.37\n-0.00011408 -0.00014793 1.0014\n\nC: 0.33414 0.069646 90.22\n-0.25229 0.73446 157.67\n-0.00038885 2.2582e-06 1.0024\n\nD: 0.38914 0.285 169.51\n-0.28531 0.39347 340.1\n-6.4617e-06 5.0341e-06 1\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_54_0.png", "2D-spatial/Homography_estimation/Homography_estimation_54_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.32788 -0.00026656 168.52\n-0.087696 0.49289 72.043\n-0.00025798 4.6006e-06 0.9984\n\nB: 0.84581 -0.039469 34.117\n-0.067529 0.81703 142.37\n-0.00011408 -0.00014793 1.0014\n\nC: 0.33414 0.069646 90.22\n-0.25229 0.73446 157.67\n-0.00038885 2.2582e-06 1.0024\n\nD: 0.38914 0.285 169.51\n-0.28531 0.39347 340.1\n-6.4617e-06 5.0341e-06 1\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.441 -0.037212 269.33\n0.73295 1.6438 -380.65\n0.0014226 4.1601e-05 1.0102\n\nB: 1.1901 -0.048587 107.72\n0.14488 1.1926 -121.84\n0.00033622 1.1241e-05 1.0001\n\nC: 2.6177 0.042575 -65.797\n0.74359 2.3954 -903.27\n0.0018892 8.2816e-05 0.98996\n\nD: 0.27317 0.041297 84.951\n-0.22859 0.68736 124.47\n-0.00041264 5.2763e-05 1.0003\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_55_0.png", "2D-spatial/Homography_estimation/Homography_estimation_55_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.441 -0.037212 269.33\n0.73295 1.6438 -380.65\n0.0014226 4.1601e-05 1.0102\n\nB: 1.1901 -0.048587 107.72\n0.14488 1.1926 -121.84\n0.00033622 1.1241e-05 1.0001\n\nC: 2.6177 0.042575 -65.797\n0.74359 2.3954 -903.27\n0.0018892 8.2816e-05 0.98996\n\nD: 0.27317 0.041297 84.951\n-0.22859 0.68736 124.47\n-0.00041264 5.2763e-05 1.0003\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.85799 0.21669 9.4839\n-0.21177 0.85855 130.48\n1.5015e-06 9.2033e-07 1\n\nB: 1.1442 -0.037625 115.5\n0.22206 1.0286 -30.039\n0.00032815 -2.4116e-05 0.9999\n\nC: 0.17608 -0.024321 273.19\n-0.19809 0.7405 74.826\n-0.00053318 1.2457e-05 1.0069\n\nD: 2.3594 0.0026252 -116.05\n0.5085 2.302 -550.96\n0.0013826 0.0001837 1.0004\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_56_0.png", "2D-spatial/Homography_estimation/Homography_estimation_56_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.85799 0.21669 9.4839\n-0.21177 0.85855 130.48\n1.5015e-06 9.2033e-07 1\n\nB: 1.1442 -0.037625 115.5\n0.22206 1.0286 -30.039\n0.00032815 -2.4116e-05 0.9999\n\nC: 0.17608 -0.024321 273.19\n-0.19809 0.7405 74.826\n-0.00053318 1.2457e-05 1.0069\n\nD: 2.3594 0.0026252 -116.05\n0.5085 2.302 -550.96\n0.0013826 0.0001837 1.0004\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.4849 -0.15095 280.72\n-0.18568 0.38797 170.57\n-4.9965e-05 -0.00024428 0.99985\n\nB: 2.1479 0.036813 206.94\n0.67819 1.8174 -485.8\n0.0012074 -6.8043e-06 0.99599\n\nC: 0.24117 0.068506 48.185\n-0.23318 0.79398 68.106\n-0.0005259 5.079e-05 0.99834\n\nD: 0.38922 0.015343 55.85\n-0.1763 0.84543 87.344\n-0.00049385 -2.1034e-05 1.0072\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_57_0.png", "2D-spatial/Homography_estimation/Homography_estimation_57_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.4849 -0.15095 280.72\n-0.18568 0.38797 170.57\n-4.9965e-05 -0.00024428 0.99985\n\nB: 2.1479 0.036813 206.94\n0.67819 1.8174 -485.8\n0.0012074 -6.8043e-06 0.99599\n\nC: 0.24117 0.068506 48.185\n-0.23318 0.79398 68.106\n-0.0005259 5.079e-05 0.99834\n\nD: 0.38922 0.015343 55.85\n-0.1763 0.84543 87.344\n-0.00049385 -2.1034e-05 1.0072\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.2564 0.092521 94.187\n-0.28031 0.83589 -0.15652\n-0.00048968 6.0866e-05 1.0015\n\nB: 2.6481 0.070248 -423.11\n0.5002 2.6605 -906.39\n0.0012014 0.00025943 0.99533\n\nC: 1.0035 -0.00055314 2.5255\n-0.0028717 1.0087 -9.7285\n-3.8783e-06 3.4244e-06 1\n\nD: 2.5614 0.083075 163.07\n0.94137 2.2586 -732.08\n0.0017783 2.1603e-05 0.99316\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_58_0.png", "2D-spatial/Homography_estimation/Homography_estimation_58_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.2564 0.092521 94.187\n-0.28031 0.83589 -0.15652\n-0.00048968 6.0866e-05 1.0015\n\nB: 2.6481 0.070248 -423.11\n0.5002 2.6605 -906.39\n0.0012014 0.00025943 0.99533\n\nC: 1.0035 -0.00055314 2.5255\n-0.0028717 1.0087 -9.7285\n-3.8783e-06 3.4244e-06 1\n\nD: 2.5614 0.083075 163.07\n0.94137 2.2586 -732.08\n0.0017783 2.1603e-05 0.99316\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.3838 0.024181 -93.882\n0.093344 1.307 -232.76\n0.00015995 6.7546e-05 1.0008\n\nB: 1.4219 0.01866 342.44\n0.36005 1.3261 -141.73\n0.00090969 2.3838e-05 1.0002\n\nC: 1.9861 0.031586 27.893\n0.62141 1.9607 -531.99\n0.0011993 -1.9815e-05 0.99978\n\nD: 0.22888 0.0058691 272.09\n-0.077153 0.3923 203.08\n-0.00024299 -4.5827e-06 1.0015\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_59_0.png", "2D-spatial/Homography_estimation/Homography_estimation_59_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.3838 0.024181 -93.882\n0.093344 1.307 -232.76\n0.00015995 6.7546e-05 1.0008\n\nB: 1.4219 0.01866 342.44\n0.36005 1.3261 -141.73\n0.00090969 2.3838e-05 1.0002\n\nC: 1.9861 0.031586 27.893\n0.62141 1.9607 -531.99\n0.0011993 -1.9815e-05 0.99978\n\nD: 0.22888 0.0058691 272.09\n-0.077153 0.3923 203.08\n-0.00024299 -4.5827e-06 1.0015\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.6477 -0.037624 101.59\n0.49962 1.5725 -364.98\n0.00090272 4.6589e-05 1.0037\n\nB: 1.8278 -0.0075993 72.268\n0.68643 1.8832 -550.61\n0.0012853 4.1209e-05 1.006\n\nC: 1.4932 0.01661 231.74\n0.45676 1.4341 -212.29\n0.0013256 9.9938e-05 0.99686\n\nD: 2.2787 0.023843 -30.321\n0.58793 1.9158 -459.28\n0.0012782 -6.6868e-06 0.99971\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_60_0.png", "2D-spatial/Homography_estimation/Homography_estimation_60_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.6477 -0.037624 101.59\n0.49962 1.5725 -364.98\n0.00090272 4.6589e-05 1.0037\n\nB: 1.8278 -0.0075993 72.268\n0.68643 1.8832 -550.61\n0.0012853 4.1209e-05 1.006\n\nC: 1.4932 0.01661 231.74\n0.45676 1.4341 -212.29\n0.0013256 9.9938e-05 0.99686\n\nD: 2.2787 0.023843 -30.321\n0.58793 1.9158 -459.28\n0.0012782 -6.6868e-06 0.99971\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 2.3515 0.16969 142.03\n1.0602 2.1465 -778.33\n0.0016806 -4.8949e-05 0.99537\n\nB: 0.54372 0.011697 65.787\n-0.06271 0.8727 105.67\n-0.00025117 2.4814e-06 0.99967\n\nC: 3.4851 0.086317 195.9\n1.1598 3.067 -1009.5\n0.0025647 -5.4567e-05 0.99349\n\nD: 0.60665 -0.013034 217.78\n0.087451 0.52146 32.707\n0.00021516 2.9281e-07 1.0006\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_61_0.png", "2D-spatial/Homography_estimation/Homography_estimation_61_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 2.3515 0.16969 142.03\n1.0602 2.1465 -778.33\n0.0016806 -4.8949e-05 0.99537\n\nB: 0.54372 0.011697 65.787\n-0.06271 0.8727 105.67\n-0.00025117 2.4814e-06 0.99967\n\nC: 3.4851 0.086317 195.9\n1.1598 3.067 -1009.5\n0.0025647 -5.4567e-05 0.99349\n\nD: 0.60665 -0.013034 217.78\n0.087451 0.52146 32.707\n0.00021516 2.9281e-07 1.0006\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.88184 0.31397 -39.976\n-0.18167 0.93621 153.25\n0.00020118 -1.9028e-05 0.99997\n\nB: 0.2024 0.0033266 96.15\n-0.28093 0.65512 201.73\n-0.00049784 1.8106e-06 1.0048\n\nC: 0.60367 0.071352 -36.528\n-0.21232 0.96671 -45.299\n-0.00036835 6.7456e-05 0.99996\n\nD: 0.48531 0.10549 -95.005\n-0.11843 0.77202 44.217\n-0.00029301 2.8434e-05 0.99773\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_62_0.png", "2D-spatial/Homography_estimation/Homography_estimation_62_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.88184 0.31397 -39.976\n-0.18167 0.93621 153.25\n0.00020118 -1.9028e-05 0.99997\n\nB: 0.2024 0.0033266 96.15\n-0.28093 0.65512 201.73\n-0.00049784 1.8106e-06 1.0048\n\nC: 0.60367 0.071352 -36.528\n-0.21232 0.96671 -45.299\n-0.00036835 6.7456e-05 0.99996\n\nD: 0.48531 0.10549 -95.005\n-0.11843 0.77202 44.217\n-0.00029301 2.8434e-05 0.99773\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.8771 0.00026849 -1.1131\n-0.035484 0.88589 36.525\n-7.7192e-05 -1.833e-05 1\n\nB: 0.4591 -0.47767 436.55\n0.46479 0.46941 -27.514\n-2.7182e-05 -1.2668e-06 1.0191\n\nC: 1.1901 -0.048587 107.72\n0.14488 1.1926 -121.84\n0.00033622 1.1241e-05 1.0001\n\nD: 0.70212 0.43231 -128.54\n-0.42351 0.70276 199.3\n6.3285e-06 1.2175e-05 0.99997\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_63_0.png", "2D-spatial/Homography_estimation/Homography_estimation_63_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.8771 0.00026849 -1.1131\n-0.035484 0.88589 36.525\n-7.7192e-05 -1.833e-05 1\n\nB: 0.4591 -0.47767 436.55\n0.46479 0.46941 -27.514\n-2.7182e-05 -1.2668e-06 1.0191\n\nC: 1.1901 -0.048587 107.72\n0.14488 1.1926 -121.84\n0.00033622 1.1241e-05 1.0001\n\nD: 0.70212 0.43231 -128.54\n-0.42351 0.70276 199.3\n6.3285e-06 1.2175e-05 0.99997\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.5134 -0.0029581 20.934\n0.2678 1.4062 -232.68\n0.00048583 -4.0311e-06 1.0006\n\nB: 0.70212 0.43231 -128.54\n-0.42351 0.70276 199.3\n6.3285e-06 1.2175e-05 0.99997\n\nC: 0.49838 -0.015725 33.278\n-0.18045 0.77392 59.799\n-0.00064863 -4.2793e-05 0.99978\n\nD: 0.13416 0.073075 56.977\n-0.21333 0.70433 84.528\n-0.00055481 6.1106e-05 1\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_64_0.png", "2D-spatial/Homography_estimation/Homography_estimation_64_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.5134 -0.0029581 20.934\n0.2678 1.4062 -232.68\n0.00048583 -4.0311e-06 1.0006\n\nB: 0.70212 0.43231 -128.54\n-0.42351 0.70276 199.3\n6.3285e-06 1.2175e-05 0.99997\n\nC: 0.49838 -0.015725 33.278\n-0.18045 0.77392 59.799\n-0.00064863 -4.2793e-05 0.99978\n\nD: 0.13416 0.073075 56.977\n-0.21333 0.70433 84.528\n-0.00055481 6.1106e-05 1\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.3522 0.025037 96.693\n0.20588 1.5085 -279.44\n0.000418 4.2466e-05 1.0103\n\nB: 1.8954 -0.043603 197.83\n0.50589 1.509 -236.95\n0.0010644 -1.6279e-05 1.0115\n\nC: 0.48882 0.0079397 13.575\n-0.24956 0.69593 149.6\n-0.00053246 -7.8574e-06 1.0026\n\nD: 0.94726 0.076953 177.36\n0.25112 1.0126 13.205\n0.00047269 2.7805e-05 0.99969\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_65_0.png", "2D-spatial/Homography_estimation/Homography_estimation_65_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.3522 0.025037 96.693\n0.20588 1.5085 -279.44\n0.000418 4.2466e-05 1.0103\n\nB: 1.8954 -0.043603 197.83\n0.50589 1.509 -236.95\n0.0010644 -1.6279e-05 1.0115\n\nC: 0.48882 0.0079397 13.575\n-0.24956 0.69593 149.6\n-0.00053246 -7.8574e-06 1.0026\n\nD: 0.94726 0.076953 177.36\n0.25112 1.0126 13.205\n0.00047269 2.7805e-05 0.99969\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.0019 0.045013 144.39\n0.13277 0.95284 -14.111\n0.0002066 5.2875e-05 1\n\nB: 2.3515 0.16969 142.03\n1.0602 2.1465 -778.33\n0.0016806 -4.8949e-05 0.99537\n\nC: 0.1857 -0.0018512 147.73\n-0.094288 0.35154 277.67\n-0.00019671 -1.563e-05 0.9996\n\nD: 0.37618 -0.0026073 58.013\n-0.13988 0.81886 117.4\n-0.00032276 -1.1378e-05 0.99983\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_66_0.png", "2D-spatial/Homography_estimation/Homography_estimation_66_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.0019 0.045013 144.39\n0.13277 0.95284 -14.111\n0.0002066 5.2875e-05 1\n\nB: 2.3515 0.16969 142.03\n1.0602 2.1465 -778.33\n0.0016806 -4.8949e-05 0.99537\n\nC: 0.1857 -0.0018512 147.73\n-0.094288 0.35154 277.67\n-0.00019671 -1.563e-05 0.9996\n\nD: 0.37618 -0.0026073 58.013\n-0.13988 0.81886 117.4\n-0.00032276 -1.1378e-05 0.99983\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.77044 -0.014353 152.19\n0.007827 0.75172 76.397\n1.9039e-05 -2.1554e-05 1\n\nB: 0.40245 -0.33938 102.29\n-0.2125 0.62381 216.78\n-0.00033866 -1.5855e-05 1.0018\n\nC: 1.3838 0.024181 -93.882\n0.093344 1.307 -232.76\n0.00015995 6.7546e-05 1.0008\n\nD: 1.141 -0.024147 186.42\n0.29573 0.97376 -60.872\n0.00082251 -1.0843e-05 0.99973\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_67_0.png", "2D-spatial/Homography_estimation/Homography_estimation_67_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.77044 -0.014353 152.19\n0.007827 0.75172 76.397\n1.9039e-05 -2.1554e-05 1\n\nB: 0.40245 -0.33938 102.29\n-0.2125 0.62381 216.78\n-0.00033866 -1.5855e-05 1.0018\n\nC: 1.3838 0.024181 -93.882\n0.093344 1.307 -232.76\n0.00015995 6.7546e-05 1.0008\n\nD: 1.141 -0.024147 186.42\n0.29573 0.97376 -60.872\n0.00082251 -1.0843e-05 0.99973\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.79208 0.010314 26.019\n-0.023778 0.92337 43.513\n-0.00011513 1.2161e-05 1.0003\n\nB: 1.4932 0.01661 231.74\n0.45676 1.4341 -212.29\n0.0013256 9.9938e-05 0.99686\n\nC: 0.091252 0.0066749 132.72\n-0.14667 0.47258 88.51\n-0.00056772 8.3791e-06 1.0029\n\nD: 1.8278 -0.0075993 72.268\n0.68643 1.8832 -550.61\n0.0012853 4.1209e-05 1.006\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_68_0.png", "2D-spatial/Homography_estimation/Homography_estimation_68_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.79208 0.010314 26.019\n-0.023778 0.92337 43.513\n-0.00011513 1.2161e-05 1.0003\n\nB: 1.4932 0.01661 231.74\n0.45676 1.4341 -212.29\n0.0013256 9.9938e-05 0.99686\n\nC: 0.091252 0.0066749 132.72\n-0.14667 0.47258 88.51\n-0.00056772 8.3791e-06 1.0029\n\nD: 1.8278 -0.0075993 72.268\n0.68643 1.8832 -550.61\n0.0012853 4.1209e-05 1.006\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.0983 -0.030393 111.31\n0.31879 0.9789 58.516\n0.00050073 -5.3943e-05 1.0005\n\nB: 0.69134 -0.0063829 116.24\n0.0053381 0.71985 83.96\n-1.8171e-05 2.7124e-05 1\n\nC: 0.91628 -0.19782 70.502\n0.072414 0.68419 -33.187\n5.7127e-06 -0.00025258 0.99947\n\nD: 2.3515 0.16969 142.03\n1.0602 2.1465 -778.33\n0.0016806 -4.8949e-05 0.99537\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_69_0.png", "2D-spatial/Homography_estimation/Homography_estimation_69_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.0983 -0.030393 111.31\n0.31879 0.9789 58.516\n0.00050073 -5.3943e-05 1.0005\n\nB: 0.69134 -0.0063829 116.24\n0.0053381 0.71985 83.96\n-1.8171e-05 2.7124e-05 1\n\nC: 0.91628 -0.19782 70.502\n0.072414 0.68419 -33.187\n5.7127e-06 -0.00025258 0.99947\n\nD: 2.3515 0.16969 142.03\n1.0602 2.1465 -778.33\n0.0016806 -4.8949e-05 0.99537\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.75268 -0.0092452 -71.273\n-0.17607 0.97566 6.3105\n-0.00029582 -1.5187e-05 0.99957\n\nB: 0.091252 0.0066749 132.72\n-0.14667 0.47258 88.51\n-0.00056772 8.3791e-06 1.0029\n\nC: 0.62091 -0.030805 57.622\n-0.22703 0.84222 -13.023\n-0.00037179 -4.2767e-05 0.99852\n\nD: 1.4259 0.070724 58.865\n0.39243 1.3442 -170.04\n0.00084248 0.00011346 0.98851\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_70_0.png", "2D-spatial/Homography_estimation/Homography_estimation_70_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.75268 -0.0092452 -71.273\n-0.17607 0.97566 6.3105\n-0.00029582 -1.5187e-05 0.99957\n\nB: 0.091252 0.0066749 132.72\n-0.14667 0.47258 88.51\n-0.00056772 8.3791e-06 1.0029\n\nC: 0.62091 -0.030805 57.622\n-0.22703 0.84222 -13.023\n-0.00037179 -4.2767e-05 0.99852\n\nD: 1.4259 0.070724 58.865\n0.39243 1.3442 -170.04\n0.00084248 0.00011346 0.98851\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.49838 -0.015725 33.278\n-0.18045 0.77392 59.799\n-0.00064863 -4.2793e-05 0.99978\n\nB: 2.9599 0.00703 244.64\n0.78405 1.8789 -438.29\n0.0018411 4.4095e-05 0.99694\n\nC: 0.58099 -0.029382 -20.47\n-0.29479 0.73128 188.62\n-0.00043803 -4.3076e-05 1.0007\n\nD: 2.6177 0.042575 -65.797\n0.74359 2.3954 -903.27\n0.0018892 8.2816e-05 0.98996\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_71_0.png", "2D-spatial/Homography_estimation/Homography_estimation_71_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.49838 -0.015725 33.278\n-0.18045 0.77392 59.799\n-0.00064863 -4.2793e-05 0.99978\n\nB: 2.9599 0.00703 244.64\n0.78405 1.8789 -438.29\n0.0018411 4.4095e-05 0.99694\n\nC: 0.58099 -0.029382 -20.47\n-0.29479 0.73128 188.62\n-0.00043803 -4.3076e-05 1.0007\n\nD: 2.6177 0.042575 -65.797\n0.74359 2.3954 -903.27\n0.0018892 8.2816e-05 0.98996\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.0582 -0.013384 562.45\n0.1807 0.93712 36.472\n0.00043718 5.9368e-06 0.99927\n\nB: 0.73597 -0.0032436 13.11\n0.017092 0.71039 36.002\n5.8878e-05 -9.3828e-06 0.99995\n\nC: 0.37694 0.049406 111.53\n-0.16444 0.72986 84.602\n-0.00037753 4.0247e-05 0.99869\n\nD: 1.9834 -0.0016422 376.55\n0.84 1.4832 -241.61\n0.0019136 -3.8955e-05 1.0014\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_72_0.png", "2D-spatial/Homography_estimation/Homography_estimation_72_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.0582 -0.013384 562.45\n0.1807 0.93712 36.472\n0.00043718 5.9368e-06 0.99927\n\nB: 0.73597 -0.0032436 13.11\n0.017092 0.71039 36.002\n5.8878e-05 -9.3828e-06 0.99995\n\nC: 0.37694 0.049406 111.53\n-0.16444 0.72986 84.602\n-0.00037753 4.0247e-05 0.99869\n\nD: 1.9834 -0.0016422 376.55\n0.84 1.4832 -241.61\n0.0019136 -3.8955e-05 1.0014\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.2869 -0.0035671 90.117\n0.34981 1.1421 -290.48\n0.0010338 2.5575e-05 0.99928\n\nB: 0.74922 -0.0014388 -75.597\n-0.074158 0.94323 40.455\n-0.00018126 -6.2301e-06 1\n\nC: 0.67444 0.023361 37.089\n-0.047926 0.90094 60.932\n-0.00018688 1.1402e-05 1.0007\n\nD: 1.0063 -0.0054085 288.55\n0.23295 0.84053 7.8206\n0.0005941 1.4583e-05 1.0001\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_73_0.png", "2D-spatial/Homography_estimation/Homography_estimation_73_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.2869 -0.0035671 90.117\n0.34981 1.1421 -290.48\n0.0010338 2.5575e-05 0.99928\n\nB: 0.74922 -0.0014388 -75.597\n-0.074158 0.94323 40.455\n-0.00018126 -6.2301e-06 1\n\nC: 0.67444 0.023361 37.089\n-0.047926 0.90094 60.932\n-0.00018688 1.1402e-05 1.0007\n\nD: 1.0063 -0.0054085 288.55\n0.23295 0.84053 7.8206\n0.0005941 1.4583e-05 1.0001\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.29858 0.0403 -122.67\n-0.38113 0.61838 172.03\n-0.00071255 -1.0448e-06 0.97348\n\nB: 1.4259 0.070724 58.865\n0.39243 1.3442 -170.04\n0.00084248 0.00011346 0.98851\n\nC: 0.4605 0.0019073 42.778\n0.003918 0.45748 107.3\n1.6895e-05 4.8733e-06 1.0001\n\nD: 1.7761 -0.053427 263.17\n0.41751 1.5987 -329.46\n0.00069677 3.1372e-05 1.0014\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_74_0.png", "2D-spatial/Homography_estimation/Homography_estimation_74_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.29858 0.0403 -122.67\n-0.38113 0.61838 172.03\n-0.00071255 -1.0448e-06 0.97348\n\nB: 1.4259 0.070724 58.865\n0.39243 1.3442 -170.04\n0.00084248 0.00011346 0.98851\n\nC: 0.4605 0.0019073 42.778\n0.003918 0.45748 107.3\n1.6895e-05 4.8733e-06 1.0001\n\nD: 1.7761 -0.053427 263.17\n0.41751 1.5987 -329.46\n0.00069677 3.1372e-05 1.0014\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.43124 0.047668 -66.525\n-0.34772 0.62068 209.27\n-0.00060194 -2.1104e-07 0.98648\n\nB: 1.7312 -0.086578 129.17\n0.3882 1.1026 -2.2164\n0.0010948 -0.00011788 1.0024\n\nC: 0.85555 -0.17378 91.59\n0.17068 0.85755 -31.264\n-5.1182e-06 2.0966e-06 1.0023\n\nD: 0.33414 0.069646 90.22\n-0.25229 0.73446 157.67\n-0.00038885 2.2582e-06 1.0024\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_75_0.png", "2D-spatial/Homography_estimation/Homography_estimation_75_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.43124 0.047668 -66.525\n-0.34772 0.62068 209.27\n-0.00060194 -2.1104e-07 0.98648\n\nB: 1.7312 -0.086578 129.17\n0.3882 1.1026 -2.2164\n0.0010948 -0.00011788 1.0024\n\nC: 0.85555 -0.17378 91.59\n0.17068 0.85755 -31.264\n-5.1182e-06 2.0966e-06 1.0023\n\nD: 0.33414 0.069646 90.22\n-0.25229 0.73446 157.67\n-0.00038885 2.2582e-06 1.0024\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.547 0.11677 155.75\n0.40373 1.373 -170.1\n0.00090791 8.8782e-05 1.0012\n\nB: 0.056448 -0.012851 135.19\n-0.38625 0.54689 255.61\n-0.00066718 5.392e-05 1.0012\n\nC: 0.60665 -0.013034 217.78\n0.087451 0.52146 32.707\n0.00021516 2.9281e-07 1.0006\n\nD: 1.2108 -0.031741 47.374\n0.20996 1.0345 -107.36\n0.00054926 -6.3631e-06 1.0004\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_76_0.png", "2D-spatial/Homography_estimation/Homography_estimation_76_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.547 0.11677 155.75\n0.40373 1.373 -170.1\n0.00090791 8.8782e-05 1.0012\n\nB: 0.056448 -0.012851 135.19\n-0.38625 0.54689 255.61\n-0.00066718 5.392e-05 1.0012\n\nC: 0.60665 -0.013034 217.78\n0.087451 0.52146 32.707\n0.00021516 2.9281e-07 1.0006\n\nD: 1.2108 -0.031741 47.374\n0.20996 1.0345 -107.36\n0.00054926 -6.3631e-06 1.0004\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.0033111 0.031282 184.63\n-0.15843 0.75999 4.5609\n-0.00083562 0.00011238 0.99927\n\nB: 0.88632 -0.012492 -136.92\n-0.047209 1.0157 42.178\n-0.0001423 1.8595e-05 1.0005\n\nC: 0.1857 -0.0018512 147.73\n-0.094288 0.35154 277.67\n-0.00019671 -1.563e-05 0.9996\n\nD: 0.60367 0.071352 -36.528\n-0.21232 0.96671 -45.299\n-0.00036835 6.7456e-05 0.99996\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_77_0.png", "2D-spatial/Homography_estimation/Homography_estimation_77_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.0033111 0.031282 184.63\n-0.15843 0.75999 4.5609\n-0.00083562 0.00011238 0.99927\n\nB: 0.88632 -0.012492 -136.92\n-0.047209 1.0157 42.178\n-0.0001423 1.8595e-05 1.0005\n\nC: 0.1857 -0.0018512 147.73\n-0.094288 0.35154 277.67\n-0.00019671 -1.563e-05 0.9996\n\nD: 0.60367 0.071352 -36.528\n-0.21232 0.96671 -45.299\n-0.00036835 6.7456e-05 0.99996\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.1857 -0.0018512 147.73\n-0.094288 0.35154 277.67\n-0.00019671 -1.563e-05 0.9996\n\nB: 0.7855 0.039826 119.05\n-0.25749 1.3451 -220.69\n-0.00047304 5.3677e-05 1.001\n\nC: -0.47246 -0.28359 869.57\n0.29041 -0.47016 396.67\n5.0949e-06 1.2499e-05 0.99998\n\nD: -0.47246 -0.28359 869.57\n0.29041 -0.47016 396.67\n5.0949e-06 1.2499e-05 0.99998\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_78_0.png", "2D-spatial/Homography_estimation/Homography_estimation_78_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.1857 -0.0018512 147.73\n-0.094288 0.35154 277.67\n-0.00019671 -1.563e-05 0.9996\n\nB: 0.7855 0.039826 119.05\n-0.25749 1.3451 -220.69\n-0.00047304 5.3677e-05 1.001\n\nC: -0.47246 -0.28359 869.57\n0.29041 -0.47016 396.67\n5.0949e-06 1.2499e-05 0.99998\n\nD: -0.47246 -0.28359 869.57\n0.29041 -0.47016 396.67\n5.0949e-06 1.2499e-05 0.99998\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.55616 0.0088234 83.342\n-0.19782 0.70845 195.76\n-0.00029305 -3.175e-05 0.99884\n\nB: 0.31483 0.11583 690.51\n0.17546 0.70637 14.497\n0.00026712 0.00012691 1\n\nC: 0.7088 -0.010965 -26.07\n-0.13602 0.83489 103.19\n-0.00023352 -1.5615e-05 1.0004\n\nD: 1.0819 0.012805 66.799\n0.075853 1.006 5.6909\n0.00034273 -2.4626e-05 1.0003\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_79_0.png", "2D-spatial/Homography_estimation/Homography_estimation_79_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.55616 0.0088234 83.342\n-0.19782 0.70845 195.76\n-0.00029305 -3.175e-05 0.99884\n\nB: 0.31483 0.11583 690.51\n0.17546 0.70637 14.497\n0.00026712 0.00012691 1\n\nC: 0.7088 -0.010965 -26.07\n-0.13602 0.83489 103.19\n-0.00023352 -1.5615e-05 1.0004\n\nD: 1.0819 0.012805 66.799\n0.075853 1.006 5.6909\n0.00034273 -2.4626e-05 1.0003\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.3186 -0.0097277 -143.16\n0.094663 1.1956 -58.383\n0.00019153 -2.0281e-05 0.99989\n\nB: 1.1442 -0.037625 115.5\n0.22206 1.0286 -30.039\n0.00032815 -2.4116e-05 0.9999\n\nC: 0.27317 0.041297 84.951\n-0.22859 0.68736 124.47\n-0.00041264 5.2763e-05 1.0003\n\nD: 1.9861 0.031586 27.893\n0.62141 1.9607 -531.99\n0.0011993 -1.9815e-05 0.99978\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_80_0.png", "2D-spatial/Homography_estimation/Homography_estimation_80_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.3186 -0.0097277 -143.16\n0.094663 1.1956 -58.383\n0.00019153 -2.0281e-05 0.99989\n\nB: 1.1442 -0.037625 115.5\n0.22206 1.0286 -30.039\n0.00032815 -2.4116e-05 0.9999\n\nC: 0.27317 0.041297 84.951\n-0.22859 0.68736 124.47\n-0.00041264 5.2763e-05 1.0003\n\nD: 1.9861 0.031586 27.893\n0.62141 1.9607 -531.99\n0.0011993 -1.9815e-05 0.99978\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.37107 -0.09213 318.73\n0.086334 0.37505 188.02\n-1.0814e-05 -3.6548e-06 1\n\nB: 1.8278 -0.0075993 72.268\n0.68643 1.8832 -550.61\n0.0012853 4.1209e-05 1.006\n\nC: 1.3231 -0.10518 226.69\n0.35118 1.4445 -217.52\n0.00076877 -2.4515e-05 0.99903\n\nD: 0.49202 0.0057754 242.06\n0.058005 0.43541 166.02\n0.00018017 1.0746e-05 0.99974\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_81_0.png", "2D-spatial/Homography_estimation/Homography_estimation_81_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.37107 -0.09213 318.73\n0.086334 0.37505 188.02\n-1.0814e-05 -3.6548e-06 1\n\nB: 1.8278 -0.0075993 72.268\n0.68643 1.8832 -550.61\n0.0012853 4.1209e-05 1.006\n\nC: 1.3231 -0.10518 226.69\n0.35118 1.4445 -217.52\n0.00076877 -2.4515e-05 0.99903\n\nD: 0.49202 0.0057754 242.06\n0.058005 0.43541 166.02\n0.00018017 1.0746e-05 0.99974\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.52064 0.019326 41.006\n-0.1476 0.75468 101.84\n-0.00026848 4.5639e-05 1.0094\n\nB: 1.6284 1.0346 -954.33\n-0.096789 2.5434 -782.98\n-0.00078653 0.0011044 1\n\nC: 0.1176 -0.0075311 194.61\n-0.10067 0.3391 257.1\n-0.00023555 -9.6091e-06 0.99858\n\nD: 3.6199 0.1243 -2.4307\n0.35256 5.1536 -1935.2\n0.0029372 0.0011148 1\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_82_0.png", "2D-spatial/Homography_estimation/Homography_estimation_82_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.52064 0.019326 41.006\n-0.1476 0.75468 101.84\n-0.00026848 4.5639e-05 1.0094\n\nB: 1.6284 1.0346 -954.33\n-0.096789 2.5434 -782.98\n-0.00078653 0.0011044 1\n\nC: 0.1176 -0.0075311 194.61\n-0.10067 0.3391 257.1\n-0.00023555 -9.6091e-06 0.99858\n\nD: 3.6199 0.1243 -2.4307\n0.35256 5.1536 -1935.2\n0.0029372 0.0011148 1\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.1857 -0.0018512 147.73\n-0.094288 0.35154 277.67\n-0.00019671 -1.563e-05 0.9996\n\nB: 1.8278 -0.0075993 72.268\n0.68643 1.8832 -550.61\n0.0012853 4.1209e-05 1.006\n\nC: 0.35568 0.079611 -21.49\n-0.17793 0.7199 62.24\n-0.00050458 1.9913e-05 0.9982\n\nD: 0.44469 -0.1629 197.72\n-0.090792 0.33606 37.55\n-0.00032851 -0.00028415 1.0004\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_83_0.png", "2D-spatial/Homography_estimation/Homography_estimation_83_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.1857 -0.0018512 147.73\n-0.094288 0.35154 277.67\n-0.00019671 -1.563e-05 0.9996\n\nB: 1.8278 -0.0075993 72.268\n0.68643 1.8832 -550.61\n0.0012853 4.1209e-05 1.006\n\nC: 0.35568 0.079611 -21.49\n-0.17793 0.7199 62.24\n-0.00050458 1.9913e-05 0.9982\n\nD: 0.44469 -0.1629 197.72\n-0.090792 0.33606 37.55\n-0.00032851 -0.00028415 1.0004\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.4605 0.0019073 42.778\n0.003918 0.45748 107.3\n1.6895e-05 4.8733e-06 1.0001\n\nB: 2.4144 -0.0022023 -199.3\n0.52146 2.0547 -569.49\n0.0010423 8.4489e-05 1.0043\n\nC: 0.57079 0.0076829 -45.295\n-0.15447 0.93183 62.276\n-0.00028402 -5.8827e-06 0.99996\n\nD: 0.47208 0.021042 63.836\n-0.16332 0.73028 126.94\n-0.00030371 2.4606e-05 0.99981\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_84_0.png", "2D-spatial/Homography_estimation/Homography_estimation_84_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.4605 0.0019073 42.778\n0.003918 0.45748 107.3\n1.6895e-05 4.8733e-06 1.0001\n\nB: 2.4144 -0.0022023 -199.3\n0.52146 2.0547 -569.49\n0.0010423 8.4489e-05 1.0043\n\nC: 0.57079 0.0076829 -45.295\n-0.15447 0.93183 62.276\n-0.00028402 -5.8827e-06 0.99996\n\nD: 0.47208 0.021042 63.836\n-0.16332 0.73028 126.94\n-0.00030371 2.4606e-05 0.99981\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.0669 0.31109 194.1\n-0.019953 0.9209 79.624\n0.000135 -7.6705e-05 0.99977\n\nB: 1.5534 0.017684 158.94\n0.56083 1.4841 -343.65\n0.0010107 3.8363e-05 0.99895\n\nC: 1.4272 0.064496 -40.82\n0.15764 1.3161 -94.847\n0.00037033 4.6015e-05 0.99258\n\nD: 1.3951 0.13641 136.74\n0.31704 1.2758 -219.28\n0.00053511 0.00013896 0.99675\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_85_0.png", "2D-spatial/Homography_estimation/Homography_estimation_85_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.0669 0.31109 194.1\n-0.019953 0.9209 79.624\n0.000135 -7.6705e-05 0.99977\n\nB: 1.5534 0.017684 158.94\n0.56083 1.4841 -343.65\n0.0010107 3.8363e-05 0.99895\n\nC: 1.4272 0.064496 -40.82\n0.15764 1.3161 -94.847\n0.00037033 4.6015e-05 0.99258\n\nD: 1.3951 0.13641 136.74\n0.31704 1.2758 -219.28\n0.00053511 0.00013896 0.99675\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 2.308 -0.067061 201.09\n0.71494 1.8702 -412.16\n0.0015273 -1.6972e-05 1.0162\n\nB: 1.3838 0.024181 -93.882\n0.093344 1.307 -232.76\n0.00015995 6.7546e-05 1.0008\n\nC: 0.46288 -0.016626 22.437\n-0.26713 0.81047 151.27\n-0.00036789 7.646e-06 0.99855\n\nD: 1.3522 0.025037 96.693\n0.20588 1.5085 -279.44\n0.000418 4.2466e-05 1.0103\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_86_0.png", "2D-spatial/Homography_estimation/Homography_estimation_86_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 2.308 -0.067061 201.09\n0.71494 1.8702 -412.16\n0.0015273 -1.6972e-05 1.0162\n\nB: 1.3838 0.024181 -93.882\n0.093344 1.307 -232.76\n0.00015995 6.7546e-05 1.0008\n\nC: 0.46288 -0.016626 22.437\n-0.26713 0.81047 151.27\n-0.00036789 7.646e-06 0.99855\n\nD: 1.3522 0.025037 96.693\n0.20588 1.5085 -279.44\n0.000418 4.2466e-05 1.0103\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.4849 -0.15095 280.72\n-0.18568 0.38797 170.57\n-4.9965e-05 -0.00024428 0.99985\n\nB: 1.2108 -0.031741 47.374\n0.20996 1.0345 -107.36\n0.00054926 -6.3631e-06 1.0004\n\nC: 0.75268 -0.0092452 -71.273\n-0.17607 0.97566 6.3105\n-0.00029582 -1.5187e-05 0.99957\n\nD: 1.0063 -0.0054085 288.55\n0.23295 0.84053 7.8206\n0.0005941 1.4583e-05 1.0001\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_87_0.png", "2D-spatial/Homography_estimation/Homography_estimation_87_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.4849 -0.15095 280.72\n-0.18568 0.38797 170.57\n-4.9965e-05 -0.00024428 0.99985\n\nB: 1.2108 -0.031741 47.374\n0.20996 1.0345 -107.36\n0.00054926 -6.3631e-06 1.0004\n\nC: 0.75268 -0.0092452 -71.273\n-0.17607 0.97566 6.3105\n-0.00029582 -1.5187e-05 0.99957\n\nD: 1.0063 -0.0054085 288.55\n0.23295 0.84053 7.8206\n0.0005941 1.4583e-05 1.0001\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.3951 0.13641 136.74\n0.31704 1.2758 -219.28\n0.00053511 0.00013896 0.99675\n\nB: 0.31269 -0.011782 51.842\n-0.22276 0.71181 65.24\n-0.00081452 -4.173e-05 0.99309\n\nC: 0.22888 0.0058691 272.09\n-0.077153 0.3923 203.08\n-0.00024299 -4.5827e-06 1.0015\n\nD: 0.37083 -0.024499 139.16\n-0.094573 0.62749 65.353\n-0.00053805 -2.2225e-05 0.99885\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_88_0.png", "2D-spatial/Homography_estimation/Homography_estimation_88_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.3951 0.13641 136.74\n0.31704 1.2758 -219.28\n0.00053511 0.00013896 0.99675\n\nB: 0.31269 -0.011782 51.842\n-0.22276 0.71181 65.24\n-0.00081452 -4.173e-05 0.99309\n\nC: 0.22888 0.0058691 272.09\n-0.077153 0.3923 203.08\n-0.00024299 -4.5827e-06 1.0015\n\nD: 0.37083 -0.024499 139.16\n-0.094573 0.62749 65.353\n-0.00053805 -2.2225e-05 0.99885\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.66581 0.6777 -31.246\n-0.14346 0.96853 148.92\n0.00042869 -1.7355e-05 0.99928\n\nB: 0.23209 -0.67097 528.16\n0.66389 0.2516 -30.266\n-3.168e-05 2.5631e-05 1.0087\n\nC: 2.4665 0.083695 233.31\n0.87021 2.8235 -936.68\n0.0017821 0.0001592 0.98707\n\nD: 1.1346 -0.16977 -78.128\n-0.0017173 0.8512 -82.973\n8.0333e-07 -0.00031449 0.99917\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_89_0.png", "2D-spatial/Homography_estimation/Homography_estimation_89_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.66581 0.6777 -31.246\n-0.14346 0.96853 148.92\n0.00042869 -1.7355e-05 0.99928\n\nB: 0.23209 -0.67097 528.16\n0.66389 0.2516 -30.266\n-3.168e-05 2.5631e-05 1.0087\n\nC: 2.4665 0.083695 233.31\n0.87021 2.8235 -936.68\n0.0017821 0.0001592 0.98707\n\nD: 1.1346 -0.16977 -78.128\n-0.0017173 0.8512 -82.973\n8.0333e-07 -0.00031449 0.99917\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: -0.21679 -0.12572 585.55\n0.12463 -0.21699 355.1\n-1.085e-06 -1.8818e-06 1.0002\n\nB: 0.31237 0.099342 8.5389\n-0.29392 0.92363 14.629\n-0.00074642 6.3257e-05 0.99168\n\nC: 0.51123 -0.013639 59.603\n-0.16055 0.85238 103.24\n-0.0003334 -4.0403e-05 1.0009\n\nD: 1.1202 -0.0055862 43.04\n0.17566 1.0194 -5.6786\n0.00085767 -4.4625e-05 0.99922\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_90_0.png", "2D-spatial/Homography_estimation/Homography_estimation_90_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: -0.21679 -0.12572 585.55\n0.12463 -0.21699 355.1\n-1.085e-06 -1.8818e-06 1.0002\n\nB: 0.31237 0.099342 8.5389\n-0.29392 0.92363 14.629\n-0.00074642 6.3257e-05 0.99168\n\nC: 0.51123 -0.013639 59.603\n-0.16055 0.85238 103.24\n-0.0003334 -4.0403e-05 1.0009\n\nD: 1.1202 -0.0055862 43.04\n0.17566 1.0194 -5.6786\n0.00085767 -4.4625e-05 0.99922\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.85555 -0.17378 91.59\n0.17068 0.85755 -31.264\n-5.1182e-06 2.0966e-06 1.0023\n\nB: 0.10472 0.069057 99.841\n-0.17731 0.5329 107.18\n-0.00051255 -1.3734e-05 0.98616\n\nC: 1.4403 0.27154 10.734\n0.071471 1.5534 -44.533\n0.00030432 0.00049723 1.001\n\nD: 1.3838 0.024181 -93.882\n0.093344 1.307 -232.76\n0.00015995 6.7546e-05 1.0008\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_91_0.png", "2D-spatial/Homography_estimation/Homography_estimation_91_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.85555 -0.17378 91.59\n0.17068 0.85755 -31.264\n-5.1182e-06 2.0966e-06 1.0023\n\nB: 0.10472 0.069057 99.841\n-0.17731 0.5329 107.18\n-0.00051255 -1.3734e-05 0.98616\n\nC: 1.4403 0.27154 10.734\n0.071471 1.5534 -44.533\n0.00030432 0.00049723 1.001\n\nD: 1.3838 0.024181 -93.882\n0.093344 1.307 -232.76\n0.00015995 6.7546e-05 1.0008\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 2.3594 0.0026252 -116.05\n0.5085 2.302 -550.96\n0.0013826 0.0001837 1.0004\n\nB: 1.0669 0.31109 194.1\n-0.019953 0.9209 79.624\n0.000135 -7.6705e-05 0.99977\n\nC: 0.25611 0.0594 88.294\n-0.24702 0.7663 71.53\n-0.00048162 6.7687e-05 1.0008\n\nD: 0.54693 0.20925 -108.35\n-0.082341 1.1176 -236.48\n-0.0006026 0.0001769 1.0001\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_92_0.png", "2D-spatial/Homography_estimation/Homography_estimation_92_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 2.3594 0.0026252 -116.05\n0.5085 2.302 -550.96\n0.0013826 0.0001837 1.0004\n\nB: 1.0669 0.31109 194.1\n-0.019953 0.9209 79.624\n0.000135 -7.6705e-05 0.99977\n\nC: 0.25611 0.0594 88.294\n-0.24702 0.7663 71.53\n-0.00048162 6.7687e-05 1.0008\n\nD: 0.54693 0.20925 -108.35\n-0.082341 1.1176 -236.48\n-0.0006026 0.0001769 1.0001\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.63669 0.0018872 137.9\n-0.00033285 0.63926 95.922\n-2.0441e-06 4.1104e-06 1\n\nB: 1.3903 -0.069797 29.319\n0.18963 1.0284 22.049\n0.00052989 -9.8197e-05 1.0021\n\nC: 0.7855 0.039826 119.05\n-0.25749 1.3451 -220.69\n-0.00047304 5.3677e-05 1.001\n\nD: 1.6477 -0.037624 101.59\n0.49962 1.5725 -364.98\n0.00090272 4.6589e-05 1.0037\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_93_0.png", "2D-spatial/Homography_estimation/Homography_estimation_93_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.63669 0.0018872 137.9\n-0.00033285 0.63926 95.922\n-2.0441e-06 4.1104e-06 1\n\nB: 1.3903 -0.069797 29.319\n0.18963 1.0284 22.049\n0.00052989 -9.8197e-05 1.0021\n\nC: 0.7855 0.039826 119.05\n-0.25749 1.3451 -220.69\n-0.00047304 5.3677e-05 1.001\n\nD: 1.6477 -0.037624 101.59\n0.49962 1.5725 -364.98\n0.00090272 4.6589e-05 1.0037\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.45287 0.0061881 100.32\n-0.053734 0.66556 61.961\n-0.00023168 -5.8559e-06 1.0005\n\nB: 0.62091 -0.030805 57.622\n-0.22703 0.84222 -13.023\n-0.00037179 -4.2767e-05 0.99852\n\nC: 1.0669 0.31109 194.1\n-0.019953 0.9209 79.624\n0.000135 -7.6705e-05 0.99977\n\nD: 0.46461 0.085196 589.33\n0.19659 0.76327 25.833\n0.00026763 8.9486e-05 1.0006\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_94_0.png", "2D-spatial/Homography_estimation/Homography_estimation_94_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.45287 0.0061881 100.32\n-0.053734 0.66556 61.961\n-0.00023168 -5.8559e-06 1.0005\n\nB: 0.62091 -0.030805 57.622\n-0.22703 0.84222 -13.023\n-0.00037179 -4.2767e-05 0.99852\n\nC: 1.0669 0.31109 194.1\n-0.019953 0.9209 79.624\n0.000135 -7.6705e-05 0.99977\n\nD: 0.46461 0.085196 589.33\n0.19659 0.76327 25.833\n0.00026763 8.9486e-05 1.0006\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.31237 0.099342 8.5389\n-0.29392 0.92363 14.629\n-0.00074642 6.3257e-05 0.99168\n\nB: 0.1857 -0.0018512 147.73\n-0.094288 0.35154 277.67\n-0.00019671 -1.563e-05 0.9996\n\nC: 0.62147 0.055609 221.79\n0.21978 1.1561 -23.942\n0.00048557 -4.4311e-05 0.99866\n\nD: 0.55202 0.096567 108.66\n-0.35774 1.4927 -276.32\n-0.00068886 0.0001065 0.98986\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_95_0.png", "2D-spatial/Homography_estimation/Homography_estimation_95_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.31237 0.099342 8.5389\n-0.29392 0.92363 14.629\n-0.00074642 6.3257e-05 0.99168\n\nB: 0.1857 -0.0018512 147.73\n-0.094288 0.35154 277.67\n-0.00019671 -1.563e-05 0.9996\n\nC: 0.62147 0.055609 221.79\n0.21978 1.1561 -23.942\n0.00048557 -4.4311e-05 0.99866\n\nD: 0.55202 0.096567 108.66\n-0.35774 1.4927 -276.32\n-0.00068886 0.0001065 0.98986\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.62091 -0.030805 57.622\n-0.22703 0.84222 -13.023\n-0.00037179 -4.2767e-05 0.99852\n\nB: 1.4219 0.01866 342.44\n0.36005 1.3261 -141.73\n0.00090969 2.3838e-05 1.0002\n\nC: 0.38854 -0.073106 92.576\n-0.1986 0.7319 139.21\n-0.00040811 -1.555e-05 0.99988\n\nD: 0.1268 -0.03963 330.5\n-0.1892 0.46973 254.2\n-0.00039857 -3.9641e-05 0.99971\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_96_0.png", "2D-spatial/Homography_estimation/Homography_estimation_96_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.62091 -0.030805 57.622\n-0.22703 0.84222 -13.023\n-0.00037179 -4.2767e-05 0.99852\n\nB: 1.4219 0.01866 342.44\n0.36005 1.3261 -141.73\n0.00090969 2.3838e-05 1.0002\n\nC: 0.38854 -0.073106 92.576\n-0.1986 0.7319 139.21\n-0.00040811 -1.555e-05 0.99988\n\nD: 0.1268 -0.03963 330.5\n-0.1892 0.46973 254.2\n-0.00039857 -3.9641e-05 0.99971\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.7312 -0.086578 129.17\n0.3882 1.1026 -2.2164\n0.0010948 -0.00011788 1.0024\n\nB: 3.1418 0.21701 -576.91\n0.129 3.5039 -1062.5\n0.0014143 0.00082533 0.98844\n\nC: 0.67783 0.002447 123\n-0.00051063 0.68091 83.563\n-2.5166e-06 5.6486e-06 1\n\nD: 0.4605 0.0019073 42.778\n0.003918 0.45748 107.3\n1.6895e-05 4.8733e-06 1.0001\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_97_0.png", "2D-spatial/Homography_estimation/Homography_estimation_97_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.7312 -0.086578 129.17\n0.3882 1.1026 -2.2164\n0.0010948 -0.00011788 1.0024\n\nB: 3.1418 0.21701 -576.91\n0.129 3.5039 -1062.5\n0.0014143 0.00082533 0.98844\n\nC: 0.67783 0.002447 123\n-0.00051063 0.68091 83.563\n-2.5166e-06 5.6486e-06 1\n\nD: 0.4605 0.0019073 42.778\n0.003918 0.45748 107.3\n1.6895e-05 4.8733e-06 1.0001\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.77044 -0.014353 152.19\n0.007827 0.75172 76.397\n1.9039e-05 -2.1554e-05 1\n\nB: 1.2108 -0.031741 47.374\n0.20996 1.0345 -107.36\n0.00054926 -6.3631e-06 1.0004\n\nC: 1.5534 0.017684 158.94\n0.56083 1.4841 -343.65\n0.0010107 3.8363e-05 0.99895\n\nD: 1.9861 0.031586 27.893\n0.62141 1.9607 -531.99\n0.0011993 -1.9815e-05 0.99978\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_98_0.png", "2D-spatial/Homography_estimation/Homography_estimation_98_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.77044 -0.014353 152.19\n0.007827 0.75172 76.397\n1.9039e-05 -2.1554e-05 1\n\nB: 1.2108 -0.031741 47.374\n0.20996 1.0345 -107.36\n0.00054926 -6.3631e-06 1.0004\n\nC: 1.5534 0.017684 158.94\n0.56083 1.4841 -343.65\n0.0010107 3.8363e-05 0.99895\n\nD: 1.9861 0.031586 27.893\n0.62141 1.9607 -531.99\n0.0011993 -1.9815e-05 0.99978\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.45287 0.0061881 100.32\n-0.053734 0.66556 61.961\n-0.00023168 -5.8559e-06 1.0005\n\nB: 1.4862 -0.061679 54.577\n0.4606 1.2816 -147.5\n0.0007321 -7.3842e-05 0.99895\n\nC: 2.4144 -0.0022023 -199.3\n0.52146 2.0547 -569.49\n0.0010423 8.4489e-05 1.0043\n\nD: 2.3515 0.16969 142.03\n1.0602 2.1465 -778.33\n0.0016806 -4.8949e-05 0.99537\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_99_0.png", "2D-spatial/Homography_estimation/Homography_estimation_99_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.45287 0.0061881 100.32\n-0.053734 0.66556 61.961\n-0.00023168 -5.8559e-06 1.0005\n\nB: 1.4862 -0.061679 54.577\n0.4606 1.2816 -147.5\n0.0007321 -7.3842e-05 0.99895\n\nC: 2.4144 -0.0022023 -199.3\n0.52146 2.0547 -569.49\n0.0010423 8.4489e-05 1.0043\n\nD: 2.3515 0.16969 142.03\n1.0602 2.1465 -778.33\n0.0016806 -4.8949e-05 0.99537\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.37694 0.049406 111.53\n-0.16444 0.72986 84.602\n-0.00037753 4.0247e-05 0.99869\n\nB: 0.1176 -0.0075311 194.61\n-0.10067 0.3391 257.1\n-0.00023555 -9.6091e-06 0.99858\n\nC: 0.77105 -0.097833 -3.6994\n-0.092675 0.81167 92.799\n-0.0001392 -0.00012806 0.99964\n\nD: 0.48531 0.10549 -95.005\n-0.11843 0.77202 44.217\n-0.00029301 2.8434e-05 0.99773\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_100_0.png", "2D-spatial/Homography_estimation/Homography_estimation_100_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.37694 0.049406 111.53\n-0.16444 0.72986 84.602\n-0.00037753 4.0247e-05 0.99869\n\nB: 0.1176 -0.0075311 194.61\n-0.10067 0.3391 257.1\n-0.00023555 -9.6091e-06 0.99858\n\nC: 0.77105 -0.097833 -3.6994\n-0.092675 0.81167 92.799\n-0.0001392 -0.00012806 0.99964\n\nD: 0.48531 0.10549 -95.005\n-0.11843 0.77202 44.217\n-0.00029301 2.8434e-05 0.99773\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.54864 -0.010797 -6.1494\n-0.11876 0.86651 111.28\n-0.00026448 -1.8961e-05 1\n\nB: 0.57125 -0.095863 127.19\n0.050302 0.75099 -13.911\n-0.00020485 1.2421e-06 0.9999\n\nC: 0.79208 0.010314 26.019\n-0.023778 0.92337 43.513\n-0.00011513 1.2161e-05 1.0003\n\nD: 2.6177 0.042575 -65.797\n0.74359 2.3954 -903.27\n0.0018892 8.2816e-05 0.98996\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_101_0.png", "2D-spatial/Homography_estimation/Homography_estimation_101_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.54864 -0.010797 -6.1494\n-0.11876 0.86651 111.28\n-0.00026448 -1.8961e-05 1\n\nB: 0.57125 -0.095863 127.19\n0.050302 0.75099 -13.911\n-0.00020485 1.2421e-06 0.9999\n\nC: 0.79208 0.010314 26.019\n-0.023778 0.92337 43.513\n-0.00011513 1.2161e-05 1.0003\n\nD: 2.6177 0.042575 -65.797\n0.74359 2.3954 -903.27\n0.0018892 8.2816e-05 0.98996\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.18178 0.033268 82.883\n-0.24959 0.68306 123.62\n-0.0004688 5.3047e-05 1.0005\n\nB: 0.49202 0.0057754 242.06\n0.058005 0.43541 166.02\n0.00018017 1.0746e-05 0.99974\n\nC: 1.4259 0.070724 58.865\n0.39243 1.3442 -170.04\n0.00084248 0.00011346 0.98851\n\nD: 0.58099 -0.029382 -20.47\n-0.29479 0.73128 188.62\n-0.00043803 -4.3076e-05 1.0007\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_102_0.png", "2D-spatial/Homography_estimation/Homography_estimation_102_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.18178 0.033268 82.883\n-0.24959 0.68306 123.62\n-0.0004688 5.3047e-05 1.0005\n\nB: 0.49202 0.0057754 242.06\n0.058005 0.43541 166.02\n0.00018017 1.0746e-05 0.99974\n\nC: 1.4259 0.070724 58.865\n0.39243 1.3442 -170.04\n0.00084248 0.00011346 0.98851\n\nD: 0.58099 -0.029382 -20.47\n-0.29479 0.73128 188.62\n-0.00043803 -4.3076e-05 1.0007\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.66581 0.6777 -31.246\n-0.14346 0.96853 148.92\n0.00042869 -1.7355e-05 0.99928\n\nB: 0.54864 -0.010797 -6.1494\n-0.11876 0.86651 111.28\n-0.00026448 -1.8961e-05 1\n\nC: 0.48531 0.10549 -95.005\n-0.11843 0.77202 44.217\n-0.00029301 2.8434e-05 0.99773\n\nD: 0.69134 -0.0063829 116.24\n0.0053381 0.71985 83.96\n-1.8171e-05 2.7124e-05 1\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_103_0.png", "2D-spatial/Homography_estimation/Homography_estimation_103_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.66581 0.6777 -31.246\n-0.14346 0.96853 148.92\n0.00042869 -1.7355e-05 0.99928\n\nB: 0.54864 -0.010797 -6.1494\n-0.11876 0.86651 111.28\n-0.00026448 -1.8961e-05 1\n\nC: 0.48531 0.10549 -95.005\n-0.11843 0.77202 44.217\n-0.00029301 2.8434e-05 0.99773\n\nD: 0.69134 -0.0063829 116.24\n0.0053381 0.71985 83.96\n-1.8171e-05 2.7124e-05 1\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 5.1051 0.34986 -885.86\n1.0306 5.9768 -2733.1\n0.0033649 0.00099216 1\n\nB: 1.5134 -0.0029581 20.934\n0.2678 1.4062 -232.68\n0.00048583 -4.0311e-06 1.0006\n\nC: 2.2787 0.023843 -30.321\n0.58793 1.9158 -459.28\n0.0012782 -6.6868e-06 0.99971\n\nD: 0.030125 -0.01797 299.5\n-0.19573 0.45869 167.74\n-0.00051291 -3.9704e-05 1.0019\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_104_0.png", "2D-spatial/Homography_estimation/Homography_estimation_104_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 5.1051 0.34986 -885.86\n1.0306 5.9768 -2733.1\n0.0033649 0.00099216 1\n\nB: 1.5134 -0.0029581 20.934\n0.2678 1.4062 -232.68\n0.00048583 -4.0311e-06 1.0006\n\nC: 2.2787 0.023843 -30.321\n0.58793 1.9158 -459.28\n0.0012782 -6.6868e-06 0.99971\n\nD: 0.030125 -0.01797 299.5\n-0.19573 0.45869 167.74\n-0.00051291 -3.9704e-05 1.0019\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.79208 0.010314 26.019\n-0.023778 0.92337 43.513\n-0.00011513 1.2161e-05 1.0003\n\nB: 0.60879 -0.35761 289.93\n0.34822 0.61653 -30.949\n-2.0912e-05 1.3527e-06 1.014\n\nC: 0.63669 0.0018872 137.9\n-0.00033285 0.63926 95.922\n-2.0441e-06 4.1104e-06 1\n\nD: 1.8851 0.028166 274.85\n0.48185 1.6951 -326.97\n0.0011778 8.455e-05 0.99801\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_105_0.png", "2D-spatial/Homography_estimation/Homography_estimation_105_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.79208 0.010314 26.019\n-0.023778 0.92337 43.513\n-0.00011513 1.2161e-05 1.0003\n\nB: 0.60879 -0.35761 289.93\n0.34822 0.61653 -30.949\n-2.0912e-05 1.3527e-06 1.014\n\nC: 0.63669 0.0018872 137.9\n-0.00033285 0.63926 95.922\n-2.0441e-06 4.1104e-06 1\n\nD: 1.8851 0.028166 274.85\n0.48185 1.6951 -326.97\n0.0011778 8.455e-05 0.99801\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.4733 -0.014435 76.772\n0.25007 1.2556 -120.81\n0.00088206 8.1414e-05 1.002\n\nB: 0.13416 0.073075 56.977\n-0.21333 0.70433 84.528\n-0.00055481 6.1106e-05 1\n\nC: 3.4851 0.086317 195.9\n1.1598 3.067 -1009.5\n0.0025647 -5.4567e-05 0.99349\n\nD: 0.40245 -0.33938 102.29\n-0.2125 0.62381 216.78\n-0.00033866 -1.5855e-05 1.0018\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_106_0.png", "2D-spatial/Homography_estimation/Homography_estimation_106_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.4733 -0.014435 76.772\n0.25007 1.2556 -120.81\n0.00088206 8.1414e-05 1.002\n\nB: 0.13416 0.073075 56.977\n-0.21333 0.70433 84.528\n-0.00055481 6.1106e-05 1\n\nC: 3.4851 0.086317 195.9\n1.1598 3.067 -1009.5\n0.0025647 -5.4567e-05 0.99349\n\nD: 0.40245 -0.33938 102.29\n-0.2125 0.62381 216.78\n-0.00033866 -1.5855e-05 1.0018\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.77044 -0.014353 152.19\n0.007827 0.75172 76.397\n1.9039e-05 -2.1554e-05 1\n\nB: 0.66581 0.6777 -31.246\n-0.14346 0.96853 148.92\n0.00042869 -1.7355e-05 0.99928\n\nC: 0.54372 0.011697 65.787\n-0.06271 0.8727 105.67\n-0.00025117 2.4814e-06 0.99967\n\nD: 1.7312 -0.086578 129.17\n0.3882 1.1026 -2.2164\n0.0010948 -0.00011788 1.0024\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_107_0.png", "2D-spatial/Homography_estimation/Homography_estimation_107_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.77044 -0.014353 152.19\n0.007827 0.75172 76.397\n1.9039e-05 -2.1554e-05 1\n\nB: 0.66581 0.6777 -31.246\n-0.14346 0.96853 148.92\n0.00042869 -1.7355e-05 0.99928\n\nC: 0.54372 0.011697 65.787\n-0.06271 0.8727 105.67\n-0.00025117 2.4814e-06 0.99967\n\nD: 1.7312 -0.086578 129.17\n0.3882 1.1026 -2.2164\n0.0010948 -0.00011788 1.0024\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.0505 -0.0053825 276.45\n0.20631 0.92888 48.832\n0.00048841 -1.9251e-05 0.99878\n\nB: 0.056448 -0.012851 135.19\n-0.38625 0.54689 255.61\n-0.00066718 5.392e-05 1.0012\n\nC: 0.55202 0.096567 108.66\n-0.35774 1.4927 -276.32\n-0.00068886 0.0001065 0.98986\n\nD: 0.20876 0.015221 174.06\n-0.13382 0.55012 11.64\n-0.00044084 3.575e-05 1.0177\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_108_0.png", "2D-spatial/Homography_estimation/Homography_estimation_108_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.0505 -0.0053825 276.45\n0.20631 0.92888 48.832\n0.00048841 -1.9251e-05 0.99878\n\nB: 0.056448 -0.012851 135.19\n-0.38625 0.54689 255.61\n-0.00066718 5.392e-05 1.0012\n\nC: 0.55202 0.096567 108.66\n-0.35774 1.4927 -276.32\n-0.00068886 0.0001065 0.98986\n\nD: 0.20876 0.015221 174.06\n-0.13382 0.55012 11.64\n-0.00044084 3.575e-05 1.0177\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.141 -0.024147 186.42\n0.29573 0.97376 -60.872\n0.00082251 -1.0843e-05 0.99973\n\nB: 0.42945 0.0071566 96.266\n-0.019537 0.48377 43.049\n-7.8698e-05 1.6013e-05 1.0001\n\nC: 0.48275 -0.12831 276.04\n-0.19138 0.40711 199.19\n-5.6548e-05 -0.00023367 0.99912\n\nD: 0.4849 -0.15095 280.72\n-0.18568 0.38797 170.57\n-4.9965e-05 -0.00024428 0.99985\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_109_0.png", "2D-spatial/Homography_estimation/Homography_estimation_109_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.141 -0.024147 186.42\n0.29573 0.97376 -60.872\n0.00082251 -1.0843e-05 0.99973\n\nB: 0.42945 0.0071566 96.266\n-0.019537 0.48377 43.049\n-7.8698e-05 1.6013e-05 1.0001\n\nC: 0.48275 -0.12831 276.04\n-0.19138 0.40711 199.19\n-5.6548e-05 -0.00023367 0.99912\n\nD: 0.4849 -0.15095 280.72\n-0.18568 0.38797 170.57\n-4.9965e-05 -0.00024428 0.99985\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.040904 -0.0023332 234.76\n-0.10713 0.35038 218.5\n-0.00028907 6.311e-06 1.0035\n\nB: 0.38914 0.285 169.51\n-0.28531 0.39347 340.1\n-6.4617e-06 5.0341e-06 1\n\nC: 0.0033111 0.031282 184.63\n-0.15843 0.75999 4.5609\n-0.00083562 0.00011238 0.99927\n\nD: 0.33414 0.069646 90.22\n-0.25229 0.73446 157.67\n-0.00038885 2.2582e-06 1.0024\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_110_0.png", "2D-spatial/Homography_estimation/Homography_estimation_110_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.040904 -0.0023332 234.76\n-0.10713 0.35038 218.5\n-0.00028907 6.311e-06 1.0035\n\nB: 0.38914 0.285 169.51\n-0.28531 0.39347 340.1\n-6.4617e-06 5.0341e-06 1\n\nC: 0.0033111 0.031282 184.63\n-0.15843 0.75999 4.5609\n-0.00083562 0.00011238 0.99927\n\nD: 0.33414 0.069646 90.22\n-0.25229 0.73446 157.67\n-0.00038885 2.2582e-06 1.0024\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.1857 -0.0018512 147.73\n-0.094288 0.35154 277.67\n-0.00019671 -1.563e-05 0.9996\n\nB: 0.42186 0.031568 60.169\n-0.084563 0.88575 93.738\n-0.00032749 1.4457e-05 1.0012\n\nC: -0.47246 -0.28359 869.57\n0.29041 -0.47016 396.67\n5.0949e-06 1.2499e-05 0.99998\n\nD: 1.6408 -0.0013389 -221.64\n0.1704 1.44 -155.56\n0.00036369 -3.22e-05 1.0003\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_111_0.png", "2D-spatial/Homography_estimation/Homography_estimation_111_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.1857 -0.0018512 147.73\n-0.094288 0.35154 277.67\n-0.00019671 -1.563e-05 0.9996\n\nB: 0.42186 0.031568 60.169\n-0.084563 0.88575 93.738\n-0.00032749 1.4457e-05 1.0012\n\nC: -0.47246 -0.28359 869.57\n0.29041 -0.47016 396.67\n5.0949e-06 1.2499e-05 0.99998\n\nD: 1.6408 -0.0013389 -221.64\n0.1704 1.44 -155.56\n0.00036369 -3.22e-05 1.0003\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: -0.21679 -0.12572 585.55\n0.12463 -0.21699 355.1\n-1.085e-06 -1.8818e-06 1.0002\n\nB: 0.54864 -0.010797 -6.1494\n-0.11876 0.86651 111.28\n-0.00026448 -1.8961e-05 1\n\nC: 0.13896 0.020204 194.37\n-0.25201 0.63798 118.99\n-0.00052359 2.2762e-05 0.9996\n\nD: 1.4932 0.01661 231.74\n0.45676 1.4341 -212.29\n0.0013256 9.9938e-05 0.99686\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_112_0.png", "2D-spatial/Homography_estimation/Homography_estimation_112_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: -0.21679 -0.12572 585.55\n0.12463 -0.21699 355.1\n-1.085e-06 -1.8818e-06 1.0002\n\nB: 0.54864 -0.010797 -6.1494\n-0.11876 0.86651 111.28\n-0.00026448 -1.8961e-05 1\n\nC: 0.13896 0.020204 194.37\n-0.25201 0.63798 118.99\n-0.00052359 2.2762e-05 0.9996\n\nD: 1.4932 0.01661 231.74\n0.45676 1.4341 -212.29\n0.0013256 9.9938e-05 0.99686\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.4932 0.01661 231.74\n0.45676 1.4341 -212.29\n0.0013256 9.9938e-05 0.99686\n\nB: 0.48275 -0.12831 276.04\n-0.19138 0.40711 199.19\n-5.6548e-05 -0.00023367 0.99912\n\nC: 0.46288 -0.016626 22.437\n-0.26713 0.81047 151.27\n-0.00036789 7.646e-06 0.99855\n\nD: 0.14586 0.056449 119.48\n-0.21737 0.71439 95.786\n-0.00051182 3.3282e-05 1.0008\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_113_0.png", "2D-spatial/Homography_estimation/Homography_estimation_113_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.4932 0.01661 231.74\n0.45676 1.4341 -212.29\n0.0013256 9.9938e-05 0.99686\n\nB: 0.48275 -0.12831 276.04\n-0.19138 0.40711 199.19\n-5.6548e-05 -0.00023367 0.99912\n\nC: 0.46288 -0.016626 22.437\n-0.26713 0.81047 151.27\n-0.00036789 7.646e-06 0.99855\n\nD: 0.14586 0.056449 119.48\n-0.21737 0.71439 95.786\n-0.00051182 3.3282e-05 1.0008\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.44469 -0.1629 197.72\n-0.090792 0.33606 37.55\n-0.00032851 -0.00028415 1.0004\n\nB: 0.4605 0.0019073 42.778\n0.003918 0.45748 107.3\n1.6895e-05 4.8733e-06 1.0001\n\nC: 1.6408 -0.0013389 -221.64\n0.1704 1.44 -155.56\n0.00036369 -3.22e-05 1.0003\n\nD: 0.45841 0.038317 36.428\n-0.26806 0.75693 165.6\n-0.00037539 -1.4035e-05 1.0016\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_114_0.png", "2D-spatial/Homography_estimation/Homography_estimation_114_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.44469 -0.1629 197.72\n-0.090792 0.33606 37.55\n-0.00032851 -0.00028415 1.0004\n\nB: 0.4605 0.0019073 42.778\n0.003918 0.45748 107.3\n1.6895e-05 4.8733e-06 1.0001\n\nC: 1.6408 -0.0013389 -221.64\n0.1704 1.44 -155.56\n0.00036369 -3.22e-05 1.0003\n\nD: 0.45841 0.038317 36.428\n-0.26806 0.75693 165.6\n-0.00037539 -1.4035e-05 1.0016\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.67444 0.023361 37.089\n-0.047926 0.90094 60.932\n-0.00018688 1.1402e-05 1.0007\n\nB: 0.2024 0.0033266 96.15\n-0.28093 0.65512 201.73\n-0.00049784 1.8106e-06 1.0048\n\nC: 0.37083 -0.024499 139.16\n-0.094573 0.62749 65.353\n-0.00053805 -2.2225e-05 0.99885\n\nD: 1.0669 0.31109 194.1\n-0.019953 0.9209 79.624\n0.000135 -7.6705e-05 0.99977\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_115_0.png", "2D-spatial/Homography_estimation/Homography_estimation_115_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.67444 0.023361 37.089\n-0.047926 0.90094 60.932\n-0.00018688 1.1402e-05 1.0007\n\nB: 0.2024 0.0033266 96.15\n-0.28093 0.65512 201.73\n-0.00049784 1.8106e-06 1.0048\n\nC: 0.37083 -0.024499 139.16\n-0.094573 0.62749 65.353\n-0.00053805 -2.2225e-05 0.99885\n\nD: 1.0669 0.31109 194.1\n-0.019953 0.9209 79.624\n0.000135 -7.6705e-05 0.99977\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.8454 -0.0093839 117.6\n0.8533 1.9335 -566.11\n0.0016091 6.8147e-05 1.0105\n\nB: 0.47589 0.042551 60.888\n-0.21388 0.80238 62.033\n-0.0003663 2.6901e-05 1.001\n\nC: 3.4851 0.086317 195.9\n1.1598 3.067 -1009.5\n0.0025647 -5.4567e-05 0.99349\n\nD: 0.14705 0.061323 72.893\n-0.27582 0.69094 109.44\n-0.00056993 1.3825e-06 0.9981\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_116_0.png", "2D-spatial/Homography_estimation/Homography_estimation_116_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.8454 -0.0093839 117.6\n0.8533 1.9335 -566.11\n0.0016091 6.8147e-05 1.0105\n\nB: 0.47589 0.042551 60.888\n-0.21388 0.80238 62.033\n-0.0003663 2.6901e-05 1.001\n\nC: 3.4851 0.086317 195.9\n1.1598 3.067 -1009.5\n0.0025647 -5.4567e-05 0.99349\n\nD: 0.14705 0.061323 72.893\n-0.27582 0.69094 109.44\n-0.00056993 1.3825e-06 0.9981\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.37107 -0.09213 318.73\n0.086334 0.37505 188.02\n-1.0814e-05 -3.6548e-06 1\n\nB: 0.29534 0.035751 -56.21\n-0.35718 0.5432 233.53\n-0.00064211 -1.1093e-05 0.97783\n\nC: 0.37694 0.049406 111.53\n-0.16444 0.72986 84.602\n-0.00037753 4.0247e-05 0.99869\n\nD: 2.2787 0.023843 -30.321\n0.58793 1.9158 -459.28\n0.0012782 -6.6868e-06 0.99971\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_117_0.png", "2D-spatial/Homography_estimation/Homography_estimation_117_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.37107 -0.09213 318.73\n0.086334 0.37505 188.02\n-1.0814e-05 -3.6548e-06 1\n\nB: 0.29534 0.035751 -56.21\n-0.35718 0.5432 233.53\n-0.00064211 -1.1093e-05 0.97783\n\nC: 0.37694 0.049406 111.53\n-0.16444 0.72986 84.602\n-0.00037753 4.0247e-05 0.99869\n\nD: 2.2787 0.023843 -30.321\n0.58793 1.9158 -459.28\n0.0012782 -6.6868e-06 0.99971\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.1442 -0.037625 115.5\n0.22206 1.0286 -30.039\n0.00032815 -2.4116e-05 0.9999\n\nB: 0.20876 0.015221 174.06\n-0.13382 0.55012 11.64\n-0.00044084 3.575e-05 1.0177\n\nC: 2.4144 -0.0022023 -199.3\n0.52146 2.0547 -569.49\n0.0010423 8.4489e-05 1.0043\n\nD: 0.51123 -0.013639 59.603\n-0.16055 0.85238 103.24\n-0.0003334 -4.0403e-05 1.0009\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_118_0.png", "2D-spatial/Homography_estimation/Homography_estimation_118_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.1442 -0.037625 115.5\n0.22206 1.0286 -30.039\n0.00032815 -2.4116e-05 0.9999\n\nB: 0.20876 0.015221 174.06\n-0.13382 0.55012 11.64\n-0.00044084 3.575e-05 1.0177\n\nC: 2.4144 -0.0022023 -199.3\n0.52146 2.0547 -569.49\n0.0010423 8.4489e-05 1.0043\n\nD: 0.51123 -0.013639 59.603\n-0.16055 0.85238 103.24\n-0.0003334 -4.0403e-05 1.0009\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.31237 0.099342 8.5389\n-0.29392 0.92363 14.629\n-0.00074642 6.3257e-05 0.99168\n\nB: 1.4272 0.064496 -40.82\n0.15764 1.3161 -94.847\n0.00037033 4.6015e-05 0.99258\n\nC: 14.984 -1.5209 -1987.5\n0.59203 13.878 -3896.8\n0.0072047 0.0038814 0.92614\n\nD: 1.2108 -0.031741 47.374\n0.20996 1.0345 -107.36\n0.00054926 -6.3631e-06 1.0004\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_119_0.png", "2D-spatial/Homography_estimation/Homography_estimation_119_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.31237 0.099342 8.5389\n-0.29392 0.92363 14.629\n-0.00074642 6.3257e-05 0.99168\n\nB: 1.4272 0.064496 -40.82\n0.15764 1.3161 -94.847\n0.00037033 4.6015e-05 0.99258\n\nC: 14.984 -1.5209 -1987.5\n0.59203 13.878 -3896.8\n0.0072047 0.0038814 0.92614\n\nD: 1.2108 -0.031741 47.374\n0.20996 1.0345 -107.36\n0.00054926 -6.3631e-06 1.0004\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.4733 -0.014435 76.772\n0.25007 1.2556 -120.81\n0.00088206 8.1414e-05 1.002\n\nB: 0.10472 0.069057 99.841\n-0.17731 0.5329 107.18\n-0.00051255 -1.3734e-05 0.98616\n\nC: 0.030125 -0.01797 299.5\n-0.19573 0.45869 167.74\n-0.00051291 -3.9704e-05 1.0019\n\nD: 0.36677 -0.019493 213.68\n-0.082321 0.47708 180.81\n-0.00021125 -4.1441e-05 1.0123\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_120_0.png", "2D-spatial/Homography_estimation/Homography_estimation_120_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.4733 -0.014435 76.772\n0.25007 1.2556 -120.81\n0.00088206 8.1414e-05 1.002\n\nB: 0.10472 0.069057 99.841\n-0.17731 0.5329 107.18\n-0.00051255 -1.3734e-05 0.98616\n\nC: 0.030125 -0.01797 299.5\n-0.19573 0.45869 167.74\n-0.00051291 -3.9704e-05 1.0019\n\nD: 0.36677 -0.019493 213.68\n-0.082321 0.47708 180.81\n-0.00021125 -4.1441e-05 1.0123\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.43124 0.047668 -66.525\n-0.34772 0.62068 209.27\n-0.00060194 -2.1104e-07 0.98648\n\nB: 1.1202 -0.0055862 43.04\n0.17566 1.0194 -5.6786\n0.00085767 -4.4625e-05 0.99922\n\nC: 0.4849 -0.15095 280.72\n-0.18568 0.38797 170.57\n-4.9965e-05 -0.00024428 0.99985\n\nD: 0.40245 -0.33938 102.29\n-0.2125 0.62381 216.78\n-0.00033866 -1.5855e-05 1.0018\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_121_0.png", "2D-spatial/Homography_estimation/Homography_estimation_121_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.43124 0.047668 -66.525\n-0.34772 0.62068 209.27\n-0.00060194 -2.1104e-07 0.98648\n\nB: 1.1202 -0.0055862 43.04\n0.17566 1.0194 -5.6786\n0.00085767 -4.4625e-05 0.99922\n\nC: 0.4849 -0.15095 280.72\n-0.18568 0.38797 170.57\n-4.9965e-05 -0.00024428 0.99985\n\nD: 0.40245 -0.33938 102.29\n-0.2125 0.62381 216.78\n-0.00033866 -1.5855e-05 1.0018\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.8454 -0.0093839 117.6\n0.8533 1.9335 -566.11\n0.0016091 6.8147e-05 1.0105\n\nB: 0.88184 0.31397 -39.976\n-0.18167 0.93621 153.25\n0.00020118 -1.9028e-05 0.99997\n\nC: 0.030125 -0.01797 299.5\n-0.19573 0.45869 167.74\n-0.00051291 -3.9704e-05 1.0019\n\nD: 0.53266 0.0019756 44.297\n-0.18137 0.85955 61.945\n-0.00038035 1.4705e-06 0.9999\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_122_0.png", "2D-spatial/Homography_estimation/Homography_estimation_122_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.8454 -0.0093839 117.6\n0.8533 1.9335 -566.11\n0.0016091 6.8147e-05 1.0105\n\nB: 0.88184 0.31397 -39.976\n-0.18167 0.93621 153.25\n0.00020118 -1.9028e-05 0.99997\n\nC: 0.030125 -0.01797 299.5\n-0.19573 0.45869 167.74\n-0.00051291 -3.9704e-05 1.0019\n\nD: 0.53266 0.0019756 44.297\n-0.18137 0.85955 61.945\n-0.00038035 1.4705e-06 0.9999\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.4932 0.01661 231.74\n0.45676 1.4341 -212.29\n0.0013256 9.9938e-05 0.99686\n\nB: 2.9721 0.034514 6.1536\n0.86739 2.9829 -532.95\n0.0035453 0.00017204 0.95976\n\nC: 0.091252 0.0066749 132.72\n-0.14667 0.47258 88.51\n-0.00056772 8.3791e-06 1.0029\n\nD: 2.1479 0.036813 206.94\n0.67819 1.8174 -485.8\n0.0012074 -6.8043e-06 0.99599\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_123_0.png", "2D-spatial/Homography_estimation/Homography_estimation_123_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.4932 0.01661 231.74\n0.45676 1.4341 -212.29\n0.0013256 9.9938e-05 0.99686\n\nB: 2.9721 0.034514 6.1536\n0.86739 2.9829 -532.95\n0.0035453 0.00017204 0.95976\n\nC: 0.091252 0.0066749 132.72\n-0.14667 0.47258 88.51\n-0.00056772 8.3791e-06 1.0029\n\nD: 2.1479 0.036813 206.94\n0.67819 1.8174 -485.8\n0.0012074 -6.8043e-06 0.99599\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.0582 -0.013384 562.45\n0.1807 0.93712 36.472\n0.00043718 5.9368e-06 0.99927\n\nB: 1.547 0.11677 155.75\n0.40373 1.373 -170.1\n0.00090791 8.8782e-05 1.0012\n\nC: 0.012717 0.014394 193.52\n-0.12386 0.60301 126.7\n-0.00063953 7.9665e-05 1.0012\n\nD: 0.54304 0.026384 236.48\n-0.041921 0.64806 87.13\n-5.8662e-05 1.5685e-05 1\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_124_0.png", "2D-spatial/Homography_estimation/Homography_estimation_124_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.0582 -0.013384 562.45\n0.1807 0.93712 36.472\n0.00043718 5.9368e-06 0.99927\n\nB: 1.547 0.11677 155.75\n0.40373 1.373 -170.1\n0.00090791 8.8782e-05 1.0012\n\nC: 0.012717 0.014394 193.52\n-0.12386 0.60301 126.7\n-0.00063953 7.9665e-05 1.0012\n\nD: 0.54304 0.026384 236.48\n-0.041921 0.64806 87.13\n-5.8662e-05 1.5685e-05 1\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.37694 0.049406 111.53\n-0.16444 0.72986 84.602\n-0.00037753 4.0247e-05 0.99869\n\nB: 0.69134 -0.0063829 116.24\n0.0053381 0.71985 83.96\n-1.8171e-05 2.7124e-05 1\n\nC: 0.52949 -0.028655 46.849\n-0.2451 0.79991 158.44\n-0.00032499 -1.8164e-05 0.99959\n\nD: 0.52064 0.019326 41.006\n-0.1476 0.75468 101.84\n-0.00026848 4.5639e-05 1.0094\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_125_0.png", "2D-spatial/Homography_estimation/Homography_estimation_125_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.37694 0.049406 111.53\n-0.16444 0.72986 84.602\n-0.00037753 4.0247e-05 0.99869\n\nB: 0.69134 -0.0063829 116.24\n0.0053381 0.71985 83.96\n-1.8171e-05 2.7124e-05 1\n\nC: 0.52949 -0.028655 46.849\n-0.2451 0.79991 158.44\n-0.00032499 -1.8164e-05 0.99959\n\nD: 0.52064 0.019326 41.006\n-0.1476 0.75468 101.84\n-0.00026848 4.5639e-05 1.0094\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.9834 -0.0016422 376.55\n0.84 1.4832 -241.61\n0.0019136 -3.8955e-05 1.0014\n\nB: 2.2787 0.023843 -30.321\n0.58793 1.9158 -459.28\n0.0012782 -6.6868e-06 0.99971\n\nC: 0.24117 0.068506 48.185\n-0.23318 0.79398 68.106\n-0.0005259 5.079e-05 0.99834\n\nD: 1.7312 -0.086578 129.17\n0.3882 1.1026 -2.2164\n0.0010948 -0.00011788 1.0024\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_126_0.png", "2D-spatial/Homography_estimation/Homography_estimation_126_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.9834 -0.0016422 376.55\n0.84 1.4832 -241.61\n0.0019136 -3.8955e-05 1.0014\n\nB: 2.2787 0.023843 -30.321\n0.58793 1.9158 -459.28\n0.0012782 -6.6868e-06 0.99971\n\nC: 0.24117 0.068506 48.185\n-0.23318 0.79398 68.106\n-0.0005259 5.079e-05 0.99834\n\nD: 1.7312 -0.086578 129.17\n0.3882 1.1026 -2.2164\n0.0010948 -0.00011788 1.0024\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.0983 -0.030393 111.31\n0.31879 0.9789 58.516\n0.00050073 -5.3943e-05 1.0005\n\nB: 0.76922 -0.28498 222.68\n0.33855 1.0341 -81.069\n0.00035349 1.2014e-05 0.99834\n\nC: 0.45841 0.038317 36.428\n-0.26806 0.75693 165.6\n-0.00037539 -1.4035e-05 1.0016\n\nD: 0.39176 -0.48622 421.69\n0.48543 0.39488 -0.097812\n2.3979e-06 -3.3236e-06 1\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_127_0.png", "2D-spatial/Homography_estimation/Homography_estimation_127_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.0983 -0.030393 111.31\n0.31879 0.9789 58.516\n0.00050073 -5.3943e-05 1.0005\n\nB: 0.76922 -0.28498 222.68\n0.33855 1.0341 -81.069\n0.00035349 1.2014e-05 0.99834\n\nC: 0.45841 0.038317 36.428\n-0.26806 0.75693 165.6\n-0.00037539 -1.4035e-05 1.0016\n\nD: 0.39176 -0.48622 421.69\n0.48543 0.39488 -0.097812\n2.3979e-06 -3.3236e-06 1\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.6729 -0.01895 127.73\n-0.015916 0.67847 176.42\n-3.6225e-05 -3.2204e-05 1\n\nB: 0.091252 0.0066749 132.72\n-0.14667 0.47258 88.51\n-0.00056772 8.3791e-06 1.0029\n\nC: 0.60367 0.071352 -36.528\n-0.21232 0.96671 -45.299\n-0.00036835 6.7456e-05 0.99996\n\nD: 0.14586 0.056449 119.48\n-0.21737 0.71439 95.786\n-0.00051182 3.3282e-05 1.0008\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_128_0.png", "2D-spatial/Homography_estimation/Homography_estimation_128_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.6729 -0.01895 127.73\n-0.015916 0.67847 176.42\n-3.6225e-05 -3.2204e-05 1\n\nB: 0.091252 0.0066749 132.72\n-0.14667 0.47258 88.51\n-0.00056772 8.3791e-06 1.0029\n\nC: 0.60367 0.071352 -36.528\n-0.21232 0.96671 -45.299\n-0.00036835 6.7456e-05 0.99996\n\nD: 0.14586 0.056449 119.48\n-0.21737 0.71439 95.786\n-0.00051182 3.3282e-05 1.0008\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.28973 0.014397 100.07\n-0.29955 0.64174 168.27\n-0.00067332 7.239e-06 1.0017\n\nB: 0.37618 -0.0026073 58.013\n-0.13988 0.81886 117.4\n-0.00032276 -1.1378e-05 0.99983\n\nC: 0.39176 -0.48622 421.69\n0.48543 0.39488 -0.097812\n2.3979e-06 -3.3236e-06 1\n\nD: -0.19998 0.34647 247.36\n-0.34607 -0.19989 467.21\n2.0354e-07 -5.1701e-08 1\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_129_0.png", "2D-spatial/Homography_estimation/Homography_estimation_129_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.28973 0.014397 100.07\n-0.29955 0.64174 168.27\n-0.00067332 7.239e-06 1.0017\n\nB: 0.37618 -0.0026073 58.013\n-0.13988 0.81886 117.4\n-0.00032276 -1.1378e-05 0.99983\n\nC: 0.39176 -0.48622 421.69\n0.48543 0.39488 -0.097812\n2.3979e-06 -3.3236e-06 1\n\nD: -0.19998 0.34647 247.36\n-0.34607 -0.19989 467.21\n2.0354e-07 -5.1701e-08 1\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.2024 0.0033266 96.15\n-0.28093 0.65512 201.73\n-0.00049784 1.8106e-06 1.0048\n\nB: 0.54304 0.026384 236.48\n-0.041921 0.64806 87.13\n-5.8662e-05 1.5685e-05 1\n\nC: 0.34904 -0.0038637 -43.899\n-0.22316 0.99346 45.579\n-0.00041195 -1.2246e-05 1\n\nD: 0.70212 0.43231 -128.54\n-0.42351 0.70276 199.3\n6.3285e-06 1.2175e-05 0.99997\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_130_0.png", "2D-spatial/Homography_estimation/Homography_estimation_130_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.2024 0.0033266 96.15\n-0.28093 0.65512 201.73\n-0.00049784 1.8106e-06 1.0048\n\nB: 0.54304 0.026384 236.48\n-0.041921 0.64806 87.13\n-5.8662e-05 1.5685e-05 1\n\nC: 0.34904 -0.0038637 -43.899\n-0.22316 0.99346 45.579\n-0.00041195 -1.2246e-05 1\n\nD: 0.70212 0.43231 -128.54\n-0.42351 0.70276 199.3\n6.3285e-06 1.2175e-05 0.99997\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.48275 -0.12831 276.04\n-0.19138 0.40711 199.19\n-5.6548e-05 -0.00023367 0.99912\n\nB: 1.8954 -0.043603 197.83\n0.50589 1.509 -236.95\n0.0010644 -1.6279e-05 1.0115\n\nC: 0.94726 0.076953 177.36\n0.25112 1.0126 13.205\n0.00047269 2.7805e-05 0.99969\n\nD: 0.23209 -0.67097 528.16\n0.66389 0.2516 -30.266\n-3.168e-05 2.5631e-05 1.0087\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_131_0.png", "2D-spatial/Homography_estimation/Homography_estimation_131_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.48275 -0.12831 276.04\n-0.19138 0.40711 199.19\n-5.6548e-05 -0.00023367 0.99912\n\nB: 1.8954 -0.043603 197.83\n0.50589 1.509 -236.95\n0.0010644 -1.6279e-05 1.0115\n\nC: 0.94726 0.076953 177.36\n0.25112 1.0126 13.205\n0.00047269 2.7805e-05 0.99969\n\nD: 0.23209 -0.67097 528.16\n0.66389 0.2516 -30.266\n-3.168e-05 2.5631e-05 1.0087\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 3.1627 -0.045434 -351.49\n0.7877 2.8197 -842.9\n0.0015033 -3.676e-05 1.0055\n\nB: 0.45287 0.0061881 100.32\n-0.053734 0.66556 61.961\n-0.00023168 -5.8559e-06 1.0005\n\nC: 1.8954 -0.043603 197.83\n0.50589 1.509 -236.95\n0.0010644 -1.6279e-05 1.0115\n\nD: 1.441 -0.037212 269.33\n0.73295 1.6438 -380.65\n0.0014226 4.1601e-05 1.0102\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_132_0.png", "2D-spatial/Homography_estimation/Homography_estimation_132_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 3.1627 -0.045434 -351.49\n0.7877 2.8197 -842.9\n0.0015033 -3.676e-05 1.0055\n\nB: 0.45287 0.0061881 100.32\n-0.053734 0.66556 61.961\n-0.00023168 -5.8559e-06 1.0005\n\nC: 1.8954 -0.043603 197.83\n0.50589 1.509 -236.95\n0.0010644 -1.6279e-05 1.0115\n\nD: 1.441 -0.037212 269.33\n0.73295 1.6438 -380.65\n0.0014226 4.1601e-05 1.0102\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.46461 0.085196 589.33\n0.19659 0.76327 25.833\n0.00026763 8.9486e-05 1.0006\n\nB: 1.3903 -0.069797 29.319\n0.18963 1.0284 22.049\n0.00052989 -9.8197e-05 1.0021\n\nC: 0.45841 0.038317 36.428\n-0.26806 0.75693 165.6\n-0.00037539 -1.4035e-05 1.0016\n\nD: 0.35568 0.079611 -21.49\n-0.17793 0.7199 62.24\n-0.00050458 1.9913e-05 0.9982\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_133_0.png", "2D-spatial/Homography_estimation/Homography_estimation_133_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.46461 0.085196 589.33\n0.19659 0.76327 25.833\n0.00026763 8.9486e-05 1.0006\n\nB: 1.3903 -0.069797 29.319\n0.18963 1.0284 22.049\n0.00052989 -9.8197e-05 1.0021\n\nC: 0.45841 0.038317 36.428\n-0.26806 0.75693 165.6\n-0.00037539 -1.4035e-05 1.0016\n\nD: 0.35568 0.079611 -21.49\n-0.17793 0.7199 62.24\n-0.00050458 1.9913e-05 0.9982\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.54693 0.20925 -108.35\n-0.082341 1.1176 -236.48\n-0.0006026 0.0001769 1.0001\n\nB: 0.32788 -0.00026656 168.52\n-0.087696 0.49289 72.043\n-0.00025798 4.6006e-06 0.9984\n\nC: 1.3526 0.026797 436.87\n0.31517 1.3826 -234.04\n0.00076901 0.00022984 1.0039\n\nD: 1.3903 -0.069797 29.319\n0.18963 1.0284 22.049\n0.00052989 -9.8197e-05 1.0021\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_134_0.png", "2D-spatial/Homography_estimation/Homography_estimation_134_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.54693 0.20925 -108.35\n-0.082341 1.1176 -236.48\n-0.0006026 0.0001769 1.0001\n\nB: 0.32788 -0.00026656 168.52\n-0.087696 0.49289 72.043\n-0.00025798 4.6006e-06 0.9984\n\nC: 1.3526 0.026797 436.87\n0.31517 1.3826 -234.04\n0.00076901 0.00022984 1.0039\n\nD: 1.3903 -0.069797 29.319\n0.18963 1.0284 22.049\n0.00052989 -9.8197e-05 1.0021\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.4849 -0.15095 280.72\n-0.18568 0.38797 170.57\n-4.9965e-05 -0.00024428 0.99985\n\nB: 2.4665 0.083695 233.31\n0.87021 2.8235 -936.68\n0.0017821 0.0001592 0.98707\n\nC: 0.72201 0.13445 62.975\n0.059719 0.85126 46.305\n-1.7322e-05 0.00018166 1.0001\n\nD: 1.2869 -0.0035671 90.117\n0.34981 1.1421 -290.48\n0.0010338 2.5575e-05 0.99928\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_135_0.png", "2D-spatial/Homography_estimation/Homography_estimation_135_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.4849 -0.15095 280.72\n-0.18568 0.38797 170.57\n-4.9965e-05 -0.00024428 0.99985\n\nB: 2.4665 0.083695 233.31\n0.87021 2.8235 -936.68\n0.0017821 0.0001592 0.98707\n\nC: 0.72201 0.13445 62.975\n0.059719 0.85126 46.305\n-1.7322e-05 0.00018166 1.0001\n\nD: 1.2869 -0.0035671 90.117\n0.34981 1.1421 -290.48\n0.0010338 2.5575e-05 0.99928\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.39176 -0.48622 421.69\n0.48543 0.39488 -0.097812\n2.3979e-06 -3.3236e-06 1\n\nB: 1.4259 0.070724 58.865\n0.39243 1.3442 -170.04\n0.00084248 0.00011346 0.98851\n\nC: 1.1442 -0.037625 115.5\n0.22206 1.0286 -30.039\n0.00032815 -2.4116e-05 0.9999\n\nD: 1.8454 -0.0093839 117.6\n0.8533 1.9335 -566.11\n0.0016091 6.8147e-05 1.0105\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_136_0.png", "2D-spatial/Homography_estimation/Homography_estimation_136_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.39176 -0.48622 421.69\n0.48543 0.39488 -0.097812\n2.3979e-06 -3.3236e-06 1\n\nB: 1.4259 0.070724 58.865\n0.39243 1.3442 -170.04\n0.00084248 0.00011346 0.98851\n\nC: 1.1442 -0.037625 115.5\n0.22206 1.0286 -30.039\n0.00032815 -2.4116e-05 0.9999\n\nD: 1.8454 -0.0093839 117.6\n0.8533 1.9335 -566.11\n0.0016091 6.8147e-05 1.0105\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.23209 -0.67097 528.16\n0.66389 0.2516 -30.266\n-3.168e-05 2.5631e-05 1.0087\n\nB: 0.2564 0.092521 94.187\n-0.28031 0.83589 -0.15652\n-0.00048968 6.0866e-05 1.0015\n\nC: 0.67444 0.023361 37.089\n-0.047926 0.90094 60.932\n-0.00018688 1.1402e-05 1.0007\n\nD: 1.6284 1.0346 -954.33\n-0.096789 2.5434 -782.98\n-0.00078653 0.0011044 1\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_137_0.png", "2D-spatial/Homography_estimation/Homography_estimation_137_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.23209 -0.67097 528.16\n0.66389 0.2516 -30.266\n-3.168e-05 2.5631e-05 1.0087\n\nB: 0.2564 0.092521 94.187\n-0.28031 0.83589 -0.15652\n-0.00048968 6.0866e-05 1.0015\n\nC: 0.67444 0.023361 37.089\n-0.047926 0.90094 60.932\n-0.00018688 1.1402e-05 1.0007\n\nD: 1.6284 1.0346 -954.33\n-0.096789 2.5434 -782.98\n-0.00078653 0.0011044 1\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.38266 -0.33125 122.6\n-0.21363 0.61581 225.35\n-0.00034121 -7.7515e-06 0.99865\n\nB: 0.75268 -0.0092452 -71.273\n-0.17607 0.97566 6.3105\n-0.00029582 -1.5187e-05 0.99957\n\nC: 0.31483 0.11583 690.51\n0.17546 0.70637 14.497\n0.00026712 0.00012691 1\n\nD: 0.4221 -0.055916 265.09\n0.060544 0.41967 174.7\n7.7273e-06 -2.0972e-06 0.99999\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_138_0.png", "2D-spatial/Homography_estimation/Homography_estimation_138_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.38266 -0.33125 122.6\n-0.21363 0.61581 225.35\n-0.00034121 -7.7515e-06 0.99865\n\nB: 0.75268 -0.0092452 -71.273\n-0.17607 0.97566 6.3105\n-0.00029582 -1.5187e-05 0.99957\n\nC: 0.31483 0.11583 690.51\n0.17546 0.70637 14.497\n0.00026712 0.00012691 1\n\nD: 0.4221 -0.055916 265.09\n0.060544 0.41967 174.7\n7.7273e-06 -2.0972e-06 0.99999\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 2.5614 0.083075 163.07\n0.94137 2.2586 -732.08\n0.0017783 2.1603e-05 0.99316\n\nB: 0.37618 -0.0026073 58.013\n-0.13988 0.81886 117.4\n-0.00032276 -1.1378e-05 0.99983\n\nC: 0.63669 0.0018872 137.9\n-0.00033285 0.63926 95.922\n-2.0441e-06 4.1104e-06 1\n\nD: 0.40245 -0.33938 102.29\n-0.2125 0.62381 216.78\n-0.00033866 -1.5855e-05 1.0018\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_139_0.png", "2D-spatial/Homography_estimation/Homography_estimation_139_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 2.5614 0.083075 163.07\n0.94137 2.2586 -732.08\n0.0017783 2.1603e-05 0.99316\n\nB: 0.37618 -0.0026073 58.013\n-0.13988 0.81886 117.4\n-0.00032276 -1.1378e-05 0.99983\n\nC: 0.63669 0.0018872 137.9\n-0.00033285 0.63926 95.922\n-2.0441e-06 4.1104e-06 1\n\nD: 0.40245 -0.33938 102.29\n-0.2125 0.62381 216.78\n-0.00033866 -1.5855e-05 1.0018\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: -0.21679 -0.12572 585.55\n0.12463 -0.21699 355.1\n-1.085e-06 -1.8818e-06 1.0002\n\nB: 1.1529 0.012747 244.44\n0.41529 1.1943 -155.59\n0.00087156 5.6224e-05 1.0092\n\nC: 2.3515 0.16969 142.03\n1.0602 2.1465 -778.33\n0.0016806 -4.8949e-05 0.99537\n\nD: 1.1901 -0.048587 107.72\n0.14488 1.1926 -121.84\n0.00033622 1.1241e-05 1.0001\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_140_0.png", "2D-spatial/Homography_estimation/Homography_estimation_140_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: -0.21679 -0.12572 585.55\n0.12463 -0.21699 355.1\n-1.085e-06 -1.8818e-06 1.0002\n\nB: 1.1529 0.012747 244.44\n0.41529 1.1943 -155.59\n0.00087156 5.6224e-05 1.0092\n\nC: 2.3515 0.16969 142.03\n1.0602 2.1465 -778.33\n0.0016806 -4.8949e-05 0.99537\n\nD: 1.1901 -0.048587 107.72\n0.14488 1.1926 -121.84\n0.00033622 1.1241e-05 1.0001\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 3.1627 -0.045434 -351.49\n0.7877 2.8197 -842.9\n0.0015033 -3.676e-05 1.0055\n\nB: 0.91628 -0.19782 70.502\n0.072414 0.68419 -33.187\n5.7127e-06 -0.00025258 0.99947\n\nC: 0.27317 0.041297 84.951\n-0.22859 0.68736 124.47\n-0.00041264 5.2763e-05 1.0003\n\nD: 0.7855 0.039826 119.05\n-0.25749 1.3451 -220.69\n-0.00047304 5.3677e-05 1.001\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_141_0.png", "2D-spatial/Homography_estimation/Homography_estimation_141_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 3.1627 -0.045434 -351.49\n0.7877 2.8197 -842.9\n0.0015033 -3.676e-05 1.0055\n\nB: 0.91628 -0.19782 70.502\n0.072414 0.68419 -33.187\n5.7127e-06 -0.00025258 0.99947\n\nC: 0.27317 0.041297 84.951\n-0.22859 0.68736 124.47\n-0.00041264 5.2763e-05 1.0003\n\nD: 0.7855 0.039826 119.05\n-0.25749 1.3451 -220.69\n-0.00047304 5.3677e-05 1.001\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.38266 -0.33125 122.6\n-0.21363 0.61581 225.35\n-0.00034121 -7.7515e-06 0.99865\n\nB: 0.23209 -0.67097 528.16\n0.66389 0.2516 -30.266\n-3.168e-05 2.5631e-05 1.0087\n\nC: 0.36677 -0.019493 213.68\n-0.082321 0.47708 180.81\n-0.00021125 -4.1441e-05 1.0123\n\nD: 0.77044 -0.014353 152.19\n0.007827 0.75172 76.397\n1.9039e-05 -2.1554e-05 1\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_142_0.png", "2D-spatial/Homography_estimation/Homography_estimation_142_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.38266 -0.33125 122.6\n-0.21363 0.61581 225.35\n-0.00034121 -7.7515e-06 0.99865\n\nB: 0.23209 -0.67097 528.16\n0.66389 0.2516 -30.266\n-3.168e-05 2.5631e-05 1.0087\n\nC: 0.36677 -0.019493 213.68\n-0.082321 0.47708 180.81\n-0.00021125 -4.1441e-05 1.0123\n\nD: 0.77044 -0.014353 152.19\n0.007827 0.75172 76.397\n1.9039e-05 -2.1554e-05 1\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.67783 0.002447 123\n-0.00051063 0.68091 83.563\n-2.5166e-06 5.6486e-06 1\n\nB: 0.17608 -0.024321 273.19\n-0.19809 0.7405 74.826\n-0.00053318 1.2457e-05 1.0069\n\nC: 0.2564 0.092521 94.187\n-0.28031 0.83589 -0.15652\n-0.00048968 6.0866e-05 1.0015\n\nD: 1.5134 -0.0029581 20.934\n0.2678 1.4062 -232.68\n0.00048583 -4.0311e-06 1.0006\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_143_0.png", "2D-spatial/Homography_estimation/Homography_estimation_143_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.67783 0.002447 123\n-0.00051063 0.68091 83.563\n-2.5166e-06 5.6486e-06 1\n\nB: 0.17608 -0.024321 273.19\n-0.19809 0.7405 74.826\n-0.00053318 1.2457e-05 1.0069\n\nC: 0.2564 0.092521 94.187\n-0.28031 0.83589 -0.15652\n-0.00048968 6.0866e-05 1.0015\n\nD: 1.5134 -0.0029581 20.934\n0.2678 1.4062 -232.68\n0.00048583 -4.0311e-06 1.0006\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.29858 0.0403 -122.67\n-0.38113 0.61838 172.03\n-0.00071255 -1.0448e-06 0.97348\n\nB: 1.8454 -0.0093839 117.6\n0.8533 1.9335 -566.11\n0.0016091 6.8147e-05 1.0105\n\nC: 0.94726 0.076953 177.36\n0.25112 1.0126 13.205\n0.00047269 2.7805e-05 0.99969\n\nD: 0.17608 -0.024321 273.19\n-0.19809 0.7405 74.826\n-0.00053318 1.2457e-05 1.0069\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_144_0.png", "2D-spatial/Homography_estimation/Homography_estimation_144_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.29858 0.0403 -122.67\n-0.38113 0.61838 172.03\n-0.00071255 -1.0448e-06 0.97348\n\nB: 1.8454 -0.0093839 117.6\n0.8533 1.9335 -566.11\n0.0016091 6.8147e-05 1.0105\n\nC: 0.94726 0.076953 177.36\n0.25112 1.0126 13.205\n0.00047269 2.7805e-05 0.99969\n\nD: 0.17608 -0.024321 273.19\n-0.19809 0.7405 74.826\n-0.00053318 1.2457e-05 1.0069\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.33414 0.069646 90.22\n-0.25229 0.73446 157.67\n-0.00038885 2.2582e-06 1.0024\n\nB: 0.54693 0.20925 -108.35\n-0.082341 1.1176 -236.48\n-0.0006026 0.0001769 1.0001\n\nC: 0.42945 0.0071566 96.266\n-0.019537 0.48377 43.049\n-7.8698e-05 1.6013e-05 1.0001\n\nD: 0.81883 -0.28544 161.88\n0.010536 0.53499 62.327\n1.3163e-05 -0.00056443 1.0014\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_145_0.png", "2D-spatial/Homography_estimation/Homography_estimation_145_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.33414 0.069646 90.22\n-0.25229 0.73446 157.67\n-0.00038885 2.2582e-06 1.0024\n\nB: 0.54693 0.20925 -108.35\n-0.082341 1.1176 -236.48\n-0.0006026 0.0001769 1.0001\n\nC: 0.42945 0.0071566 96.266\n-0.019537 0.48377 43.049\n-7.8698e-05 1.6013e-05 1.0001\n\nD: 0.81883 -0.28544 161.88\n0.010536 0.53499 62.327\n1.3163e-05 -0.00056443 1.0014\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.31269 -0.011782 51.842\n-0.22276 0.71181 65.24\n-0.00081452 -4.173e-05 0.99309\n\nB: 3.6199 0.1243 -2.4307\n0.35256 5.1536 -1935.2\n0.0029372 0.0011148 1\n\nC: 2.2787 0.023843 -30.321\n0.58793 1.9158 -459.28\n0.0012782 -6.6868e-06 0.99971\n\nD: 0.23209 -0.67097 528.16\n0.66389 0.2516 -30.266\n-3.168e-05 2.5631e-05 1.0087\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_146_0.png", "2D-spatial/Homography_estimation/Homography_estimation_146_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.31269 -0.011782 51.842\n-0.22276 0.71181 65.24\n-0.00081452 -4.173e-05 0.99309\n\nB: 3.6199 0.1243 -2.4307\n0.35256 5.1536 -1935.2\n0.0029372 0.0011148 1\n\nC: 2.2787 0.023843 -30.321\n0.58793 1.9158 -459.28\n0.0012782 -6.6868e-06 0.99971\n\nD: 0.23209 -0.67097 528.16\n0.66389 0.2516 -30.266\n-3.168e-05 2.5631e-05 1.0087\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.7855 0.039826 119.05\n-0.25749 1.3451 -220.69\n-0.00047304 5.3677e-05 1.001\n\nB: 0.0033111 0.031282 184.63\n-0.15843 0.75999 4.5609\n-0.00083562 0.00011238 0.99927\n\nC: 0.42186 0.031568 60.169\n-0.084563 0.88575 93.738\n-0.00032749 1.4457e-05 1.0012\n\nD: 0.54693 0.20925 -108.35\n-0.082341 1.1176 -236.48\n-0.0006026 0.0001769 1.0001\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_147_0.png", "2D-spatial/Homography_estimation/Homography_estimation_147_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.7855 0.039826 119.05\n-0.25749 1.3451 -220.69\n-0.00047304 5.3677e-05 1.001\n\nB: 0.0033111 0.031282 184.63\n-0.15843 0.75999 4.5609\n-0.00083562 0.00011238 0.99927\n\nC: 0.42186 0.031568 60.169\n-0.084563 0.88575 93.738\n-0.00032749 1.4457e-05 1.0012\n\nD: 0.54693 0.20925 -108.35\n-0.082341 1.1176 -236.48\n-0.0006026 0.0001769 1.0001\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.3903 -0.069797 29.319\n0.18963 1.0284 22.049\n0.00052989 -9.8197e-05 1.0021\n\nB: 0.55202 0.096567 108.66\n-0.35774 1.4927 -276.32\n-0.00068886 0.0001065 0.98986\n\nC: 1.8454 -0.0093839 117.6\n0.8533 1.9335 -566.11\n0.0016091 6.8147e-05 1.0105\n\nD: 0.86273 0.030727 -257.65\n-0.081274 1.0175 -48.986\n-0.00016043 4.4449e-05 1.0008\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_148_0.png", "2D-spatial/Homography_estimation/Homography_estimation_148_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.3903 -0.069797 29.319\n0.18963 1.0284 22.049\n0.00052989 -9.8197e-05 1.0021\n\nB: 0.55202 0.096567 108.66\n-0.35774 1.4927 -276.32\n-0.00068886 0.0001065 0.98986\n\nC: 1.8454 -0.0093839 117.6\n0.8533 1.9335 -566.11\n0.0016091 6.8147e-05 1.0105\n\nD: 0.86273 0.030727 -257.65\n-0.081274 1.0175 -48.986\n-0.00016043 4.4449e-05 1.0008\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.70212 0.43231 -128.54\n-0.42351 0.70276 199.3\n6.3285e-06 1.2175e-05 0.99997\n\nB: 0.22888 0.0058691 272.09\n-0.077153 0.3923 203.08\n-0.00024299 -4.5827e-06 1.0015\n\nC: 0.81883 -0.28544 161.88\n0.010536 0.53499 62.327\n1.3163e-05 -0.00056443 1.0014\n\nD: 0.48882 0.0079397 13.575\n-0.24956 0.69593 149.6\n-0.00053246 -7.8574e-06 1.0026\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_149_0.png", "2D-spatial/Homography_estimation/Homography_estimation_149_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.70212 0.43231 -128.54\n-0.42351 0.70276 199.3\n6.3285e-06 1.2175e-05 0.99997\n\nB: 0.22888 0.0058691 272.09\n-0.077153 0.3923 203.08\n-0.00024299 -4.5827e-06 1.0015\n\nC: 0.81883 -0.28544 161.88\n0.010536 0.53499 62.327\n1.3163e-05 -0.00056443 1.0014\n\nD: 0.48882 0.0079397 13.575\n-0.24956 0.69593 149.6\n-0.00053246 -7.8574e-06 1.0026\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.3231 -0.10518 226.69\n0.35118 1.4445 -217.52\n0.00076877 -2.4515e-05 0.99903\n\nB: 0.54864 -0.010797 -6.1494\n-0.11876 0.86651 111.28\n-0.00026448 -1.8961e-05 1\n\nC: 2.4665 0.083695 233.31\n0.87021 2.8235 -936.68\n0.0017821 0.0001592 0.98707\n\nD: 0.85555 -0.17378 91.59\n0.17068 0.85755 -31.264\n-5.1182e-06 2.0966e-06 1.0023\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_150_0.png", "2D-spatial/Homography_estimation/Homography_estimation_150_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.3231 -0.10518 226.69\n0.35118 1.4445 -217.52\n0.00076877 -2.4515e-05 0.99903\n\nB: 0.54864 -0.010797 -6.1494\n-0.11876 0.86651 111.28\n-0.00026448 -1.8961e-05 1\n\nC: 2.4665 0.083695 233.31\n0.87021 2.8235 -936.68\n0.0017821 0.0001592 0.98707\n\nD: 0.85555 -0.17378 91.59\n0.17068 0.85755 -31.264\n-5.1182e-06 2.0966e-06 1.0023\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.29534 0.035751 -56.21\n-0.35718 0.5432 233.53\n-0.00064211 -1.1093e-05 0.97783\n\nB: 14.984 -1.5209 -1987.5\n0.59203 13.878 -3896.8\n0.0072047 0.0038814 0.92614\n\nC: 0.67783 0.002447 123\n-0.00051063 0.68091 83.563\n-2.5166e-06 5.6486e-06 1\n\nD: 0.4849 -0.15095 280.72\n-0.18568 0.38797 170.57\n-4.9965e-05 -0.00024428 0.99985\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_151_0.png", "2D-spatial/Homography_estimation/Homography_estimation_151_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.29534 0.035751 -56.21\n-0.35718 0.5432 233.53\n-0.00064211 -1.1093e-05 0.97783\n\nB: 14.984 -1.5209 -1987.5\n0.59203 13.878 -3896.8\n0.0072047 0.0038814 0.92614\n\nC: 0.67783 0.002447 123\n-0.00051063 0.68091 83.563\n-2.5166e-06 5.6486e-06 1\n\nD: 0.4849 -0.15095 280.72\n-0.18568 0.38797 170.57\n-4.9965e-05 -0.00024428 0.99985\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.47208 0.021042 63.836\n-0.16332 0.73028 126.94\n-0.00030371 2.4606e-05 0.99981\n\nB: 0.13416 0.073075 56.977\n-0.21333 0.70433 84.528\n-0.00055481 6.1106e-05 1\n\nC: 1.3308 -0.060097 223.54\n0.17906 0.94189 -10.999\n0.00034146 -4.4675e-05 0.99983\n\nD: 2.4144 -0.0022023 -199.3\n0.52146 2.0547 -569.49\n0.0010423 8.4489e-05 1.0043\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_152_0.png", "2D-spatial/Homography_estimation/Homography_estimation_152_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.47208 0.021042 63.836\n-0.16332 0.73028 126.94\n-0.00030371 2.4606e-05 0.99981\n\nB: 0.13416 0.073075 56.977\n-0.21333 0.70433 84.528\n-0.00055481 6.1106e-05 1\n\nC: 1.3308 -0.060097 223.54\n0.17906 0.94189 -10.999\n0.00034146 -4.4675e-05 0.99983\n\nD: 2.4144 -0.0022023 -199.3\n0.52146 2.0547 -569.49\n0.0010423 8.4489e-05 1.0043\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.69134 -0.0063829 116.24\n0.0053381 0.71985 83.96\n-1.8171e-05 2.7124e-05 1\n\nB: 0.55347 0.01345 110.12\n-0.085938 0.64894 151.2\n-0.00016395 1.1079e-05 0.99926\n\nC: 0.28973 0.014397 100.07\n-0.29955 0.64174 168.27\n-0.00067332 7.239e-06 1.0017\n\nD: 0.75268 -0.0092452 -71.273\n-0.17607 0.97566 6.3105\n-0.00029582 -1.5187e-05 0.99957\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_153_0.png", "2D-spatial/Homography_estimation/Homography_estimation_153_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.69134 -0.0063829 116.24\n0.0053381 0.71985 83.96\n-1.8171e-05 2.7124e-05 1\n\nB: 0.55347 0.01345 110.12\n-0.085938 0.64894 151.2\n-0.00016395 1.1079e-05 0.99926\n\nC: 0.28973 0.014397 100.07\n-0.29955 0.64174 168.27\n-0.00067332 7.239e-06 1.0017\n\nD: 0.75268 -0.0092452 -71.273\n-0.17607 0.97566 6.3105\n-0.00029582 -1.5187e-05 0.99957\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.77105 -0.097833 -3.6994\n-0.092675 0.81167 92.799\n-0.0001392 -0.00012806 0.99964\n\nB: 0.32788 -0.00026656 168.52\n-0.087696 0.49289 72.043\n-0.00025798 4.6006e-06 0.9984\n\nC: 0.88184 0.31397 -39.976\n-0.18167 0.93621 153.25\n0.00020118 -1.9028e-05 0.99997\n\nD: 0.7855 0.039826 119.05\n-0.25749 1.3451 -220.69\n-0.00047304 5.3677e-05 1.001\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_154_0.png", "2D-spatial/Homography_estimation/Homography_estimation_154_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.77105 -0.097833 -3.6994\n-0.092675 0.81167 92.799\n-0.0001392 -0.00012806 0.99964\n\nB: 0.32788 -0.00026656 168.52\n-0.087696 0.49289 72.043\n-0.00025798 4.6006e-06 0.9984\n\nC: 0.88184 0.31397 -39.976\n-0.18167 0.93621 153.25\n0.00020118 -1.9028e-05 0.99997\n\nD: 0.7855 0.039826 119.05\n-0.25749 1.3451 -220.69\n-0.00047304 5.3677e-05 1.001\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.6413 0.074225 91.097\n0.77035 1.5061 -362.72\n0.0010583 -7.1897e-05 1.0011\n\nB: 1.0478 0.035143 64.843\n0.063507 1.0349 21.701\n0.00023044 -6.878e-06 0.99998\n\nC: 0.24117 0.068506 48.185\n-0.23318 0.79398 68.106\n-0.0005259 5.079e-05 0.99834\n\nD: 1.3838 0.024181 -93.882\n0.093344 1.307 -232.76\n0.00015995 6.7546e-05 1.0008\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_155_0.png", "2D-spatial/Homography_estimation/Homography_estimation_155_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.6413 0.074225 91.097\n0.77035 1.5061 -362.72\n0.0010583 -7.1897e-05 1.0011\n\nB: 1.0478 0.035143 64.843\n0.063507 1.0349 21.701\n0.00023044 -6.878e-06 0.99998\n\nC: 0.24117 0.068506 48.185\n-0.23318 0.79398 68.106\n-0.0005259 5.079e-05 0.99834\n\nD: 1.3838 0.024181 -93.882\n0.093344 1.307 -232.76\n0.00015995 6.7546e-05 1.0008\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.0035 -0.00055314 2.5255\n-0.0028717 1.0087 -9.7285\n-3.8783e-06 3.4244e-06 1\n\nB: 1.3951 0.13641 136.74\n0.31704 1.2758 -219.28\n0.00053511 0.00013896 0.99675\n\nC: 0.72201 0.13445 62.975\n0.059719 0.85126 46.305\n-1.7322e-05 0.00018166 1.0001\n\nD: 0.45841 0.038317 36.428\n-0.26806 0.75693 165.6\n-0.00037539 -1.4035e-05 1.0016\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_156_0.png", "2D-spatial/Homography_estimation/Homography_estimation_156_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.0035 -0.00055314 2.5255\n-0.0028717 1.0087 -9.7285\n-3.8783e-06 3.4244e-06 1\n\nB: 1.3951 0.13641 136.74\n0.31704 1.2758 -219.28\n0.00053511 0.00013896 0.99675\n\nC: 0.72201 0.13445 62.975\n0.059719 0.85126 46.305\n-1.7322e-05 0.00018166 1.0001\n\nD: 0.45841 0.038317 36.428\n-0.26806 0.75693 165.6\n-0.00037539 -1.4035e-05 1.0016\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.38922 0.015343 55.85\n-0.1763 0.84543 87.344\n-0.00049385 -2.1034e-05 1.0072\n\nB: 1.2869 -0.0035671 90.117\n0.34981 1.1421 -290.48\n0.0010338 2.5575e-05 0.99928\n\nC: 0.37694 0.049406 111.53\n-0.16444 0.72986 84.602\n-0.00037753 4.0247e-05 0.99869\n\nD: 0.88632 -0.012492 -136.92\n-0.047209 1.0157 42.178\n-0.0001423 1.8595e-05 1.0005\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_157_0.png", "2D-spatial/Homography_estimation/Homography_estimation_157_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.38922 0.015343 55.85\n-0.1763 0.84543 87.344\n-0.00049385 -2.1034e-05 1.0072\n\nB: 1.2869 -0.0035671 90.117\n0.34981 1.1421 -290.48\n0.0010338 2.5575e-05 0.99928\n\nC: 0.37694 0.049406 111.53\n-0.16444 0.72986 84.602\n-0.00037753 4.0247e-05 0.99869\n\nD: 0.88632 -0.012492 -136.92\n-0.047209 1.0157 42.178\n-0.0001423 1.8595e-05 1.0005\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.1442 -0.037625 115.5\n0.22206 1.0286 -30.039\n0.00032815 -2.4116e-05 0.9999\n\nB: 1.2869 -0.0035671 90.117\n0.34981 1.1421 -290.48\n0.0010338 2.5575e-05 0.99928\n\nC: 0.032608 0.010774 198.34\n-0.16134 0.44659 114.31\n-0.00057725 -5.1566e-07 1.0017\n\nD: 1.7761 -0.053427 263.17\n0.41751 1.5987 -329.46\n0.00069677 3.1372e-05 1.0014\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_158_0.png", "2D-spatial/Homography_estimation/Homography_estimation_158_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.1442 -0.037625 115.5\n0.22206 1.0286 -30.039\n0.00032815 -2.4116e-05 0.9999\n\nB: 1.2869 -0.0035671 90.117\n0.34981 1.1421 -290.48\n0.0010338 2.5575e-05 0.99928\n\nC: 0.032608 0.010774 198.34\n-0.16134 0.44659 114.31\n-0.00057725 -5.1566e-07 1.0017\n\nD: 1.7761 -0.053427 263.17\n0.41751 1.5987 -329.46\n0.00069677 3.1372e-05 1.0014\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.7761 -0.053427 263.17\n0.41751 1.5987 -329.46\n0.00069677 3.1372e-05 1.0014\n\nB: 1.3186 -0.0097277 -143.16\n0.094663 1.1956 -58.383\n0.00019153 -2.0281e-05 0.99989\n\nC: 0.38922 0.015343 55.85\n-0.1763 0.84543 87.344\n-0.00049385 -2.1034e-05 1.0072\n\nD: 0.22888 0.0058691 272.09\n-0.077153 0.3923 203.08\n-0.00024299 -4.5827e-06 1.0015\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_159_0.png", "2D-spatial/Homography_estimation/Homography_estimation_159_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.7761 -0.053427 263.17\n0.41751 1.5987 -329.46\n0.00069677 3.1372e-05 1.0014\n\nB: 1.3186 -0.0097277 -143.16\n0.094663 1.1956 -58.383\n0.00019153 -2.0281e-05 0.99989\n\nC: 0.38922 0.015343 55.85\n-0.1763 0.84543 87.344\n-0.00049385 -2.1034e-05 1.0072\n\nD: 0.22888 0.0058691 272.09\n-0.077153 0.3923 203.08\n-0.00024299 -4.5827e-06 1.0015\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.49202 0.0057754 242.06\n0.058005 0.43541 166.02\n0.00018017 1.0746e-05 0.99974\n\nB: 0.48882 0.0079397 13.575\n-0.24956 0.69593 149.6\n-0.00053246 -7.8574e-06 1.0026\n\nC: 0.86273 0.030727 -257.65\n-0.081274 1.0175 -48.986\n-0.00016043 4.4449e-05 1.0008\n\nD: 1.1198 0.031669 158.94\n0.13747 0.986 -24.458\n0.00036259 4.1267e-05 0.99658\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_160_0.png", "2D-spatial/Homography_estimation/Homography_estimation_160_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.49202 0.0057754 242.06\n0.058005 0.43541 166.02\n0.00018017 1.0746e-05 0.99974\n\nB: 0.48882 0.0079397 13.575\n-0.24956 0.69593 149.6\n-0.00053246 -7.8574e-06 1.0026\n\nC: 0.86273 0.030727 -257.65\n-0.081274 1.0175 -48.986\n-0.00016043 4.4449e-05 1.0008\n\nD: 1.1198 0.031669 158.94\n0.13747 0.986 -24.458\n0.00036259 4.1267e-05 0.99658\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.58099 -0.029382 -20.47\n-0.29479 0.73128 188.62\n-0.00043803 -4.3076e-05 1.0007\n\nB: 1.1529 0.012747 244.44\n0.41529 1.1943 -155.59\n0.00087156 5.6224e-05 1.0092\n\nC: 0.23209 -0.67097 528.16\n0.66389 0.2516 -30.266\n-3.168e-05 2.5631e-05 1.0087\n\nD: 1.7312 -0.086578 129.17\n0.3882 1.1026 -2.2164\n0.0010948 -0.00011788 1.0024\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_161_0.png", "2D-spatial/Homography_estimation/Homography_estimation_161_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.58099 -0.029382 -20.47\n-0.29479 0.73128 188.62\n-0.00043803 -4.3076e-05 1.0007\n\nB: 1.1529 0.012747 244.44\n0.41529 1.1943 -155.59\n0.00087156 5.6224e-05 1.0092\n\nC: 0.23209 -0.67097 528.16\n0.66389 0.2516 -30.266\n-3.168e-05 2.5631e-05 1.0087\n\nD: 1.7312 -0.086578 129.17\n0.3882 1.1026 -2.2164\n0.0010948 -0.00011788 1.0024\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.57125 -0.095863 127.19\n0.050302 0.75099 -13.911\n-0.00020485 1.2421e-06 0.9999\n\nB: 0.57079 0.0076829 -45.295\n-0.15447 0.93183 62.276\n-0.00028402 -5.8827e-06 0.99996\n\nC: 0.24117 0.068506 48.185\n-0.23318 0.79398 68.106\n-0.0005259 5.079e-05 0.99834\n\nD: 0.75268 -0.0092452 -71.273\n-0.17607 0.97566 6.3105\n-0.00029582 -1.5187e-05 0.99957\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_162_0.png", "2D-spatial/Homography_estimation/Homography_estimation_162_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.57125 -0.095863 127.19\n0.050302 0.75099 -13.911\n-0.00020485 1.2421e-06 0.9999\n\nB: 0.57079 0.0076829 -45.295\n-0.15447 0.93183 62.276\n-0.00028402 -5.8827e-06 0.99996\n\nC: 0.24117 0.068506 48.185\n-0.23318 0.79398 68.106\n-0.0005259 5.079e-05 0.99834\n\nD: 0.75268 -0.0092452 -71.273\n-0.17607 0.97566 6.3105\n-0.00029582 -1.5187e-05 0.99957\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.36677 -0.019493 213.68\n-0.082321 0.47708 180.81\n-0.00021125 -4.1441e-05 1.0123\n\nB: 0.60665 -0.013034 217.78\n0.087451 0.52146 32.707\n0.00021516 2.9281e-07 1.0006\n\nC: 0.7088 -0.010965 -26.07\n-0.13602 0.83489 103.19\n-0.00023352 -1.5615e-05 1.0004\n\nD: 0.030125 -0.01797 299.5\n-0.19573 0.45869 167.74\n-0.00051291 -3.9704e-05 1.0019\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_163_0.png", "2D-spatial/Homography_estimation/Homography_estimation_163_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.36677 -0.019493 213.68\n-0.082321 0.47708 180.81\n-0.00021125 -4.1441e-05 1.0123\n\nB: 0.60665 -0.013034 217.78\n0.087451 0.52146 32.707\n0.00021516 2.9281e-07 1.0006\n\nC: 0.7088 -0.010965 -26.07\n-0.13602 0.83489 103.19\n-0.00023352 -1.5615e-05 1.0004\n\nD: 0.030125 -0.01797 299.5\n-0.19573 0.45869 167.74\n-0.00051291 -3.9704e-05 1.0019\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.55347 0.01345 110.12\n-0.085938 0.64894 151.2\n-0.00016395 1.1079e-05 0.99926\n\nB: 0.47589 0.042551 60.888\n-0.21388 0.80238 62.033\n-0.0003663 2.6901e-05 1.001\n\nC: 2.1479 0.036813 206.94\n0.67819 1.8174 -485.8\n0.0012074 -6.8043e-06 0.99599\n\nD: 0.34904 -0.0038637 -43.899\n-0.22316 0.99346 45.579\n-0.00041195 -1.2246e-05 1\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_164_0.png", "2D-spatial/Homography_estimation/Homography_estimation_164_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.55347 0.01345 110.12\n-0.085938 0.64894 151.2\n-0.00016395 1.1079e-05 0.99926\n\nB: 0.47589 0.042551 60.888\n-0.21388 0.80238 62.033\n-0.0003663 2.6901e-05 1.001\n\nC: 2.1479 0.036813 206.94\n0.67819 1.8174 -485.8\n0.0012074 -6.8043e-06 0.99599\n\nD: 0.34904 -0.0038637 -43.899\n-0.22316 0.99346 45.579\n-0.00041195 -1.2246e-05 1\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.4932 0.01661 231.74\n0.45676 1.4341 -212.29\n0.0013256 9.9938e-05 0.99686\n\nB: 0.40245 -0.33938 102.29\n-0.2125 0.62381 216.78\n-0.00033866 -1.5855e-05 1.0018\n\nC: 2.6481 0.070248 -423.11\n0.5002 2.6605 -906.39\n0.0012014 0.00025943 0.99533\n\nD: 1.6477 -0.037624 101.59\n0.49962 1.5725 -364.98\n0.00090272 4.6589e-05 1.0037\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_165_0.png", "2D-spatial/Homography_estimation/Homography_estimation_165_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.4932 0.01661 231.74\n0.45676 1.4341 -212.29\n0.0013256 9.9938e-05 0.99686\n\nB: 0.40245 -0.33938 102.29\n-0.2125 0.62381 216.78\n-0.00033866 -1.5855e-05 1.0018\n\nC: 2.6481 0.070248 -423.11\n0.5002 2.6605 -906.39\n0.0012014 0.00025943 0.99533\n\nD: 1.6477 -0.037624 101.59\n0.49962 1.5725 -364.98\n0.00090272 4.6589e-05 1.0037\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.7761 -0.053427 263.17\n0.41751 1.5987 -329.46\n0.00069677 3.1372e-05 1.0014\n\nB: 1.1901 -0.048587 107.72\n0.14488 1.1926 -121.84\n0.00033622 1.1241e-05 1.0001\n\nC: 1.8851 0.028166 274.85\n0.48185 1.6951 -326.97\n0.0011778 8.455e-05 0.99801\n\nD: -0.19998 0.34647 247.36\n-0.34607 -0.19989 467.21\n2.0354e-07 -5.1701e-08 1\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_166_0.png", "2D-spatial/Homography_estimation/Homography_estimation_166_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.7761 -0.053427 263.17\n0.41751 1.5987 -329.46\n0.00069677 3.1372e-05 1.0014\n\nB: 1.1901 -0.048587 107.72\n0.14488 1.1926 -121.84\n0.00033622 1.1241e-05 1.0001\n\nC: 1.8851 0.028166 274.85\n0.48185 1.6951 -326.97\n0.0011778 8.455e-05 0.99801\n\nD: -0.19998 0.34647 247.36\n-0.34607 -0.19989 467.21\n2.0354e-07 -5.1701e-08 1\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 2.2078 0.054458 63.617\n0.67654 2.2557 -637.98\n0.0013191 8.5079e-05 1.0033\n\nB: 3.1627 -0.045434 -351.49\n0.7877 2.8197 -842.9\n0.0015033 -3.676e-05 1.0055\n\nC: 1.1529 0.012747 244.44\n0.41529 1.1943 -155.59\n0.00087156 5.6224e-05 1.0092\n\nD: 0.45841 0.038317 36.428\n-0.26806 0.75693 165.6\n-0.00037539 -1.4035e-05 1.0016\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_167_0.png", "2D-spatial/Homography_estimation/Homography_estimation_167_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 2.2078 0.054458 63.617\n0.67654 2.2557 -637.98\n0.0013191 8.5079e-05 1.0033\n\nB: 3.1627 -0.045434 -351.49\n0.7877 2.8197 -842.9\n0.0015033 -3.676e-05 1.0055\n\nC: 1.1529 0.012747 244.44\n0.41529 1.1943 -155.59\n0.00087156 5.6224e-05 1.0092\n\nD: 0.45841 0.038317 36.428\n-0.26806 0.75693 165.6\n-0.00037539 -1.4035e-05 1.0016\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.60879 -0.35761 289.93\n0.34822 0.61653 -30.949\n-2.0912e-05 1.3527e-06 1.014\n\nB: 1.2108 -0.031741 47.374\n0.20996 1.0345 -107.36\n0.00054926 -6.3631e-06 1.0004\n\nC: 0.53266 0.0019756 44.297\n-0.18137 0.85955 61.945\n-0.00038035 1.4705e-06 0.9999\n\nD: 2.4665 0.083695 233.31\n0.87021 2.8235 -936.68\n0.0017821 0.0001592 0.98707\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_168_0.png", "2D-spatial/Homography_estimation/Homography_estimation_168_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.60879 -0.35761 289.93\n0.34822 0.61653 -30.949\n-2.0912e-05 1.3527e-06 1.014\n\nB: 1.2108 -0.031741 47.374\n0.20996 1.0345 -107.36\n0.00054926 -6.3631e-06 1.0004\n\nC: 0.53266 0.0019756 44.297\n-0.18137 0.85955 61.945\n-0.00038035 1.4705e-06 0.9999\n\nD: 2.4665 0.083695 233.31\n0.87021 2.8235 -936.68\n0.0017821 0.0001592 0.98707\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.6413 0.074225 91.097\n0.77035 1.5061 -362.72\n0.0010583 -7.1897e-05 1.0011\n\nB: 2.4665 0.083695 233.31\n0.87021 2.8235 -936.68\n0.0017821 0.0001592 0.98707\n\nC: 1.4403 0.27154 10.734\n0.071471 1.5534 -44.533\n0.00030432 0.00049723 1.001\n\nD: 0.85799 0.21669 9.4839\n-0.21177 0.85855 130.48\n1.5015e-06 9.2033e-07 1\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_169_0.png", "2D-spatial/Homography_estimation/Homography_estimation_169_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.6413 0.074225 91.097\n0.77035 1.5061 -362.72\n0.0010583 -7.1897e-05 1.0011\n\nB: 2.4665 0.083695 233.31\n0.87021 2.8235 -936.68\n0.0017821 0.0001592 0.98707\n\nC: 1.4403 0.27154 10.734\n0.071471 1.5534 -44.533\n0.00030432 0.00049723 1.001\n\nD: 0.85799 0.21669 9.4839\n-0.21177 0.85855 130.48\n1.5015e-06 9.2033e-07 1\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.74922 -0.0014388 -75.597\n-0.074158 0.94323 40.455\n-0.00018126 -6.2301e-06 1\n\nB: 1.7761 -0.053427 263.17\n0.41751 1.5987 -329.46\n0.00069677 3.1372e-05 1.0014\n\nC: 0.55616 0.0088234 83.342\n-0.19782 0.70845 195.76\n-0.00029305 -3.175e-05 0.99884\n\nD: 0.4849 -0.15095 280.72\n-0.18568 0.38797 170.57\n-4.9965e-05 -0.00024428 0.99985\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_170_0.png", "2D-spatial/Homography_estimation/Homography_estimation_170_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.74922 -0.0014388 -75.597\n-0.074158 0.94323 40.455\n-0.00018126 -6.2301e-06 1\n\nB: 1.7761 -0.053427 263.17\n0.41751 1.5987 -329.46\n0.00069677 3.1372e-05 1.0014\n\nC: 0.55616 0.0088234 83.342\n-0.19782 0.70845 195.76\n-0.00029305 -3.175e-05 0.99884\n\nD: 0.4849 -0.15095 280.72\n-0.18568 0.38797 170.57\n-4.9965e-05 -0.00024428 0.99985\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.31237 0.099342 8.5389\n-0.29392 0.92363 14.629\n-0.00074642 6.3257e-05 0.99168\n\nB: 2.2078 0.054458 63.617\n0.67654 2.2557 -637.98\n0.0013191 8.5079e-05 1.0033\n\nC: 1.3526 0.026797 436.87\n0.31517 1.3826 -234.04\n0.00076901 0.00022984 1.0039\n\nD: 0.53266 0.0019756 44.297\n-0.18137 0.85955 61.945\n-0.00038035 1.4705e-06 0.9999\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_171_0.png", "2D-spatial/Homography_estimation/Homography_estimation_171_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.31237 0.099342 8.5389\n-0.29392 0.92363 14.629\n-0.00074642 6.3257e-05 0.99168\n\nB: 2.2078 0.054458 63.617\n0.67654 2.2557 -637.98\n0.0013191 8.5079e-05 1.0033\n\nC: 1.3526 0.026797 436.87\n0.31517 1.3826 -234.04\n0.00076901 0.00022984 1.0039\n\nD: 0.53266 0.0019756 44.297\n-0.18137 0.85955 61.945\n-0.00038035 1.4705e-06 0.9999\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.67444 0.023361 37.089\n-0.047926 0.90094 60.932\n-0.00018688 1.1402e-05 1.0007\n\nB: 0.57079 0.0076829 -45.295\n-0.15447 0.93183 62.276\n-0.00028402 -5.8827e-06 0.99996\n\nC: 4.3722 0.14407 -818.24\n-0.25209 3.9595 -549.15\n0.001718 0.0010825 0.97985\n\nD: 1.3186 -0.0097277 -143.16\n0.094663 1.1956 -58.383\n0.00019153 -2.0281e-05 0.99989\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_172_0.png", "2D-spatial/Homography_estimation/Homography_estimation_172_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.67444 0.023361 37.089\n-0.047926 0.90094 60.932\n-0.00018688 1.1402e-05 1.0007\n\nB: 0.57079 0.0076829 -45.295\n-0.15447 0.93183 62.276\n-0.00028402 -5.8827e-06 0.99996\n\nC: 4.3722 0.14407 -818.24\n-0.25209 3.9595 -549.15\n0.001718 0.0010825 0.97985\n\nD: 1.3186 -0.0097277 -143.16\n0.094663 1.1956 -58.383\n0.00019153 -2.0281e-05 0.99989\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.441 -0.037212 269.33\n0.73295 1.6438 -380.65\n0.0014226 4.1601e-05 1.0102\n\nB: 0.25611 0.0594 88.294\n-0.24702 0.7663 71.53\n-0.00048162 6.7687e-05 1.0008\n\nC: 0.37107 -0.09213 318.73\n0.086334 0.37505 188.02\n-1.0814e-05 -3.6548e-06 1\n\nD: 0.66581 0.6777 -31.246\n-0.14346 0.96853 148.92\n0.00042869 -1.7355e-05 0.99928\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_173_0.png", "2D-spatial/Homography_estimation/Homography_estimation_173_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.441 -0.037212 269.33\n0.73295 1.6438 -380.65\n0.0014226 4.1601e-05 1.0102\n\nB: 0.25611 0.0594 88.294\n-0.24702 0.7663 71.53\n-0.00048162 6.7687e-05 1.0008\n\nC: 0.37107 -0.09213 318.73\n0.086334 0.37505 188.02\n-1.0814e-05 -3.6548e-06 1\n\nD: 0.66581 0.6777 -31.246\n-0.14346 0.96853 148.92\n0.00042869 -1.7355e-05 0.99928\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.94726 0.076953 177.36\n0.25112 1.0126 13.205\n0.00047269 2.7805e-05 0.99969\n\nB: 1.2108 -0.031741 47.374\n0.20996 1.0345 -107.36\n0.00054926 -6.3631e-06 1.0004\n\nC: 0.33492 -0.0051126 63.132\n-0.19841 0.81318 98.482\n-0.00041298 -2.8119e-05 0.99833\n\nD: 0.72201 0.13445 62.975\n0.059719 0.85126 46.305\n-1.7322e-05 0.00018166 1.0001\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_174_0.png", "2D-spatial/Homography_estimation/Homography_estimation_174_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.94726 0.076953 177.36\n0.25112 1.0126 13.205\n0.00047269 2.7805e-05 0.99969\n\nB: 1.2108 -0.031741 47.374\n0.20996 1.0345 -107.36\n0.00054926 -6.3631e-06 1.0004\n\nC: 0.33492 -0.0051126 63.132\n-0.19841 0.81318 98.482\n-0.00041298 -2.8119e-05 0.99833\n\nD: 0.72201 0.13445 62.975\n0.059719 0.85126 46.305\n-1.7322e-05 0.00018166 1.0001\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.1268 -0.03963 330.5\n-0.1892 0.46973 254.2\n-0.00039857 -3.9641e-05 0.99971\n\nB: 2.9721 0.034514 6.1536\n0.86739 2.9829 -532.95\n0.0035453 0.00017204 0.95976\n\nC: 1.6477 -0.037624 101.59\n0.49962 1.5725 -364.98\n0.00090272 4.6589e-05 1.0037\n\nD: 0.29534 0.035751 -56.21\n-0.35718 0.5432 233.53\n-0.00064211 -1.1093e-05 0.97783\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_175_0.png", "2D-spatial/Homography_estimation/Homography_estimation_175_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.1268 -0.03963 330.5\n-0.1892 0.46973 254.2\n-0.00039857 -3.9641e-05 0.99971\n\nB: 2.9721 0.034514 6.1536\n0.86739 2.9829 -532.95\n0.0035453 0.00017204 0.95976\n\nC: 1.6477 -0.037624 101.59\n0.49962 1.5725 -364.98\n0.00090272 4.6589e-05 1.0037\n\nD: 0.29534 0.035751 -56.21\n-0.35718 0.5432 233.53\n-0.00064211 -1.1093e-05 0.97783\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.31483 0.11583 690.51\n0.17546 0.70637 14.497\n0.00026712 0.00012691 1\n\nB: 0.77044 -0.014353 152.19\n0.007827 0.75172 76.397\n1.9039e-05 -2.1554e-05 1\n\nC: 1.0983 -0.030393 111.31\n0.31879 0.9789 58.516\n0.00050073 -5.3943e-05 1.0005\n\nD: 0.34904 -0.0038637 -43.899\n-0.22316 0.99346 45.579\n-0.00041195 -1.2246e-05 1\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_176_0.png", "2D-spatial/Homography_estimation/Homography_estimation_176_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.31483 0.11583 690.51\n0.17546 0.70637 14.497\n0.00026712 0.00012691 1\n\nB: 0.77044 -0.014353 152.19\n0.007827 0.75172 76.397\n1.9039e-05 -2.1554e-05 1\n\nC: 1.0983 -0.030393 111.31\n0.31879 0.9789 58.516\n0.00050073 -5.3943e-05 1.0005\n\nD: 0.34904 -0.0038637 -43.899\n-0.22316 0.99346 45.579\n-0.00041195 -1.2246e-05 1\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.44469 -0.1629 197.72\n-0.090792 0.33606 37.55\n-0.00032851 -0.00028415 1.0004\n\nB: 2.4144 -0.0022023 -199.3\n0.52146 2.0547 -569.49\n0.0010423 8.4489e-05 1.0043\n\nC: 0.88632 -0.012492 -136.92\n-0.047209 1.0157 42.178\n-0.0001423 1.8595e-05 1.0005\n\nD: 0.60665 -0.013034 217.78\n0.087451 0.52146 32.707\n0.00021516 2.9281e-07 1.0006\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_177_0.png", "2D-spatial/Homography_estimation/Homography_estimation_177_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.44469 -0.1629 197.72\n-0.090792 0.33606 37.55\n-0.00032851 -0.00028415 1.0004\n\nB: 2.4144 -0.0022023 -199.3\n0.52146 2.0547 -569.49\n0.0010423 8.4489e-05 1.0043\n\nC: 0.88632 -0.012492 -136.92\n-0.047209 1.0157 42.178\n-0.0001423 1.8595e-05 1.0005\n\nD: 0.60665 -0.013034 217.78\n0.087451 0.52146 32.707\n0.00021516 2.9281e-07 1.0006\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.4403 0.27154 10.734\n0.071471 1.5534 -44.533\n0.00030432 0.00049723 1.001\n\nB: 3.4851 0.086317 195.9\n1.1598 3.067 -1009.5\n0.0025647 -5.4567e-05 0.99349\n\nC: 0.49838 -0.015725 33.278\n-0.18045 0.77392 59.799\n-0.00064863 -4.2793e-05 0.99978\n\nD: 1.8954 -0.043603 197.83\n0.50589 1.509 -236.95\n0.0010644 -1.6279e-05 1.0115\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_178_0.png", "2D-spatial/Homography_estimation/Homography_estimation_178_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.4403 0.27154 10.734\n0.071471 1.5534 -44.533\n0.00030432 0.00049723 1.001\n\nB: 3.4851 0.086317 195.9\n1.1598 3.067 -1009.5\n0.0025647 -5.4567e-05 0.99349\n\nC: 0.49838 -0.015725 33.278\n-0.18045 0.77392 59.799\n-0.00064863 -4.2793e-05 0.99978\n\nD: 1.8954 -0.043603 197.83\n0.50589 1.509 -236.95\n0.0010644 -1.6279e-05 1.0115\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.25611 0.0594 88.294\n-0.24702 0.7663 71.53\n-0.00048162 6.7687e-05 1.0008\n\nB: 0.54372 0.011697 65.787\n-0.06271 0.8727 105.67\n-0.00025117 2.4814e-06 0.99967\n\nC: 0.55202 0.096567 108.66\n-0.35774 1.4927 -276.32\n-0.00068886 0.0001065 0.98986\n\nD: 0.48531 0.10549 -95.005\n-0.11843 0.77202 44.217\n-0.00029301 2.8434e-05 0.99773\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_179_0.png", "2D-spatial/Homography_estimation/Homography_estimation_179_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.25611 0.0594 88.294\n-0.24702 0.7663 71.53\n-0.00048162 6.7687e-05 1.0008\n\nB: 0.54372 0.011697 65.787\n-0.06271 0.8727 105.67\n-0.00025117 2.4814e-06 0.99967\n\nC: 0.55202 0.096567 108.66\n-0.35774 1.4927 -276.32\n-0.00068886 0.0001065 0.98986\n\nD: 0.48531 0.10549 -95.005\n-0.11843 0.77202 44.217\n-0.00029301 2.8434e-05 0.99773\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.37694 0.049406 111.53\n-0.16444 0.72986 84.602\n-0.00037753 4.0247e-05 0.99869\n\nB: 0.030125 -0.01797 299.5\n-0.19573 0.45869 167.74\n-0.00051291 -3.9704e-05 1.0019\n\nC: 1.0499 0.025643 108.77\n0.19467 1.0054 -7.8895\n0.0011218 -3.184e-05 1.0021\n\nD: 0.38854 -0.073106 92.576\n-0.1986 0.7319 139.21\n-0.00040811 -1.555e-05 0.99988\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_180_0.png", "2D-spatial/Homography_estimation/Homography_estimation_180_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.37694 0.049406 111.53\n-0.16444 0.72986 84.602\n-0.00037753 4.0247e-05 0.99869\n\nB: 0.030125 -0.01797 299.5\n-0.19573 0.45869 167.74\n-0.00051291 -3.9704e-05 1.0019\n\nC: 1.0499 0.025643 108.77\n0.19467 1.0054 -7.8895\n0.0011218 -3.184e-05 1.0021\n\nD: 0.38854 -0.073106 92.576\n-0.1986 0.7319 139.21\n-0.00040811 -1.555e-05 0.99988\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.34904 -0.0038637 -43.899\n-0.22316 0.99346 45.579\n-0.00041195 -1.2246e-05 1\n\nB: 1.4219 0.01866 342.44\n0.36005 1.3261 -141.73\n0.00090969 2.3838e-05 1.0002\n\nC: 1.1529 0.012747 244.44\n0.41529 1.1943 -155.59\n0.00087156 5.6224e-05 1.0092\n\nD: 0.74922 -0.0014388 -75.597\n-0.074158 0.94323 40.455\n-0.00018126 -6.2301e-06 1\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_181_0.png", "2D-spatial/Homography_estimation/Homography_estimation_181_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.34904 -0.0038637 -43.899\n-0.22316 0.99346 45.579\n-0.00041195 -1.2246e-05 1\n\nB: 1.4219 0.01866 342.44\n0.36005 1.3261 -141.73\n0.00090969 2.3838e-05 1.0002\n\nC: 1.1529 0.012747 244.44\n0.41529 1.1943 -155.59\n0.00087156 5.6224e-05 1.0092\n\nD: 0.74922 -0.0014388 -75.597\n-0.074158 0.94323 40.455\n-0.00018126 -6.2301e-06 1\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.81883 -0.28544 161.88\n0.010536 0.53499 62.327\n1.3163e-05 -0.00056443 1.0014\n\nB: 0.36677 -0.019493 213.68\n-0.082321 0.47708 180.81\n-0.00021125 -4.1441e-05 1.0123\n\nC: 1.8278 -0.0075993 72.268\n0.68643 1.8832 -550.61\n0.0012853 4.1209e-05 1.006\n\nD: 0.94726 0.076953 177.36\n0.25112 1.0126 13.205\n0.00047269 2.7805e-05 0.99969\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_182_0.png", "2D-spatial/Homography_estimation/Homography_estimation_182_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.81883 -0.28544 161.88\n0.010536 0.53499 62.327\n1.3163e-05 -0.00056443 1.0014\n\nB: 0.36677 -0.019493 213.68\n-0.082321 0.47708 180.81\n-0.00021125 -4.1441e-05 1.0123\n\nC: 1.8278 -0.0075993 72.268\n0.68643 1.8832 -550.61\n0.0012853 4.1209e-05 1.006\n\nD: 0.94726 0.076953 177.36\n0.25112 1.0126 13.205\n0.00047269 2.7805e-05 0.99969\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.030125 -0.01797 299.5\n-0.19573 0.45869 167.74\n-0.00051291 -3.9704e-05 1.0019\n\nB: 0.74922 -0.0014388 -75.597\n-0.074158 0.94323 40.455\n-0.00018126 -6.2301e-06 1\n\nC: 1.3186 -0.0097277 -143.16\n0.094663 1.1956 -58.383\n0.00019153 -2.0281e-05 0.99989\n\nD: 0.53266 0.0019756 44.297\n-0.18137 0.85955 61.945\n-0.00038035 1.4705e-06 0.9999\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_183_0.png", "2D-spatial/Homography_estimation/Homography_estimation_183_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.030125 -0.01797 299.5\n-0.19573 0.45869 167.74\n-0.00051291 -3.9704e-05 1.0019\n\nB: 0.74922 -0.0014388 -75.597\n-0.074158 0.94323 40.455\n-0.00018126 -6.2301e-06 1\n\nC: 1.3186 -0.0097277 -143.16\n0.094663 1.1956 -58.383\n0.00019153 -2.0281e-05 0.99989\n\nD: 0.53266 0.0019756 44.297\n-0.18137 0.85955 61.945\n-0.00038035 1.4705e-06 0.9999\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.7761 -0.053427 263.17\n0.41751 1.5987 -329.46\n0.00069677 3.1372e-05 1.0014\n\nB: 0.31269 -0.011782 51.842\n-0.22276 0.71181 65.24\n-0.00081452 -4.173e-05 0.99309\n\nC: 2.9599 0.00703 244.64\n0.78405 1.8789 -438.29\n0.0018411 4.4095e-05 0.99694\n\nD: 1.1529 0.012747 244.44\n0.41529 1.1943 -155.59\n0.00087156 5.6224e-05 1.0092\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_184_0.png", "2D-spatial/Homography_estimation/Homography_estimation_184_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.7761 -0.053427 263.17\n0.41751 1.5987 -329.46\n0.00069677 3.1372e-05 1.0014\n\nB: 0.31269 -0.011782 51.842\n-0.22276 0.71181 65.24\n-0.00081452 -4.173e-05 0.99309\n\nC: 2.9599 0.00703 244.64\n0.78405 1.8789 -438.29\n0.0018411 4.4095e-05 0.99694\n\nD: 1.1529 0.012747 244.44\n0.41529 1.1943 -155.59\n0.00087156 5.6224e-05 1.0092\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.54372 0.011697 65.787\n-0.06271 0.8727 105.67\n-0.00025117 2.4814e-06 0.99967\n\nB: 0.38922 0.015343 55.85\n-0.1763 0.84543 87.344\n-0.00049385 -2.1034e-05 1.0072\n\nC: 0.45841 0.038317 36.428\n-0.26806 0.75693 165.6\n-0.00037539 -1.4035e-05 1.0016\n\nD: 0.084461 -0.022036 252.3\n-0.21 0.51325 245.38\n-0.000447 -2.621e-05 1.0009\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_185_0.png", "2D-spatial/Homography_estimation/Homography_estimation_185_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.54372 0.011697 65.787\n-0.06271 0.8727 105.67\n-0.00025117 2.4814e-06 0.99967\n\nB: 0.38922 0.015343 55.85\n-0.1763 0.84543 87.344\n-0.00049385 -2.1034e-05 1.0072\n\nC: 0.45841 0.038317 36.428\n-0.26806 0.75693 165.6\n-0.00037539 -1.4035e-05 1.0016\n\nD: 0.084461 -0.022036 252.3\n-0.21 0.51325 245.38\n-0.000447 -2.621e-05 1.0009\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 3.4851 0.086317 195.9\n1.1598 3.067 -1009.5\n0.0025647 -5.4567e-05 0.99349\n\nB: 0.70212 0.43231 -128.54\n-0.42351 0.70276 199.3\n6.3285e-06 1.2175e-05 0.99997\n\nC: 0.23209 -0.67097 528.16\n0.66389 0.2516 -30.266\n-3.168e-05 2.5631e-05 1.0087\n\nD: 1.0819 0.012805 66.799\n0.075853 1.006 5.6909\n0.00034273 -2.4626e-05 1.0003\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_186_0.png", "2D-spatial/Homography_estimation/Homography_estimation_186_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 3.4851 0.086317 195.9\n1.1598 3.067 -1009.5\n0.0025647 -5.4567e-05 0.99349\n\nB: 0.70212 0.43231 -128.54\n-0.42351 0.70276 199.3\n6.3285e-06 1.2175e-05 0.99997\n\nC: 0.23209 -0.67097 528.16\n0.66389 0.2516 -30.266\n-3.168e-05 2.5631e-05 1.0087\n\nD: 1.0819 0.012805 66.799\n0.075853 1.006 5.6909\n0.00034273 -2.4626e-05 1.0003\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.29858 0.0403 -122.67\n-0.38113 0.61838 172.03\n-0.00071255 -1.0448e-06 0.97348\n\nB: 1.4862 -0.061679 54.577\n0.4606 1.2816 -147.5\n0.0007321 -7.3842e-05 0.99895\n\nC: 0.41873 -0.043533 -18.562\n-0.27021 0.88041 53.791\n-0.00050299 -2.2546e-05 0.99941\n\nD: 1.0669 0.31109 194.1\n-0.019953 0.9209 79.624\n0.000135 -7.6705e-05 0.99977\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_187_0.png", "2D-spatial/Homography_estimation/Homography_estimation_187_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.29858 0.0403 -122.67\n-0.38113 0.61838 172.03\n-0.00071255 -1.0448e-06 0.97348\n\nB: 1.4862 -0.061679 54.577\n0.4606 1.2816 -147.5\n0.0007321 -7.3842e-05 0.99895\n\nC: 0.41873 -0.043533 -18.562\n-0.27021 0.88041 53.791\n-0.00050299 -2.2546e-05 0.99941\n\nD: 1.0669 0.31109 194.1\n-0.019953 0.9209 79.624\n0.000135 -7.6705e-05 0.99977\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.47208 0.021042 63.836\n-0.16332 0.73028 126.94\n-0.00030371 2.4606e-05 0.99981\n\nB: 1.6477 -0.037624 101.59\n0.49962 1.5725 -364.98\n0.00090272 4.6589e-05 1.0037\n\nC: 1.0669 0.31109 194.1\n-0.019953 0.9209 79.624\n0.000135 -7.6705e-05 0.99977\n\nD: 2.6177 0.042575 -65.797\n0.74359 2.3954 -903.27\n0.0018892 8.2816e-05 0.98996\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_188_0.png", "2D-spatial/Homography_estimation/Homography_estimation_188_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.47208 0.021042 63.836\n-0.16332 0.73028 126.94\n-0.00030371 2.4606e-05 0.99981\n\nB: 1.6477 -0.037624 101.59\n0.49962 1.5725 -364.98\n0.00090272 4.6589e-05 1.0037\n\nC: 1.0669 0.31109 194.1\n-0.019953 0.9209 79.624\n0.000135 -7.6705e-05 0.99977\n\nD: 2.6177 0.042575 -65.797\n0.74359 2.3954 -903.27\n0.0018892 8.2816e-05 0.98996\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.43124 0.047668 -66.525\n-0.34772 0.62068 209.27\n-0.00060194 -2.1104e-07 0.98648\n\nB: 0.2564 0.092521 94.187\n-0.28031 0.83589 -0.15652\n-0.00048968 6.0866e-05 1.0015\n\nC: 1.1884 0.015274 95.776\n0.23282 1.0681 -20.551\n0.00097623 0.00015903 1.0014\n\nD: 1.2869 -0.0035671 90.117\n0.34981 1.1421 -290.48\n0.0010338 2.5575e-05 0.99928\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_189_0.png", "2D-spatial/Homography_estimation/Homography_estimation_189_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.43124 0.047668 -66.525\n-0.34772 0.62068 209.27\n-0.00060194 -2.1104e-07 0.98648\n\nB: 0.2564 0.092521 94.187\n-0.28031 0.83589 -0.15652\n-0.00048968 6.0866e-05 1.0015\n\nC: 1.1884 0.015274 95.776\n0.23282 1.0681 -20.551\n0.00097623 0.00015903 1.0014\n\nD: 1.2869 -0.0035671 90.117\n0.34981 1.1421 -290.48\n0.0010338 2.5575e-05 0.99928\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.8851 0.028166 274.85\n0.48185 1.6951 -326.97\n0.0011778 8.455e-05 0.99801\n\nB: 1.1943 0.010001 372.77\n0.22686 1.0937 -67.914\n0.00058802 5.2037e-05 0.99941\n\nC: 0.66581 0.6777 -31.246\n-0.14346 0.96853 148.92\n0.00042869 -1.7355e-05 0.99928\n\nD: 1.1884 0.015274 95.776\n0.23282 1.0681 -20.551\n0.00097623 0.00015903 1.0014\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_190_0.png", "2D-spatial/Homography_estimation/Homography_estimation_190_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.8851 0.028166 274.85\n0.48185 1.6951 -326.97\n0.0011778 8.455e-05 0.99801\n\nB: 1.1943 0.010001 372.77\n0.22686 1.0937 -67.914\n0.00058802 5.2037e-05 0.99941\n\nC: 0.66581 0.6777 -31.246\n-0.14346 0.96853 148.92\n0.00042869 -1.7355e-05 0.99928\n\nD: 1.1884 0.015274 95.776\n0.23282 1.0681 -20.551\n0.00097623 0.00015903 1.0014\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.0582 -0.013384 562.45\n0.1807 0.93712 36.472\n0.00043718 5.9368e-06 0.99927\n\nB: 0.49202 0.0057754 242.06\n0.058005 0.43541 166.02\n0.00018017 1.0746e-05 0.99974\n\nC: 0.72201 0.13445 62.975\n0.059719 0.85126 46.305\n-1.7322e-05 0.00018166 1.0001\n\nD: 0.47589 0.042551 60.888\n-0.21388 0.80238 62.033\n-0.0003663 2.6901e-05 1.001\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_191_0.png", "2D-spatial/Homography_estimation/Homography_estimation_191_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.0582 -0.013384 562.45\n0.1807 0.93712 36.472\n0.00043718 5.9368e-06 0.99927\n\nB: 0.49202 0.0057754 242.06\n0.058005 0.43541 166.02\n0.00018017 1.0746e-05 0.99974\n\nC: 0.72201 0.13445 62.975\n0.059719 0.85126 46.305\n-1.7322e-05 0.00018166 1.0001\n\nD: 0.47589 0.042551 60.888\n-0.21388 0.80238 62.033\n-0.0003663 2.6901e-05 1.001\n"}, "output": {"output_text": "A"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.60665 -0.013034 217.78\n0.087451 0.52146 32.707\n0.00021516 2.9281e-07 1.0006\n\nB: 1.2895 0.43518 -118.46\n-0.025956 1.4233 161.89\n-3.0413e-05 0.00069874 1.0013\n\nC: 2.9599 0.00703 244.64\n0.78405 1.8789 -438.29\n0.0018411 4.4095e-05 0.99694\n\nD: 0.4849 -0.15095 280.72\n-0.18568 0.38797 170.57\n-4.9965e-05 -0.00024428 0.99985\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_192_0.png", "2D-spatial/Homography_estimation/Homography_estimation_192_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.60665 -0.013034 217.78\n0.087451 0.52146 32.707\n0.00021516 2.9281e-07 1.0006\n\nB: 1.2895 0.43518 -118.46\n-0.025956 1.4233 161.89\n-3.0413e-05 0.00069874 1.0013\n\nC: 2.9599 0.00703 244.64\n0.78405 1.8789 -438.29\n0.0018411 4.4095e-05 0.99694\n\nD: 0.4849 -0.15095 280.72\n-0.18568 0.38797 170.57\n-4.9965e-05 -0.00024428 0.99985\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.60367 0.071352 -36.528\n-0.21232 0.96671 -45.299\n-0.00036835 6.7456e-05 0.99996\n\nB: 1.8278 -0.0075993 72.268\n0.68643 1.8832 -550.61\n0.0012853 4.1209e-05 1.006\n\nC: 1.2869 -0.0035671 90.117\n0.34981 1.1421 -290.48\n0.0010338 2.5575e-05 0.99928\n\nD: 1.7312 -0.086578 129.17\n0.3882 1.1026 -2.2164\n0.0010948 -0.00011788 1.0024\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_193_0.png", "2D-spatial/Homography_estimation/Homography_estimation_193_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.60367 0.071352 -36.528\n-0.21232 0.96671 -45.299\n-0.00036835 6.7456e-05 0.99996\n\nB: 1.8278 -0.0075993 72.268\n0.68643 1.8832 -550.61\n0.0012853 4.1209e-05 1.006\n\nC: 1.2869 -0.0035671 90.117\n0.34981 1.1421 -290.48\n0.0010338 2.5575e-05 0.99928\n\nD: 1.7312 -0.086578 129.17\n0.3882 1.1026 -2.2164\n0.0010948 -0.00011788 1.0024\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.0819 0.012805 66.799\n0.075853 1.006 5.6909\n0.00034273 -2.4626e-05 1.0003\n\nB: 2.2787 0.023843 -30.321\n0.58793 1.9158 -459.28\n0.0012782 -6.6868e-06 0.99971\n\nC: 14.984 -1.5209 -1987.5\n0.59203 13.878 -3896.8\n0.0072047 0.0038814 0.92614\n\nD: 0.7855 0.039826 119.05\n-0.25749 1.3451 -220.69\n-0.00047304 5.3677e-05 1.001\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_194_0.png", "2D-spatial/Homography_estimation/Homography_estimation_194_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.0819 0.012805 66.799\n0.075853 1.006 5.6909\n0.00034273 -2.4626e-05 1.0003\n\nB: 2.2787 0.023843 -30.321\n0.58793 1.9158 -459.28\n0.0012782 -6.6868e-06 0.99971\n\nC: 14.984 -1.5209 -1987.5\n0.59203 13.878 -3896.8\n0.0072047 0.0038814 0.92614\n\nD: 0.7855 0.039826 119.05\n-0.25749 1.3451 -220.69\n-0.00047304 5.3677e-05 1.001\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 1.3231 -0.10518 226.69\n0.35118 1.4445 -217.52\n0.00076877 -2.4515e-05 0.99903\n\nB: 1.0505 -0.0053825 276.45\n0.20631 0.92888 48.832\n0.00048841 -1.9251e-05 0.99878\n\nC: 1.4259 0.070724 58.865\n0.39243 1.3442 -170.04\n0.00084248 0.00011346 0.98851\n\nD: 1.3526 0.026797 436.87\n0.31517 1.3826 -234.04\n0.00076901 0.00022984 1.0039\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_195_0.png", "2D-spatial/Homography_estimation/Homography_estimation_195_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 1.3231 -0.10518 226.69\n0.35118 1.4445 -217.52\n0.00076877 -2.4515e-05 0.99903\n\nB: 1.0505 -0.0053825 276.45\n0.20631 0.92888 48.832\n0.00048841 -1.9251e-05 0.99878\n\nC: 1.4259 0.070724 58.865\n0.39243 1.3442 -170.04\n0.00084248 0.00011346 0.98851\n\nD: 1.3526 0.026797 436.87\n0.31517 1.3826 -234.04\n0.00076901 0.00022984 1.0039\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 3.6199 0.1243 -2.4307\n0.35256 5.1536 -1935.2\n0.0029372 0.0011148 1\n\nB: 0.47589 0.042551 60.888\n-0.21388 0.80238 62.033\n-0.0003663 2.6901e-05 1.001\n\nC: 1.0819 0.012805 66.799\n0.075853 1.006 5.6909\n0.00034273 -2.4626e-05 1.0003\n\nD: 1.3231 -0.10518 226.69\n0.35118 1.4445 -217.52\n0.00076877 -2.4515e-05 0.99903\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_196_0.png", "2D-spatial/Homography_estimation/Homography_estimation_196_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 3.6199 0.1243 -2.4307\n0.35256 5.1536 -1935.2\n0.0029372 0.0011148 1\n\nB: 0.47589 0.042551 60.888\n-0.21388 0.80238 62.033\n-0.0003663 2.6901e-05 1.001\n\nC: 1.0819 0.012805 66.799\n0.075853 1.006 5.6909\n0.00034273 -2.4626e-05 1.0003\n\nD: 1.3231 -0.10518 226.69\n0.35118 1.4445 -217.52\n0.00076877 -2.4515e-05 0.99903\n"}, "output": {"output_text": "B"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.37083 -0.024499 139.16\n-0.094573 0.62749 65.353\n-0.00053805 -2.2225e-05 0.99885\n\nB: 1.4259 0.070724 58.865\n0.39243 1.3442 -170.04\n0.00084248 0.00011346 0.98851\n\nC: 0.57125 -0.095863 127.19\n0.050302 0.75099 -13.911\n-0.00020485 1.2421e-06 0.9999\n\nD: 0.14586 0.056449 119.48\n-0.21737 0.71439 95.786\n-0.00051182 3.3282e-05 1.0008\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_197_0.png", "2D-spatial/Homography_estimation/Homography_estimation_197_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.37083 -0.024499 139.16\n-0.094573 0.62749 65.353\n-0.00053805 -2.2225e-05 0.99885\n\nB: 1.4259 0.070724 58.865\n0.39243 1.3442 -170.04\n0.00084248 0.00011346 0.98851\n\nC: 0.57125 -0.095863 127.19\n0.050302 0.75099 -13.911\n-0.00020485 1.2421e-06 0.9999\n\nD: 0.14586 0.056449 119.48\n-0.21737 0.71439 95.786\n-0.00051182 3.3282e-05 1.0008\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.29858 0.0403 -122.67\n-0.38113 0.61838 172.03\n-0.00071255 -1.0448e-06 0.97348\n\nB: 0.37083 -0.024499 139.16\n-0.094573 0.62749 65.353\n-0.00053805 -2.2225e-05 0.99885\n\nC: 0.60367 0.071352 -36.528\n-0.21232 0.96671 -45.299\n-0.00036835 6.7456e-05 0.99996\n\nD: 0.60367 0.071352 -36.528\n-0.21232 0.96671 -45.299\n-0.00036835 6.7456e-05 0.99996\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_198_0.png", "2D-spatial/Homography_estimation/Homography_estimation_198_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.29858 0.0403 -122.67\n-0.38113 0.61838 172.03\n-0.00071255 -1.0448e-06 0.97348\n\nB: 0.37083 -0.024499 139.16\n-0.094573 0.62749 65.353\n-0.00053805 -2.2225e-05 0.99885\n\nC: 0.60367 0.071352 -36.528\n-0.21232 0.96671 -45.299\n-0.00036835 6.7456e-05 0.99996\n\nD: 0.60367 0.071352 -36.528\n-0.21232 0.96671 -45.299\n-0.00036835 6.7456e-05 0.99996\n"}, "output": {"output_text": "C"}, "task": "Homography_estimation"}
{"source": "Hpatches", "options": "A: 0.29858 0.0403 -122.67\n-0.38113 0.61838 172.03\n-0.00071255 -1.0448e-06 0.97348\n\nB: 0.67783 0.002447 123\n-0.00051063 0.68091 83.563\n-2.5166e-06 5.6486e-06 1\n\nC: 0.46461 0.085196 589.33\n0.19659 0.76327 25.833\n0.00026763 8.9486e-05 1.0006\n\nD: 0.040904 -0.0023332 234.76\n-0.10713 0.35038 218.5\n-0.00028907 6.311e-06 1.0035\n", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Homography_estimation/Homography_estimation_199_0.png", "2D-spatial/Homography_estimation/Homography_estimation_199_1.png"], "question": "Please compute the 3x3 homography matrix between these two images.", "context": "Your task is computing the 3x3 homography matrix that maps the coordinates of points in one image to their corresponding coordinates in another image. (Two images of the same planar.)\nSelect from the following choices.\nA: 0.29858 0.0403 -122.67\n-0.38113 0.61838 172.03\n-0.00071255 -1.0448e-06 0.97348\n\nB: 0.67783 0.002447 123\n-0.00051063 0.68091 83.563\n-2.5166e-06 5.6486e-06 1\n\nC: 0.46461 0.085196 589.33\n0.19659 0.76327 25.833\n0.00026763 8.9486e-05 1.0006\n\nD: 0.040904 -0.0023332 234.76\n-0.10713 0.35038 218.5\n-0.00028907 6.311e-06 1.0035\n"}, "output": {"output_text": "D"}, "task": "Homography_estimation"}
{"source": "ovis_sot", "options": "A: [0.105, 0.0, 0.539, 1.0]\nB: [0.231, 0.444, 0.698, 0.771]\nC: [0.204, 0.496, 0.49, 0.761]\nD: [0.105, 0.0, 0.624, 0.922]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_0_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_0_1.jpg"], "question": "Here is an object ([0.166, 0.0, 0.589, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.105, 0.0, 0.539, 1.0]\nB: [0.231, 0.444, 0.698, 0.771]\nC: [0.204, 0.496, 0.49, 0.761]\nD: [0.105, 0.0, 0.624, 0.922]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.37, 0.132, 0.788, 0.61]\nB: [0.457, 0.328, 0.655, 0.681]\nC: [0.457, 0.328, 0.673, 0.635]\nD: [0.457, 0.328, 0.656, 0.582]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_1_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_1_1.jpg"], "question": "Here is an object ([0.326, 0.224, 0.691, 0.644]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.37, 0.132, 0.788, 0.61]\nB: [0.457, 0.328, 0.655, 0.681]\nC: [0.457, 0.328, 0.673, 0.635]\nD: [0.457, 0.328, 0.656, 0.582]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.546, 0.242, 0.943, 1.0]\nB: [0.173, 0.0, 0.57, 0.758]\nC: [0.516, 0.2, 0.912, 0.958]\nD: [0.367, 0.242, 0.764, 1.0]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_2_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_2_1.jpg"], "question": "Here is an object ([0.358, 0.26, 0.744, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.546, 0.242, 0.943, 1.0]\nB: [0.173, 0.0, 0.57, 0.758]\nC: [0.516, 0.2, 0.912, 0.958]\nD: [0.367, 0.242, 0.764, 1.0]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.302, 0.299, 0.571, 1.0]\nB: [0.802, 0.301, 0.919, 0.514]\nC: [0.302, 0.299, 0.607, 0.882]\nD: [0.255, 0.124, 0.525, 0.825]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_3_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_3_1.jpg"], "question": "Here is an object ([0.649, 0.335, 0.85, 0.992]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.302, 0.299, 0.571, 1.0]\nB: [0.802, 0.301, 0.919, 0.514]\nC: [0.302, 0.299, 0.607, 0.882]\nD: [0.255, 0.124, 0.525, 0.825]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.901, 0.0, 1.0, 0.304]\nB: [0.394, 0.317, 0.758, 0.617]\nC: [0.389, 0.294, 0.495, 0.551]\nD: [0.901, 0.0, 0.994, 0.3]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_4_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_4_1.jpg"], "question": "Here is an object ([0.832, 0.0, 0.977, 0.472]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.901, 0.0, 1.0, 0.304]\nB: [0.394, 0.317, 0.758, 0.617]\nC: [0.389, 0.294, 0.495, 0.551]\nD: [0.901, 0.0, 0.994, 0.3]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.987, 0.792, 0.998, 0.876]\nB: [0.987, 0.792, 0.998, 0.871]\nC: [0.987, 0.792, 1.0, 0.892]\nD: [0.987, 0.792, 1.002, 0.901]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_5_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_5_1.jpg"], "question": "Here is an object ([0.952, 0.703, 1.0, 0.904]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.987, 0.792, 0.998, 0.876]\nB: [0.987, 0.792, 0.998, 0.871]\nC: [0.987, 0.792, 1.0, 0.892]\nD: [0.987, 0.792, 1.002, 0.901]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.287, 0.453, 0.617, 0.774]\nB: [0.384, 0.432, 0.713, 0.753]\nC: [0.287, 0.453, 0.623, 0.828]\nD: [0.26, 0.356, 0.59, 0.676]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_6_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_6_1.jpg"], "question": "Here is an object ([0.284, 0.369, 0.636, 0.674]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.287, 0.453, 0.617, 0.774]\nB: [0.384, 0.432, 0.713, 0.753]\nC: [0.287, 0.453, 0.623, 0.828]\nD: [0.26, 0.356, 0.59, 0.676]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.282, 0.0, 1.0, 0.736]\nB: [0.282, 0.0, 1.047, 0.79]\nC: [0.248, 0.156, 0.966, 0.892]\nD: [0.186, 0.067, 0.904, 0.803]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_7_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_7_1.jpg"], "question": "Here is an object ([0.312, 0.0, 1.0, 0.736]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.282, 0.0, 1.0, 0.736]\nB: [0.282, 0.0, 1.047, 0.79]\nC: [0.248, 0.156, 0.966, 0.892]\nD: [0.186, 0.067, 0.904, 0.803]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.863, 0.157, 0.884, 0.624]\nB: [0.159, 0.19, 0.68, 1.0]\nC: [0.159, 0.19, 0.737, 1.156]\nD: [0.159, 0.19, 0.72, 1.014]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_8_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_8_1.jpg"], "question": "Here is an object ([0.174, 0.19, 0.691, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.863, 0.157, 0.884, 0.624]\nB: [0.159, 0.19, 0.68, 1.0]\nC: [0.159, 0.19, 0.737, 1.156]\nD: [0.159, 0.19, 0.72, 1.014]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.309, 0.435, 0.693, 1.0]\nB: [0.786, 0.633, 0.927, 0.776]\nC: [0.263, 0.193, 0.647, 0.758]\nD: [0.263, 0.193, 0.617, 0.678]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_9_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_9_1.jpg"], "question": "Here is an object ([0.227, 0.218, 0.607, 0.787]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.309, 0.435, 0.693, 1.0]\nB: [0.786, 0.633, 0.927, 0.776]\nC: [0.263, 0.193, 0.647, 0.758]\nD: [0.263, 0.193, 0.617, 0.678]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.013, 0.201, 0.494, 0.7]\nB: [0.177, 0.003, 0.868, 1.0]\nC: [0.129, 0.61, 0.238, 0.793]\nD: [0.243, 0.0, 0.934, 0.997]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_10_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_10_1.jpg"], "question": "Here is an object ([0.125, 0.0, 0.804, 0.988]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.013, 0.201, 0.494, 0.7]\nB: [0.177, 0.003, 0.868, 1.0]\nC: [0.129, 0.61, 0.238, 0.793]\nD: [0.243, 0.0, 0.934, 0.997]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.095, 0.672, 0.513, 0.838]\nB: [0.0, 0.257, 0.27, 1.056]\nC: [0.096, 0.265, 0.371, 1.0]\nD: [0.0, 0.257, 0.275, 0.992]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_11_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_11_1.jpg"], "question": "Here is an object ([0.0, 0.261, 0.28, 0.997]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.095, 0.672, 0.513, 0.838]\nB: [0.0, 0.257, 0.27, 1.056]\nC: [0.096, 0.265, 0.371, 1.0]\nD: [0.0, 0.257, 0.275, 0.992]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.173, 0.05, 0.833, 1.1]\nB: [0.173, 0.05, 0.754, 1.04]\nC: [0.173, 0.05, 0.789, 1.0]\nD: [0.173, 0.05, 0.712, 0.936]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_12_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_12_1.jpg"], "question": "Here is an object ([0.223, 0.032, 0.773, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.173, 0.05, 0.833, 1.1]\nB: [0.173, 0.05, 0.754, 1.04]\nC: [0.173, 0.05, 0.789, 1.0]\nD: [0.173, 0.05, 0.712, 0.936]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.0, 0.042, 0.523, 1.0]\nB: [0.0, 0.042, 0.434, 0.851]\nC: [0.205, 0.0, 0.728, 0.958]\nD: [0.259, 0.042, 0.782, 1.0]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_13_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_13_1.jpg"], "question": "Here is an object ([0.116, 0.024, 0.778, 0.988]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.0, 0.042, 0.523, 1.0]\nB: [0.0, 0.042, 0.434, 0.851]\nC: [0.205, 0.0, 0.728, 0.958]\nD: [0.259, 0.042, 0.782, 1.0]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.177, 0.135, 0.627, 0.492]\nB: [0.442, 0.412, 0.921, 0.872]\nC: [0.249, 0.269, 0.701, 0.599]\nD: [0.241, 0.326, 0.693, 0.656]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_14_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_14_1.jpg"], "question": "Here is an object ([0.232, 0.326, 0.684, 0.656]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.177, 0.135, 0.627, 0.492]\nB: [0.442, 0.412, 0.921, 0.872]\nC: [0.249, 0.269, 0.701, 0.599]\nD: [0.241, 0.326, 0.693, 0.656]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.124, 0.142, 0.57, 0.851]\nB: [0.124, 0.142, 0.712, 1.079]\nC: [0.124, 0.142, 0.643, 0.931]\nD: [0.445, 0.485, 0.785, 0.751]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_15_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_15_1.jpg"], "question": "Here is an object ([0.123, 0.161, 0.635, 0.931]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.124, 0.142, 0.57, 0.851]\nB: [0.124, 0.142, 0.712, 1.079]\nC: [0.124, 0.142, 0.643, 0.931]\nD: [0.445, 0.485, 0.785, 0.751]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.337, 0.263, 0.374, 0.406]\nB: [0.325, 0.269, 0.362, 0.412]\nC: [0.325, 0.269, 0.362, 0.392]\nD: [0.265, 0.403, 0.642, 0.54]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_16_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_16_1.jpg"], "question": "Here is an object ([0.311, 0.271, 0.363, 0.412]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.337, 0.263, 0.374, 0.406]\nB: [0.325, 0.269, 0.362, 0.412]\nC: [0.325, 0.269, 0.362, 0.392]\nD: [0.265, 0.403, 0.642, 0.54]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.07, 0.04, 0.201, 0.126]\nB: [0.326, 0.0, 0.671, 0.593]\nC: [0.326, 0.0, 0.797, 0.729]\nD: [0.326, 0.0, 0.73, 0.738]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_17_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_17_1.jpg"], "question": "Here is an object ([0.37, 0.0, 0.701, 0.883]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.07, 0.04, 0.201, 0.126]\nB: [0.326, 0.0, 0.671, 0.593]\nC: [0.326, 0.0, 0.797, 0.729]\nD: [0.326, 0.0, 0.73, 0.738]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.467, 0.647, 0.685, 0.889]\nB: [0.494, 0.543, 0.712, 0.785]\nC: [0.649, 0.751, 0.892, 0.776]\nD: [0.494, 0.543, 0.677, 0.764]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_18_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_18_1.jpg"], "question": "Here is an object ([0.523, 0.457, 0.773, 0.708]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.467, 0.647, 0.685, 0.889]\nB: [0.494, 0.543, 0.712, 0.785]\nC: [0.649, 0.751, 0.892, 0.776]\nD: [0.494, 0.543, 0.677, 0.764]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.0, 0.0, 0.879, 0.878]\nB: [0.0, 0.0, 0.892, 0.821]\nC: [0.0, 0.0, 0.992, 0.739]\nD: [0.0, 0.0, 0.894, 1.05]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_19_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_19_1.jpg"], "question": "Here is an object ([0.0, 0.0, 0.883, 0.86]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.0, 0.0, 0.879, 0.878]\nB: [0.0, 0.0, 0.892, 0.821]\nC: [0.0, 0.0, 0.992, 0.739]\nD: [0.0, 0.0, 0.894, 1.05]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.005, 0.846, 0.023, 0.993]\nB: [0.005, 0.846, 0.023, 0.994]\nC: [0.005, 0.846, 0.02, 0.965]\nD: [0.311, 0.061, 0.434, 0.287]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_20_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_20_1.jpg"], "question": "Here is an object ([0.0, 0.8, 0.043, 0.996]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.005, 0.846, 0.023, 0.993]\nB: [0.005, 0.846, 0.023, 0.994]\nC: [0.005, 0.846, 0.02, 0.965]\nD: [0.311, 0.061, 0.434, 0.287]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.323, 0.332, 0.442, 0.565]\nB: [0.323, 0.332, 0.47, 0.558]\nC: [0.323, 0.332, 0.495, 0.537]\nD: [0.323, 0.332, 0.477, 0.526]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_21_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_21_1.jpg"], "question": "Here is an object ([0.0, 0.05, 0.374, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.323, 0.332, 0.442, 0.565]\nB: [0.323, 0.332, 0.47, 0.558]\nC: [0.323, 0.332, 0.495, 0.537]\nD: [0.323, 0.332, 0.477, 0.526]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.292, 0.053, 0.432, 0.251]\nB: [0.27, 0.118, 0.41, 0.317]\nC: [0.27, 0.049, 0.409, 0.247]\nD: [0.689, 0.281, 0.863, 0.306]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_22_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_22_1.jpg"], "question": "Here is an object ([0.245, 0.086, 0.4, 0.275]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.292, 0.053, 0.432, 0.251]\nB: [0.27, 0.118, 0.41, 0.317]\nC: [0.27, 0.049, 0.409, 0.247]\nD: [0.689, 0.281, 0.863, 0.306]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.322, 0.804, 0.577, 0.947]\nB: [0.353, 0.024, 0.68, 0.975]\nC: [0.353, 0.024, 0.669, 0.874]\nD: [0.733, 0.014, 0.774, 0.058]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_23_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_23_1.jpg"], "question": "Here is an object ([0.0, 0.0, 0.524, 0.828]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.322, 0.804, 0.577, 0.947]\nB: [0.353, 0.024, 0.68, 0.975]\nC: [0.353, 0.024, 0.669, 0.874]\nD: [0.733, 0.014, 0.774, 0.058]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.184, 0.0, 0.909, 0.993]\nB: [0.184, 0.0, 1.027, 0.949]\nC: [0.199, 0.0, 0.924, 0.993]\nD: [0.184, 0.0, 1.048, 0.854]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_24_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_24_1.jpg"], "question": "Here is an object ([0.086, 0.0, 0.87, 0.919]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.184, 0.0, 0.909, 0.993]\nB: [0.184, 0.0, 1.027, 0.949]\nC: [0.199, 0.0, 0.924, 0.993]\nD: [0.184, 0.0, 1.048, 0.854]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.047, 0.869, 0.259, 0.904]\nB: [0.443, 0.679, 0.677, 1.011]\nC: [0.443, 0.679, 0.708, 0.976]\nD: [0.566, 0.703, 0.831, 1.0]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_25_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_25_1.jpg"], "question": "Here is an object ([0.441, 0.71, 0.689, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.047, 0.869, 0.259, 0.904]\nB: [0.443, 0.679, 0.677, 1.011]\nC: [0.443, 0.679, 0.708, 0.976]\nD: [0.566, 0.703, 0.831, 1.0]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.0, 0.001, 0.45, 1.0]\nB: [0.173, 0.001, 0.623, 1.0]\nC: [0.0, 0.001, 0.441, 1.01]\nD: [0.0, 0.001, 0.377, 1.032]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_26_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_26_1.jpg"], "question": "Here is an object ([0.0, 0.0, 0.402, 0.996]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.0, 0.001, 0.45, 1.0]\nB: [0.173, 0.001, 0.623, 1.0]\nC: [0.0, 0.001, 0.441, 1.01]\nD: [0.0, 0.001, 0.377, 1.032]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.285, 0.181, 0.881, 0.531]\nB: [0.325, 0.09, 0.738, 0.329]\nC: [0.6, 0.492, 0.78, 0.658]\nD: [0.285, 0.181, 0.992, 0.608]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_27_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_27_1.jpg"], "question": "Here is an object ([0.277, 0.196, 0.994, 0.61]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.285, 0.181, 0.881, 0.531]\nB: [0.325, 0.09, 0.738, 0.329]\nC: [0.6, 0.492, 0.78, 0.658]\nD: [0.285, 0.181, 0.992, 0.608]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.596, 0.311, 0.855, 0.971]\nB: [0.656, 0.222, 0.916, 0.882]\nC: [0.181, 0.185, 0.651, 0.349]\nD: [0.57, 0.24, 0.83, 0.9]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_28_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_28_1.jpg"], "question": "Here is an object ([0.67, 0.219, 0.91, 0.886]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.596, 0.311, 0.855, 0.971]\nB: [0.656, 0.222, 0.916, 0.882]\nC: [0.181, 0.185, 0.651, 0.349]\nD: [0.57, 0.24, 0.83, 0.9]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.33, 0.006, 0.963, 0.889]\nB: [0.427, 0.299, 0.457, 0.435]\nC: [0.323, 0.642, 0.555, 0.656]\nD: [0.33, 0.006, 0.966, 1.0]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_29_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_29_1.jpg"], "question": "Here is an object ([0.304, 0.001, 0.951, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.33, 0.006, 0.963, 0.889]\nB: [0.427, 0.299, 0.457, 0.435]\nC: [0.323, 0.642, 0.555, 0.656]\nD: [0.33, 0.006, 0.966, 1.0]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.298, 0.661, 0.788, 0.753]\nB: [0.0, 0.0, 0.955, 0.996]\nC: [0.502, 0.29, 0.769, 0.553]\nD: [0.0, 0.004, 0.955, 1.0]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_30_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_30_1.jpg"], "question": "Here is an object ([0.0, 0.0, 0.893, 0.999]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.298, 0.661, 0.788, 0.753]\nB: [0.0, 0.0, 0.955, 0.996]\nC: [0.502, 0.29, 0.769, 0.553]\nD: [0.0, 0.004, 0.955, 1.0]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.378, 0.415, 0.458, 0.821]\nB: [0.378, 0.415, 0.467, 0.843]\nC: [0.378, 0.415, 0.462, 0.858]\nD: [0.378, 0.415, 0.473, 0.764]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_31_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_31_1.jpg"], "question": "Here is an object ([0.366, 0.428, 0.459, 0.826]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.378, 0.415, 0.458, 0.821]\nB: [0.378, 0.415, 0.467, 0.843]\nC: [0.378, 0.415, 0.462, 0.858]\nD: [0.378, 0.415, 0.473, 0.764]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.266, 0.356, 0.714, 0.89]\nB: [0.255, 0.425, 0.769, 0.932]\nC: [0.266, 0.356, 0.78, 0.863]\nD: [0.33, 0.275, 0.54, 0.724]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_32_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_32_1.jpg"], "question": "Here is an object ([0.268, 0.399, 0.774, 0.89]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.266, 0.356, 0.714, 0.89]\nB: [0.255, 0.425, 0.769, 0.932]\nC: [0.266, 0.356, 0.78, 0.863]\nD: [0.33, 0.275, 0.54, 0.724]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.878, 0.772, 0.995, 0.833]\nB: [0.134, 0.675, 0.455, 0.933]\nC: [0.397, 0.556, 0.869, 0.714]\nD: [0.134, 0.675, 0.518, 0.892]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_33_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_33_1.jpg"], "question": "Here is an object ([0.108, 0.626, 0.434, 0.892]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.878, 0.772, 0.995, 0.833]\nB: [0.134, 0.675, 0.455, 0.933]\nC: [0.397, 0.556, 0.869, 0.714]\nD: [0.134, 0.675, 0.518, 0.892]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.564, 0.332, 0.63, 0.44]\nB: [0.545, 0.307, 0.611, 0.415]\nC: [0.528, 0.263, 0.595, 0.371]\nD: [0.547, 0.319, 0.613, 0.428]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_34_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_34_1.jpg"], "question": "Here is an object ([0.593, 0.332, 0.659, 0.447]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.564, 0.332, 0.63, 0.44]\nB: [0.545, 0.307, 0.611, 0.415]\nC: [0.528, 0.263, 0.595, 0.371]\nD: [0.547, 0.319, 0.613, 0.428]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.217, 0.24, 0.541, 0.761]\nB: [0.119, 0.435, 0.442, 0.956]\nC: [0.217, 0.24, 0.478, 0.786]\nD: [0.138, 0.474, 0.461, 0.994]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_35_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_35_1.jpg"], "question": "Here is an object ([0.23, 0.247, 0.55, 0.715]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.217, 0.24, 0.541, 0.761]\nB: [0.119, 0.435, 0.442, 0.956]\nC: [0.217, 0.24, 0.478, 0.786]\nD: [0.138, 0.474, 0.461, 0.994]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.003, 0.11, 0.245, 0.188]\nB: [0.0, 0.0, 0.334, 0.435]\nC: [0.0, 0.0, 0.31, 0.529]\nD: [0.0, 0.0, 0.304, 0.487]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_36_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_36_1.jpg"], "question": "Here is an object ([0.0, 0.0, 0.263, 0.576]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.003, 0.11, 0.245, 0.188]\nB: [0.0, 0.0, 0.334, 0.435]\nC: [0.0, 0.0, 0.31, 0.529]\nD: [0.0, 0.0, 0.304, 0.487]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.0, 0.317, 1.094, 0.986]\nB: [0.428, 0.043, 0.832, 0.14]\nC: [0.0, 0.368, 1.0, 0.989]\nD: [0.0, 0.317, 1.0, 0.938]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_37_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_37_1.jpg"], "question": "Here is an object ([0.609, 0.0, 0.853, 0.433]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.0, 0.317, 1.094, 0.986]\nB: [0.428, 0.043, 0.832, 0.14]\nC: [0.0, 0.368, 1.0, 0.989]\nD: [0.0, 0.317, 1.0, 0.938]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.477, 0.165, 0.613, 0.461]\nB: [0.477, 0.083, 0.614, 0.379]\nC: [0.486, 0.0, 0.623, 0.296]\nD: [0.18, 0.044, 0.549, 0.249]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_38_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_38_1.jpg"], "question": "Here is an object ([0.469, 0.09, 0.59, 0.317]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.477, 0.165, 0.613, 0.461]\nB: [0.477, 0.083, 0.614, 0.379]\nC: [0.486, 0.0, 0.623, 0.296]\nD: [0.18, 0.044, 0.549, 0.249]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.204, 0.226, 0.796, 0.667]\nB: [0.85, 0.326, 0.93, 0.539]\nC: [0.317, 0.108, 0.652, 0.579]\nD: [0.204, 0.226, 0.846, 0.713]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_39_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_39_1.jpg"], "question": "Here is an object ([0.187, 0.107, 0.821, 0.719]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.204, 0.226, 0.796, 0.667]\nB: [0.85, 0.326, 0.93, 0.539]\nC: [0.317, 0.108, 0.652, 0.579]\nD: [0.204, 0.226, 0.846, 0.713]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.222, 0.174, 0.717, 1.0]\nB: [0.369, 0.033, 0.864, 0.86]\nC: [0.403, 0.0, 0.898, 0.826]\nD: [0.105, 0.729, 0.198, 0.839]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_40_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_40_1.jpg"], "question": "Here is an object ([0.263, 0.168, 0.714, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.222, 0.174, 0.717, 1.0]\nB: [0.369, 0.033, 0.864, 0.86]\nC: [0.403, 0.0, 0.898, 0.826]\nD: [0.105, 0.729, 0.198, 0.839]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.101, 0.694, 0.357, 0.807]\nB: [0.592, 0.454, 0.698, 0.651]\nC: [0.592, 0.454, 0.694, 0.631]\nD: [0.34, 0.282, 0.835, 0.693]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_41_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_41_1.jpg"], "question": "Here is an object ([0.541, 0.482, 0.603, 0.624]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.101, 0.694, 0.357, 0.807]\nB: [0.592, 0.454, 0.698, 0.651]\nC: [0.592, 0.454, 0.694, 0.631]\nD: [0.34, 0.282, 0.835, 0.693]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.398, 0.606, 0.528, 0.767]\nB: [0.398, 0.606, 0.509, 0.774]\nC: [0.398, 0.606, 0.507, 0.794]\nD: [0.384, 0.192, 0.498, 0.551]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_42_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_42_1.jpg"], "question": "Here is an object ([0.359, 0.608, 0.466, 0.8]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.398, 0.606, 0.528, 0.767]\nB: [0.398, 0.606, 0.509, 0.774]\nC: [0.398, 0.606, 0.507, 0.794]\nD: [0.384, 0.192, 0.498, 0.551]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.216, 0.225, 0.783, 0.904]\nB: [0.216, 0.225, 0.738, 1.065]\nC: [0.216, 0.225, 0.701, 1.0]\nD: [0.216, 0.225, 0.73, 1.015]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_43_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_43_1.jpg"], "question": "Here is an object ([0.226, 0.208, 0.703, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.216, 0.225, 0.783, 0.904]\nB: [0.216, 0.225, 0.738, 1.065]\nC: [0.216, 0.225, 0.701, 1.0]\nD: [0.216, 0.225, 0.73, 1.015]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.425, 0.474, 0.487, 0.668]\nB: [0.425, 0.474, 0.493, 0.706]\nC: [0.425, 0.474, 0.496, 0.647]\nD: [0.439, 0.428, 0.502, 0.622]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_44_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_44_1.jpg"], "question": "Here is an object ([0.417, 0.481, 0.48, 0.7]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.425, 0.474, 0.487, 0.668]\nB: [0.425, 0.474, 0.493, 0.706]\nC: [0.425, 0.474, 0.496, 0.647]\nD: [0.439, 0.428, 0.502, 0.622]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.059, 0.0, 0.673, 0.483]\nB: [0.0, 0.0, 0.576, 0.44]\nC: [0.123, 0.692, 0.539, 0.775]\nD: [0.059, 0.0, 0.634, 0.44]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_45_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_45_1.jpg"], "question": "Here is an object ([0.203, 0.0, 0.616, 0.404]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.059, 0.0, 0.673, 0.483]\nB: [0.0, 0.0, 0.576, 0.44]\nC: [0.123, 0.692, 0.539, 0.775]\nD: [0.059, 0.0, 0.634, 0.44]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.541, 0.742, 0.866, 0.985]\nB: [0.602, 0.447, 0.882, 0.914]\nC: [0.471, 0.222, 0.751, 0.689]\nD: [0.471, 0.222, 0.738, 0.765]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_46_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_46_1.jpg"], "question": "Here is an object ([0.479, 0.236, 0.73, 0.683]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.541, 0.742, 0.866, 0.985]\nB: [0.602, 0.447, 0.882, 0.914]\nC: [0.471, 0.222, 0.751, 0.689]\nD: [0.471, 0.222, 0.738, 0.765]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.201, 0.0, 0.727, 0.497]\nB: [0.201, 0.0, 0.724, 0.519]\nC: [0.201, 0.0, 0.67, 0.574]\nD: [0.201, 0.0, 0.666, 0.542]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_47_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_47_1.jpg"], "question": "Here is an object ([0.152, 0.0, 0.666, 0.521]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.201, 0.0, 0.727, 0.497]\nB: [0.201, 0.0, 0.724, 0.519]\nC: [0.201, 0.0, 0.67, 0.574]\nD: [0.201, 0.0, 0.666, 0.542]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.03, 0.099, 0.872, 1.0]\nB: [0.093, 0.028, 0.167, 0.235]\nC: [0.158, 0.0, 1.0, 0.901]\nD: [0.158, 0.099, 1.0, 1.0]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_48_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_48_1.jpg"], "question": "Here is an object ([0.044, 0.067, 0.886, 0.978]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.03, 0.099, 0.872, 1.0]\nB: [0.093, 0.028, 0.167, 0.235]\nC: [0.158, 0.0, 1.0, 0.901]\nD: [0.158, 0.099, 1.0, 1.0]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.285, 0.124, 0.72, 0.76]\nB: [0.463, 0.321, 0.897, 0.957]\nC: [0.372, 0.103, 0.648, 0.493]\nD: [0.285, 0.124, 0.778, 0.754]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_49_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_49_1.jpg"], "question": "Here is an object ([0.282, 0.122, 0.711, 0.85]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 960 and the height is 720.", "context": "Select from the following choices.\nA: [0.285, 0.124, 0.72, 0.76]\nB: [0.463, 0.321, 0.897, 0.957]\nC: [0.372, 0.103, 0.648, 0.493]\nD: [0.285, 0.124, 0.778, 0.754]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.259, 0.365, 0.986, 0.932]\nB: [0.01, 0.172, 0.737, 0.739]\nC: [0.273, 0.2, 1.0, 0.767]\nD: [0.091, 0.126, 0.818, 0.693]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_50_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_50_1.jpg"], "question": "Here is an object ([0.291, 0.342, 0.989, 0.933]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.259, 0.365, 0.986, 0.932]\nB: [0.01, 0.172, 0.737, 0.739]\nC: [0.273, 0.2, 1.0, 0.767]\nD: [0.091, 0.126, 0.818, 0.693]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.152, 0.16, 0.498, 0.782]\nB: [0.28, 0.342, 0.627, 0.964]\nC: [0.582, 0.299, 0.674, 0.576]\nD: [0.314, 0.397, 0.733, 0.424]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_51_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_51_1.jpg"], "question": "Here is an object ([0.072, 0.21, 0.463, 0.842]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.152, 0.16, 0.498, 0.782]\nB: [0.28, 0.342, 0.627, 0.964]\nC: [0.582, 0.299, 0.674, 0.576]\nD: [0.314, 0.397, 0.733, 0.424]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.269, 0.0, 1.13, 0.608]\nB: [0.163, 0.639, 0.546, 0.861]\nC: [0.069, 0.075, 0.8, 0.803]\nD: [0.269, 0.0, 1.0, 0.728]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_52_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_52_1.jpg"], "question": "Here is an object ([0.222, 0.0, 1.0, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.269, 0.0, 1.13, 0.608]\nB: [0.163, 0.639, 0.546, 0.861]\nC: [0.069, 0.075, 0.8, 0.803]\nD: [0.269, 0.0, 1.0, 0.728]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.62, 0.253, 0.788, 0.403]\nB: [0.0, 0.097, 0.658, 0.765]\nC: [0.0, 0.0, 0.658, 0.668]\nD: [0.0, 0.097, 0.552, 0.667]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_53_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_53_1.jpg"], "question": "Here is an object ([0.0, 0.143, 0.421, 0.783]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.62, 0.253, 0.788, 0.403]\nB: [0.0, 0.097, 0.658, 0.765]\nC: [0.0, 0.0, 0.658, 0.668]\nD: [0.0, 0.097, 0.552, 0.667]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.582, 0.371, 1.0, 1.0]\nB: [0.544, 0.328, 0.894, 0.85]\nC: [0.205, 0.11, 0.595, 0.439]\nD: [0.544, 0.328, 0.962, 0.957]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_54_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_54_1.jpg"], "question": "Here is an object ([0.555, 0.332, 0.999, 0.976]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.582, 0.371, 1.0, 1.0]\nB: [0.544, 0.328, 0.894, 0.85]\nC: [0.205, 0.11, 0.595, 0.439]\nD: [0.544, 0.328, 0.962, 0.957]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.391, 0.686, 0.805, 0.978]\nB: [0.07, 0.022, 0.341, 0.492]\nC: [0.041, 0.082, 0.181, 0.229]\nD: [0.289, 0.708, 0.703, 1.0]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_55_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_55_1.jpg"], "question": "Here is an object ([0.306, 0.303, 0.735, 0.643]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.391, 0.686, 0.805, 0.978]\nB: [0.07, 0.022, 0.341, 0.492]\nC: [0.041, 0.082, 0.181, 0.229]\nD: [0.289, 0.708, 0.703, 1.0]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.277, 0.308, 0.294, 0.386]\nB: [0.463, 0.725, 0.892, 0.968]\nC: [0.277, 0.274, 0.294, 0.351]\nD: [0.113, 0.29, 0.595, 0.572]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_56_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_56_1.jpg"], "question": "Here is an object ([0.277, 0.307, 0.298, 0.386]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.277, 0.308, 0.294, 0.386]\nB: [0.463, 0.725, 0.892, 0.968]\nC: [0.277, 0.274, 0.294, 0.351]\nD: [0.113, 0.29, 0.595, 0.572]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.296, 0.147, 0.609, 0.639]\nB: [0.296, 0.147, 0.559, 0.657]\nC: [0.296, 0.147, 0.628, 0.557]\nD: [0.296, 0.147, 0.656, 0.542]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_57_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_57_1.jpg"], "question": "Here is an object ([0.292, 0.154, 0.622, 0.629]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 960 and the height is 720.", "context": "Select from the following choices.\nA: [0.296, 0.147, 0.609, 0.639]\nB: [0.296, 0.147, 0.559, 0.657]\nC: [0.296, 0.147, 0.628, 0.557]\nD: [0.296, 0.147, 0.656, 0.542]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.2, 0.249, 0.502, 0.331]\nB: [0.226, 0.244, 0.654, 0.808]\nC: [0.296, 0.436, 0.724, 1.0]\nD: [0.289, 0.436, 0.717, 1.0]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_58_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_58_1.jpg"], "question": "Here is an object ([0.207, 0.207, 0.639, 0.775]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.2, 0.249, 0.502, 0.331]\nB: [0.226, 0.244, 0.654, 0.808]\nC: [0.296, 0.436, 0.724, 1.0]\nD: [0.289, 0.436, 0.717, 1.0]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.133, 0.075, 0.634, 1.0]\nB: [0.228, 0.069, 0.748, 0.904]\nC: [0.011, 0.0, 0.512, 0.925]\nD: [0.228, 0.069, 0.73, 0.994]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_59_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_59_1.jpg"], "question": "Here is an object ([0.227, 0.072, 0.729, 0.996]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.133, 0.075, 0.634, 1.0]\nB: [0.228, 0.069, 0.748, 0.904]\nC: [0.011, 0.0, 0.512, 0.925]\nD: [0.228, 0.069, 0.73, 0.994]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.616, 0.381, 0.995, 0.599]\nB: [0.62, 0.293, 1.0, 0.511]\nC: [0.62, 0.276, 1.0, 0.494]\nD: [0.616, 0.381, 0.992, 0.575]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_60_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_60_1.jpg"], "question": "Here is an object ([0.579, 0.451, 0.773, 0.635]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.616, 0.381, 0.995, 0.599]\nB: [0.62, 0.293, 1.0, 0.511]\nC: [0.62, 0.276, 1.0, 0.494]\nD: [0.616, 0.381, 0.992, 0.575]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.452, 0.315, 0.981, 0.608]\nB: [0.471, 0.414, 1.0, 0.707]\nC: [0.645, 0.575, 0.883, 0.993]\nD: [0.471, 0.414, 1.002, 0.722]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_61_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_61_1.jpg"], "question": "Here is an object ([0.427, 0.403, 1.0, 0.747]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.452, 0.315, 0.981, 0.608]\nB: [0.471, 0.414, 1.0, 0.707]\nC: [0.645, 0.575, 0.883, 0.993]\nD: [0.471, 0.414, 1.002, 0.722]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.473, 0.0, 0.755, 0.89]\nB: [0.411, 0.11, 0.694, 1.0]\nC: [0.411, 0.11, 0.677, 1.015]\nD: [0.411, 0.11, 0.737, 0.967]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_62_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_62_1.jpg"], "question": "Here is an object ([0.456, 0.044, 0.677, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.473, 0.0, 0.755, 0.89]\nB: [0.411, 0.11, 0.694, 1.0]\nC: [0.411, 0.11, 0.677, 1.015]\nD: [0.411, 0.11, 0.737, 0.967]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.31, 0.115, 0.683, 1.0]\nB: [0.216, 0.115, 0.589, 1.0]\nC: [0.367, 0.115, 0.74, 1.0]\nD: [0.455, 0.0, 0.827, 0.885]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_63_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_63_1.jpg"], "question": "Here is an object ([0.31, 0.121, 0.82, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.31, 0.115, 0.683, 1.0]\nB: [0.216, 0.115, 0.589, 1.0]\nC: [0.367, 0.115, 0.74, 1.0]\nD: [0.455, 0.0, 0.827, 0.885]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.252, 0.497, 0.337, 0.736]\nB: [0.29, 0.536, 0.373, 0.743]\nC: [0.442, 0.25, 0.609, 0.683]\nD: [0.252, 0.497, 0.334, 0.704]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_64_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_64_1.jpg"], "question": "Here is an object ([0.245, 0.492, 0.323, 0.704]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.252, 0.497, 0.337, 0.736]\nB: [0.29, 0.536, 0.373, 0.743]\nC: [0.442, 0.25, 0.609, 0.683]\nD: [0.252, 0.497, 0.334, 0.704]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.389, 0.19, 0.691, 0.878]\nB: [0.389, 0.19, 0.753, 0.963]\nC: [0.442, 0.512, 0.885, 0.811]\nD: [0.063, 0.44, 0.373, 0.589]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_65_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_65_1.jpg"], "question": "Here is an object ([0.397, 0.182, 0.833, 0.95]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.389, 0.19, 0.691, 0.878]\nB: [0.389, 0.19, 0.753, 0.963]\nC: [0.442, 0.512, 0.885, 0.811]\nD: [0.063, 0.44, 0.373, 0.589]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.529, 0.0, 0.904, 0.494]\nB: [0.529, 0.0, 0.939, 0.551]\nC: [0.52, 0.0, 0.93, 0.551]\nD: [0.331, 0.583, 0.744, 0.786]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_66_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_66_1.jpg"], "question": "Here is an object ([0.49, 0.0, 0.793, 0.537]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.529, 0.0, 0.904, 0.494]\nB: [0.529, 0.0, 0.939, 0.551]\nC: [0.52, 0.0, 0.93, 0.551]\nD: [0.331, 0.583, 0.744, 0.786]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.217, 0.232, 0.977, 1.054]\nB: [0.217, 0.232, 1.0, 1.0]\nC: [0.457, 0.535, 0.472, 0.564]\nD: [0.217, 0.232, 1.141, 1.086]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_67_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_67_1.jpg"], "question": "Here is an object ([0.18, 0.047, 1.0, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.217, 0.232, 0.977, 1.054]\nB: [0.217, 0.232, 1.0, 1.0]\nC: [0.457, 0.535, 0.472, 0.564]\nD: [0.217, 0.232, 1.141, 1.086]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.53, 0.529, 0.565, 0.629]\nB: [0.536, 0.481, 0.57, 0.581]\nC: [0.53, 0.554, 0.564, 0.654]\nD: [0.514, 0.487, 0.548, 0.588]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_68_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_68_1.jpg"], "question": "Here is an object ([0.497, 0.794, 0.542, 0.875]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.53, 0.529, 0.565, 0.629]\nB: [0.536, 0.481, 0.57, 0.581]\nC: [0.53, 0.554, 0.564, 0.654]\nD: [0.514, 0.487, 0.548, 0.588]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.546, 0.211, 0.739, 1.0]\nB: [0.359, 0.875, 0.488, 0.932]\nC: [0.701, 0.114, 0.773, 0.361]\nD: [0.546, 0.211, 0.75, 1.131]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_69_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_69_1.jpg"], "question": "Here is an object ([0.492, 0.349, 0.672, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.546, 0.211, 0.739, 1.0]\nB: [0.359, 0.875, 0.488, 0.932]\nC: [0.701, 0.114, 0.773, 0.361]\nD: [0.546, 0.211, 0.75, 1.131]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.338, 0.222, 0.376, 0.406]\nB: [0.332, 0.132, 0.37, 0.315]\nC: [0.338, 0.222, 0.373, 0.375]\nD: [0.461, 0.596, 0.902, 0.999]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_70_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_70_1.jpg"], "question": "Here is an object ([0.28, 0.2, 0.309, 0.4]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.338, 0.222, 0.376, 0.406]\nB: [0.332, 0.132, 0.37, 0.315]\nC: [0.338, 0.222, 0.373, 0.375]\nD: [0.461, 0.596, 0.902, 0.999]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.016, 0.403, 0.025, 0.493]\nB: [0.373, 0.369, 0.523, 0.775]\nC: [0.373, 0.369, 0.531, 0.815]\nD: [0.328, 0.226, 0.478, 0.632]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_71_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_71_1.jpg"], "question": "Here is an object ([0.359, 0.286, 0.48, 0.728]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.016, 0.403, 0.025, 0.493]\nB: [0.373, 0.369, 0.523, 0.775]\nC: [0.373, 0.369, 0.531, 0.815]\nD: [0.328, 0.226, 0.478, 0.632]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.489, 0.412, 0.794, 0.653]\nB: [0.0, 0.0, 1.0, 1.0]\nC: [0.0, 0.0, 1.031, 1.006]\nD: [0.0, 0.0, 0.987, 1.135]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_72_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_72_1.jpg"], "question": "Here is an object ([0.0, 0.0, 1.0, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.489, 0.412, 0.794, 0.653]\nB: [0.0, 0.0, 1.0, 1.0]\nC: [0.0, 0.0, 1.031, 1.006]\nD: [0.0, 0.0, 0.987, 1.135]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.607, 0.454, 0.948, 0.86]\nB: [0.589, 0.282, 0.745, 0.399]\nC: [0.095, 0.358, 0.78, 1.0]\nD: [0.0, 0.358, 0.686, 1.0]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_73_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_73_1.jpg"], "question": "Here is an object ([0.0, 0.194, 0.704, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.607, 0.454, 0.948, 0.86]\nB: [0.589, 0.282, 0.745, 0.399]\nC: [0.095, 0.358, 0.78, 1.0]\nD: [0.0, 0.358, 0.686, 1.0]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.412, 0.367, 0.697, 0.811]\nB: [0.287, 0.19, 0.572, 0.635]\nC: [0.38, 0.192, 0.665, 0.636]\nD: [0.237, 0.568, 0.317, 0.772]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_74_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_74_1.jpg"], "question": "Here is an object ([0.397, 0.174, 0.659, 0.717]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.412, 0.367, 0.697, 0.811]\nB: [0.287, 0.19, 0.572, 0.635]\nC: [0.38, 0.192, 0.665, 0.636]\nD: [0.237, 0.568, 0.317, 0.772]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.367, 0.144, 0.611, 0.964]\nB: [0.337, 0.181, 0.58, 1.0]\nC: [0.367, 0.144, 0.632, 1.079]\nD: [0.031, 0.693, 0.361, 0.975]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_75_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_75_1.jpg"], "question": "Here is an object ([0.369, 0.153, 0.609, 0.965]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.367, 0.144, 0.611, 0.964]\nB: [0.337, 0.181, 0.58, 1.0]\nC: [0.367, 0.144, 0.632, 1.079]\nD: [0.031, 0.693, 0.361, 0.975]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.066, 0.762, 0.502, 0.981]\nB: [0.448, 0.158, 0.876, 0.285]\nC: [0.0, 0.782, 0.437, 1.0]\nD: [0.158, 0.832, 0.645, 0.868]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_76_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_76_1.jpg"], "question": "Here is an object ([0.0, 0.443, 0.603, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.066, 0.762, 0.502, 0.981]\nB: [0.448, 0.158, 0.876, 0.285]\nC: [0.0, 0.782, 0.437, 1.0]\nD: [0.158, 0.832, 0.645, 0.868]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.232, 0.325, 0.599, 0.582]\nB: [0.321, 0.0, 0.77, 1.0]\nC: [0.286, 0.044, 0.386, 0.461]\nD: [0.321, 0.0, 0.858, 0.894]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_77_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_77_1.jpg"], "question": "Here is an object ([0.394, 0.001, 0.947, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.232, 0.325, 0.599, 0.582]\nB: [0.321, 0.0, 0.77, 1.0]\nC: [0.286, 0.044, 0.386, 0.461]\nD: [0.321, 0.0, 0.858, 0.894]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.673, 0.375, 1.052, 0.929]\nB: [0.673, 0.375, 1.0, 1.0]\nC: [0.673, 0.375, 1.007, 0.979]\nD: [0.248, 0.358, 0.261, 0.589]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_78_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_78_1.jpg"], "question": "Here is an object ([0.532, 0.296, 1.0, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.673, 0.375, 1.052, 0.929]\nB: [0.673, 0.375, 1.0, 1.0]\nC: [0.673, 0.375, 1.007, 0.979]\nD: [0.248, 0.358, 0.261, 0.589]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.327, 0.242, 0.479, 0.401]\nB: [0.397, 0.235, 0.548, 0.394]\nC: [0.669, 0.562, 0.69, 0.632]\nD: [0.766, 0.242, 0.848, 0.442]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_79_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_79_1.jpg"], "question": "Here is an object ([0.326, 0.249, 0.481, 0.422]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.327, 0.242, 0.479, 0.401]\nB: [0.397, 0.235, 0.548, 0.394]\nC: [0.669, 0.562, 0.69, 0.632]\nD: [0.766, 0.242, 0.848, 0.442]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.072, 0.064, 0.542, 0.249]\nB: [0.645, 0.408, 0.869, 0.582]\nC: [0.428, 0.0, 0.695, 0.919]\nD: [0.301, 0.0, 0.568, 0.919]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_80_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_80_1.jpg"], "question": "Here is an object ([0.31, 0.074, 0.576, 0.826]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.072, 0.064, 0.542, 0.249]\nB: [0.645, 0.408, 0.869, 0.582]\nC: [0.428, 0.0, 0.695, 0.919]\nD: [0.301, 0.0, 0.568, 0.919]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.08, 0.778, 0.391, 1.0]\nB: [0.508, 0.303, 0.577, 0.432]\nC: [0.155, 0.778, 0.466, 1.0]\nD: [0.046, 0.778, 0.357, 1.0]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_81_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_81_1.jpg"], "question": "Here is an object ([0.044, 0.793, 0.334, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.08, 0.778, 0.391, 1.0]\nB: [0.508, 0.303, 0.577, 0.432]\nC: [0.155, 0.778, 0.466, 1.0]\nD: [0.046, 0.778, 0.357, 1.0]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.0, 0.0, 1.0, 0.999]\nB: [0.0, 0.001, 1.0, 1.0]\nC: [0.411, 0.328, 0.752, 0.585]\nD: [0.525, 0.542, 0.97, 0.881]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_82_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_82_1.jpg"], "question": "Here is an object ([0.0, 0.001, 1.0, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.0, 0.0, 1.0, 0.999]\nB: [0.0, 0.001, 1.0, 1.0]\nC: [0.411, 0.328, 0.752, 0.585]\nD: [0.525, 0.542, 0.97, 0.881]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.304, 0.521, 0.474, 0.738]\nB: [0.18, 0.349, 0.421, 0.765]\nC: [0.18, 0.349, 0.401, 0.797]\nD: [0.282, 0.438, 0.726, 0.922]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_83_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_83_1.jpg"], "question": "Here is an object ([0.183, 0.338, 0.426, 0.754]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.304, 0.521, 0.474, 0.738]\nB: [0.18, 0.349, 0.421, 0.765]\nC: [0.18, 0.349, 0.401, 0.797]\nD: [0.282, 0.438, 0.726, 0.922]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.084, 0.0, 0.97, 0.975]\nB: [0.588, 0.258, 0.977, 0.639]\nC: [0.465, 0.197, 0.775, 0.597]\nD: [0.0, 0.0, 0.886, 0.975]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_84_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_84_1.jpg"], "question": "Here is an object ([0.0, 0.0, 0.884, 0.967]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.084, 0.0, 0.97, 0.975]\nB: [0.588, 0.258, 0.977, 0.639]\nC: [0.465, 0.197, 0.775, 0.597]\nD: [0.0, 0.0, 0.886, 0.975]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.096, 0.446, 1.0, 1.0]\nB: [0.089, 0.375, 0.936, 0.829]\nC: [0.089, 0.375, 0.993, 0.929]\nD: [0.096, 0.436, 1.0, 0.99]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_85_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_85_1.jpg"], "question": "Here is an object ([0.084, 0.376, 0.99, 0.903]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 406 and the height is 720.", "context": "Select from the following choices.\nA: [0.096, 0.446, 1.0, 1.0]\nB: [0.089, 0.375, 0.936, 0.829]\nC: [0.089, 0.375, 0.993, 0.929]\nD: [0.096, 0.436, 1.0, 0.99]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.121, 0.364, 0.447, 1.0]\nB: [0.17, 0.364, 0.495, 1.0]\nC: [0.26, 0.364, 0.586, 1.0]\nD: [0.149, 0.364, 0.475, 1.0]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_86_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_86_1.jpg"], "question": "Here is an object ([0.291, 0.444, 0.606, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.121, 0.364, 0.447, 1.0]\nB: [0.17, 0.364, 0.495, 1.0]\nC: [0.26, 0.364, 0.586, 1.0]\nD: [0.149, 0.364, 0.475, 1.0]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.687, 0.894, 0.72, 0.951]\nB: [0.17, 0.021, 0.422, 0.332]\nC: [0.263, 0.164, 0.547, 0.483]\nD: [0.263, 0.164, 0.514, 0.475]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_87_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_87_1.jpg"], "question": "Here is an object ([0.247, 0.165, 0.501, 0.479]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.687, 0.894, 0.72, 0.951]\nB: [0.17, 0.021, 0.422, 0.332]\nC: [0.263, 0.164, 0.547, 0.483]\nD: [0.263, 0.164, 0.514, 0.475]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.528, 0.439, 0.573, 0.536]\nB: [0.45, 0.644, 0.761, 0.756]\nC: [0.528, 0.439, 0.577, 0.55]\nD: [0.542, 0.478, 0.588, 0.575]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_88_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_88_1.jpg"], "question": "Here is an object ([0.536, 0.414, 0.573, 0.528]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 640 and the height is 360.", "context": "Select from the following choices.\nA: [0.528, 0.439, 0.573, 0.536]\nB: [0.45, 0.644, 0.761, 0.756]\nC: [0.528, 0.439, 0.577, 0.55]\nD: [0.542, 0.478, 0.588, 0.575]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.598, 0.618, 0.884, 0.681]\nB: [0.141, 0.233, 0.448, 1.0]\nC: [0.473, 0.306, 0.578, 0.575]\nD: [0.141, 0.233, 0.455, 1.097]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_89_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_89_1.jpg"], "question": "Here is an object ([0.13, 0.26, 0.435, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.598, 0.618, 0.884, 0.681]\nB: [0.141, 0.233, 0.448, 1.0]\nC: [0.473, 0.306, 0.578, 0.575]\nD: [0.141, 0.233, 0.455, 1.097]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.0, 0.25, 0.742, 1.0]\nB: [0.258, 0.14, 1.0, 0.89]\nC: [0.016, 0.108, 0.757, 0.858]\nD: [0.809, 0.283, 0.925, 0.317]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_90_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_90_1.jpg"], "question": "Here is an object ([0.065, 0.108, 1.0, 0.822]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1080 and the height is 720.", "context": "Select from the following choices.\nA: [0.0, 0.25, 0.742, 1.0]\nB: [0.258, 0.14, 1.0, 0.89]\nC: [0.016, 0.108, 0.757, 0.858]\nD: [0.809, 0.283, 0.925, 0.317]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.508, 0.017, 0.915, 0.2]\nB: [0.0, 0.004, 0.701, 0.935]\nC: [0.0, 0.004, 0.752, 1.0]\nD: [0.248, 0.004, 1.0, 1.0]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_91_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_91_1.jpg"], "question": "Here is an object ([0.0, 0.021, 0.759, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.508, 0.017, 0.915, 0.2]\nB: [0.0, 0.004, 0.701, 0.935]\nC: [0.0, 0.004, 0.752, 1.0]\nD: [0.248, 0.004, 1.0, 1.0]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.518, 0.521, 0.582, 0.715]\nB: [0.512, 0.44, 0.566, 0.604]\nC: [0.518, 0.521, 0.573, 0.685]\nD: [0.518, 0.521, 0.578, 0.675]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_92_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_92_1.jpg"], "question": "Here is an object ([0.504, 0.521, 0.551, 0.662]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.518, 0.521, 0.582, 0.715]\nB: [0.512, 0.44, 0.566, 0.604]\nC: [0.518, 0.521, 0.573, 0.685]\nD: [0.518, 0.521, 0.578, 0.675]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.275, 0.518, 0.76, 1.0]\nB: [0.275, 0.518, 0.763, 0.928]\nC: [0.275, 0.518, 0.738, 1.083]\nD: [0.131, 0.343, 0.616, 0.825]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_93_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_93_1.jpg"], "question": "Here is an object ([0.677, 0.49, 0.845, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.275, 0.518, 0.76, 1.0]\nB: [0.275, 0.518, 0.763, 0.928]\nC: [0.275, 0.518, 0.738, 1.083]\nD: [0.131, 0.343, 0.616, 0.825]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.748, 0.189, 0.783, 0.533]\nB: [0.038, 0.267, 0.163, 0.346]\nC: [0.064, 0.235, 0.188, 0.314]\nD: [0.071, 0.322, 0.296, 0.649]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_94_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_94_1.jpg"], "question": "Here is an object ([0.109, 0.24, 0.23, 0.322]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.748, 0.189, 0.783, 0.533]\nB: [0.038, 0.267, 0.163, 0.346]\nC: [0.064, 0.235, 0.188, 0.314]\nD: [0.071, 0.322, 0.296, 0.649]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.436, 0.774, 0.797, 0.901]\nB: [0.478, 0.286, 0.601, 0.464]\nC: [0.439, 0.328, 0.561, 0.506]\nD: [0.652, 0.426, 0.946, 0.767]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_95_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_95_1.jpg"], "question": "Here is an object ([0.449, 0.339, 0.614, 0.582]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 960 and the height is 720.", "context": "Select from the following choices.\nA: [0.436, 0.774, 0.797, 0.901]\nB: [0.478, 0.286, 0.601, 0.464]\nC: [0.439, 0.328, 0.561, 0.506]\nD: [0.652, 0.426, 0.946, 0.767]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.0, 0.217, 0.427, 1.0]\nB: [0.0, 0.217, 0.466, 0.968]\nC: [0.156, 0.217, 0.584, 1.0]\nD: [0.0, 0.217, 0.461, 0.944]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_96_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_96_1.jpg"], "question": "Here is an object ([0.0, 0.206, 0.405, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.0, 0.217, 0.427, 1.0]\nB: [0.0, 0.217, 0.466, 0.968]\nC: [0.156, 0.217, 0.584, 1.0]\nD: [0.0, 0.217, 0.461, 0.944]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.412, 0.321, 0.501, 0.774]\nB: [0.047, 0.485, 0.552, 1.0]\nC: [0.119, 0.485, 0.623, 1.0]\nD: [0.119, 0.485, 0.693, 0.969]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_97_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_97_1.jpg"], "question": "Here is an object ([0.133, 0.522, 0.686, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.412, 0.321, 0.501, 0.774]\nB: [0.047, 0.485, 0.552, 1.0]\nC: [0.119, 0.485, 0.623, 1.0]\nD: [0.119, 0.485, 0.693, 0.969]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.416, 0.165, 0.517, 0.535]\nB: [0.43, 0.064, 0.532, 0.433]\nC: [0.422, 0.135, 0.523, 0.504]\nD: [0.422, 0.135, 0.505, 0.537]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_98_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_98_1.jpg"], "question": "Here is an object ([0.439, 0.157, 0.559, 0.557]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.416, 0.165, 0.517, 0.535]\nB: [0.43, 0.064, 0.532, 0.433]\nC: [0.422, 0.135, 0.523, 0.504]\nD: [0.422, 0.135, 0.505, 0.537]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.14, 0.257, 0.775, 0.714]\nB: [0.066, 0.125, 0.656, 0.619]\nC: [0.14, 0.257, 0.826, 0.689]\nD: [0.14, 0.257, 0.73, 0.751]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_99_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_99_1.jpg"], "question": "Here is an object ([0.154, 0.225, 0.735, 0.743]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.14, 0.257, 0.775, 0.714]\nB: [0.066, 0.125, 0.656, 0.619]\nC: [0.14, 0.257, 0.826, 0.689]\nD: [0.14, 0.257, 0.73, 0.751]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.321, 0.429, 0.502, 0.562]\nB: [0.321, 0.429, 0.493, 0.571]\nC: [0.399, 0.408, 0.58, 0.542]\nD: [0.287, 0.482, 0.467, 0.615]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_100_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_100_1.jpg"], "question": "Here is an object ([0.313, 0.362, 0.605, 0.611]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.321, 0.429, 0.502, 0.562]\nB: [0.321, 0.429, 0.493, 0.571]\nC: [0.399, 0.408, 0.58, 0.542]\nD: [0.287, 0.482, 0.467, 0.615]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.145, 0.1, 1.0, 1.0]\nB: [0.81, 0.383, 0.819, 0.604]\nC: [0.145, 0.0, 1.0, 0.9]\nD: [0.145, 0.1, 0.912, 0.946]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_101_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_101_1.jpg"], "question": "Here is an object ([0.15, 0.078, 1.0, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.145, 0.1, 1.0, 1.0]\nB: [0.81, 0.383, 0.819, 0.604]\nC: [0.145, 0.0, 1.0, 0.9]\nD: [0.145, 0.1, 0.912, 0.946]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.077, 0.319, 0.395, 0.588]\nB: [0.563, 0.496, 0.853, 0.843]\nC: [0.576, 0.646, 0.911, 0.826]\nD: [0.498, 0.457, 0.788, 0.804]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_102_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_102_1.jpg"], "question": "Here is an object ([0.535, 0.507, 0.81, 0.825]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.077, 0.319, 0.395, 0.588]\nB: [0.563, 0.496, 0.853, 0.843]\nC: [0.576, 0.646, 0.911, 0.826]\nD: [0.498, 0.457, 0.788, 0.804]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.099, 0.274, 0.831, 1.0]\nB: [0.268, 0.156, 0.948, 0.758]\nC: [0.268, 0.156, 1.018, 0.989]\nD: [0.268, 0.156, 1.0, 0.882]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_103_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_103_1.jpg"], "question": "Here is an object ([0.295, 0.115, 0.986, 0.876]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 960 and the height is 720.", "context": "Select from the following choices.\nA: [0.099, 0.274, 0.831, 1.0]\nB: [0.268, 0.156, 0.948, 0.758]\nC: [0.268, 0.156, 1.018, 0.989]\nD: [0.268, 0.156, 1.0, 0.882]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.159, 0.364, 0.504, 0.894]\nB: [0.192, 0.314, 0.537, 0.844]\nC: [0.198, 0.429, 0.423, 0.867]\nD: [0.72, 0.679, 0.87, 0.814]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_104_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_104_1.jpg"], "question": "Here is an object ([0.155, 0.296, 0.512, 0.847]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.159, 0.364, 0.504, 0.894]\nB: [0.192, 0.314, 0.537, 0.844]\nC: [0.198, 0.429, 0.423, 0.867]\nD: [0.72, 0.679, 0.87, 0.814]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.63, 0.36, 0.953, 0.414]\nB: [0.463, 0.172, 0.638, 0.432]\nC: [0.355, 0.146, 0.53, 0.406]\nD: [0.409, 0.218, 0.584, 0.478]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_105_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_105_1.jpg"], "question": "Here is an object ([0.372, 0.129, 0.613, 0.461]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.63, 0.36, 0.953, 0.414]\nB: [0.463, 0.172, 0.638, 0.432]\nC: [0.355, 0.146, 0.53, 0.406]\nD: [0.409, 0.218, 0.584, 0.478]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.712, 0.625, 0.841, 0.796]\nB: [0.351, 0.718, 0.397, 0.847]\nC: [0.364, 0.769, 0.41, 0.899]\nD: [0.409, 0.537, 0.505, 0.747]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_106_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_106_1.jpg"], "question": "Here is an object ([0.334, 0.714, 0.382, 0.814]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.712, 0.625, 0.841, 0.796]\nB: [0.351, 0.718, 0.397, 0.847]\nC: [0.364, 0.769, 0.41, 0.899]\nD: [0.409, 0.537, 0.505, 0.747]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.322, 0.412, 0.575, 0.818]\nB: [0.242, 0.253, 0.484, 0.642]\nC: [0.322, 0.412, 0.563, 0.801]\nD: [0.306, 0.432, 0.548, 0.821]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_107_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_107_1.jpg"], "question": "Here is an object ([0.298, 0.354, 0.506, 0.793]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.322, 0.412, 0.575, 0.818]\nB: [0.242, 0.253, 0.484, 0.642]\nC: [0.322, 0.412, 0.563, 0.801]\nD: [0.306, 0.432, 0.548, 0.821]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.48, 0.347, 0.798, 0.393]\nB: [0.207, 0.154, 0.544, 0.531]\nC: [0.207, 0.154, 0.597, 0.501]\nD: [0.332, 0.514, 0.696, 0.872]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_108_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_108_1.jpg"], "question": "Here is an object ([0.229, 0.156, 0.602, 0.49]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.48, 0.347, 0.798, 0.393]\nB: [0.207, 0.154, 0.544, 0.531]\nC: [0.207, 0.154, 0.597, 0.501]\nD: [0.332, 0.514, 0.696, 0.872]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.222, 0.832, 0.42, 0.985]\nB: [0.277, 0.832, 0.502, 1.0]\nC: [0.222, 0.832, 0.447, 1.0]\nD: [0.222, 0.832, 0.476, 1.031]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_109_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_109_1.jpg"], "question": "Here is an object ([0.0, 0.457, 0.234, 0.799]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.222, 0.832, 0.42, 0.985]\nB: [0.277, 0.832, 0.502, 1.0]\nC: [0.222, 0.832, 0.447, 1.0]\nD: [0.222, 0.832, 0.476, 1.031]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.0, 0.507, 1.0, 0.747]\nB: [0.0, 0.59, 1.0, 0.831]\nC: [0.0, 0.507, 1.165, 0.767]\nD: [0.72, 0.235, 0.856, 0.468]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_110_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_110_1.jpg"], "question": "Here is an object ([0.0, 0.514, 1.0, 0.725]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 960 and the height is 720.", "context": "Select from the following choices.\nA: [0.0, 0.507, 1.0, 0.747]\nB: [0.0, 0.59, 1.0, 0.831]\nC: [0.0, 0.507, 1.165, 0.767]\nD: [0.72, 0.235, 0.856, 0.468]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.198, 0.206, 0.652, 0.844]\nB: [0.374, 0.235, 0.77, 0.818]\nC: [0.626, 0.379, 0.905, 0.808]\nD: [0.198, 0.206, 0.594, 0.789]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_111_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_111_1.jpg"], "question": "Here is an object ([0.207, 0.212, 0.609, 0.786]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.198, 0.206, 0.652, 0.844]\nB: [0.374, 0.235, 0.77, 0.818]\nC: [0.626, 0.379, 0.905, 0.808]\nD: [0.198, 0.206, 0.594, 0.789]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.305, 0.0, 0.776, 0.582]\nB: [0.343, 0.211, 0.813, 0.793]\nC: [0.399, 0.029, 0.635, 0.49]\nD: [0.305, 0.0, 0.734, 0.481]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_112_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_112_1.jpg"], "question": "Here is an object ([0.302, 0.0, 0.73, 0.333]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.305, 0.0, 0.776, 0.582]\nB: [0.343, 0.211, 0.813, 0.793]\nC: [0.399, 0.029, 0.635, 0.49]\nD: [0.305, 0.0, 0.734, 0.481]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.322, 0.349, 1.0, 0.732]\nB: [0.127, 0.397, 0.805, 0.781]\nC: [0.314, 0.597, 0.748, 0.897]\nD: [0.003, 0.468, 0.254, 0.578]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_113_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_113_1.jpg"], "question": "Here is an object ([0.306, 0.381, 1.0, 0.722]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.322, 0.349, 1.0, 0.732]\nB: [0.127, 0.397, 0.805, 0.781]\nC: [0.314, 0.597, 0.748, 0.897]\nD: [0.003, 0.468, 0.254, 0.578]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.285, 0.218, 0.616, 0.626]\nB: [0.42, 0.044, 0.645, 0.375]\nC: [0.285, 0.218, 0.609, 0.671]\nD: [0.285, 0.218, 0.62, 0.713]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_114_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_114_1.jpg"], "question": "Here is an object ([0.395, 0.212, 0.702, 0.669]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.285, 0.218, 0.616, 0.626]\nB: [0.42, 0.044, 0.645, 0.375]\nC: [0.285, 0.218, 0.609, 0.671]\nD: [0.285, 0.218, 0.62, 0.713]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.861, 0.214, 0.959, 0.562]\nB: [0.861, 0.214, 0.968, 0.524]\nC: [0.893, 0.111, 1.0, 0.421]\nD: [0.147, 0.603, 0.412, 0.931]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_115_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_115_1.jpg"], "question": "Here is an object ([0.87, 0.222, 0.975, 0.528]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.861, 0.214, 0.959, 0.562]\nB: [0.861, 0.214, 0.968, 0.524]\nC: [0.893, 0.111, 1.0, 0.421]\nD: [0.147, 0.603, 0.412, 0.931]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.18, 0.113, 0.617, 0.567]\nB: [0.057, 0.256, 0.484, 0.771]\nC: [0.427, 0.164, 0.723, 0.478]\nD: [0.18, 0.113, 0.608, 0.628]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_116_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_116_1.jpg"], "question": "Here is an object ([0.164, 0.11, 0.591, 0.624]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.18, 0.113, 0.617, 0.567]\nB: [0.057, 0.256, 0.484, 0.771]\nC: [0.427, 0.164, 0.723, 0.478]\nD: [0.18, 0.113, 0.608, 0.628]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.362, 0.272, 0.645, 0.729]\nB: [0.362, 0.272, 0.713, 0.839]\nC: [0.241, 0.231, 0.585, 0.494]\nD: [0.604, 0.682, 0.843, 0.971]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_117_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_117_1.jpg"], "question": "Here is an object ([0.323, 0.211, 0.684, 0.831]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.362, 0.272, 0.645, 0.729]\nB: [0.362, 0.272, 0.713, 0.839]\nC: [0.241, 0.231, 0.585, 0.494]\nD: [0.604, 0.682, 0.843, 0.971]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.035, 0.06, 1.0, 1.0]\nB: [0.035, 0.06, 1.012, 1.072]\nC: [0.035, 0.06, 1.058, 1.111]\nD: [0.035, 0.06, 1.018, 0.933]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_118_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_118_1.jpg"], "question": "Here is an object ([0.105, 0.153, 1.0, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.035, 0.06, 1.0, 1.0]\nB: [0.035, 0.06, 1.012, 1.072]\nC: [0.035, 0.06, 1.058, 1.111]\nD: [0.035, 0.06, 1.018, 0.933]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.452, 0.0, 1.0, 0.858]\nB: [0.434, 0.0, 0.982, 0.858]\nC: [0.277, 0.025, 0.845, 0.994]\nD: [0.277, 0.025, 0.824, 0.883]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_119_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_119_1.jpg"], "question": "Here is an object ([0.275, 0.033, 0.816, 0.889]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.452, 0.0, 1.0, 0.858]\nB: [0.434, 0.0, 0.982, 0.858]\nC: [0.277, 0.025, 0.845, 0.994]\nD: [0.277, 0.025, 0.824, 0.883]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.0, 0.267, 0.72, 0.754]\nB: [0.044, 0.375, 0.259, 0.868]\nC: [0.0, 0.267, 0.838, 0.692]\nD: [0.0, 0.239, 0.838, 0.664]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_120_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_120_1.jpg"], "question": "Here is an object ([0.0, 0.268, 0.805, 0.74]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.0, 0.267, 0.72, 0.754]\nB: [0.044, 0.375, 0.259, 0.868]\nC: [0.0, 0.267, 0.838, 0.692]\nD: [0.0, 0.239, 0.838, 0.664]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.0, 0.001, 0.979, 0.851]\nB: [0.0, 0.001, 1.0, 1.0]\nC: [0.0, 0.0, 1.0, 0.999]\nD: [0.0, 0.0, 1.0, 0.999]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_121_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_121_1.jpg"], "question": "Here is an object ([0.302, 0.026, 1.0, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 480 and the height is 720.", "context": "Select from the following choices.\nA: [0.0, 0.001, 0.979, 0.851]\nB: [0.0, 0.001, 1.0, 1.0]\nC: [0.0, 0.0, 1.0, 0.999]\nD: [0.0, 0.0, 1.0, 0.999]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.281, 0.379, 0.819, 0.546]\nB: [0.018, 0.447, 0.457, 0.604]\nC: [0.018, 0.447, 0.555, 0.614]\nD: [0.414, 0.225, 0.912, 0.421]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_122_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_122_1.jpg"], "question": "Here is an object ([0.025, 0.489, 0.583, 0.636]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.281, 0.379, 0.819, 0.546]\nB: [0.018, 0.447, 0.457, 0.604]\nC: [0.018, 0.447, 0.555, 0.614]\nD: [0.414, 0.225, 0.912, 0.421]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.502, 0.561, 0.619, 0.736]\nB: [0.462, 0.122, 0.881, 0.621]\nC: [0.517, 0.637, 0.634, 0.812]\nD: [0.502, 0.561, 0.606, 0.724]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_123_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_123_1.jpg"], "question": "Here is an object ([0.515, 0.581, 0.582, 0.721]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.502, 0.561, 0.619, 0.736]\nB: [0.462, 0.122, 0.881, 0.621]\nC: [0.517, 0.637, 0.634, 0.812]\nD: [0.502, 0.561, 0.606, 0.724]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.2, 0.082, 0.523, 1.019]\nB: [0.413, 0.683, 0.617, 0.865]\nC: [0.2, 0.082, 0.583, 1.0]\nD: [0.178, 0.69, 0.47, 0.832]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_124_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_124_1.jpg"], "question": "Here is an object ([0.189, 0.138, 0.595, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.2, 0.082, 0.523, 1.019]\nB: [0.413, 0.683, 0.617, 0.865]\nC: [0.2, 0.082, 0.583, 1.0]\nD: [0.178, 0.69, 0.47, 0.832]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.36, 0.119, 0.56, 0.476]\nB: [0.095, 0.053, 0.541, 0.535]\nC: [0.36, 0.119, 0.557, 0.432]\nD: [0.36, 0.119, 0.534, 0.429]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_125_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_125_1.jpg"], "question": "Here is an object ([0.371, 0.131, 0.545, 0.589]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.36, 0.119, 0.56, 0.476]\nB: [0.095, 0.053, 0.541, 0.535]\nC: [0.36, 0.119, 0.557, 0.432]\nD: [0.36, 0.119, 0.534, 0.429]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.156, 0.181, 0.855, 1.158]\nB: [0.534, 0.085, 0.951, 0.11]\nC: [0.63, 0.921, 0.958, 0.972]\nD: [0.156, 0.181, 0.795, 1.0]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_126_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_126_1.jpg"], "question": "Here is an object ([0.303, 0.033, 0.923, 0.899]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.156, 0.181, 0.855, 1.158]\nB: [0.534, 0.085, 0.951, 0.11]\nC: [0.63, 0.921, 0.958, 0.972]\nD: [0.156, 0.181, 0.795, 1.0]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.0, 0.142, 0.242, 0.715]\nB: [0.0, 0.142, 0.28, 0.631]\nC: [0.749, 0.119, 0.961, 0.493]\nD: [0.0, 0.142, 0.267, 0.637]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_127_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_127_1.jpg"], "question": "Here is an object ([0.0, 0.143, 0.256, 0.608]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.0, 0.142, 0.242, 0.715]\nB: [0.0, 0.142, 0.28, 0.631]\nC: [0.749, 0.119, 0.961, 0.493]\nD: [0.0, 0.142, 0.267, 0.637]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.131, 0.228, 0.717, 0.76]\nB: [0.219, 0.322, 0.315, 0.586]\nC: [0.131, 0.228, 0.64, 0.701]\nD: [0.648, 0.182, 0.732, 0.421]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_128_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_128_1.jpg"], "question": "Here is an object ([0.113, 0.224, 0.618, 0.713]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 406 and the height is 720.", "context": "Select from the following choices.\nA: [0.131, 0.228, 0.717, 0.76]\nB: [0.219, 0.322, 0.315, 0.586]\nC: [0.131, 0.228, 0.64, 0.701]\nD: [0.648, 0.182, 0.732, 0.421]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.531, 0.565, 0.643, 0.656]\nB: [0.008, 0.514, 0.429, 0.842]\nC: [0.531, 0.565, 0.629, 0.65]\nD: [0.077, 0.757, 0.463, 0.997]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_129_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_129_1.jpg"], "question": "Here is an object ([0.548, 0.553, 0.65, 0.622]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.531, 0.565, 0.643, 0.656]\nB: [0.008, 0.514, 0.429, 0.842]\nC: [0.531, 0.565, 0.629, 0.65]\nD: [0.077, 0.757, 0.463, 0.997]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.292, 0.122, 0.642, 0.711]\nB: [0.312, 0.0, 0.662, 0.589]\nC: [0.291, 0.154, 0.641, 0.743]\nD: [0.462, 0.358, 0.812, 0.947]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_130_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_130_1.jpg"], "question": "Here is an object ([0.295, 0.146, 0.641, 0.739]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.292, 0.122, 0.642, 0.711]\nB: [0.312, 0.0, 0.662, 0.589]\nC: [0.291, 0.154, 0.641, 0.743]\nD: [0.462, 0.358, 0.812, 0.947]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.416, 0.371, 0.48, 0.562]\nB: [0.404, 0.312, 0.468, 0.504]\nC: [0.241, 0.174, 0.517, 0.3]\nD: [0.426, 0.392, 0.49, 0.583]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_131_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_131_1.jpg"], "question": "Here is an object ([0.431, 0.4, 0.509, 0.603]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.416, 0.371, 0.48, 0.562]\nB: [0.404, 0.312, 0.468, 0.504]\nC: [0.241, 0.174, 0.517, 0.3]\nD: [0.426, 0.392, 0.49, 0.583]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.0, 0.597, 0.102, 0.949]\nB: [0.0, 0.597, 0.112, 1.035]\nC: [0.0, 0.597, 0.096, 0.986]\nD: [0.493, 0.408, 0.527, 0.66]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_132_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_132_1.jpg"], "question": "Here is an object ([0.0, 0.621, 0.077, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.0, 0.597, 0.102, 0.949]\nB: [0.0, 0.597, 0.112, 1.035]\nC: [0.0, 0.597, 0.096, 0.986]\nD: [0.493, 0.408, 0.527, 0.66]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.089, 0.829, 0.118, 0.868]\nB: [0.54, 0.044, 0.668, 0.643]\nC: [0.537, 0.218, 0.666, 0.817]\nD: [0.54, 0.044, 0.655, 0.714]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_133_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_133_1.jpg"], "question": "Here is an object ([0.595, 0.092, 0.691, 0.7]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.089, 0.829, 0.118, 0.868]\nB: [0.54, 0.044, 0.668, 0.643]\nC: [0.537, 0.218, 0.666, 0.817]\nD: [0.54, 0.044, 0.655, 0.714]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.395, 0.317, 0.602, 0.821]\nB: [0.504, 0.408, 0.513, 0.686]\nC: [0.484, 0.439, 0.69, 0.943]\nD: [0.313, 0.244, 0.52, 0.749]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_134_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_134_1.jpg"], "question": "Here is an object ([0.429, 0.154, 0.625, 0.786]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.395, 0.317, 0.602, 0.821]\nB: [0.504, 0.408, 0.513, 0.686]\nC: [0.484, 0.439, 0.69, 0.943]\nD: [0.313, 0.244, 0.52, 0.749]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.13, 0.0, 0.852, 1.0]\nB: [0.071, 0.0, 0.793, 1.0]\nC: [0.095, 0.306, 0.59, 0.322]\nD: [0.98, 0.435, 0.996, 0.803]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_135_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_135_1.jpg"], "question": "Here is an object ([0.063, 0.0, 1.0, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.13, 0.0, 0.852, 1.0]\nB: [0.071, 0.0, 0.793, 1.0]\nC: [0.095, 0.306, 0.59, 0.322]\nD: [0.98, 0.435, 0.996, 0.803]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.277, 0.0, 0.519, 0.45]\nB: [0.395, 0.013, 0.637, 0.463]\nC: [0.497, 0.199, 0.843, 0.696]\nD: [0.281, 0.114, 0.523, 0.564]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_136_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_136_1.jpg"], "question": "Here is an object ([0.264, 0.0, 0.491, 0.404]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.277, 0.0, 0.519, 0.45]\nB: [0.395, 0.013, 0.637, 0.463]\nC: [0.497, 0.199, 0.843, 0.696]\nD: [0.281, 0.114, 0.523, 0.564]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.901, 0.401, 0.985, 1.051]\nB: [0.901, 0.401, 1.0, 1.0]\nC: [0.504, 0.157, 0.877, 0.589]\nD: [0.901, 0.206, 1.0, 0.804]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_137_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_137_1.jpg"], "question": "Here is an object ([0.934, 0.432, 1.0, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.901, 0.401, 0.985, 1.051]\nB: [0.901, 0.401, 1.0, 1.0]\nC: [0.504, 0.157, 0.877, 0.589]\nD: [0.901, 0.206, 1.0, 0.804]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.0, 0.267, 0.299, 0.561]\nB: [0.0, 0.267, 0.309, 0.537]\nC: [0.0, 0.267, 0.323, 0.568]\nD: [0.0, 0.171, 0.323, 0.472]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_138_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_138_1.jpg"], "question": "Here is an object ([0.0, 0.246, 0.424, 0.611]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.0, 0.267, 0.299, 0.561]\nB: [0.0, 0.267, 0.309, 0.537]\nC: [0.0, 0.267, 0.323, 0.568]\nD: [0.0, 0.171, 0.323, 0.472]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.0, 0.0, 0.606, 1.0]\nB: [0.502, 0.601, 0.622, 0.924]\nC: [0.287, 0.311, 0.747, 0.39]\nD: [0.0, 0.0, 0.535, 1.157]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_139_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_139_1.jpg"], "question": "Here is an object ([0.0, 0.0, 0.923, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.0, 0.0, 0.606, 1.0]\nB: [0.502, 0.601, 0.622, 0.924]\nC: [0.287, 0.311, 0.747, 0.39]\nD: [0.0, 0.0, 0.535, 1.157]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.05, 0.728, 0.195, 0.956]\nB: [0.193, 0.054, 0.217, 0.426]\nC: [0.434, 0.371, 0.787, 1.0]\nD: [0.519, 0.371, 0.872, 1.0]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_140_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_140_1.jpg"], "question": "Here is an object ([0.529, 0.507, 0.775, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.05, 0.728, 0.195, 0.956]\nB: [0.193, 0.054, 0.217, 0.426]\nC: [0.434, 0.371, 0.787, 1.0]\nD: [0.519, 0.371, 0.872, 1.0]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.409, 0.479, 0.546, 0.554]\nB: [0.409, 0.479, 0.537, 0.55]\nC: [0.429, 0.487, 0.557, 0.558]\nD: [0.409, 0.479, 0.516, 0.56]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_141_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_141_1.jpg"], "question": "Here is an object ([0.455, 0.471, 0.564, 0.543]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.409, 0.479, 0.546, 0.554]\nB: [0.409, 0.479, 0.537, 0.55]\nC: [0.429, 0.487, 0.557, 0.558]\nD: [0.409, 0.479, 0.516, 0.56]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.514, 0.244, 0.854, 0.649]\nB: [0.601, 0.221, 1.0, 0.662]\nC: [0.514, 0.244, 0.913, 0.686]\nD: [0.601, 0.308, 1.0, 0.75]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_142_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_142_1.jpg"], "question": "Here is an object ([0.589, 0.235, 0.943, 0.722]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.514, 0.244, 0.854, 0.649]\nB: [0.601, 0.221, 1.0, 0.662]\nC: [0.514, 0.244, 0.913, 0.686]\nD: [0.601, 0.308, 1.0, 0.75]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.488, 0.207, 0.569, 0.358]\nB: [0.469, 0.228, 0.549, 0.379]\nC: [0.432, 0.458, 0.816, 0.517]\nD: [0.019, 0.432, 0.448, 0.564]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_143_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_143_1.jpg"], "question": "Here is an object ([0.496, 0.242, 0.566, 0.381]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.488, 0.207, 0.569, 0.358]\nB: [0.469, 0.228, 0.549, 0.379]\nC: [0.432, 0.458, 0.816, 0.517]\nD: [0.019, 0.432, 0.448, 0.564]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.0, 0.161, 0.049, 0.542]\nB: [0.699, 0.242, 0.79, 0.568]\nC: [0.0, 0.099, 0.049, 0.479]\nD: [0.0, 0.101, 0.049, 0.482]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_144_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_144_1.jpg"], "question": "Here is an object ([0.0, 0.094, 0.1, 0.554]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.0, 0.161, 0.049, 0.542]\nB: [0.699, 0.242, 0.79, 0.568]\nC: [0.0, 0.099, 0.049, 0.479]\nD: [0.0, 0.101, 0.049, 0.482]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.377, 0.336, 1.024, 0.835]\nB: [0.377, 0.336, 0.956, 0.956]\nC: [0.377, 0.336, 1.061, 1.003]\nD: [0.101, 0.381, 0.68, 1.0]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_145_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_145_1.jpg"], "question": "Here is an object ([0.433, 0.271, 0.981, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.377, 0.336, 1.024, 0.835]\nB: [0.377, 0.336, 0.956, 0.956]\nC: [0.377, 0.336, 1.061, 1.003]\nD: [0.101, 0.381, 0.68, 1.0]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.364, 0.487, 0.55, 0.693]\nB: [0.364, 0.487, 0.529, 0.668]\nC: [0.273, 0.447, 0.459, 0.653]\nD: [0.378, 0.558, 0.564, 0.764]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_146_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_146_1.jpg"], "question": "Here is an object ([0.342, 0.415, 0.542, 0.607]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.364, 0.487, 0.55, 0.693]\nB: [0.364, 0.487, 0.529, 0.668]\nC: [0.273, 0.447, 0.459, 0.653]\nD: [0.378, 0.558, 0.564, 0.764]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.116, 0.26, 0.833, 0.936]\nB: [0.116, 0.26, 0.734, 1.0]\nC: [0.0, 0.26, 0.619, 1.0]\nD: [0.116, 0.626, 0.322, 0.66]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_147_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_147_1.jpg"], "question": "Here is an object ([0.113, 0.256, 0.725, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.116, 0.26, 0.833, 0.936]\nB: [0.116, 0.26, 0.734, 1.0]\nC: [0.0, 0.26, 0.619, 1.0]\nD: [0.116, 0.626, 0.322, 0.66]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.409, 0.407, 0.471, 0.524]\nB: [0.402, 0.449, 0.465, 0.565]\nC: [0.404, 0.357, 0.466, 0.474]\nD: [0.137, 0.357, 0.261, 0.697]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_148_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_148_1.jpg"], "question": "Here is an object ([0.479, 0.539, 0.527, 0.662]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.409, 0.407, 0.471, 0.524]\nB: [0.402, 0.449, 0.465, 0.565]\nC: [0.404, 0.357, 0.466, 0.474]\nD: [0.137, 0.357, 0.261, 0.697]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.453, 0.503, 0.507, 0.681]\nB: [0.128, 0.867, 0.552, 0.899]\nC: [0.276, 0.35, 0.747, 0.397]\nD: [0.453, 0.503, 0.503, 0.706]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_149_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_149_1.jpg"], "question": "Here is an object ([0.487, 0.506, 0.544, 0.672]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.453, 0.503, 0.507, 0.681]\nB: [0.128, 0.867, 0.552, 0.899]\nC: [0.276, 0.35, 0.747, 0.397]\nD: [0.453, 0.503, 0.503, 0.706]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.22, 0.242, 0.862, 0.635]\nB: [0.161, 0.114, 0.634, 0.354]\nC: [0.562, 0.422, 0.925, 0.835]\nD: [0.359, 0.388, 1.0, 0.781]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_150_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_150_1.jpg"], "question": "Here is an object ([0.209, 0.215, 0.863, 0.618]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.22, 0.242, 0.862, 0.635]\nB: [0.161, 0.114, 0.634, 0.354]\nC: [0.562, 0.422, 0.925, 0.835]\nD: [0.359, 0.388, 1.0, 0.781]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.285, 0.511, 1.0, 0.756]\nB: [0.606, 0.539, 0.62, 0.972]\nC: [0.22, 0.585, 0.935, 0.829]\nD: [0.285, 0.511, 1.085, 0.719]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_151_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_151_1.jpg"], "question": "Here is an object ([0.435, 0.412, 1.0, 0.749]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.285, 0.511, 1.0, 0.756]\nB: [0.606, 0.539, 0.62, 0.972]\nC: [0.22, 0.585, 0.935, 0.829]\nD: [0.285, 0.511, 1.085, 0.719]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.209, 0.343, 0.797, 0.886]\nB: [0.028, 0.369, 0.616, 0.912]\nC: [0.0, 0.146, 0.588, 0.689]\nD: [0.337, 0.056, 0.549, 0.196]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_152_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_152_1.jpg"], "question": "Here is an object ([0.021, 0.375, 0.605, 0.915]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.209, 0.343, 0.797, 0.886]\nB: [0.028, 0.369, 0.616, 0.912]\nC: [0.0, 0.146, 0.588, 0.689]\nD: [0.337, 0.056, 0.549, 0.196]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.36, 0.068, 0.727, 0.486]\nB: [0.048, 0.221, 0.545, 0.911]\nC: [0.116, 0.31, 0.613, 1.0]\nD: [0.116, 0.31, 0.68, 1.039]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_153_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_153_1.jpg"], "question": "Here is an object ([0.116, 0.312, 0.606, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.36, 0.068, 0.727, 0.486]\nB: [0.048, 0.221, 0.545, 0.911]\nC: [0.116, 0.31, 0.613, 1.0]\nD: [0.116, 0.31, 0.68, 1.039]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.251, 0.228, 1.0, 1.0]\nB: [0.0, 0.0, 0.749, 0.772]\nC: [0.0, 0.228, 0.749, 1.0]\nD: [0.0, 0.113, 0.749, 0.885]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_154_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_154_1.jpg"], "question": "Here is an object ([0.0, 0.119, 0.75, 0.885]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 960 and the height is 720.", "context": "Select from the following choices.\nA: [0.251, 0.228, 1.0, 1.0]\nB: [0.0, 0.0, 0.749, 0.772]\nC: [0.0, 0.228, 0.749, 1.0]\nD: [0.0, 0.113, 0.749, 0.885]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.084, 0.149, 0.391, 0.438]\nB: [0.0, 0.071, 0.836, 1.133]\nC: [0.0, 0.071, 0.905, 1.0]\nD: [0.095, 0.0, 1.0, 0.929]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_155_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_155_1.jpg"], "question": "Here is an object ([0.0, 0.001, 0.894, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.084, 0.149, 0.391, 0.438]\nB: [0.0, 0.071, 0.836, 1.133]\nC: [0.0, 0.071, 0.905, 1.0]\nD: [0.095, 0.0, 1.0, 0.929]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.066, 0.203, 0.189, 0.603]\nB: [0.204, 0.146, 0.611, 1.0]\nC: [0.03, 0.146, 0.437, 1.0]\nD: [0.03, 0.146, 0.445, 0.939]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_156_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_156_1.jpg"], "question": "Here is an object ([0.034, 0.21, 0.511, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.066, 0.203, 0.189, 0.603]\nB: [0.204, 0.146, 0.611, 1.0]\nC: [0.03, 0.146, 0.437, 1.0]\nD: [0.03, 0.146, 0.445, 0.939]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.3, 0.251, 0.613, 1.0]\nB: [0.39, 0.0, 0.712, 0.697]\nC: [0.708, 0.621, 0.739, 0.844]\nD: [0.39, 0.0, 0.703, 0.749]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_157_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_157_1.jpg"], "question": "Here is an object ([0.242, 0.0, 0.613, 0.656]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.3, 0.251, 0.613, 1.0]\nB: [0.39, 0.0, 0.712, 0.697]\nC: [0.708, 0.621, 0.739, 0.844]\nD: [0.39, 0.0, 0.703, 0.749]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.408, 0.212, 0.655, 0.739]\nB: [0.17, 0.383, 0.197, 0.639]\nC: [0.408, 0.212, 0.661, 0.754]\nD: [0.408, 0.212, 0.665, 0.856]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_158_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_158_1.jpg"], "question": "Here is an object ([0.403, 0.207, 0.651, 0.767]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.408, 0.212, 0.655, 0.739]\nB: [0.17, 0.383, 0.197, 0.639]\nC: [0.408, 0.212, 0.661, 0.754]\nD: [0.408, 0.212, 0.665, 0.856]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.594, 0.279, 0.91, 0.968]\nB: [0.486, 0.013, 0.765, 0.59]\nC: [0.446, 0.122, 0.805, 0.543]\nD: [0.594, 0.279, 0.872, 0.857]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_159_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_159_1.jpg"], "question": "Here is an object ([0.596, 0.289, 0.867, 0.853]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1270 and the height is 720.", "context": "Select from the following choices.\nA: [0.594, 0.279, 0.91, 0.968]\nB: [0.486, 0.013, 0.765, 0.59]\nC: [0.446, 0.122, 0.805, 0.543]\nD: [0.594, 0.279, 0.872, 0.857]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.002, 0.087, 0.223, 0.472]\nB: [0.194, 0.114, 0.683, 0.775]\nC: [0.069, 0.221, 0.233, 0.621]\nD: [0.179, 0.339, 0.668, 1.0]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_160_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_160_1.jpg"], "question": "Here is an object ([0.228, 0.0, 0.719, 0.607]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.002, 0.087, 0.223, 0.472]\nB: [0.194, 0.114, 0.683, 0.775]\nC: [0.069, 0.221, 0.233, 0.621]\nD: [0.179, 0.339, 0.668, 1.0]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.459, 0.085, 0.476, 0.549]\nB: [0.248, 0.667, 0.747, 0.828]\nC: [0.512, 0.371, 0.652, 0.542]\nD: [0.512, 0.371, 0.626, 0.522]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_161_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_161_1.jpg"], "question": "Here is an object ([0.509, 0.357, 0.635, 0.535]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.459, 0.085, 0.476, 0.549]\nB: [0.248, 0.667, 0.747, 0.828]\nC: [0.512, 0.371, 0.652, 0.542]\nD: [0.512, 0.371, 0.626, 0.522]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.32, 0.046, 0.584, 0.879]\nB: [0.177, 0.0, 0.491, 0.917]\nC: [0.494, 0.643, 0.716, 0.814]\nD: [0.32, 0.046, 0.634, 0.963]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_162_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_162_1.jpg"], "question": "Here is an object ([0.324, 0.046, 0.635, 0.968]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.32, 0.046, 0.584, 0.879]\nB: [0.177, 0.0, 0.491, 0.917]\nC: [0.494, 0.643, 0.716, 0.814]\nD: [0.32, 0.046, 0.634, 0.963]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.43, 0.485, 0.783, 0.656]\nB: [0.502, 0.41, 0.579, 0.64]\nC: [0.463, 0.338, 0.54, 0.568]\nD: [0.488, 0.294, 0.566, 0.525]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_163_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_163_1.jpg"], "question": "Here is an object ([0.476, 0.335, 0.562, 0.568]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.43, 0.485, 0.783, 0.656]\nB: [0.502, 0.41, 0.579, 0.64]\nC: [0.463, 0.338, 0.54, 0.568]\nD: [0.488, 0.294, 0.566, 0.525]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.461, 0.357, 0.537, 0.714]\nB: [0.461, 0.357, 0.526, 0.771]\nC: [0.095, 0.572, 0.489, 0.808]\nD: [0.465, 0.401, 0.541, 0.758]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_164_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_164_1.jpg"], "question": "Here is an object ([0.466, 0.358, 0.545, 0.706]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.461, 0.357, 0.537, 0.714]\nB: [0.461, 0.357, 0.526, 0.771]\nC: [0.095, 0.572, 0.489, 0.808]\nD: [0.465, 0.401, 0.541, 0.758]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.442, 0.604, 0.598, 0.832]\nB: [0.49, 0.487, 0.658, 0.771]\nC: [0.442, 0.604, 0.61, 0.887]\nD: [0.409, 0.69, 0.577, 0.974]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_165_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_165_1.jpg"], "question": "Here is an object ([0.455, 0.621, 0.626, 0.886]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.442, 0.604, 0.598, 0.832]\nB: [0.49, 0.487, 0.658, 0.771]\nC: [0.442, 0.604, 0.61, 0.887]\nD: [0.409, 0.69, 0.577, 0.974]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.416, 0.133, 0.897, 0.514]\nB: [0.416, 0.133, 0.995, 0.537]\nC: [0.433, 0.497, 0.685, 0.806]\nD: [0.421, 0.0, 1.0, 0.404]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_166_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_166_1.jpg"], "question": "Here is an object ([0.436, 0.083, 0.995, 0.561]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 406 and the height is 720.", "context": "Select from the following choices.\nA: [0.416, 0.133, 0.897, 0.514]\nB: [0.416, 0.133, 0.995, 0.537]\nC: [0.433, 0.497, 0.685, 0.806]\nD: [0.421, 0.0, 1.0, 0.404]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.228, 0.108, 0.396, 0.479]\nB: [0.171, 0.0, 0.923, 0.742]\nC: [0.171, 0.093, 1.0, 0.824]\nD: [0.171, 0.0, 1.0, 0.731]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_167_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_167_1.jpg"], "question": "Here is an object ([0.165, 0.0, 1.0, 0.726]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.228, 0.108, 0.396, 0.479]\nB: [0.171, 0.0, 0.923, 0.742]\nC: [0.171, 0.093, 1.0, 0.824]\nD: [0.171, 0.0, 1.0, 0.731]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.074, 0.186, 0.488, 1.0]\nB: [0.058, 0.151, 0.472, 0.965]\nC: [0.159, 0.186, 0.639, 0.935]\nD: [0.159, 0.186, 0.573, 1.0]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_168_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_168_1.jpg"], "question": "Here is an object ([0.179, 0.022, 0.554, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.074, 0.186, 0.488, 1.0]\nB: [0.058, 0.151, 0.472, 0.965]\nC: [0.159, 0.186, 0.639, 0.935]\nD: [0.159, 0.186, 0.573, 1.0]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.0, 0.287, 0.342, 0.665]\nB: [0.078, 0.428, 0.42, 0.806]\nC: [0.34, 0.412, 0.643, 0.438]\nD: [0.0, 0.287, 0.341, 0.682]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_169_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_169_1.jpg"], "question": "Here is an object ([0.0, 0.297, 0.397, 0.665]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.0, 0.287, 0.342, 0.665]\nB: [0.078, 0.428, 0.42, 0.806]\nC: [0.34, 0.412, 0.643, 0.438]\nD: [0.0, 0.287, 0.341, 0.682]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.464, 0.276, 0.727, 1.0]\nB: [0.464, 0.276, 0.745, 0.993]\nC: [0.517, 0.276, 0.78, 1.0]\nD: [0.464, 0.276, 0.692, 0.875]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_170_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_170_1.jpg"], "question": "Here is an object ([0.455, 0.276, 0.688, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.464, 0.276, 0.727, 1.0]\nB: [0.464, 0.276, 0.745, 0.993]\nC: [0.517, 0.276, 0.78, 1.0]\nD: [0.464, 0.276, 0.692, 0.875]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.534, 0.237, 0.687, 0.515]\nB: [0.534, 0.237, 0.662, 0.522]\nC: [0.534, 0.237, 0.641, 0.497]\nD: [0.499, 0.261, 0.628, 0.546]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_171_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_171_1.jpg"], "question": "Here is an object ([0.58, 0.235, 0.755, 0.518]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.534, 0.237, 0.687, 0.515]\nB: [0.534, 0.237, 0.662, 0.522]\nC: [0.534, 0.237, 0.641, 0.497]\nD: [0.499, 0.261, 0.628, 0.546]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.081, 0.196, 0.637, 1.131]\nB: [0.081, 0.196, 0.748, 1.113]\nC: [0.081, 0.196, 0.658, 0.994]\nD: [0.611, 0.761, 0.737, 0.843]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_172_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_172_1.jpg"], "question": "Here is an object ([0.136, 0.15, 0.672, 0.881]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.081, 0.196, 0.637, 1.131]\nB: [0.081, 0.196, 0.748, 1.113]\nC: [0.081, 0.196, 0.658, 0.994]\nD: [0.611, 0.761, 0.737, 0.843]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.23, 0.069, 0.931, 1.0]\nB: [0.23, 0.069, 0.792, 1.121]\nC: [0.218, 0.069, 0.919, 1.0]\nD: [0.457, 0.265, 0.69, 0.581]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_173_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_173_1.jpg"], "question": "Here is an object ([0.231, 0.124, 0.86, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.23, 0.069, 0.931, 1.0]\nB: [0.23, 0.069, 0.792, 1.121]\nC: [0.218, 0.069, 0.919, 1.0]\nD: [0.457, 0.265, 0.69, 0.581]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.159, 0.225, 0.294, 0.533]\nB: [0.218, 0.453, 0.636, 0.631]\nC: [0.292, 0.406, 0.459, 0.643]\nD: [0.292, 0.406, 0.456, 0.7]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_174_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_174_1.jpg"], "question": "Here is an object ([0.29, 0.426, 0.471, 0.7]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.159, 0.225, 0.294, 0.533]\nB: [0.218, 0.453, 0.636, 0.631]\nC: [0.292, 0.406, 0.459, 0.643]\nD: [0.292, 0.406, 0.456, 0.7]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.143, 0.454, 0.249, 0.654]\nB: [0.077, 0.669, 0.136, 0.985]\nC: [0.145, 0.525, 0.252, 0.725]\nD: [0.143, 0.454, 0.266, 0.657]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_175_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_175_1.jpg"], "question": "Here is an object ([0.12, 0.461, 0.237, 0.653]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.143, 0.454, 0.249, 0.654]\nB: [0.077, 0.669, 0.136, 0.985]\nC: [0.145, 0.525, 0.252, 0.725]\nD: [0.143, 0.454, 0.266, 0.657]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.602, 0.0, 0.946, 0.739]\nB: [0.468, 0.376, 0.48, 0.842]\nC: [0.44, 0.261, 0.783, 1.0]\nD: [0.393, 0.261, 0.736, 1.0]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_176_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_176_1.jpg"], "question": "Here is an object ([0.446, 0.211, 0.622, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 960 and the height is 720.", "context": "Select from the following choices.\nA: [0.602, 0.0, 0.946, 0.739]\nB: [0.468, 0.376, 0.48, 0.842]\nC: [0.44, 0.261, 0.783, 1.0]\nD: [0.393, 0.261, 0.736, 1.0]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.0, 0.001, 0.722, 1.126]\nB: [0.0, 0.001, 0.598, 1.193]\nC: [0.0, 0.001, 0.724, 0.999]\nD: [0.0, 0.001, 0.738, 1.196]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_177_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_177_1.jpg"], "question": "Here is an object ([0.0, 0.0, 0.755, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.0, 0.001, 0.722, 1.126]\nB: [0.0, 0.001, 0.598, 1.193]\nC: [0.0, 0.001, 0.724, 0.999]\nD: [0.0, 0.001, 0.738, 1.196]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.183, 0.761, 0.235, 0.919]\nB: [0.683, 0.257, 0.857, 0.718]\nC: [0.351, 0.0, 1.0, 1.0]\nD: [0.351, 0.0, 0.877, 0.803]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_178_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_178_1.jpg"], "question": "Here is an object ([0.313, 0.0, 1.0, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.183, 0.761, 0.235, 0.919]\nB: [0.683, 0.257, 0.857, 0.718]\nC: [0.351, 0.0, 1.0, 1.0]\nD: [0.351, 0.0, 0.877, 0.803]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.334, 0.014, 1.103, 1.108]\nB: [0.2, 0.281, 0.454, 0.629]\nC: [0.334, 0.014, 0.926, 0.993]\nD: [0.334, 0.014, 1.0, 1.0]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_179_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_179_1.jpg"], "question": "Here is an object ([0.235, 0.001, 1.0, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.334, 0.014, 1.103, 1.108]\nB: [0.2, 0.281, 0.454, 0.629]\nC: [0.334, 0.014, 0.926, 0.993]\nD: [0.334, 0.014, 1.0, 1.0]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.356, 0.011, 0.83, 0.357]\nB: [0.183, 0.207, 0.581, 1.011]\nC: [0.183, 0.207, 0.68, 0.996]\nD: [0.183, 0.207, 0.616, 1.11]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_180_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_180_1.jpg"], "question": "Here is an object ([0.211, 0.165, 0.67, 0.982]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.356, 0.011, 0.83, 0.357]\nB: [0.183, 0.207, 0.581, 1.011]\nC: [0.183, 0.207, 0.68, 0.996]\nD: [0.183, 0.207, 0.616, 1.11]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.479, 0.108, 0.884, 0.665]\nB: [0.552, 0.097, 0.956, 0.654]\nC: [0.317, 0.204, 0.722, 0.761]\nD: [0.479, 0.108, 0.859, 0.699]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_181_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_181_1.jpg"], "question": "Here is an object ([0.457, 0.218, 0.777, 0.725]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.479, 0.108, 0.884, 0.665]\nB: [0.552, 0.097, 0.956, 0.654]\nC: [0.317, 0.204, 0.722, 0.761]\nD: [0.479, 0.108, 0.859, 0.699]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.603, 0.522, 0.715, 0.79]\nB: [0.531, 0.461, 0.641, 0.671]\nC: [0.523, 0.396, 0.632, 0.606]\nD: [0.537, 0.519, 0.702, 0.668]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_182_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_182_1.jpg"], "question": "Here is an object ([0.584, 0.392, 0.634, 0.551]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.603, 0.522, 0.715, 0.79]\nB: [0.531, 0.461, 0.641, 0.671]\nC: [0.523, 0.396, 0.632, 0.606]\nD: [0.537, 0.519, 0.702, 0.668]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.0, 0.013, 0.871, 1.0]\nB: [0.129, 0.013, 1.047, 0.982]\nC: [0.696, 0.489, 0.793, 0.943]\nD: [0.129, 0.013, 1.0, 1.0]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_183_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_183_1.jpg"], "question": "Here is an object ([0.059, 0.0, 1.0, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.0, 0.013, 0.871, 1.0]\nB: [0.129, 0.013, 1.047, 0.982]\nC: [0.696, 0.489, 0.793, 0.943]\nD: [0.129, 0.013, 1.0, 1.0]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.42, 0.268, 0.625, 0.971]\nB: [0.42, 0.268, 0.636, 0.778]\nC: [0.42, 0.268, 0.66, 0.865]\nD: [0.42, 0.268, 0.639, 0.919]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_184_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_184_1.jpg"], "question": "Here is an object ([0.411, 0.272, 0.654, 0.865]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 960 and the height is 720.", "context": "Select from the following choices.\nA: [0.42, 0.268, 0.625, 0.971]\nB: [0.42, 0.268, 0.636, 0.778]\nC: [0.42, 0.268, 0.66, 0.865]\nD: [0.42, 0.268, 0.639, 0.919]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.174, 0.0, 0.691, 0.558]\nB: [0.483, 0.21, 1.0, 0.768]\nC: [0.382, 0.046, 0.899, 0.604]\nD: [0.432, 0.364, 0.76, 0.779]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_185_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_185_1.jpg"], "question": "Here is an object ([0.384, 0.018, 0.968, 0.479]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.174, 0.0, 0.691, 0.558]\nB: [0.483, 0.21, 1.0, 0.768]\nC: [0.382, 0.046, 0.899, 0.604]\nD: [0.432, 0.364, 0.76, 0.779]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.595, 0.536, 0.865, 0.782]\nB: [0.595, 0.536, 0.829, 0.744]\nC: [0.074, 0.478, 0.275, 0.861]\nD: [0.059, 0.325, 0.287, 0.339]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_186_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_186_1.jpg"], "question": "Here is an object ([0.487, 0.554, 0.705, 0.758]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.595, 0.536, 0.865, 0.782]\nB: [0.595, 0.536, 0.829, 0.744]\nC: [0.074, 0.478, 0.275, 0.861]\nD: [0.059, 0.325, 0.287, 0.339]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.384, 0.524, 0.459, 0.842]\nB: [0.0, 0.0, 0.77, 0.999]\nC: [0.126, 0.49, 0.423, 0.603]\nD: [0.0, 0.0, 0.685, 0.894]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_187_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_187_1.jpg"], "question": "Here is an object ([0.0, 0.0, 0.784, 0.999]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.384, 0.524, 0.459, 0.842]\nB: [0.0, 0.0, 0.77, 0.999]\nC: [0.126, 0.49, 0.423, 0.603]\nD: [0.0, 0.0, 0.685, 0.894]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.0, 0.046, 0.939, 0.84]\nB: [0.057, 0.29, 0.25, 0.646]\nC: [0.578, 0.11, 0.852, 0.163]\nD: [0.0, 0.046, 0.89, 0.84]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_188_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_188_1.jpg"], "question": "Here is an object ([0.0, 0.001, 0.961, 0.874]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.0, 0.046, 0.939, 0.84]\nB: [0.057, 0.29, 0.25, 0.646]\nC: [0.578, 0.11, 0.852, 0.163]\nD: [0.0, 0.046, 0.89, 0.84]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.334, 0.31, 0.566, 0.938]\nB: [0.275, 0.312, 0.504, 1.0]\nC: [0.334, 0.31, 0.563, 0.997]\nD: [0.591, 0.644, 0.888, 0.765]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_189_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_189_1.jpg"], "question": "Here is an object ([0.262, 0.143, 0.509, 0.997]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.334, 0.31, 0.566, 0.938]\nB: [0.275, 0.312, 0.504, 1.0]\nC: [0.334, 0.31, 0.563, 0.997]\nD: [0.591, 0.644, 0.888, 0.765]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.0, 0.565, 0.12, 0.9]\nB: [0.0, 0.565, 0.126, 0.917]\nC: [0.055, 0.589, 0.181, 0.94]\nD: [0.825, 0.094, 0.94, 0.535]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_190_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_190_1.jpg"], "question": "Here is an object ([0.0, 0.05, 1.0, 0.86]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.0, 0.565, 0.12, 0.9]\nB: [0.0, 0.565, 0.126, 0.917]\nC: [0.055, 0.589, 0.181, 0.94]\nD: [0.825, 0.094, 0.94, 0.535]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.644, 0.44, 0.805, 0.861]\nB: [0.587, 0.544, 0.748, 0.965]\nC: [0.644, 0.44, 0.811, 0.821]\nD: [0.644, 0.44, 0.801, 0.908]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_191_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_191_1.jpg"], "question": "Here is an object ([0.572, 0.41, 0.747, 0.842]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.644, 0.44, 0.805, 0.861]\nB: [0.587, 0.544, 0.748, 0.965]\nC: [0.644, 0.44, 0.811, 0.821]\nD: [0.644, 0.44, 0.801, 0.908]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.6, 0.292, 0.677, 0.412]\nB: [0.747, 0.479, 0.991, 1.056]\nC: [0.747, 0.479, 1.0, 1.0]\nD: [0.042, 0.16, 0.117, 0.547]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_192_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_192_1.jpg"], "question": "Here is an object ([0.755, 0.472, 1.0, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.6, 0.292, 0.677, 0.412]\nB: [0.747, 0.479, 0.991, 1.056]\nC: [0.747, 0.479, 1.0, 1.0]\nD: [0.042, 0.16, 0.117, 0.547]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.268, 0.356, 0.665, 1.0]\nB: [0.384, 0.329, 0.781, 0.974]\nC: [0.5, 0.258, 0.897, 0.903]\nD: [0.466, 0.153, 0.863, 0.797]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_193_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_193_1.jpg"], "question": "Here is an object ([0.386, 0.329, 0.791, 0.968]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.268, 0.356, 0.665, 1.0]\nB: [0.384, 0.329, 0.781, 0.974]\nC: [0.5, 0.258, 0.897, 0.903]\nD: [0.466, 0.153, 0.863, 0.797]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.243, 0.956, 0.284, 0.975]\nB: [0.382, 0.301, 0.875, 0.646]\nC: [0.382, 0.301, 1.019, 0.606]\nD: [0.382, 0.301, 0.919, 0.646]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_194_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_194_1.jpg"], "question": "Here is an object ([0.411, 0.268, 0.728, 0.903]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 960 and the height is 720.", "context": "Select from the following choices.\nA: [0.243, 0.956, 0.284, 0.975]\nB: [0.382, 0.301, 0.875, 0.646]\nC: [0.382, 0.301, 1.019, 0.606]\nD: [0.382, 0.301, 0.919, 0.646]"}, "output": {"output_text": "D"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.388, 0.347, 0.992, 0.839]\nB: [0.388, 0.347, 0.977, 0.91]\nC: [0.477, 0.579, 0.912, 0.9]\nD: [0.388, 0.347, 1.089, 0.938]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_195_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_195_1.jpg"], "question": "Here is an object ([0.386, 0.367, 0.98, 0.921]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.388, 0.347, 0.992, 0.839]\nB: [0.388, 0.347, 0.977, 0.91]\nC: [0.477, 0.579, 0.912, 0.9]\nD: [0.388, 0.347, 1.089, 0.938]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.228, 0.114, 0.254, 0.601]\nB: [0.327, 0.138, 1.0, 1.0]\nC: [0.327, 0.138, 1.021, 0.939]\nD: [0.327, 0.0, 1.0, 0.863]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_196_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_196_1.jpg"], "question": "Here is an object ([0.332, 0.122, 1.0, 1.0]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.228, 0.114, 0.254, 0.601]\nB: [0.327, 0.138, 1.0, 1.0]\nC: [0.327, 0.138, 1.021, 0.939]\nD: [0.327, 0.0, 1.0, 0.863]"}, "output": {"output_text": "B"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.426, 0.447, 0.531, 0.756]\nB: [0.426, 0.447, 0.534, 0.776]\nC: [0.426, 0.447, 0.53, 0.783]\nD: [0.867, 0.138, 0.923, 0.214]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_197_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_197_1.jpg"], "question": "Here is an object ([0.431, 0.433, 0.585, 0.769]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.426, 0.447, 0.531, 0.756]\nB: [0.426, 0.447, 0.534, 0.776]\nC: [0.426, 0.447, 0.53, 0.783]\nD: [0.867, 0.138, 0.923, 0.214]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "youtubevis2019_sot", "options": "A: [0.341, 0.492, 0.753, 0.8]\nB: [0.152, 0.436, 0.563, 0.744]\nC: [0.168, 0.04, 0.502, 0.061]\nD: [0.593, 0.619, 0.761, 0.656]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_198_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_198_1.jpg"], "question": "Here is an object ([0.366, 0.504, 0.786, 0.806]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.341, 0.492, 0.753, 0.8]\nB: [0.152, 0.436, 0.563, 0.744]\nC: [0.168, 0.04, 0.502, 0.061]\nD: [0.593, 0.619, 0.761, 0.656]"}, "output": {"output_text": "A"}, "task": "single_object_tracking"}
{"source": "ovis_sot", "options": "A: [0.049, 0.143, 0.895, 0.719]\nB: [0.049, 0.143, 0.806, 0.606]\nC: [0.049, 0.143, 0.788, 0.667]\nD: [0.246, 0.05, 0.512, 0.212]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/single_object_tracking/single_object_tracking_199_0.jpg", "2D-spatial/single_object_tracking/single_object_tracking_199_1.jpg"], "question": "Here is an object ([0.056, 0.144, 0.791, 0.665]) in the Image 1. Please give the coordinations of this object in the Image 2. The bounding box coordinates are in the format [x1, y1, x2, y2], where [x1, y1] are the top-left coordinates and [x2, y2] are the bottom-right coordinates of the target object's bounding box. Note that the width of the input RGB image is 1280 and the height is 720.", "context": "Select from the following choices.\nA: [0.049, 0.143, 0.895, 0.719]\nB: [0.049, 0.143, 0.806, 0.606]\nC: [0.049, 0.143, 0.788, 0.667]\nD: [0.246, 0.05, 0.512, 0.212]"}, "output": {"output_text": "C"}, "task": "single_object_tracking"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -42.98651909317854, \"translation_dx\": 114.49293313374625, \"translation_dy\": -39.53290228333596, \"scale\": 1.442019387031135}\nB: {\"rotation_angle\": -106.99875725121946, \"translation_dx\": 87.96881157950656, \"translation_dy\": -34.70529343588741, \"scale\": 1.407305489874207}\nC: {\"rotation_angle\": 148.22875373623708, \"translation_dx\": 53.75338658972072, \"translation_dy\": -63.78583022927253, \"scale\": 0.9304836306567924}\nD: {\"rotation_angle\": 52.0207999596704, \"translation_dx\": 62.052266940503074, \"translation_dy\": 15.318990484280505, \"scale\": 1.1445040102422772}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_0_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_0_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -42.98651909317854, \"translation_dx\": 114.49293313374625, \"translation_dy\": -39.53290228333596, \"scale\": 1.442019387031135}\nB: {\"rotation_angle\": -106.99875725121946, \"translation_dx\": 87.96881157950656, \"translation_dy\": -34.70529343588741, \"scale\": 1.407305489874207}\nC: {\"rotation_angle\": 148.22875373623708, \"translation_dx\": 53.75338658972072, \"translation_dy\": -63.78583022927253, \"scale\": 0.9304836306567924}\nD: {\"rotation_angle\": 52.0207999596704, \"translation_dx\": 62.052266940503074, \"translation_dy\": 15.318990484280505, \"scale\": 1.1445040102422772}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -38.58021171568234, \"translation_dx\": -80.14139661496048, \"translation_dy\": 7.985099889843255, \"scale\": 1.029545268033875}\nB: {\"rotation_angle\": -160.6395227566207, \"translation_dx\": 53.66643366551958, \"translation_dy\": -27.712376159428388, \"scale\": 1.1084051689599654}\nC: {\"rotation_angle\": 44.2601421515034, \"translation_dx\": -84.9832744911761, \"translation_dy\": -78.07982572554322, \"scale\": 0.5612120736859965}\nD: {\"rotation_angle\": -15.445234303955033, \"translation_dx\": 52.656313993324545, \"translation_dy\": 4.243768644047549, \"scale\": 0.8747335302455691}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_1_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_1_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -38.58021171568234, \"translation_dx\": -80.14139661496048, \"translation_dy\": 7.985099889843255, \"scale\": 1.029545268033875}\nB: {\"rotation_angle\": -160.6395227566207, \"translation_dx\": 53.66643366551958, \"translation_dy\": -27.712376159428388, \"scale\": 1.1084051689599654}\nC: {\"rotation_angle\": 44.2601421515034, \"translation_dx\": -84.9832744911761, \"translation_dy\": -78.07982572554322, \"scale\": 0.5612120736859965}\nD: {\"rotation_angle\": -15.445234303955033, \"translation_dx\": 52.656313993324545, \"translation_dy\": 4.243768644047549, \"scale\": 0.8747335302455691}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -70.18179574394556, \"translation_dx\": -84.02989442213027, \"translation_dy\": 45.46342410564398, \"scale\": 1.28660403831869}\nB: {\"rotation_angle\": 1.3693998936690264, \"translation_dx\": -71.94174431428723, \"translation_dy\": 25.661133958182248, \"scale\": 1.468813327861592}\nC: {\"rotation_angle\": -110.51021822636605, \"translation_dx\": -17.924195571284486, \"translation_dy\": -0.10679752473519954, \"scale\": 1.4066663412939815}\nD: {\"rotation_angle\": 141.74747753602782, \"translation_dx\": -54.793360600935046, \"translation_dy\": -29.72546528603263, \"scale\": 0.6563706152769926}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_2_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_2_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -70.18179574394556, \"translation_dx\": -84.02989442213027, \"translation_dy\": 45.46342410564398, \"scale\": 1.28660403831869}\nB: {\"rotation_angle\": 1.3693998936690264, \"translation_dx\": -71.94174431428723, \"translation_dy\": 25.661133958182248, \"scale\": 1.468813327861592}\nC: {\"rotation_angle\": -110.51021822636605, \"translation_dx\": -17.924195571284486, \"translation_dy\": -0.10679752473519954, \"scale\": 1.4066663412939815}\nD: {\"rotation_angle\": 141.74747753602782, \"translation_dx\": -54.793360600935046, \"translation_dy\": -29.72546528603263, \"scale\": 0.6563706152769926}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -59.18065174130953, \"translation_dx\": -66.15733764198566, \"translation_dy\": -32.06450758946801, \"scale\": 1.1967157159259998}\nB: {\"rotation_angle\": 142.66976946716716, \"translation_dx\": 29.963541003119957, \"translation_dy\": 66.07065092305665, \"scale\": 1.42144068359999}\nC: {\"rotation_angle\": -79.55706788063112, \"translation_dx\": -38.613403166877674, \"translation_dy\": 48.56888435185245, \"scale\": 1.368947012195521}\nD: {\"rotation_angle\": -15.445234303955033, \"translation_dx\": 52.656313993324545, \"translation_dy\": 4.243768644047549, \"scale\": 0.8747335302455691}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_3_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_3_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -59.18065174130953, \"translation_dx\": -66.15733764198566, \"translation_dy\": -32.06450758946801, \"scale\": 1.1967157159259998}\nB: {\"rotation_angle\": 142.66976946716716, \"translation_dx\": 29.963541003119957, \"translation_dy\": 66.07065092305665, \"scale\": 1.42144068359999}\nC: {\"rotation_angle\": -79.55706788063112, \"translation_dx\": -38.613403166877674, \"translation_dy\": 48.56888435185245, \"scale\": 1.368947012195521}\nD: {\"rotation_angle\": -15.445234303955033, \"translation_dx\": 52.656313993324545, \"translation_dy\": 4.243768644047549, \"scale\": 0.8747335302455691}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -160.6395227566207, \"translation_dx\": 53.66643366551958, \"translation_dy\": -27.712376159428388, \"scale\": 1.1084051689599654}\nB: {\"rotation_angle\": 32.170058088704565, \"translation_dx\": 62.48780444449932, \"translation_dy\": 36.464458087386475, \"scale\": 0.8338243238440678}\nC: {\"rotation_angle\": 159.39197876032466, \"translation_dx\": -101.87275621292875, \"translation_dy\": -32.606176111808466, \"scale\": 0.6647290774480178}\nD: {\"rotation_angle\": 4.3566947214011975, \"translation_dx\": 60.69356846846577, \"translation_dy\": 19.542677658157032, \"scale\": 1.353031271581857}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_4_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_4_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -160.6395227566207, \"translation_dx\": 53.66643366551958, \"translation_dy\": -27.712376159428388, \"scale\": 1.1084051689599654}\nB: {\"rotation_angle\": 32.170058088704565, \"translation_dx\": 62.48780444449932, \"translation_dy\": 36.464458087386475, \"scale\": 0.8338243238440678}\nC: {\"rotation_angle\": 159.39197876032466, \"translation_dx\": -101.87275621292875, \"translation_dy\": -32.606176111808466, \"scale\": 0.6647290774480178}\nD: {\"rotation_angle\": 4.3566947214011975, \"translation_dx\": 60.69356846846577, \"translation_dy\": 19.542677658157032, \"scale\": 1.353031271581857}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -38.58021171568234, \"translation_dx\": -80.14139661496048, \"translation_dy\": 7.985099889843255, \"scale\": 1.029545268033875}\nB: {\"rotation_angle\": 170.5673161572617, \"translation_dx\": -54.14309140946517, \"translation_dy\": -20.9067824061149, \"scale\": 0.74080987054586}\nC: {\"rotation_angle\": -137.58016126496426, \"translation_dx\": 45.631572391068715, \"translation_dy\": -54.72741054396442, \"scale\": 1.391656794638211}\nD: {\"rotation_angle\": 115.4472434811122, \"translation_dx\": 69.00896887231048, \"translation_dy\": -26.016218629159226, \"scale\": 0.9339901852292719}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_5_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_5_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -38.58021171568234, \"translation_dx\": -80.14139661496048, \"translation_dy\": 7.985099889843255, \"scale\": 1.029545268033875}\nB: {\"rotation_angle\": 170.5673161572617, \"translation_dx\": -54.14309140946517, \"translation_dy\": -20.9067824061149, \"scale\": 0.74080987054586}\nC: {\"rotation_angle\": -137.58016126496426, \"translation_dx\": 45.631572391068715, \"translation_dy\": -54.72741054396442, \"scale\": 1.391656794638211}\nD: {\"rotation_angle\": 115.4472434811122, \"translation_dx\": 69.00896887231048, \"translation_dy\": -26.016218629159226, \"scale\": 0.9339901852292719}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 67.74863170033868, \"translation_dx\": 0.9436916559104702, \"translation_dy\": 79.02717939495389, \"scale\": 1.0490112177140545}\nB: {\"rotation_angle\": -149.34069149386406, \"translation_dx\": 81.63420911320063, \"translation_dy\": -26.073567429384056, \"scale\": 1.427947630130646}\nC: {\"rotation_angle\": 159.74516071456964, \"translation_dx\": 18.36539372865252, \"translation_dy\": -32.68583255299669, \"scale\": 0.6283421405871866}\nD: {\"rotation_angle\": 72.25092677282458, \"translation_dx\": 61.389740502873025, \"translation_dy\": -36.86538640455047, \"scale\": 1.0748600769835353}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_6_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_6_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 67.74863170033868, \"translation_dx\": 0.9436916559104702, \"translation_dy\": 79.02717939495389, \"scale\": 1.0490112177140545}\nB: {\"rotation_angle\": -149.34069149386406, \"translation_dx\": 81.63420911320063, \"translation_dy\": -26.073567429384056, \"scale\": 1.427947630130646}\nC: {\"rotation_angle\": 159.74516071456964, \"translation_dx\": 18.36539372865252, \"translation_dy\": -32.68583255299669, \"scale\": 0.6283421405871866}\nD: {\"rotation_angle\": 72.25092677282458, \"translation_dx\": 61.389740502873025, \"translation_dy\": -36.86538640455047, \"scale\": 1.0748600769835353}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 178.3015459217881, \"translation_dx\": 2.1592483018484785, \"translation_dy\": -86.15095567396924, \"scale\": 1.206185814877298}\nB: {\"rotation_angle\": 95.69634927891752, \"translation_dx\": -96.46148729426875, \"translation_dy\": -25.496381966922478, \"scale\": 0.7479348241153333}\nC: {\"rotation_angle\": 179.8013352752547, \"translation_dx\": -90.5548533247824, \"translation_dy\": 17.23782922418306, \"scale\": 0.9885365626195518}\nD: {\"rotation_angle\": 49.90656423603761, \"translation_dx\": 85.27067294320437, \"translation_dy\": -8.928665399863448, \"scale\": 0.9370060594249733}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_7_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_7_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 178.3015459217881, \"translation_dx\": 2.1592483018484785, \"translation_dy\": -86.15095567396924, \"scale\": 1.206185814877298}\nB: {\"rotation_angle\": 95.69634927891752, \"translation_dx\": -96.46148729426875, \"translation_dy\": -25.496381966922478, \"scale\": 0.7479348241153333}\nC: {\"rotation_angle\": 179.8013352752547, \"translation_dx\": -90.5548533247824, \"translation_dy\": 17.23782922418306, \"scale\": 0.9885365626195518}\nD: {\"rotation_angle\": 49.90656423603761, \"translation_dx\": 85.27067294320437, \"translation_dy\": -8.928665399863448, \"scale\": 0.9370060594249733}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -16.878745814478265, \"translation_dx\": -68.86659110743665, \"translation_dy\": -98.54142762965468, \"scale\": 1.2648663928919022}\nB: {\"rotation_angle\": -126.23248080179604, \"translation_dx\": -18.04313623288388, \"translation_dy\": 59.052880720386156, \"scale\": 1.3827835175940266}\nC: {\"rotation_angle\": -137.69315675508605, \"translation_dx\": -14.965017175186233, \"translation_dy\": 28.85856493302694, \"scale\": 0.6970825252863025}\nD: {\"rotation_angle\": -68.79930104020924, \"translation_dx\": -103.12901971602221, \"translation_dy\": 94.89161684072867, \"scale\": 1.2295411735859756}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_8_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_8_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -16.878745814478265, \"translation_dx\": -68.86659110743665, \"translation_dy\": -98.54142762965468, \"scale\": 1.2648663928919022}\nB: {\"rotation_angle\": -126.23248080179604, \"translation_dx\": -18.04313623288388, \"translation_dy\": 59.052880720386156, \"scale\": 1.3827835175940266}\nC: {\"rotation_angle\": -137.69315675508605, \"translation_dx\": -14.965017175186233, \"translation_dy\": 28.85856493302694, \"scale\": 0.6970825252863025}\nD: {\"rotation_angle\": -68.79930104020924, \"translation_dx\": -103.12901971602221, \"translation_dy\": 94.89161684072867, \"scale\": 1.2295411735859756}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 143.38145335973087, \"translation_dx\": 86.67970142496799, \"translation_dy\": -33.57640317277091, \"scale\": 0.6114655384261714}\nB: {\"rotation_angle\": -0.45613579718829556, \"translation_dx\": 98.71619714866841, \"translation_dy\": 70.1100439641223, \"scale\": 0.6491919010173006}\nC: {\"rotation_angle\": -79.55706788063112, \"translation_dx\": -38.613403166877674, \"translation_dy\": 48.56888435185245, \"scale\": 1.368947012195521}\nD: {\"rotation_angle\": -79.27003163090343, \"translation_dx\": 8.207736130313549, \"translation_dy\": 6.670417118750038, \"scale\": 1.3327657238113826}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_9_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_9_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 143.38145335973087, \"translation_dx\": 86.67970142496799, \"translation_dy\": -33.57640317277091, \"scale\": 0.6114655384261714}\nB: {\"rotation_angle\": -0.45613579718829556, \"translation_dx\": 98.71619714866841, \"translation_dy\": 70.1100439641223, \"scale\": 0.6491919010173006}\nC: {\"rotation_angle\": -79.55706788063112, \"translation_dx\": -38.613403166877674, \"translation_dy\": 48.56888435185245, \"scale\": 1.368947012195521}\nD: {\"rotation_angle\": -79.27003163090343, \"translation_dx\": 8.207736130313549, \"translation_dy\": 6.670417118750038, \"scale\": 1.3327657238113826}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 72.25092677282458, \"translation_dx\": 61.389740502873025, \"translation_dy\": -36.86538640455047, \"scale\": 1.0748600769835353}\nB: {\"rotation_angle\": 139.13421797404374, \"translation_dx\": -107.62188977651758, \"translation_dy\": -65.35657968686931, \"scale\": 0.569575564082204}\nC: {\"rotation_angle\": -94.06455293225282, \"translation_dx\": -52.04430006776356, \"translation_dy\": 88.55937507710391, \"scale\": 0.8369046461483086}\nD: {\"rotation_angle\": 136.76946369368522, \"translation_dx\": 86.13615517916296, \"translation_dy\": 47.49597577737802, \"scale\": 1.1842967613683704}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_10_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_10_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 72.25092677282458, \"translation_dx\": 61.389740502873025, \"translation_dy\": -36.86538640455047, \"scale\": 1.0748600769835353}\nB: {\"rotation_angle\": 139.13421797404374, \"translation_dx\": -107.62188977651758, \"translation_dy\": -65.35657968686931, \"scale\": 0.569575564082204}\nC: {\"rotation_angle\": -94.06455293225282, \"translation_dx\": -52.04430006776356, \"translation_dy\": 88.55937507710391, \"scale\": 0.8369046461483086}\nD: {\"rotation_angle\": 136.76946369368522, \"translation_dx\": 86.13615517916296, \"translation_dy\": 47.49597577737802, \"scale\": 1.1842967613683704}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 111.11665430921613, \"translation_dx\": -45.526232266105865, \"translation_dy\": -71.56835409165808, \"scale\": 0.5234271564227445}\nB: {\"rotation_angle\": -127.03310490562403, \"translation_dx\": -44.497972498107885, \"translation_dy\": 53.252184804163164, \"scale\": 0.8807762361133948}\nC: {\"rotation_angle\": -23.02063628299686, \"translation_dx\": -42.06347070905805, \"translation_dy\": 68.90308226059909, \"scale\": 0.7321107429069119}\nD: {\"rotation_angle\": 33.426384392539006, \"translation_dx\": -12.448609293998487, \"translation_dy\": 64.03367069956386, \"scale\": 0.6340926377236346}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_11_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_11_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 111.11665430921613, \"translation_dx\": -45.526232266105865, \"translation_dy\": -71.56835409165808, \"scale\": 0.5234271564227445}\nB: {\"rotation_angle\": -127.03310490562403, \"translation_dx\": -44.497972498107885, \"translation_dy\": 53.252184804163164, \"scale\": 0.8807762361133948}\nC: {\"rotation_angle\": -23.02063628299686, \"translation_dx\": -42.06347070905805, \"translation_dy\": 68.90308226059909, \"scale\": 0.7321107429069119}\nD: {\"rotation_angle\": 33.426384392539006, \"translation_dx\": -12.448609293998487, \"translation_dy\": 64.03367069956386, \"scale\": 0.6340926377236346}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 159.39197876032466, \"translation_dx\": -101.87275621292875, \"translation_dy\": -32.606176111808466, \"scale\": 0.6647290774480178}\nB: {\"rotation_angle\": -123.92621597373325, \"translation_dx\": 115.25994331141689, \"translation_dy\": -45.13111299141354, \"scale\": 1.164470344420729}\nC: {\"rotation_angle\": 95.56102360167273, \"translation_dx\": -57.629857243876444, \"translation_dy\": -95.34824117323305, \"scale\": 0.9533126568708786}\nD: {\"rotation_angle\": -23.247975965134003, \"translation_dx\": 108.97564353658032, \"translation_dy\": 27.267413374938258, \"scale\": 1.2292170424899498}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_12_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_12_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 159.39197876032466, \"translation_dx\": -101.87275621292875, \"translation_dy\": -32.606176111808466, \"scale\": 0.6647290774480178}\nB: {\"rotation_angle\": -123.92621597373325, \"translation_dx\": 115.25994331141689, \"translation_dy\": -45.13111299141354, \"scale\": 1.164470344420729}\nC: {\"rotation_angle\": 95.56102360167273, \"translation_dx\": -57.629857243876444, \"translation_dy\": -95.34824117323305, \"scale\": 0.9533126568708786}\nD: {\"rotation_angle\": -23.247975965134003, \"translation_dx\": 108.97564353658032, \"translation_dy\": 27.267413374938258, \"scale\": 1.2292170424899498}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -124.74198080809023, \"translation_dx\": -48.23531115232953, \"translation_dy\": 52.62526617026404, \"scale\": 1.3484625774406969}\nB: {\"rotation_angle\": 153.24034529323683, \"translation_dx\": -80.95083564593054, \"translation_dy\": 58.17854805068575, \"scale\": 0.8564275095577245}\nC: {\"rotation_angle\": -49.11147497176091, \"translation_dx\": -21.61309921155923, \"translation_dy\": 41.841400081955015, \"scale\": 1.3374733710705384}\nD: {\"rotation_angle\": 110.02825264959768, \"translation_dx\": -53.26387197670213, \"translation_dy\": 88.43864976013427, \"scale\": 1.4833645013101147}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_13_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_13_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -124.74198080809023, \"translation_dx\": -48.23531115232953, \"translation_dy\": 52.62526617026404, \"scale\": 1.3484625774406969}\nB: {\"rotation_angle\": 153.24034529323683, \"translation_dx\": -80.95083564593054, \"translation_dy\": 58.17854805068575, \"scale\": 0.8564275095577245}\nC: {\"rotation_angle\": -49.11147497176091, \"translation_dx\": -21.61309921155923, \"translation_dy\": 41.841400081955015, \"scale\": 1.3374733710705384}\nD: {\"rotation_angle\": 110.02825264959768, \"translation_dx\": -53.26387197670213, \"translation_dy\": 88.43864976013427, \"scale\": 1.4833645013101147}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 173.6372649335733, \"translation_dx\": -7.357207392874017, \"translation_dy\": -51.70776156994498, \"scale\": 1.09720142096939}\nB: {\"rotation_angle\": 84.88997243843744, \"translation_dx\": 19.30269357274682, \"translation_dy\": 9.929350250110147, \"scale\": 1.0595552381550672}\nC: {\"rotation_angle\": -169.57691070181107, \"translation_dx\": 67.3776951722352, \"translation_dy\": 6.393739311338578, \"scale\": 0.8283042543093307}\nD: {\"rotation_angle\": 137.6047485759084, \"translation_dx\": -27.00857214512888, \"translation_dy\": -94.97246325619065, \"scale\": 1.1628545134465245}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_14_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_14_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 173.6372649335733, \"translation_dx\": -7.357207392874017, \"translation_dy\": -51.70776156994498, \"scale\": 1.09720142096939}\nB: {\"rotation_angle\": 84.88997243843744, \"translation_dx\": 19.30269357274682, \"translation_dy\": 9.929350250110147, \"scale\": 1.0595552381550672}\nC: {\"rotation_angle\": -169.57691070181107, \"translation_dx\": 67.3776951722352, \"translation_dy\": 6.393739311338578, \"scale\": 0.8283042543093307}\nD: {\"rotation_angle\": 137.6047485759084, \"translation_dx\": -27.00857214512888, \"translation_dy\": -94.97246325619065, \"scale\": 1.1628545134465245}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 83.49682873903629, \"translation_dx\": -127.2042493945246, \"translation_dy\": 2.6616959584396938, \"scale\": 0.9488759478249397}\nB: {\"rotation_angle\": -51.98717119490195, \"translation_dx\": -83.93544420557635, \"translation_dy\": -17.359661719977098, \"scale\": 1.0858344969275349}\nC: {\"rotation_angle\": 162.9787629733711, \"translation_dx\": 56.68968820785494, \"translation_dy\": 63.47754229449794, \"scale\": 0.7767697180212818}\nD: {\"rotation_angle\": 74.4727172984789, \"translation_dx\": 83.0498783040965, \"translation_dy\": 24.573318419119772, \"scale\": 1.4775593630739356}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_15_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_15_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 83.49682873903629, \"translation_dx\": -127.2042493945246, \"translation_dy\": 2.6616959584396938, \"scale\": 0.9488759478249397}\nB: {\"rotation_angle\": -51.98717119490195, \"translation_dx\": -83.93544420557635, \"translation_dy\": -17.359661719977098, \"scale\": 1.0858344969275349}\nC: {\"rotation_angle\": 162.9787629733711, \"translation_dx\": 56.68968820785494, \"translation_dy\": 63.47754229449794, \"scale\": 0.7767697180212818}\nD: {\"rotation_angle\": 74.4727172984789, \"translation_dx\": 83.0498783040965, \"translation_dy\": 24.573318419119772, \"scale\": 1.4775593630739356}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -32.96407209098831, \"translation_dx\": -27.518946535455143, \"translation_dy\": 2.5370159689679213, \"scale\": 1.259328459428434}\nB: {\"rotation_angle\": -70.18179574394556, \"translation_dx\": -84.02989442213027, \"translation_dy\": 45.46342410564398, \"scale\": 1.28660403831869}\nC: {\"rotation_angle\": 112.15713698429767, \"translation_dx\": -0.833180316164956, \"translation_dy\": -100.57740000976534, \"scale\": 1.21487245494624}\nD: {\"rotation_angle\": -103.24791656906933, \"translation_dx\": -2.2454836983213227, \"translation_dy\": 24.014319900588845, \"scale\": 1.3204557483507742}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_16_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_16_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -32.96407209098831, \"translation_dx\": -27.518946535455143, \"translation_dy\": 2.5370159689679213, \"scale\": 1.259328459428434}\nB: {\"rotation_angle\": -70.18179574394556, \"translation_dx\": -84.02989442213027, \"translation_dy\": 45.46342410564398, \"scale\": 1.28660403831869}\nC: {\"rotation_angle\": 112.15713698429767, \"translation_dx\": -0.833180316164956, \"translation_dy\": -100.57740000976534, \"scale\": 1.21487245494624}\nD: {\"rotation_angle\": -103.24791656906933, \"translation_dx\": -2.2454836983213227, \"translation_dy\": 24.014319900588845, \"scale\": 1.3204557483507742}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -132.6730586187399, \"translation_dx\": -14.723128468316531, \"translation_dy\": -95.44210429834934, \"scale\": 1.0421065600095725}\nB: {\"rotation_angle\": -148.06770236959966, \"translation_dx\": 76.71938731609727, \"translation_dy\": 125.67697929104389, \"scale\": 1.1600663307259453}\nC: {\"rotation_angle\": 46.42160956908356, \"translation_dx\": -90.04619228512212, \"translation_dy\": -15.749486436572411, \"scale\": 1.005156310055277}\nD: {\"rotation_angle\": 32.170058088704565, \"translation_dx\": 62.48780444449932, \"translation_dy\": 36.464458087386475, \"scale\": 0.8338243238440678}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_17_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_17_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -132.6730586187399, \"translation_dx\": -14.723128468316531, \"translation_dy\": -95.44210429834934, \"scale\": 1.0421065600095725}\nB: {\"rotation_angle\": -148.06770236959966, \"translation_dx\": 76.71938731609727, \"translation_dy\": 125.67697929104389, \"scale\": 1.1600663307259453}\nC: {\"rotation_angle\": 46.42160956908356, \"translation_dx\": -90.04619228512212, \"translation_dy\": -15.749486436572411, \"scale\": 1.005156310055277}\nD: {\"rotation_angle\": 32.170058088704565, \"translation_dx\": 62.48780444449932, \"translation_dy\": 36.464458087386475, \"scale\": 0.8338243238440678}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 98.62110540120432, \"translation_dx\": 55.8324503005326, \"translation_dy\": -53.32963696213369, \"scale\": 1.3342375308232577}\nB: {\"rotation_angle\": 133.22970053001933, \"translation_dx\": 30.83867253278636, \"translation_dy\": 9.987607615316023, \"scale\": 0.9746642566652708}\nC: {\"rotation_angle\": -113.69332067912192, \"translation_dx\": -23.005200251858383, \"translation_dy\": 57.916315250854666, \"scale\": 0.5483419258047426}\nD: {\"rotation_angle\": -110.51021822636605, \"translation_dx\": -17.924195571284486, \"translation_dy\": -0.10679752473519954, \"scale\": 1.4066663412939815}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_18_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_18_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 98.62110540120432, \"translation_dx\": 55.8324503005326, \"translation_dy\": -53.32963696213369, \"scale\": 1.3342375308232577}\nB: {\"rotation_angle\": 133.22970053001933, \"translation_dx\": 30.83867253278636, \"translation_dy\": 9.987607615316023, \"scale\": 0.9746642566652708}\nC: {\"rotation_angle\": -113.69332067912192, \"translation_dx\": -23.005200251858383, \"translation_dy\": 57.916315250854666, \"scale\": 0.5483419258047426}\nD: {\"rotation_angle\": -110.51021822636605, \"translation_dx\": -17.924195571284486, \"translation_dy\": -0.10679752473519954, \"scale\": 1.4066663412939815}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 98.12478073081388, \"translation_dx\": 82.24255679101596, \"translation_dy\": 10.638794739410258, \"scale\": 1.454613875934863}\nB: {\"rotation_angle\": -100.94596249363259, \"translation_dx\": 18.493532966543597, \"translation_dy\": -4.904135882610319, \"scale\": 1.1575890826518318}\nC: {\"rotation_angle\": 159.39197876032466, \"translation_dx\": -101.87275621292875, \"translation_dy\": -32.606176111808466, \"scale\": 0.6647290774480178}\nD: {\"rotation_angle\": -16.878745814478265, \"translation_dx\": -68.86659110743665, \"translation_dy\": -98.54142762965468, \"scale\": 1.2648663928919022}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_19_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_19_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 98.12478073081388, \"translation_dx\": 82.24255679101596, \"translation_dy\": 10.638794739410258, \"scale\": 1.454613875934863}\nB: {\"rotation_angle\": -100.94596249363259, \"translation_dx\": 18.493532966543597, \"translation_dy\": -4.904135882610319, \"scale\": 1.1575890826518318}\nC: {\"rotation_angle\": 159.39197876032466, \"translation_dx\": -101.87275621292875, \"translation_dy\": -32.606176111808466, \"scale\": 0.6647290774480178}\nD: {\"rotation_angle\": -16.878745814478265, \"translation_dx\": -68.86659110743665, \"translation_dy\": -98.54142762965468, \"scale\": 1.2648663928919022}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 47.16467358014893, \"translation_dx\": -87.19318159487975, \"translation_dy\": -49.56686010575127, \"scale\": 1.2416587716965684}\nB: {\"rotation_angle\": 95.69634927891752, \"translation_dx\": -96.46148729426875, \"translation_dy\": -25.496381966922478, \"scale\": 0.7479348241153333}\nC: {\"rotation_angle\": -152.40502323992493, \"translation_dx\": -0.6096313646742146, \"translation_dy\": 26.2224872549711, \"scale\": 0.6008305458537412}\nD: {\"rotation_angle\": -126.15991399279281, \"translation_dx\": 24.895638463286446, \"translation_dy\": -35.71086816730676, \"scale\": 1.30648936857296}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_20_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_20_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 47.16467358014893, \"translation_dx\": -87.19318159487975, \"translation_dy\": -49.56686010575127, \"scale\": 1.2416587716965684}\nB: {\"rotation_angle\": 95.69634927891752, \"translation_dx\": -96.46148729426875, \"translation_dy\": -25.496381966922478, \"scale\": 0.7479348241153333}\nC: {\"rotation_angle\": -152.40502323992493, \"translation_dx\": -0.6096313646742146, \"translation_dy\": 26.2224872549711, \"scale\": 0.6008305458537412}\nD: {\"rotation_angle\": -126.15991399279281, \"translation_dx\": 24.895638463286446, \"translation_dy\": -35.71086816730676, \"scale\": 1.30648936857296}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 137.6047485759084, \"translation_dx\": -27.00857214512888, \"translation_dy\": -94.97246325619065, \"scale\": 1.1628545134465245}\nB: {\"rotation_angle\": 53.86809011441332, \"translation_dx\": -15.131168518097624, \"translation_dy\": -31.300037391593577, \"scale\": 1.3154620606808156}\nC: {\"rotation_angle\": 44.2601421515034, \"translation_dx\": -84.9832744911761, \"translation_dy\": -78.07982572554322, \"scale\": 0.5612120736859965}\nD: {\"rotation_angle\": -72.82027143369304, \"translation_dx\": -44.85481158127062, \"translation_dy\": 106.69131407191517, \"scale\": 0.716080341101258}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_21_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_21_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 137.6047485759084, \"translation_dx\": -27.00857214512888, \"translation_dy\": -94.97246325619065, \"scale\": 1.1628545134465245}\nB: {\"rotation_angle\": 53.86809011441332, \"translation_dx\": -15.131168518097624, \"translation_dy\": -31.300037391593577, \"scale\": 1.3154620606808156}\nC: {\"rotation_angle\": 44.2601421515034, \"translation_dx\": -84.9832744911761, \"translation_dy\": -78.07982572554322, \"scale\": 0.5612120736859965}\nD: {\"rotation_angle\": -72.82027143369304, \"translation_dx\": -44.85481158127062, \"translation_dy\": 106.69131407191517, \"scale\": 0.716080341101258}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -70.97525301082955, \"translation_dx\": -28.380848037876873, \"translation_dy\": 54.37723426674512, \"scale\": 0.9024922197892329}\nB: {\"rotation_angle\": 148.22875373623708, \"translation_dx\": 53.75338658972072, \"translation_dy\": -63.78583022927253, \"scale\": 0.9304836306567924}\nC: {\"rotation_angle\": -162.31682909306286, \"translation_dx\": 94.60975693720637, \"translation_dy\": -28.569332128995313, \"scale\": 1.1251281587345527}\nD: {\"rotation_angle\": 127.0599036632886, \"translation_dx\": -26.73103881794438, \"translation_dy\": 16.785326739741976, \"scale\": 1.1214331244941351}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_22_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_22_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -70.97525301082955, \"translation_dx\": -28.380848037876873, \"translation_dy\": 54.37723426674512, \"scale\": 0.9024922197892329}\nB: {\"rotation_angle\": 148.22875373623708, \"translation_dx\": 53.75338658972072, \"translation_dy\": -63.78583022927253, \"scale\": 0.9304836306567924}\nC: {\"rotation_angle\": -162.31682909306286, \"translation_dx\": 94.60975693720637, \"translation_dy\": -28.569332128995313, \"scale\": 1.1251281587345527}\nD: {\"rotation_angle\": 127.0599036632886, \"translation_dx\": -26.73103881794438, \"translation_dy\": 16.785326739741976, \"scale\": 1.1214331244941351}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -162.31682909306286, \"translation_dx\": 94.60975693720637, \"translation_dy\": -28.569332128995313, \"scale\": 1.1251281587345527}\nB: {\"rotation_angle\": 168.86687879669455, \"translation_dx\": 30.327287286076626, \"translation_dy\": -73.84263373893171, \"scale\": 1.0887904122788439}\nC: {\"rotation_angle\": -126.23248080179604, \"translation_dx\": -18.04313623288388, \"translation_dy\": 59.052880720386156, \"scale\": 1.3827835175940266}\nD: {\"rotation_angle\": 95.69634927891752, \"translation_dx\": -96.46148729426875, \"translation_dy\": -25.496381966922478, \"scale\": 0.7479348241153333}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_23_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_23_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -162.31682909306286, \"translation_dx\": 94.60975693720637, \"translation_dy\": -28.569332128995313, \"scale\": 1.1251281587345527}\nB: {\"rotation_angle\": 168.86687879669455, \"translation_dx\": 30.327287286076626, \"translation_dy\": -73.84263373893171, \"scale\": 1.0887904122788439}\nC: {\"rotation_angle\": -126.23248080179604, \"translation_dx\": -18.04313623288388, \"translation_dy\": 59.052880720386156, \"scale\": 1.3827835175940266}\nD: {\"rotation_angle\": 95.69634927891752, \"translation_dx\": -96.46148729426875, \"translation_dy\": -25.496381966922478, \"scale\": 0.7479348241153333}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -137.69315675508605, \"translation_dx\": -14.965017175186233, \"translation_dy\": 28.85856493302694, \"scale\": 0.6970825252863025}\nB: {\"rotation_angle\": -115.34417090075787, \"translation_dx\": -118.63121430094503, \"translation_dy\": 41.63412082488844, \"scale\": 0.9001856788272352}\nC: {\"rotation_angle\": 159.18509857624855, \"translation_dx\": 94.5972413522399, \"translation_dy\": -87.01463724053234, \"scale\": 0.7914176569510836}\nD: {\"rotation_angle\": 78.52234880801677, \"translation_dx\": -41.05806913924104, \"translation_dy\": -5.158893155372851, \"scale\": 1.0182841116233097}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_24_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_24_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -137.69315675508605, \"translation_dx\": -14.965017175186233, \"translation_dy\": 28.85856493302694, \"scale\": 0.6970825252863025}\nB: {\"rotation_angle\": -115.34417090075787, \"translation_dx\": -118.63121430094503, \"translation_dy\": 41.63412082488844, \"scale\": 0.9001856788272352}\nC: {\"rotation_angle\": 159.18509857624855, \"translation_dx\": 94.5972413522399, \"translation_dy\": -87.01463724053234, \"scale\": 0.7914176569510836}\nD: {\"rotation_angle\": 78.52234880801677, \"translation_dx\": -41.05806913924104, \"translation_dy\": -5.158893155372851, \"scale\": 1.0182841116233097}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -13.219279868292688, \"translation_dx\": -95.87022677446828, \"translation_dy\": -58.31347876468597, \"scale\": 1.3722022398508045}\nB: {\"rotation_angle\": 26.051749493295517, \"translation_dx\": 8.674153667650117, \"translation_dy\": 81.98381249796742, \"scale\": 1.4721363798843865}\nC: {\"rotation_angle\": 28.728757892682808, \"translation_dx\": 12.065384659700086, \"translation_dy\": -119.64549643343977, \"scale\": 1.126100132224236}\nD: {\"rotation_angle\": 28.728757892682808, \"translation_dx\": 12.065384659700086, \"translation_dy\": -119.64549643343977, \"scale\": 1.126100132224236}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_25_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_25_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -13.219279868292688, \"translation_dx\": -95.87022677446828, \"translation_dy\": -58.31347876468597, \"scale\": 1.3722022398508045}\nB: {\"rotation_angle\": 26.051749493295517, \"translation_dx\": 8.674153667650117, \"translation_dy\": 81.98381249796742, \"scale\": 1.4721363798843865}\nC: {\"rotation_angle\": 28.728757892682808, \"translation_dx\": 12.065384659700086, \"translation_dy\": -119.64549643343977, \"scale\": 1.126100132224236}\nD: {\"rotation_angle\": 28.728757892682808, \"translation_dx\": 12.065384659700086, \"translation_dy\": -119.64549643343977, \"scale\": 1.126100132224236}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 139.13421797404374, \"translation_dx\": -107.62188977651758, \"translation_dy\": -65.35657968686931, \"scale\": 0.569575564082204}\nB: {\"rotation_angle\": 134.22497079750707, \"translation_dx\": -56.33244292094708, \"translation_dy\": 12.15417280277697, \"scale\": 1.260404381889235}\nC: {\"rotation_angle\": 64.33574528550244, \"translation_dx\": -83.09111528364858, \"translation_dy\": 12.26726314152404, \"scale\": 0.7845370507816389}\nD: {\"rotation_angle\": -78.36766094840773, \"translation_dx\": -86.41466180609471, \"translation_dy\": 63.19530077419013, \"scale\": 0.608403973907593}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_26_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_26_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 139.13421797404374, \"translation_dx\": -107.62188977651758, \"translation_dy\": -65.35657968686931, \"scale\": 0.569575564082204}\nB: {\"rotation_angle\": 134.22497079750707, \"translation_dx\": -56.33244292094708, \"translation_dy\": 12.15417280277697, \"scale\": 1.260404381889235}\nC: {\"rotation_angle\": 64.33574528550244, \"translation_dx\": -83.09111528364858, \"translation_dy\": 12.26726314152404, \"scale\": 0.7845370507816389}\nD: {\"rotation_angle\": -78.36766094840773, \"translation_dx\": -86.41466180609471, \"translation_dy\": 63.19530077419013, \"scale\": 0.608403973907593}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 51.652651058291696, \"translation_dx\": -79.60059266318888, \"translation_dy\": 40.24223939512936, \"scale\": 1.045377495061187}\nB: {\"rotation_angle\": 64.33574528550244, \"translation_dx\": -83.09111528364858, \"translation_dy\": 12.26726314152404, \"scale\": 0.7845370507816389}\nC: {\"rotation_angle\": 106.62912259997893, \"translation_dx\": -62.19399566166837, \"translation_dy\": -63.078041204745844, \"scale\": 1.4577244189370733}\nD: {\"rotation_angle\": -44.902472769484746, \"translation_dx\": -36.85475324083902, \"translation_dy\": 36.81692000181951, \"scale\": 1.0769710077370194}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_27_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_27_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 51.652651058291696, \"translation_dx\": -79.60059266318888, \"translation_dy\": 40.24223939512936, \"scale\": 1.045377495061187}\nB: {\"rotation_angle\": 64.33574528550244, \"translation_dx\": -83.09111528364858, \"translation_dy\": 12.26726314152404, \"scale\": 0.7845370507816389}\nC: {\"rotation_angle\": 106.62912259997893, \"translation_dx\": -62.19399566166837, \"translation_dy\": -63.078041204745844, \"scale\": 1.4577244189370733}\nD: {\"rotation_angle\": -44.902472769484746, \"translation_dx\": -36.85475324083902, \"translation_dy\": 36.81692000181951, \"scale\": 1.0769710077370194}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 127.1396993936072, \"translation_dx\": -29.08894824101361, \"translation_dy\": -80.84475014775404, \"scale\": 1.2834497894588772}\nB: {\"rotation_angle\": -169.57691070181107, \"translation_dx\": 67.3776951722352, \"translation_dy\": 6.393739311338578, \"scale\": 0.8283042543093307}\nC: {\"rotation_angle\": 153.24034529323683, \"translation_dx\": -80.95083564593054, \"translation_dy\": 58.17854805068575, \"scale\": 0.8564275095577245}\nD: {\"rotation_angle\": -147.17742740700606, \"translation_dx\": 99.79022385553455, \"translation_dy\": -46.32888217161055, \"scale\": 1.2561938294527635}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_28_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_28_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 127.1396993936072, \"translation_dx\": -29.08894824101361, \"translation_dy\": -80.84475014775404, \"scale\": 1.2834497894588772}\nB: {\"rotation_angle\": -169.57691070181107, \"translation_dx\": 67.3776951722352, \"translation_dy\": 6.393739311338578, \"scale\": 0.8283042543093307}\nC: {\"rotation_angle\": 153.24034529323683, \"translation_dx\": -80.95083564593054, \"translation_dy\": 58.17854805068575, \"scale\": 0.8564275095577245}\nD: {\"rotation_angle\": -147.17742740700606, \"translation_dx\": 99.79022385553455, \"translation_dy\": -46.32888217161055, \"scale\": 1.2561938294527635}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -137.58016126496426, \"translation_dx\": 45.631572391068715, \"translation_dy\": -54.72741054396442, \"scale\": 1.391656794638211}\nB: {\"rotation_angle\": -37.8135886633452, \"translation_dx\": 94.09848811207868, \"translation_dy\": -28.846940165704815, \"scale\": 0.7423292461324351}\nC: {\"rotation_angle\": -97.38730278840897, \"translation_dx\": 79.58431404822528, \"translation_dy\": -65.17570525641105, \"scale\": 0.8501057849742453}\nD: {\"rotation_angle\": -84.90425841207441, \"translation_dx\": -96.22975116611923, \"translation_dy\": -54.13037688992304, \"scale\": 1.161476925450186}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_29_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_29_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -137.58016126496426, \"translation_dx\": 45.631572391068715, \"translation_dy\": -54.72741054396442, \"scale\": 1.391656794638211}\nB: {\"rotation_angle\": -37.8135886633452, \"translation_dx\": 94.09848811207868, \"translation_dy\": -28.846940165704815, \"scale\": 0.7423292461324351}\nC: {\"rotation_angle\": -97.38730278840897, \"translation_dx\": 79.58431404822528, \"translation_dy\": -65.17570525641105, \"scale\": 0.8501057849742453}\nD: {\"rotation_angle\": -84.90425841207441, \"translation_dx\": -96.22975116611923, \"translation_dy\": -54.13037688992304, \"scale\": 1.161476925450186}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 18.52926347539298, \"translation_dx\": -26.155433185237058, \"translation_dy\": -39.799299198218556, \"scale\": 0.9355127285855813}\nB: {\"rotation_angle\": -79.55706788063112, \"translation_dx\": -38.613403166877674, \"translation_dy\": 48.56888435185245, \"scale\": 1.368947012195521}\nC: {\"rotation_angle\": -113.69332067912192, \"translation_dx\": -23.005200251858383, \"translation_dy\": 57.916315250854666, \"scale\": 0.5483419258047426}\nD: {\"rotation_angle\": -32.057796286961064, \"translation_dx\": 119.50392135854452, \"translation_dy\": -17.786253698900993, \"scale\": 1.4583062003808291}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_30_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_30_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 18.52926347539298, \"translation_dx\": -26.155433185237058, \"translation_dy\": -39.799299198218556, \"scale\": 0.9355127285855813}\nB: {\"rotation_angle\": -79.55706788063112, \"translation_dx\": -38.613403166877674, \"translation_dy\": 48.56888435185245, \"scale\": 1.368947012195521}\nC: {\"rotation_angle\": -113.69332067912192, \"translation_dx\": -23.005200251858383, \"translation_dy\": 57.916315250854666, \"scale\": 0.5483419258047426}\nD: {\"rotation_angle\": -32.057796286961064, \"translation_dx\": 119.50392135854452, \"translation_dy\": -17.786253698900993, \"scale\": 1.4583062003808291}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -127.03310490562403, \"translation_dx\": -44.497972498107885, \"translation_dy\": 53.252184804163164, \"scale\": 0.8807762361133948}\nB: {\"rotation_angle\": 2.6800660606496933, \"translation_dx\": 8.805898944242955, \"translation_dy\": -61.557448223727356, \"scale\": 0.7338009245004858}\nC: {\"rotation_angle\": 47.16467358014893, \"translation_dx\": -87.19318159487975, \"translation_dy\": -49.56686010575127, \"scale\": 1.2416587716965684}\nD: {\"rotation_angle\": 153.24034529323683, \"translation_dx\": -80.95083564593054, \"translation_dy\": 58.17854805068575, \"scale\": 0.8564275095577245}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_31_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_31_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -127.03310490562403, \"translation_dx\": -44.497972498107885, \"translation_dy\": 53.252184804163164, \"scale\": 0.8807762361133948}\nB: {\"rotation_angle\": 2.6800660606496933, \"translation_dx\": 8.805898944242955, \"translation_dy\": -61.557448223727356, \"scale\": 0.7338009245004858}\nC: {\"rotation_angle\": 47.16467358014893, \"translation_dx\": -87.19318159487975, \"translation_dy\": -49.56686010575127, \"scale\": 1.2416587716965684}\nD: {\"rotation_angle\": 153.24034529323683, \"translation_dx\": -80.95083564593054, \"translation_dy\": 58.17854805068575, \"scale\": 0.8564275095577245}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 160.04018122869564, \"translation_dx\": -10.031879581871024, \"translation_dy\": 74.10075881851205, \"scale\": 0.8976020445815951}\nB: {\"rotation_angle\": -131.1795029858263, \"translation_dx\": 17.908074544940433, \"translation_dy\": 120.17637833747304, \"scale\": 0.9471882483559888}\nC: {\"rotation_angle\": 104.66960596229086, \"translation_dx\": 122.9579606372167, \"translation_dy\": -32.21502556645471, \"scale\": 0.5791563638149022}\nD: {\"rotation_angle\": -117.26843352521382, \"translation_dx\": 17.28573283600312, \"translation_dy\": -92.45781352854672, \"scale\": 1.478727361005855}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_32_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_32_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 160.04018122869564, \"translation_dx\": -10.031879581871024, \"translation_dy\": 74.10075881851205, \"scale\": 0.8976020445815951}\nB: {\"rotation_angle\": -131.1795029858263, \"translation_dx\": 17.908074544940433, \"translation_dy\": 120.17637833747304, \"scale\": 0.9471882483559888}\nC: {\"rotation_angle\": 104.66960596229086, \"translation_dx\": 122.9579606372167, \"translation_dy\": -32.21502556645471, \"scale\": 0.5791563638149022}\nD: {\"rotation_angle\": -117.26843352521382, \"translation_dx\": 17.28573283600312, \"translation_dy\": -92.45781352854672, \"scale\": 1.478727361005855}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 33.36657735274014, \"translation_dx\": -110.42271839281483, \"translation_dy\": 35.783043595963875, \"scale\": 1.1017945125321793}\nB: {\"rotation_angle\": -153.95647753312159, \"translation_dx\": 64.08546266437509, \"translation_dy\": -34.554486291313935, \"scale\": 1.423360690418288}\nC: {\"rotation_angle\": 162.98131081099467, \"translation_dx\": -80.19473687776261, \"translation_dy\": -17.70282064458462, \"scale\": 1.2855975600149028}\nD: {\"rotation_angle\": 127.0599036632886, \"translation_dx\": -26.73103881794438, \"translation_dy\": 16.785326739741976, \"scale\": 1.1214331244941351}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_33_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_33_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 33.36657735274014, \"translation_dx\": -110.42271839281483, \"translation_dy\": 35.783043595963875, \"scale\": 1.1017945125321793}\nB: {\"rotation_angle\": -153.95647753312159, \"translation_dx\": 64.08546266437509, \"translation_dy\": -34.554486291313935, \"scale\": 1.423360690418288}\nC: {\"rotation_angle\": 162.98131081099467, \"translation_dx\": -80.19473687776261, \"translation_dy\": -17.70282064458462, \"scale\": 1.2855975600149028}\nD: {\"rotation_angle\": 127.0599036632886, \"translation_dx\": -26.73103881794438, \"translation_dy\": 16.785326739741976, \"scale\": 1.1214331244941351}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -13.219279868292688, \"translation_dx\": -95.87022677446828, \"translation_dy\": -58.31347876468597, \"scale\": 1.3722022398508045}\nB: {\"rotation_angle\": -92.49508697379828, \"translation_dx\": 63.09853740086383, \"translation_dy\": 99.47995409556995, \"scale\": 0.9495145406508286}\nC: {\"rotation_angle\": 8.705969178532513, \"translation_dx\": -108.98578445869327, \"translation_dy\": -85.91179454441009, \"scale\": 0.5132717751865925}\nD: {\"rotation_angle\": 72.25092677282458, \"translation_dx\": 61.389740502873025, \"translation_dy\": -36.86538640455047, \"scale\": 1.0748600769835353}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_34_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_34_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -13.219279868292688, \"translation_dx\": -95.87022677446828, \"translation_dy\": -58.31347876468597, \"scale\": 1.3722022398508045}\nB: {\"rotation_angle\": -92.49508697379828, \"translation_dx\": 63.09853740086383, \"translation_dy\": 99.47995409556995, \"scale\": 0.9495145406508286}\nC: {\"rotation_angle\": 8.705969178532513, \"translation_dx\": -108.98578445869327, \"translation_dy\": -85.91179454441009, \"scale\": 0.5132717751865925}\nD: {\"rotation_angle\": 72.25092677282458, \"translation_dx\": 61.389740502873025, \"translation_dy\": -36.86538640455047, \"scale\": 1.0748600769835353}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -8.756342422911757, \"translation_dx\": -120.12147874311805, \"translation_dy\": -16.659510954699698, \"scale\": 0.8471832394055047}\nB: {\"rotation_angle\": 88.55038325147228, \"translation_dx\": -17.272344447388633, \"translation_dy\": -67.72549137992362, \"scale\": 0.5810098703790367}\nC: {\"rotation_angle\": 1.3693998936690264, \"translation_dx\": -71.94174431428723, \"translation_dy\": 25.661133958182248, \"scale\": 1.468813327861592}\nD: {\"rotation_angle\": 170.5673161572617, \"translation_dx\": -54.14309140946517, \"translation_dy\": -20.9067824061149, \"scale\": 0.74080987054586}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_35_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_35_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -8.756342422911757, \"translation_dx\": -120.12147874311805, \"translation_dy\": -16.659510954699698, \"scale\": 0.8471832394055047}\nB: {\"rotation_angle\": 88.55038325147228, \"translation_dx\": -17.272344447388633, \"translation_dy\": -67.72549137992362, \"scale\": 0.5810098703790367}\nC: {\"rotation_angle\": 1.3693998936690264, \"translation_dx\": -71.94174431428723, \"translation_dy\": 25.661133958182248, \"scale\": 1.468813327861592}\nD: {\"rotation_angle\": 170.5673161572617, \"translation_dx\": -54.14309140946517, \"translation_dy\": -20.9067824061149, \"scale\": 0.74080987054586}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -41.748048059314925, \"translation_dx\": 84.2495675740148, \"translation_dy\": -81.02778113177463, \"scale\": 1.207158201764622}\nB: {\"rotation_angle\": 120.9888581359325, \"translation_dx\": 2.43720894071744, \"translation_dy\": -7.865691814940682, \"scale\": 0.5519813971136048}\nC: {\"rotation_angle\": 52.0207999596704, \"translation_dx\": 62.052266940503074, \"translation_dy\": 15.318990484280505, \"scale\": 1.1445040102422772}\nD: {\"rotation_angle\": 115.16030768984217, \"translation_dx\": -1.9669547188467504, \"translation_dy\": 38.42152609256746, \"scale\": 1.3403221872922475}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_36_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_36_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -41.748048059314925, \"translation_dx\": 84.2495675740148, \"translation_dy\": -81.02778113177463, \"scale\": 1.207158201764622}\nB: {\"rotation_angle\": 120.9888581359325, \"translation_dx\": 2.43720894071744, \"translation_dy\": -7.865691814940682, \"scale\": 0.5519813971136048}\nC: {\"rotation_angle\": 52.0207999596704, \"translation_dx\": 62.052266940503074, \"translation_dy\": 15.318990484280505, \"scale\": 1.1445040102422772}\nD: {\"rotation_angle\": 115.16030768984217, \"translation_dx\": -1.9669547188467504, \"translation_dy\": 38.42152609256746, \"scale\": 1.3403221872922475}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 130.382151153576, \"translation_dx\": 48.77925626504499, \"translation_dy\": 54.89982459749416, \"scale\": 1.3647831130001666}\nB: {\"rotation_angle\": -126.15991399279281, \"translation_dx\": 24.895638463286446, \"translation_dy\": -35.71086816730676, \"scale\": 1.30648936857296}\nC: {\"rotation_angle\": -15.445234303955033, \"translation_dx\": 52.656313993324545, \"translation_dy\": 4.243768644047549, \"scale\": 0.8747335302455691}\nD: {\"rotation_angle\": -132.6730586187399, \"translation_dx\": -14.723128468316531, \"translation_dy\": -95.44210429834934, \"scale\": 1.0421065600095725}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_37_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_37_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 130.382151153576, \"translation_dx\": 48.77925626504499, \"translation_dy\": 54.89982459749416, \"scale\": 1.3647831130001666}\nB: {\"rotation_angle\": -126.15991399279281, \"translation_dx\": 24.895638463286446, \"translation_dy\": -35.71086816730676, \"scale\": 1.30648936857296}\nC: {\"rotation_angle\": -15.445234303955033, \"translation_dx\": 52.656313993324545, \"translation_dy\": 4.243768644047549, \"scale\": 0.8747335302455691}\nD: {\"rotation_angle\": -132.6730586187399, \"translation_dx\": -14.723128468316531, \"translation_dy\": -95.44210429834934, \"scale\": 1.0421065600095725}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -97.38730278840897, \"translation_dx\": 79.58431404822528, \"translation_dy\": -65.17570525641105, \"scale\": 0.8501057849742453}\nB: {\"rotation_angle\": 120.9888581359325, \"translation_dx\": 2.43720894071744, \"translation_dy\": -7.865691814940682, \"scale\": 0.5519813971136048}\nC: {\"rotation_angle\": -53.475823147809436, \"translation_dx\": -52.11444637245131, \"translation_dy\": -7.974464084606126, \"scale\": 1.302004904680502}\nD: {\"rotation_angle\": 178.3015459217881, \"translation_dx\": 2.1592483018484785, \"translation_dy\": -86.15095567396924, \"scale\": 1.206185814877298}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_38_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_38_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -97.38730278840897, \"translation_dx\": 79.58431404822528, \"translation_dy\": -65.17570525641105, \"scale\": 0.8501057849742453}\nB: {\"rotation_angle\": 120.9888581359325, \"translation_dx\": 2.43720894071744, \"translation_dy\": -7.865691814940682, \"scale\": 0.5519813971136048}\nC: {\"rotation_angle\": -53.475823147809436, \"translation_dx\": -52.11444637245131, \"translation_dy\": -7.974464084606126, \"scale\": 1.302004904680502}\nD: {\"rotation_angle\": 178.3015459217881, \"translation_dx\": 2.1592483018484785, \"translation_dy\": -86.15095567396924, \"scale\": 1.206185814877298}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -81.11314702551758, \"translation_dx\": -115.5554336511824, \"translation_dy\": 81.04425747964075, \"scale\": 0.8604764063335847}\nB: {\"rotation_angle\": 32.170058088704565, \"translation_dx\": 62.48780444449932, \"translation_dy\": 36.464458087386475, \"scale\": 0.8338243238440678}\nC: {\"rotation_angle\": 22.924180775031914, \"translation_dx\": 8.278066534063711, \"translation_dy\": 39.03722404706397, \"scale\": 0.6972670428813228}\nD: {\"rotation_angle\": 163.34031080178892, \"translation_dx\": -21.567151354845635, \"translation_dy\": -30.72615389540148, \"scale\": 1.2439888416024685}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_39_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_39_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -81.11314702551758, \"translation_dx\": -115.5554336511824, \"translation_dy\": 81.04425747964075, \"scale\": 0.8604764063335847}\nB: {\"rotation_angle\": 32.170058088704565, \"translation_dx\": 62.48780444449932, \"translation_dy\": 36.464458087386475, \"scale\": 0.8338243238440678}\nC: {\"rotation_angle\": 22.924180775031914, \"translation_dx\": 8.278066534063711, \"translation_dy\": 39.03722404706397, \"scale\": 0.6972670428813228}\nD: {\"rotation_angle\": 163.34031080178892, \"translation_dx\": -21.567151354845635, \"translation_dy\": -30.72615389540148, \"scale\": 1.2439888416024685}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -79.27003163090343, \"translation_dx\": 8.207736130313549, \"translation_dy\": 6.670417118750038, \"scale\": 1.3327657238113826}\nB: {\"rotation_angle\": -78.36766094840773, \"translation_dx\": -86.41466180609471, \"translation_dy\": 63.19530077419013, \"scale\": 0.608403973907593}\nC: {\"rotation_angle\": 49.90656423603761, \"translation_dx\": 85.27067294320437, \"translation_dy\": -8.928665399863448, \"scale\": 0.9370060594249733}\nD: {\"rotation_angle\": -72.82027143369304, \"translation_dx\": -44.85481158127062, \"translation_dy\": 106.69131407191517, \"scale\": 0.716080341101258}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_40_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_40_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -79.27003163090343, \"translation_dx\": 8.207736130313549, \"translation_dy\": 6.670417118750038, \"scale\": 1.3327657238113826}\nB: {\"rotation_angle\": -78.36766094840773, \"translation_dx\": -86.41466180609471, \"translation_dy\": 63.19530077419013, \"scale\": 0.608403973907593}\nC: {\"rotation_angle\": 49.90656423603761, \"translation_dx\": 85.27067294320437, \"translation_dy\": -8.928665399863448, \"scale\": 0.9370060594249733}\nD: {\"rotation_angle\": -72.82027143369304, \"translation_dx\": -44.85481158127062, \"translation_dy\": 106.69131407191517, \"scale\": 0.716080341101258}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -161.22593365548192, \"translation_dx\": -119.73961882572601, \"translation_dy\": -93.50838821854722, \"scale\": 1.4476413063179399}\nB: {\"rotation_angle\": 52.0207999596704, \"translation_dx\": 62.052266940503074, \"translation_dy\": 15.318990484280505, \"scale\": 1.1445040102422772}\nC: {\"rotation_angle\": -98.17490649350026, \"translation_dx\": 5.744855173473269, \"translation_dy\": -10.705504600001973, \"scale\": 1.1182428392253487}\nD: {\"rotation_angle\": 159.25105466068987, \"translation_dx\": -126.35420360425098, \"translation_dy\": -17.54721978726404, \"scale\": 1.4952435062275256}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_41_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_41_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -161.22593365548192, \"translation_dx\": -119.73961882572601, \"translation_dy\": -93.50838821854722, \"scale\": 1.4476413063179399}\nB: {\"rotation_angle\": 52.0207999596704, \"translation_dx\": 62.052266940503074, \"translation_dy\": 15.318990484280505, \"scale\": 1.1445040102422772}\nC: {\"rotation_angle\": -98.17490649350026, \"translation_dx\": 5.744855173473269, \"translation_dy\": -10.705504600001973, \"scale\": 1.1182428392253487}\nD: {\"rotation_angle\": 159.25105466068987, \"translation_dx\": -126.35420360425098, \"translation_dy\": -17.54721978726404, \"scale\": 1.4952435062275256}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -98.17490649350026, \"translation_dx\": 5.744855173473269, \"translation_dy\": -10.705504600001973, \"scale\": 1.1182428392253487}\nB: {\"rotation_angle\": -137.69315675508605, \"translation_dx\": -14.965017175186233, \"translation_dy\": 28.85856493302694, \"scale\": 0.6970825252863025}\nC: {\"rotation_angle\": -61.308258156024195, \"translation_dx\": -92.42627707406731, \"translation_dy\": -21.076199203141364, \"scale\": 1.1133621977071444}\nD: {\"rotation_angle\": -22.98450105670534, \"translation_dx\": -24.343109907781525, \"translation_dy\": -75.50859401578859, \"scale\": 0.5077440368943875}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_42_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_42_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -98.17490649350026, \"translation_dx\": 5.744855173473269, \"translation_dy\": -10.705504600001973, \"scale\": 1.1182428392253487}\nB: {\"rotation_angle\": -137.69315675508605, \"translation_dx\": -14.965017175186233, \"translation_dy\": 28.85856493302694, \"scale\": 0.6970825252863025}\nC: {\"rotation_angle\": -61.308258156024195, \"translation_dx\": -92.42627707406731, \"translation_dy\": -21.076199203141364, \"scale\": 1.1133621977071444}\nD: {\"rotation_angle\": -22.98450105670534, \"translation_dx\": -24.343109907781525, \"translation_dy\": -75.50859401578859, \"scale\": 0.5077440368943875}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -169.57691070181107, \"translation_dx\": 67.3776951722352, \"translation_dy\": 6.393739311338578, \"scale\": 0.8283042543093307}\nB: {\"rotation_angle\": -101.64893396855386, \"translation_dx\": -96.08306753711838, \"translation_dy\": 14.852477797043775, \"scale\": 1.3017377870800058}\nC: {\"rotation_angle\": -100.94596249363259, \"translation_dx\": 18.493532966543597, \"translation_dy\": -4.904135882610319, \"scale\": 1.1575890826518318}\nD: {\"rotation_angle\": -35.37165300247324, \"translation_dx\": -51.674784510203665, \"translation_dy\": 35.0550301640573, \"scale\": 1.181842779166554}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_43_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_43_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -169.57691070181107, \"translation_dx\": 67.3776951722352, \"translation_dy\": 6.393739311338578, \"scale\": 0.8283042543093307}\nB: {\"rotation_angle\": -101.64893396855386, \"translation_dx\": -96.08306753711838, \"translation_dy\": 14.852477797043775, \"scale\": 1.3017377870800058}\nC: {\"rotation_angle\": -100.94596249363259, \"translation_dx\": 18.493532966543597, \"translation_dy\": -4.904135882610319, \"scale\": 1.1575890826518318}\nD: {\"rotation_angle\": -35.37165300247324, \"translation_dx\": -51.674784510203665, \"translation_dy\": 35.0550301640573, \"scale\": 1.181842779166554}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -103.5561502427767, \"translation_dx\": -75.76940431238745, \"translation_dy\": -48.3479107136017, \"scale\": 1.0522987713432983}\nB: {\"rotation_angle\": -95.56761680572791, \"translation_dx\": -92.07587430861633, \"translation_dy\": -64.18919222058364, \"scale\": 1.033728049154846}\nC: {\"rotation_angle\": 112.15713698429767, \"translation_dx\": -0.833180316164956, \"translation_dy\": -100.57740000976534, \"scale\": 1.21487245494624}\nD: {\"rotation_angle\": 153.24034529323683, \"translation_dx\": -80.95083564593054, \"translation_dy\": 58.17854805068575, \"scale\": 0.8564275095577245}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_44_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_44_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -103.5561502427767, \"translation_dx\": -75.76940431238745, \"translation_dy\": -48.3479107136017, \"scale\": 1.0522987713432983}\nB: {\"rotation_angle\": -95.56761680572791, \"translation_dx\": -92.07587430861633, \"translation_dy\": -64.18919222058364, \"scale\": 1.033728049154846}\nC: {\"rotation_angle\": 112.15713698429767, \"translation_dx\": -0.833180316164956, \"translation_dy\": -100.57740000976534, \"scale\": 1.21487245494624}\nD: {\"rotation_angle\": 153.24034529323683, \"translation_dx\": -80.95083564593054, \"translation_dy\": 58.17854805068575, \"scale\": 0.8564275095577245}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 97.63348280388993, \"translation_dx\": 59.62332527691919, \"translation_dy\": 12.549462794922746, \"scale\": 0.6927080624806098}\nB: {\"rotation_angle\": -127.03310490562403, \"translation_dx\": -44.497972498107885, \"translation_dy\": 53.252184804163164, \"scale\": 0.8807762361133948}\nC: {\"rotation_angle\": -13.219279868292688, \"translation_dx\": -95.87022677446828, \"translation_dy\": -58.31347876468597, \"scale\": 1.3722022398508045}\nD: {\"rotation_angle\": -14.958482221349612, \"translation_dx\": 49.62118662103501, \"translation_dy\": -13.943537967490855, \"scale\": 1.489574484959727}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_45_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_45_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 97.63348280388993, \"translation_dx\": 59.62332527691919, \"translation_dy\": 12.549462794922746, \"scale\": 0.6927080624806098}\nB: {\"rotation_angle\": -127.03310490562403, \"translation_dx\": -44.497972498107885, \"translation_dy\": 53.252184804163164, \"scale\": 0.8807762361133948}\nC: {\"rotation_angle\": -13.219279868292688, \"translation_dx\": -95.87022677446828, \"translation_dy\": -58.31347876468597, \"scale\": 1.3722022398508045}\nD: {\"rotation_angle\": -14.958482221349612, \"translation_dx\": 49.62118662103501, \"translation_dy\": -13.943537967490855, \"scale\": 1.489574484959727}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -4.956802948250129, \"translation_dx\": -46.115491929325685, \"translation_dy\": 39.01349173096322, \"scale\": 1.02280257064298}\nB: {\"rotation_angle\": 136.2943203908062, \"translation_dx\": 59.15508525636656, \"translation_dy\": -38.46099161723379, \"scale\": 0.6414776081953896}\nC: {\"rotation_angle\": 97.08459407481979, \"translation_dx\": 38.76418659488206, \"translation_dy\": 44.81166266995322, \"scale\": 1.27585958531192}\nD: {\"rotation_angle\": 123.61853421760617, \"translation_dx\": -93.63136806510369, \"translation_dy\": -15.65687765252683, \"scale\": 0.9834422929774667}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_46_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_46_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -4.956802948250129, \"translation_dx\": -46.115491929325685, \"translation_dy\": 39.01349173096322, \"scale\": 1.02280257064298}\nB: {\"rotation_angle\": 136.2943203908062, \"translation_dx\": 59.15508525636656, \"translation_dy\": -38.46099161723379, \"scale\": 0.6414776081953896}\nC: {\"rotation_angle\": 97.08459407481979, \"translation_dx\": 38.76418659488206, \"translation_dy\": 44.81166266995322, \"scale\": 1.27585958531192}\nD: {\"rotation_angle\": 123.61853421760617, \"translation_dx\": -93.63136806510369, \"translation_dy\": -15.65687765252683, \"scale\": 0.9834422929774667}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 45.786611297437304, \"translation_dx\": 45.53183354666939, \"translation_dy\": -112.45880863798888, \"scale\": 0.5686394776423458}\nB: {\"rotation_angle\": -101.64893396855386, \"translation_dx\": -96.08306753711838, \"translation_dy\": 14.852477797043775, \"scale\": 1.3017377870800058}\nC: {\"rotation_angle\": 98.62110540120432, \"translation_dx\": 55.8324503005326, \"translation_dy\": -53.32963696213369, \"scale\": 1.3342375308232577}\nD: {\"rotation_angle\": 98.12478073081388, \"translation_dx\": 82.24255679101596, \"translation_dy\": 10.638794739410258, \"scale\": 1.454613875934863}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_47_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_47_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 45.786611297437304, \"translation_dx\": 45.53183354666939, \"translation_dy\": -112.45880863798888, \"scale\": 0.5686394776423458}\nB: {\"rotation_angle\": -101.64893396855386, \"translation_dx\": -96.08306753711838, \"translation_dy\": 14.852477797043775, \"scale\": 1.3017377870800058}\nC: {\"rotation_angle\": 98.62110540120432, \"translation_dx\": 55.8324503005326, \"translation_dy\": -53.32963696213369, \"scale\": 1.3342375308232577}\nD: {\"rotation_angle\": 98.12478073081388, \"translation_dx\": 82.24255679101596, \"translation_dy\": 10.638794739410258, \"scale\": 1.454613875934863}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 104.66960596229086, \"translation_dx\": 122.9579606372167, \"translation_dy\": -32.21502556645471, \"scale\": 0.5791563638149022}\nB: {\"rotation_angle\": 162.6656255846617, \"translation_dx\": -24.713919503645087, \"translation_dy\": -0.6846177496217649, \"scale\": 0.967192316827237}\nC: {\"rotation_angle\": 159.74516071456964, \"translation_dx\": 18.36539372865252, \"translation_dy\": -32.68583255299669, \"scale\": 0.6283421405871866}\nD: {\"rotation_angle\": 112.15713698429767, \"translation_dx\": -0.833180316164956, \"translation_dy\": -100.57740000976534, \"scale\": 1.21487245494624}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_48_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_48_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 104.66960596229086, \"translation_dx\": 122.9579606372167, \"translation_dy\": -32.21502556645471, \"scale\": 0.5791563638149022}\nB: {\"rotation_angle\": 162.6656255846617, \"translation_dx\": -24.713919503645087, \"translation_dy\": -0.6846177496217649, \"scale\": 0.967192316827237}\nC: {\"rotation_angle\": 159.74516071456964, \"translation_dx\": 18.36539372865252, \"translation_dy\": -32.68583255299669, \"scale\": 0.6283421405871866}\nD: {\"rotation_angle\": 112.15713698429767, \"translation_dx\": -0.833180316164956, \"translation_dy\": -100.57740000976534, \"scale\": 1.21487245494624}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 104.66960596229086, \"translation_dx\": 122.9579606372167, \"translation_dy\": -32.21502556645471, \"scale\": 0.5791563638149022}\nB: {\"rotation_angle\": 49.90656423603761, \"translation_dx\": 85.27067294320437, \"translation_dy\": -8.928665399863448, \"scale\": 0.9370060594249733}\nC: {\"rotation_angle\": -41.748048059314925, \"translation_dx\": 84.2495675740148, \"translation_dy\": -81.02778113177463, \"scale\": 1.207158201764622}\nD: {\"rotation_angle\": -113.69332067912192, \"translation_dx\": -23.005200251858383, \"translation_dy\": 57.916315250854666, \"scale\": 0.5483419258047426}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_49_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_49_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 104.66960596229086, \"translation_dx\": 122.9579606372167, \"translation_dy\": -32.21502556645471, \"scale\": 0.5791563638149022}\nB: {\"rotation_angle\": 49.90656423603761, \"translation_dx\": 85.27067294320437, \"translation_dy\": -8.928665399863448, \"scale\": 0.9370060594249733}\nC: {\"rotation_angle\": -41.748048059314925, \"translation_dx\": 84.2495675740148, \"translation_dy\": -81.02778113177463, \"scale\": 1.207158201764622}\nD: {\"rotation_angle\": -113.69332067912192, \"translation_dx\": -23.005200251858383, \"translation_dy\": 57.916315250854666, \"scale\": 0.5483419258047426}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -94.06455293225282, \"translation_dx\": -52.04430006776356, \"translation_dy\": 88.55937507710391, \"scale\": 0.8369046461483086}\nB: {\"rotation_angle\": -44.902472769484746, \"translation_dx\": -36.85475324083902, \"translation_dy\": 36.81692000181951, \"scale\": 1.0769710077370194}\nC: {\"rotation_angle\": 136.2943203908062, \"translation_dx\": 59.15508525636656, \"translation_dy\": -38.46099161723379, \"scale\": 0.6414776081953896}\nD: {\"rotation_angle\": 67.74863170033868, \"translation_dx\": 0.9436916559104702, \"translation_dy\": 79.02717939495389, \"scale\": 1.0490112177140545}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_50_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_50_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -94.06455293225282, \"translation_dx\": -52.04430006776356, \"translation_dy\": 88.55937507710391, \"scale\": 0.8369046461483086}\nB: {\"rotation_angle\": -44.902472769484746, \"translation_dx\": -36.85475324083902, \"translation_dy\": 36.81692000181951, \"scale\": 1.0769710077370194}\nC: {\"rotation_angle\": 136.2943203908062, \"translation_dx\": 59.15508525636656, \"translation_dy\": -38.46099161723379, \"scale\": 0.6414776081953896}\nD: {\"rotation_angle\": 67.74863170033868, \"translation_dx\": 0.9436916559104702, \"translation_dy\": 79.02717939495389, \"scale\": 1.0490112177140545}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -169.57691070181107, \"translation_dx\": 67.3776951722352, \"translation_dy\": 6.393739311338578, \"scale\": 0.8283042543093307}\nB: {\"rotation_angle\": 53.86809011441332, \"translation_dx\": -15.131168518097624, \"translation_dy\": -31.300037391593577, \"scale\": 1.3154620606808156}\nC: {\"rotation_angle\": -70.18179574394556, \"translation_dx\": -84.02989442213027, \"translation_dy\": 45.46342410564398, \"scale\": 1.28660403831869}\nD: {\"rotation_angle\": -137.69315675508605, \"translation_dx\": -14.965017175186233, \"translation_dy\": 28.85856493302694, \"scale\": 0.6970825252863025}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_51_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_51_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -169.57691070181107, \"translation_dx\": 67.3776951722352, \"translation_dy\": 6.393739311338578, \"scale\": 0.8283042543093307}\nB: {\"rotation_angle\": 53.86809011441332, \"translation_dx\": -15.131168518097624, \"translation_dy\": -31.300037391593577, \"scale\": 1.3154620606808156}\nC: {\"rotation_angle\": -70.18179574394556, \"translation_dx\": -84.02989442213027, \"translation_dy\": 45.46342410564398, \"scale\": 1.28660403831869}\nD: {\"rotation_angle\": -137.69315675508605, \"translation_dx\": -14.965017175186233, \"translation_dy\": 28.85856493302694, \"scale\": 0.6970825252863025}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 159.25105466068987, \"translation_dx\": -126.35420360425098, \"translation_dy\": -17.54721978726404, \"scale\": 1.4952435062275256}\nB: {\"rotation_angle\": 168.86687879669455, \"translation_dx\": 30.327287286076626, \"translation_dy\": -73.84263373893171, \"scale\": 1.0887904122788439}\nC: {\"rotation_angle\": 141.74747753602782, \"translation_dx\": -54.793360600935046, \"translation_dy\": -29.72546528603263, \"scale\": 0.6563706152769926}\nD: {\"rotation_angle\": -4.956802948250129, \"translation_dx\": -46.115491929325685, \"translation_dy\": 39.01349173096322, \"scale\": 1.02280257064298}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_52_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_52_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 159.25105466068987, \"translation_dx\": -126.35420360425098, \"translation_dy\": -17.54721978726404, \"scale\": 1.4952435062275256}\nB: {\"rotation_angle\": 168.86687879669455, \"translation_dx\": 30.327287286076626, \"translation_dy\": -73.84263373893171, \"scale\": 1.0887904122788439}\nC: {\"rotation_angle\": 141.74747753602782, \"translation_dx\": -54.793360600935046, \"translation_dy\": -29.72546528603263, \"scale\": 0.6563706152769926}\nD: {\"rotation_angle\": -4.956802948250129, \"translation_dx\": -46.115491929325685, \"translation_dy\": 39.01349173096322, \"scale\": 1.02280257064298}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 32.170058088704565, \"translation_dx\": 62.48780444449932, \"translation_dy\": 36.464458087386475, \"scale\": 0.8338243238440678}\nB: {\"rotation_angle\": 52.27392299801002, \"translation_dx\": -7.943242591889941, \"translation_dy\": -1.8318597711701017, \"scale\": 1.489664776133741}\nC: {\"rotation_angle\": -31.020660516088725, \"translation_dx\": 105.99805178546191, \"translation_dy\": -82.8489656004858, \"scale\": 1.0703563169477137}\nD: {\"rotation_angle\": -68.79930104020924, \"translation_dx\": -103.12901971602221, \"translation_dy\": 94.89161684072867, \"scale\": 1.2295411735859756}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_53_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_53_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 32.170058088704565, \"translation_dx\": 62.48780444449932, \"translation_dy\": 36.464458087386475, \"scale\": 0.8338243238440678}\nB: {\"rotation_angle\": 52.27392299801002, \"translation_dx\": -7.943242591889941, \"translation_dy\": -1.8318597711701017, \"scale\": 1.489664776133741}\nC: {\"rotation_angle\": -31.020660516088725, \"translation_dx\": 105.99805178546191, \"translation_dy\": -82.8489656004858, \"scale\": 1.0703563169477137}\nD: {\"rotation_angle\": -68.79930104020924, \"translation_dx\": -103.12901971602221, \"translation_dy\": 94.89161684072867, \"scale\": 1.2295411735859756}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 159.18509857624855, \"translation_dx\": 94.5972413522399, \"translation_dy\": -87.01463724053234, \"scale\": 0.7914176569510836}\nB: {\"rotation_angle\": 67.74863170033868, \"translation_dx\": 0.9436916559104702, \"translation_dy\": 79.02717939495389, \"scale\": 1.0490112177140545}\nC: {\"rotation_angle\": 161.7596265938729, \"translation_dx\": -9.170216354863072, \"translation_dy\": -19.23222492696047, \"scale\": 1.1821087248622173}\nD: {\"rotation_angle\": -51.98717119490195, \"translation_dx\": -83.93544420557635, \"translation_dy\": -17.359661719977098, \"scale\": 1.0858344969275349}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_54_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_54_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 159.18509857624855, \"translation_dx\": 94.5972413522399, \"translation_dy\": -87.01463724053234, \"scale\": 0.7914176569510836}\nB: {\"rotation_angle\": 67.74863170033868, \"translation_dx\": 0.9436916559104702, \"translation_dy\": 79.02717939495389, \"scale\": 1.0490112177140545}\nC: {\"rotation_angle\": 161.7596265938729, \"translation_dx\": -9.170216354863072, \"translation_dy\": -19.23222492696047, \"scale\": 1.1821087248622173}\nD: {\"rotation_angle\": -51.98717119490195, \"translation_dx\": -83.93544420557635, \"translation_dy\": -17.359661719977098, \"scale\": 1.0858344969275349}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 139.13421797404374, \"translation_dx\": -107.62188977651758, \"translation_dy\": -65.35657968686931, \"scale\": 0.569575564082204}\nB: {\"rotation_angle\": 159.39197876032466, \"translation_dx\": -101.87275621292875, \"translation_dy\": -32.606176111808466, \"scale\": 0.6647290774480178}\nC: {\"rotation_angle\": 72.25092677282458, \"translation_dx\": 61.389740502873025, \"translation_dy\": -36.86538640455047, \"scale\": 1.0748600769835353}\nD: {\"rotation_angle\": 163.34031080178892, \"translation_dx\": -21.567151354845635, \"translation_dy\": -30.72615389540148, \"scale\": 1.2439888416024685}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_55_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_55_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 139.13421797404374, \"translation_dx\": -107.62188977651758, \"translation_dy\": -65.35657968686931, \"scale\": 0.569575564082204}\nB: {\"rotation_angle\": 159.39197876032466, \"translation_dx\": -101.87275621292875, \"translation_dy\": -32.606176111808466, \"scale\": 0.6647290774480178}\nC: {\"rotation_angle\": 72.25092677282458, \"translation_dx\": 61.389740502873025, \"translation_dy\": -36.86538640455047, \"scale\": 1.0748600769835353}\nD: {\"rotation_angle\": 163.34031080178892, \"translation_dx\": -21.567151354845635, \"translation_dy\": -30.72615389540148, \"scale\": 1.2439888416024685}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 95.69634927891752, \"translation_dx\": -96.46148729426875, \"translation_dy\": -25.496381966922478, \"scale\": 0.7479348241153333}\nB: {\"rotation_angle\": -110.51021822636605, \"translation_dx\": -17.924195571284486, \"translation_dy\": -0.10679752473519954, \"scale\": 1.4066663412939815}\nC: {\"rotation_angle\": 12.872370969250312, \"translation_dx\": -43.1533458138392, \"translation_dy\": -64.88511529320917, \"scale\": 1.3092068537816153}\nD: {\"rotation_angle\": -22.98450105670534, \"translation_dx\": -24.343109907781525, \"translation_dy\": -75.50859401578859, \"scale\": 0.5077440368943875}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_56_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_56_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 95.69634927891752, \"translation_dx\": -96.46148729426875, \"translation_dy\": -25.496381966922478, \"scale\": 0.7479348241153333}\nB: {\"rotation_angle\": -110.51021822636605, \"translation_dx\": -17.924195571284486, \"translation_dy\": -0.10679752473519954, \"scale\": 1.4066663412939815}\nC: {\"rotation_angle\": 12.872370969250312, \"translation_dx\": -43.1533458138392, \"translation_dy\": -64.88511529320917, \"scale\": 1.3092068537816153}\nD: {\"rotation_angle\": -22.98450105670534, \"translation_dx\": -24.343109907781525, \"translation_dy\": -75.50859401578859, \"scale\": 0.5077440368943875}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -6.258618837806779, \"translation_dx\": -117.56200624611057, \"translation_dy\": -84.92852320396813, \"scale\": 0.8703619649920769}\nB: {\"rotation_angle\": 123.61853421760617, \"translation_dx\": -93.63136806510369, \"translation_dy\": -15.65687765252683, \"scale\": 0.9834422929774667}\nC: {\"rotation_angle\": -6.38420562293993, \"translation_dx\": -106.80670691302902, \"translation_dy\": -3.5935098985529663, \"scale\": 1.3037846299861797}\nD: {\"rotation_angle\": 26.051749493295517, \"translation_dx\": 8.674153667650117, \"translation_dy\": 81.98381249796742, \"scale\": 1.4721363798843865}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_57_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_57_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -6.258618837806779, \"translation_dx\": -117.56200624611057, \"translation_dy\": -84.92852320396813, \"scale\": 0.8703619649920769}\nB: {\"rotation_angle\": 123.61853421760617, \"translation_dx\": -93.63136806510369, \"translation_dy\": -15.65687765252683, \"scale\": 0.9834422929774667}\nC: {\"rotation_angle\": -6.38420562293993, \"translation_dx\": -106.80670691302902, \"translation_dy\": -3.5935098985529663, \"scale\": 1.3037846299861797}\nD: {\"rotation_angle\": 26.051749493295517, \"translation_dx\": 8.674153667650117, \"translation_dy\": 81.98381249796742, \"scale\": 1.4721363798843865}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 28.186459007199005, \"translation_dx\": -85.64869298892413, \"translation_dy\": -90.9589081114641, \"scale\": 0.5939510579225048}\nB: {\"rotation_angle\": -126.15991399279281, \"translation_dx\": 24.895638463286446, \"translation_dy\": -35.71086816730676, \"scale\": 1.30648936857296}\nC: {\"rotation_angle\": 134.59992138556464, \"translation_dx\": 5.908404103559974, \"translation_dy\": 47.60587687007518, \"scale\": 1.0105063493742612}\nD: {\"rotation_angle\": 99.4759866737457, \"translation_dx\": -117.67383777244245, \"translation_dy\": -44.645046657688624, \"scale\": 1.4332006009229632}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_58_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_58_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 28.186459007199005, \"translation_dx\": -85.64869298892413, \"translation_dy\": -90.9589081114641, \"scale\": 0.5939510579225048}\nB: {\"rotation_angle\": -126.15991399279281, \"translation_dx\": 24.895638463286446, \"translation_dy\": -35.71086816730676, \"scale\": 1.30648936857296}\nC: {\"rotation_angle\": 134.59992138556464, \"translation_dx\": 5.908404103559974, \"translation_dy\": 47.60587687007518, \"scale\": 1.0105063493742612}\nD: {\"rotation_angle\": 99.4759866737457, \"translation_dx\": -117.67383777244245, \"translation_dy\": -44.645046657688624, \"scale\": 1.4332006009229632}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 99.38174871704592, \"translation_dx\": 57.870588734166205, \"translation_dy\": 17.413162007690403, \"scale\": 1.4113398114931053}\nB: {\"rotation_angle\": -4.956802948250129, \"translation_dx\": -46.115491929325685, \"translation_dy\": 39.01349173096322, \"scale\": 1.02280257064298}\nC: {\"rotation_angle\": -37.8135886633452, \"translation_dx\": 94.09848811207868, \"translation_dy\": -28.846940165704815, \"scale\": 0.7423292461324351}\nD: {\"rotation_angle\": -120.90208363304777, \"translation_dx\": -24.471100960859047, \"translation_dy\": -96.60346561133943, \"scale\": 1.2238954631080248}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_59_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_59_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 99.38174871704592, \"translation_dx\": 57.870588734166205, \"translation_dy\": 17.413162007690403, \"scale\": 1.4113398114931053}\nB: {\"rotation_angle\": -4.956802948250129, \"translation_dx\": -46.115491929325685, \"translation_dy\": 39.01349173096322, \"scale\": 1.02280257064298}\nC: {\"rotation_angle\": -37.8135886633452, \"translation_dx\": 94.09848811207868, \"translation_dy\": -28.846940165704815, \"scale\": 0.7423292461324351}\nD: {\"rotation_angle\": -120.90208363304777, \"translation_dx\": -24.471100960859047, \"translation_dy\": -96.60346561133943, \"scale\": 1.2238954631080248}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -5.683971346231118, \"translation_dx\": -0.7123036436211407, \"translation_dy\": -23.660599152813326, \"scale\": 1.1241034499451734}\nB: {\"rotation_angle\": 74.4727172984789, \"translation_dx\": 83.0498783040965, \"translation_dy\": 24.573318419119772, \"scale\": 1.4775593630739356}\nC: {\"rotation_angle\": -152.40502323992493, \"translation_dx\": -0.6096313646742146, \"translation_dy\": 26.2224872549711, \"scale\": 0.6008305458537412}\nD: {\"rotation_angle\": 134.66606893121838, \"translation_dx\": 30.71289427748178, \"translation_dy\": 31.00111281943242, \"scale\": 0.9716368665085688}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_60_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_60_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -5.683971346231118, \"translation_dx\": -0.7123036436211407, \"translation_dy\": -23.660599152813326, \"scale\": 1.1241034499451734}\nB: {\"rotation_angle\": 74.4727172984789, \"translation_dx\": 83.0498783040965, \"translation_dy\": 24.573318419119772, \"scale\": 1.4775593630739356}\nC: {\"rotation_angle\": -152.40502323992493, \"translation_dx\": -0.6096313646742146, \"translation_dy\": 26.2224872549711, \"scale\": 0.6008305458537412}\nD: {\"rotation_angle\": 134.66606893121838, \"translation_dx\": 30.71289427748178, \"translation_dy\": 31.00111281943242, \"scale\": 0.9716368665085688}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -49.11147497176091, \"translation_dx\": -21.61309921155923, \"translation_dy\": 41.841400081955015, \"scale\": 1.3374733710705384}\nB: {\"rotation_angle\": 52.27392299801002, \"translation_dx\": -7.943242591889941, \"translation_dy\": -1.8318597711701017, \"scale\": 1.489664776133741}\nC: {\"rotation_angle\": -162.31682909306286, \"translation_dx\": 94.60975693720637, \"translation_dy\": -28.569332128995313, \"scale\": 1.1251281587345527}\nD: {\"rotation_angle\": -152.40502323992493, \"translation_dx\": -0.6096313646742146, \"translation_dy\": 26.2224872549711, \"scale\": 0.6008305458537412}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_61_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_61_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -49.11147497176091, \"translation_dx\": -21.61309921155923, \"translation_dy\": 41.841400081955015, \"scale\": 1.3374733710705384}\nB: {\"rotation_angle\": 52.27392299801002, \"translation_dx\": -7.943242591889941, \"translation_dy\": -1.8318597711701017, \"scale\": 1.489664776133741}\nC: {\"rotation_angle\": -162.31682909306286, \"translation_dx\": 94.60975693720637, \"translation_dy\": -28.569332128995313, \"scale\": 1.1251281587345527}\nD: {\"rotation_angle\": -152.40502323992493, \"translation_dx\": -0.6096313646742146, \"translation_dy\": 26.2224872549711, \"scale\": 0.6008305458537412}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -100.94596249363259, \"translation_dx\": 18.493532966543597, \"translation_dy\": -4.904135882610319, \"scale\": 1.1575890826518318}\nB: {\"rotation_angle\": -26.00307697103628, \"translation_dx\": -100.91027332279833, \"translation_dy\": 27.120302875093685, \"scale\": 0.9546103505495939}\nC: {\"rotation_angle\": 99.4759866737457, \"translation_dx\": -117.67383777244245, \"translation_dy\": -44.645046657688624, \"scale\": 1.4332006009229632}\nD: {\"rotation_angle\": -165.5576257925042, \"translation_dx\": 120.02978270991923, \"translation_dy\": -94.68626204020723, \"scale\": 1.377433782383828}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_62_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_62_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -100.94596249363259, \"translation_dx\": 18.493532966543597, \"translation_dy\": -4.904135882610319, \"scale\": 1.1575890826518318}\nB: {\"rotation_angle\": -26.00307697103628, \"translation_dx\": -100.91027332279833, \"translation_dy\": 27.120302875093685, \"scale\": 0.9546103505495939}\nC: {\"rotation_angle\": 99.4759866737457, \"translation_dx\": -117.67383777244245, \"translation_dy\": -44.645046657688624, \"scale\": 1.4332006009229632}\nD: {\"rotation_angle\": -165.5576257925042, \"translation_dx\": 120.02978270991923, \"translation_dy\": -94.68626204020723, \"scale\": 1.377433782383828}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -37.8135886633452, \"translation_dx\": 94.09848811207868, \"translation_dy\": -28.846940165704815, \"scale\": 0.7423292461324351}\nB: {\"rotation_angle\": 98.12478073081388, \"translation_dx\": 82.24255679101596, \"translation_dy\": 10.638794739410258, \"scale\": 1.454613875934863}\nC: {\"rotation_angle\": -98.17490649350026, \"translation_dx\": 5.744855173473269, \"translation_dy\": -10.705504600001973, \"scale\": 1.1182428392253487}\nD: {\"rotation_angle\": 4.601729825002167, \"translation_dx\": -92.34842360064926, \"translation_dy\": 78.34726427877602, \"scale\": 0.7620115680057987}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_63_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_63_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -37.8135886633452, \"translation_dx\": 94.09848811207868, \"translation_dy\": -28.846940165704815, \"scale\": 0.7423292461324351}\nB: {\"rotation_angle\": 98.12478073081388, \"translation_dx\": 82.24255679101596, \"translation_dy\": 10.638794739410258, \"scale\": 1.454613875934863}\nC: {\"rotation_angle\": -98.17490649350026, \"translation_dx\": 5.744855173473269, \"translation_dy\": -10.705504600001973, \"scale\": 1.1182428392253487}\nD: {\"rotation_angle\": 4.601729825002167, \"translation_dx\": -92.34842360064926, \"translation_dy\": 78.34726427877602, \"scale\": 0.7620115680057987}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -59.18065174130953, \"translation_dx\": -66.15733764198566, \"translation_dy\": -32.06450758946801, \"scale\": 1.1967157159259998}\nB: {\"rotation_angle\": 48.71833122181758, \"translation_dx\": -105.22683210092106, \"translation_dy\": -63.34096559919908, \"scale\": 0.7204478932238769}\nC: {\"rotation_angle\": 143.38145335973087, \"translation_dx\": 86.67970142496799, \"translation_dy\": -33.57640317277091, \"scale\": 0.6114655384261714}\nD: {\"rotation_angle\": -149.42147215379055, \"translation_dx\": 2.3444194857030283, \"translation_dy\": 35.92779325530762, \"scale\": 1.0223945055206394}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_64_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_64_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -59.18065174130953, \"translation_dx\": -66.15733764198566, \"translation_dy\": -32.06450758946801, \"scale\": 1.1967157159259998}\nB: {\"rotation_angle\": 48.71833122181758, \"translation_dx\": -105.22683210092106, \"translation_dy\": -63.34096559919908, \"scale\": 0.7204478932238769}\nC: {\"rotation_angle\": 143.38145335973087, \"translation_dx\": 86.67970142496799, \"translation_dy\": -33.57640317277091, \"scale\": 0.6114655384261714}\nD: {\"rotation_angle\": -149.42147215379055, \"translation_dx\": 2.3444194857030283, \"translation_dy\": 35.92779325530762, \"scale\": 1.0223945055206394}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -53.475823147809436, \"translation_dx\": -52.11444637245131, \"translation_dy\": -7.974464084606126, \"scale\": 1.302004904680502}\nB: {\"rotation_angle\": -103.24791656906933, \"translation_dx\": -2.2454836983213227, \"translation_dy\": 24.014319900588845, \"scale\": 1.3204557483507742}\nC: {\"rotation_angle\": -4.956802948250129, \"translation_dx\": -46.115491929325685, \"translation_dy\": 39.01349173096322, \"scale\": 1.02280257064298}\nD: {\"rotation_angle\": 64.33574528550244, \"translation_dx\": -83.09111528364858, \"translation_dy\": 12.26726314152404, \"scale\": 0.7845370507816389}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_65_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_65_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -53.475823147809436, \"translation_dx\": -52.11444637245131, \"translation_dy\": -7.974464084606126, \"scale\": 1.302004904680502}\nB: {\"rotation_angle\": -103.24791656906933, \"translation_dx\": -2.2454836983213227, \"translation_dy\": 24.014319900588845, \"scale\": 1.3204557483507742}\nC: {\"rotation_angle\": -4.956802948250129, \"translation_dx\": -46.115491929325685, \"translation_dy\": 39.01349173096322, \"scale\": 1.02280257064298}\nD: {\"rotation_angle\": 64.33574528550244, \"translation_dx\": -83.09111528364858, \"translation_dy\": 12.26726314152404, \"scale\": 0.7845370507816389}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 83.49682873903629, \"translation_dx\": -127.2042493945246, \"translation_dy\": 2.6616959584396938, \"scale\": 0.9488759478249397}\nB: {\"rotation_angle\": 32.170058088704565, \"translation_dx\": 62.48780444449932, \"translation_dy\": 36.464458087386475, \"scale\": 0.8338243238440678}\nC: {\"rotation_angle\": 99.4759866737457, \"translation_dx\": -117.67383777244245, \"translation_dy\": -44.645046657688624, \"scale\": 1.4332006009229632}\nD: {\"rotation_angle\": 52.27392299801002, \"translation_dx\": -7.943242591889941, \"translation_dy\": -1.8318597711701017, \"scale\": 1.489664776133741}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_66_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_66_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 83.49682873903629, \"translation_dx\": -127.2042493945246, \"translation_dy\": 2.6616959584396938, \"scale\": 0.9488759478249397}\nB: {\"rotation_angle\": 32.170058088704565, \"translation_dx\": 62.48780444449932, \"translation_dy\": 36.464458087386475, \"scale\": 0.8338243238440678}\nC: {\"rotation_angle\": 99.4759866737457, \"translation_dx\": -117.67383777244245, \"translation_dy\": -44.645046657688624, \"scale\": 1.4332006009229632}\nD: {\"rotation_angle\": 52.27392299801002, \"translation_dx\": -7.943242591889941, \"translation_dy\": -1.8318597711701017, \"scale\": 1.489664776133741}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 23.955007488404988, \"translation_dx\": 90.0018582930472, \"translation_dy\": 38.03553582875617, \"scale\": 1.3380437802347522}\nB: {\"rotation_angle\": -113.69332067912192, \"translation_dx\": -23.005200251858383, \"translation_dy\": 57.916315250854666, \"scale\": 0.5483419258047426}\nC: {\"rotation_angle\": 14.369437993555863, \"translation_dx\": -23.54312301695805, \"translation_dy\": 55.41046511147678, \"scale\": 1.115345902394854}\nD: {\"rotation_angle\": 97.08459407481979, \"translation_dx\": 38.76418659488206, \"translation_dy\": 44.81166266995322, \"scale\": 1.27585958531192}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_67_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_67_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 23.955007488404988, \"translation_dx\": 90.0018582930472, \"translation_dy\": 38.03553582875617, \"scale\": 1.3380437802347522}\nB: {\"rotation_angle\": -113.69332067912192, \"translation_dx\": -23.005200251858383, \"translation_dy\": 57.916315250854666, \"scale\": 0.5483419258047426}\nC: {\"rotation_angle\": 14.369437993555863, \"translation_dx\": -23.54312301695805, \"translation_dy\": 55.41046511147678, \"scale\": 1.115345902394854}\nD: {\"rotation_angle\": 97.08459407481979, \"translation_dx\": 38.76418659488206, \"translation_dy\": 44.81166266995322, \"scale\": 1.27585958531192}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 37.640985396206986, \"translation_dx\": -97.39428669742068, \"translation_dy\": 17.900860680283458, \"scale\": 1.0930243251030827}\nB: {\"rotation_angle\": 53.86809011441332, \"translation_dx\": -15.131168518097624, \"translation_dy\": -31.300037391593577, \"scale\": 1.3154620606808156}\nC: {\"rotation_angle\": 49.896013394485834, \"translation_dx\": -25.763756683237403, \"translation_dy\": -26.432232271484168, \"scale\": 1.1619310734744932}\nD: {\"rotation_angle\": -110.46391589612124, \"translation_dx\": -77.96644542647721, \"translation_dy\": -50.23500265461973, \"scale\": 0.7651088884143488}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_68_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_68_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 37.640985396206986, \"translation_dx\": -97.39428669742068, \"translation_dy\": 17.900860680283458, \"scale\": 1.0930243251030827}\nB: {\"rotation_angle\": 53.86809011441332, \"translation_dx\": -15.131168518097624, \"translation_dy\": -31.300037391593577, \"scale\": 1.3154620606808156}\nC: {\"rotation_angle\": 49.896013394485834, \"translation_dx\": -25.763756683237403, \"translation_dy\": -26.432232271484168, \"scale\": 1.1619310734744932}\nD: {\"rotation_angle\": -110.46391589612124, \"translation_dx\": -77.96644542647721, \"translation_dy\": -50.23500265461973, \"scale\": 0.7651088884143488}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -169.57691070181107, \"translation_dx\": 67.3776951722352, \"translation_dy\": 6.393739311338578, \"scale\": 0.8283042543093307}\nB: {\"rotation_angle\": -153.95647753312159, \"translation_dx\": 64.08546266437509, \"translation_dy\": -34.554486291313935, \"scale\": 1.423360690418288}\nC: {\"rotation_angle\": 141.74747753602782, \"translation_dx\": -54.793360600935046, \"translation_dy\": -29.72546528603263, \"scale\": 0.6563706152769926}\nD: {\"rotation_angle\": 138.15953129001275, \"translation_dx\": 108.29077351507729, \"translation_dy\": 11.25207260435026, \"scale\": 1.2682750116992958}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_69_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_69_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -169.57691070181107, \"translation_dx\": 67.3776951722352, \"translation_dy\": 6.393739311338578, \"scale\": 0.8283042543093307}\nB: {\"rotation_angle\": -153.95647753312159, \"translation_dx\": 64.08546266437509, \"translation_dy\": -34.554486291313935, \"scale\": 1.423360690418288}\nC: {\"rotation_angle\": 141.74747753602782, \"translation_dx\": -54.793360600935046, \"translation_dy\": -29.72546528603263, \"scale\": 0.6563706152769926}\nD: {\"rotation_angle\": 138.15953129001275, \"translation_dx\": 108.29077351507729, \"translation_dy\": 11.25207260435026, \"scale\": 1.2682750116992958}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 72.25092677282458, \"translation_dx\": 61.389740502873025, \"translation_dy\": -36.86538640455047, \"scale\": 1.0748600769835353}\nB: {\"rotation_angle\": -16.878745814478265, \"translation_dx\": -68.86659110743665, \"translation_dy\": -98.54142762965468, \"scale\": 1.2648663928919022}\nC: {\"rotation_angle\": -113.69332067912192, \"translation_dx\": -23.005200251858383, \"translation_dy\": 57.916315250854666, \"scale\": 0.5483419258047426}\nD: {\"rotation_angle\": 162.98131081099467, \"translation_dx\": -80.19473687776261, \"translation_dy\": -17.70282064458462, \"scale\": 1.2855975600149028}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_70_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_70_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 72.25092677282458, \"translation_dx\": 61.389740502873025, \"translation_dy\": -36.86538640455047, \"scale\": 1.0748600769835353}\nB: {\"rotation_angle\": -16.878745814478265, \"translation_dx\": -68.86659110743665, \"translation_dy\": -98.54142762965468, \"scale\": 1.2648663928919022}\nC: {\"rotation_angle\": -113.69332067912192, \"translation_dx\": -23.005200251858383, \"translation_dy\": 57.916315250854666, \"scale\": 0.5483419258047426}\nD: {\"rotation_angle\": 162.98131081099467, \"translation_dx\": -80.19473687776261, \"translation_dy\": -17.70282064458462, \"scale\": 1.2855975600149028}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 53.86809011441332, \"translation_dx\": -15.131168518097624, \"translation_dy\": -31.300037391593577, \"scale\": 1.3154620606808156}\nB: {\"rotation_angle\": 115.44035395260755, \"translation_dx\": 104.38539690843712, \"translation_dy\": -82.71757148170198, \"scale\": 0.6534862534786243}\nC: {\"rotation_angle\": 84.88997243843744, \"translation_dx\": 19.30269357274682, \"translation_dy\": 9.929350250110147, \"scale\": 1.0595552381550672}\nD: {\"rotation_angle\": 130.382151153576, \"translation_dx\": 48.77925626504499, \"translation_dy\": 54.89982459749416, \"scale\": 1.3647831130001666}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_71_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_71_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 53.86809011441332, \"translation_dx\": -15.131168518097624, \"translation_dy\": -31.300037391593577, \"scale\": 1.3154620606808156}\nB: {\"rotation_angle\": 115.44035395260755, \"translation_dx\": 104.38539690843712, \"translation_dy\": -82.71757148170198, \"scale\": 0.6534862534786243}\nC: {\"rotation_angle\": 84.88997243843744, \"translation_dx\": 19.30269357274682, \"translation_dy\": 9.929350250110147, \"scale\": 1.0595552381550672}\nD: {\"rotation_angle\": 130.382151153576, \"translation_dx\": 48.77925626504499, \"translation_dy\": 54.89982459749416, \"scale\": 1.3647831130001666}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 26.06413776863195, \"translation_dx\": 104.54441011530889, \"translation_dy\": -2.802993361858995, \"scale\": 0.6919535578881184}\nB: {\"rotation_angle\": -147.17742740700606, \"translation_dx\": 99.79022385553455, \"translation_dy\": -46.32888217161055, \"scale\": 1.2561938294527635}\nC: {\"rotation_angle\": 159.74516071456964, \"translation_dx\": 18.36539372865252, \"translation_dy\": -32.68583255299669, \"scale\": 0.6283421405871866}\nD: {\"rotation_angle\": 104.66960596229086, \"translation_dx\": 122.9579606372167, \"translation_dy\": -32.21502556645471, \"scale\": 0.5791563638149022}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_72_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_72_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 26.06413776863195, \"translation_dx\": 104.54441011530889, \"translation_dy\": -2.802993361858995, \"scale\": 0.6919535578881184}\nB: {\"rotation_angle\": -147.17742740700606, \"translation_dx\": 99.79022385553455, \"translation_dy\": -46.32888217161055, \"scale\": 1.2561938294527635}\nC: {\"rotation_angle\": 159.74516071456964, \"translation_dx\": 18.36539372865252, \"translation_dy\": -32.68583255299669, \"scale\": 0.6283421405871866}\nD: {\"rotation_angle\": 104.66960596229086, \"translation_dx\": 122.9579606372167, \"translation_dy\": -32.21502556645471, \"scale\": 0.5791563638149022}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -127.2688410750471, \"translation_dx\": 10.330064507300825, \"translation_dy\": -25.010404065134438, \"scale\": 1.1376215421095472}\nB: {\"rotation_angle\": 138.15953129001275, \"translation_dx\": 108.29077351507729, \"translation_dy\": 11.25207260435026, \"scale\": 1.2682750116992958}\nC: {\"rotation_angle\": -8.756342422911757, \"translation_dx\": -120.12147874311805, \"translation_dy\": -16.659510954699698, \"scale\": 0.8471832394055047}\nD: {\"rotation_angle\": -70.18179574394556, \"translation_dx\": -84.02989442213027, \"translation_dy\": 45.46342410564398, \"scale\": 1.28660403831869}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_73_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_73_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -127.2688410750471, \"translation_dx\": 10.330064507300825, \"translation_dy\": -25.010404065134438, \"scale\": 1.1376215421095472}\nB: {\"rotation_angle\": 138.15953129001275, \"translation_dx\": 108.29077351507729, \"translation_dy\": 11.25207260435026, \"scale\": 1.2682750116992958}\nC: {\"rotation_angle\": -8.756342422911757, \"translation_dx\": -120.12147874311805, \"translation_dy\": -16.659510954699698, \"scale\": 0.8471832394055047}\nD: {\"rotation_angle\": -70.18179574394556, \"translation_dx\": -84.02989442213027, \"translation_dy\": 45.46342410564398, \"scale\": 1.28660403831869}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 173.6372649335733, \"translation_dx\": -7.357207392874017, \"translation_dy\": -51.70776156994498, \"scale\": 1.09720142096939}\nB: {\"rotation_angle\": 112.15713698429767, \"translation_dx\": -0.833180316164956, \"translation_dy\": -100.57740000976534, \"scale\": 1.21487245494624}\nC: {\"rotation_angle\": 98.88222011850513, \"translation_dx\": 98.58699088344886, \"translation_dy\": 52.424259863835346, \"scale\": 0.8670994673205047}\nD: {\"rotation_angle\": -120.90208363304777, \"translation_dx\": -24.471100960859047, \"translation_dy\": -96.60346561133943, \"scale\": 1.2238954631080248}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_74_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_74_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 173.6372649335733, \"translation_dx\": -7.357207392874017, \"translation_dy\": -51.70776156994498, \"scale\": 1.09720142096939}\nB: {\"rotation_angle\": 112.15713698429767, \"translation_dx\": -0.833180316164956, \"translation_dy\": -100.57740000976534, \"scale\": 1.21487245494624}\nC: {\"rotation_angle\": 98.88222011850513, \"translation_dx\": 98.58699088344886, \"translation_dy\": 52.424259863835346, \"scale\": 0.8670994673205047}\nD: {\"rotation_angle\": -120.90208363304777, \"translation_dx\": -24.471100960859047, \"translation_dy\": -96.60346561133943, \"scale\": 1.2238954631080248}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 88.55038325147228, \"translation_dx\": -17.272344447388633, \"translation_dy\": -67.72549137992362, \"scale\": 0.5810098703790367}\nB: {\"rotation_angle\": 127.1396993936072, \"translation_dx\": -29.08894824101361, \"translation_dy\": -80.84475014775404, \"scale\": 1.2834497894588772}\nC: {\"rotation_angle\": -128.93587705152078, \"translation_dx\": 48.830662388872895, \"translation_dy\": 65.60255696435819, \"scale\": 0.5618983722639579}\nD: {\"rotation_angle\": 2.6800660606496933, \"translation_dx\": 8.805898944242955, \"translation_dy\": -61.557448223727356, \"scale\": 0.7338009245004858}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_75_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_75_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 88.55038325147228, \"translation_dx\": -17.272344447388633, \"translation_dy\": -67.72549137992362, \"scale\": 0.5810098703790367}\nB: {\"rotation_angle\": 127.1396993936072, \"translation_dx\": -29.08894824101361, \"translation_dy\": -80.84475014775404, \"scale\": 1.2834497894588772}\nC: {\"rotation_angle\": -128.93587705152078, \"translation_dx\": 48.830662388872895, \"translation_dy\": 65.60255696435819, \"scale\": 0.5618983722639579}\nD: {\"rotation_angle\": 2.6800660606496933, \"translation_dx\": 8.805898944242955, \"translation_dy\": -61.557448223727356, \"scale\": 0.7338009245004858}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -94.06455293225282, \"translation_dx\": -52.04430006776356, \"translation_dy\": 88.55937507710391, \"scale\": 0.8369046461483086}\nB: {\"rotation_angle\": 14.369437993555863, \"translation_dx\": -23.54312301695805, \"translation_dy\": 55.41046511147678, \"scale\": 1.115345902394854}\nC: {\"rotation_angle\": 99.38174871704592, \"translation_dx\": 57.870588734166205, \"translation_dy\": 17.413162007690403, \"scale\": 1.4113398114931053}\nD: {\"rotation_angle\": -126.23248080179604, \"translation_dx\": -18.04313623288388, \"translation_dy\": 59.052880720386156, \"scale\": 1.3827835175940266}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_76_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_76_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -94.06455293225282, \"translation_dx\": -52.04430006776356, \"translation_dy\": 88.55937507710391, \"scale\": 0.8369046461483086}\nB: {\"rotation_angle\": 14.369437993555863, \"translation_dx\": -23.54312301695805, \"translation_dy\": 55.41046511147678, \"scale\": 1.115345902394854}\nC: {\"rotation_angle\": 99.38174871704592, \"translation_dx\": 57.870588734166205, \"translation_dy\": 17.413162007690403, \"scale\": 1.4113398114931053}\nD: {\"rotation_angle\": -126.23248080179604, \"translation_dx\": -18.04313623288388, \"translation_dy\": 59.052880720386156, \"scale\": 1.3827835175940266}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -72.82027143369304, \"translation_dx\": -44.85481158127062, \"translation_dy\": 106.69131407191517, \"scale\": 0.716080341101258}\nB: {\"rotation_angle\": 74.4727172984789, \"translation_dx\": 83.0498783040965, \"translation_dy\": 24.573318419119772, \"scale\": 1.4775593630739356}\nC: {\"rotation_angle\": 33.426384392539006, \"translation_dx\": -12.448609293998487, \"translation_dy\": 64.03367069956386, \"scale\": 0.6340926377236346}\nD: {\"rotation_angle\": 159.39197876032466, \"translation_dx\": -101.87275621292875, \"translation_dy\": -32.606176111808466, \"scale\": 0.6647290774480178}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_77_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_77_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -72.82027143369304, \"translation_dx\": -44.85481158127062, \"translation_dy\": 106.69131407191517, \"scale\": 0.716080341101258}\nB: {\"rotation_angle\": 74.4727172984789, \"translation_dx\": 83.0498783040965, \"translation_dy\": 24.573318419119772, \"scale\": 1.4775593630739356}\nC: {\"rotation_angle\": 33.426384392539006, \"translation_dx\": -12.448609293998487, \"translation_dy\": 64.03367069956386, \"scale\": 0.6340926377236346}\nD: {\"rotation_angle\": 159.39197876032466, \"translation_dx\": -101.87275621292875, \"translation_dy\": -32.606176111808466, \"scale\": 0.6647290774480178}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 28.186459007199005, \"translation_dx\": -85.64869298892413, \"translation_dy\": -90.9589081114641, \"scale\": 0.5939510579225048}\nB: {\"rotation_angle\": -161.22593365548192, \"translation_dx\": -119.73961882572601, \"translation_dy\": -93.50838821854722, \"scale\": 1.4476413063179399}\nC: {\"rotation_angle\": -46.75272698463425, \"translation_dx\": 16.424107524155175, \"translation_dy\": -60.683488552754085, \"scale\": 1.375025476214386}\nD: {\"rotation_angle\": 141.74747753602782, \"translation_dx\": -54.793360600935046, \"translation_dy\": -29.72546528603263, \"scale\": 0.6563706152769926}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_78_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_78_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 28.186459007199005, \"translation_dx\": -85.64869298892413, \"translation_dy\": -90.9589081114641, \"scale\": 0.5939510579225048}\nB: {\"rotation_angle\": -161.22593365548192, \"translation_dx\": -119.73961882572601, \"translation_dy\": -93.50838821854722, \"scale\": 1.4476413063179399}\nC: {\"rotation_angle\": -46.75272698463425, \"translation_dx\": 16.424107524155175, \"translation_dy\": -60.683488552754085, \"scale\": 1.375025476214386}\nD: {\"rotation_angle\": 141.74747753602782, \"translation_dx\": -54.793360600935046, \"translation_dy\": -29.72546528603263, \"scale\": 0.6563706152769926}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -174.94064668132228, \"translation_dx\": 73.73079207136513, \"translation_dy\": 58.25534486945551, \"scale\": 1.178357936048121}\nB: {\"rotation_angle\": -23.247975965134003, \"translation_dx\": 108.97564353658032, \"translation_dy\": 27.267413374938258, \"scale\": 1.2292170424899498}\nC: {\"rotation_angle\": 33.426384392539006, \"translation_dx\": -12.448609293998487, \"translation_dy\": 64.03367069956386, \"scale\": 0.6340926377236346}\nD: {\"rotation_angle\": 159.39197876032466, \"translation_dx\": -101.87275621292875, \"translation_dy\": -32.606176111808466, \"scale\": 0.6647290774480178}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_79_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_79_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -174.94064668132228, \"translation_dx\": 73.73079207136513, \"translation_dy\": 58.25534486945551, \"scale\": 1.178357936048121}\nB: {\"rotation_angle\": -23.247975965134003, \"translation_dx\": 108.97564353658032, \"translation_dy\": 27.267413374938258, \"scale\": 1.2292170424899498}\nC: {\"rotation_angle\": 33.426384392539006, \"translation_dx\": -12.448609293998487, \"translation_dy\": 64.03367069956386, \"scale\": 0.6340926377236346}\nD: {\"rotation_angle\": 159.39197876032466, \"translation_dx\": -101.87275621292875, \"translation_dy\": -32.606176111808466, \"scale\": 0.6647290774480178}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 32.170058088704565, \"translation_dx\": 62.48780444449932, \"translation_dy\": 36.464458087386475, \"scale\": 0.8338243238440678}\nB: {\"rotation_angle\": 95.56102360167273, \"translation_dx\": -57.629857243876444, \"translation_dy\": -95.34824117323305, \"scale\": 0.9533126568708786}\nC: {\"rotation_angle\": 159.39197876032466, \"translation_dx\": -101.87275621292875, \"translation_dy\": -32.606176111808466, \"scale\": 0.6647290774480178}\nD: {\"rotation_angle\": 112.15713698429767, \"translation_dx\": -0.833180316164956, \"translation_dy\": -100.57740000976534, \"scale\": 1.21487245494624}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_80_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_80_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 32.170058088704565, \"translation_dx\": 62.48780444449932, \"translation_dy\": 36.464458087386475, \"scale\": 0.8338243238440678}\nB: {\"rotation_angle\": 95.56102360167273, \"translation_dx\": -57.629857243876444, \"translation_dy\": -95.34824117323305, \"scale\": 0.9533126568708786}\nC: {\"rotation_angle\": 159.39197876032466, \"translation_dx\": -101.87275621292875, \"translation_dy\": -32.606176111808466, \"scale\": 0.6647290774480178}\nD: {\"rotation_angle\": 112.15713698429767, \"translation_dx\": -0.833180316164956, \"translation_dy\": -100.57740000976534, \"scale\": 1.21487245494624}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -169.57691070181107, \"translation_dx\": 67.3776951722352, \"translation_dy\": 6.393739311338578, \"scale\": 0.8283042543093307}\nB: {\"rotation_angle\": -128.93587705152078, \"translation_dx\": 48.830662388872895, \"translation_dy\": 65.60255696435819, \"scale\": 0.5618983722639579}\nC: {\"rotation_angle\": -126.23248080179604, \"translation_dx\": -18.04313623288388, \"translation_dy\": 59.052880720386156, \"scale\": 1.3827835175940266}\nD: {\"rotation_angle\": -120.90208363304777, \"translation_dx\": -24.471100960859047, \"translation_dy\": -96.60346561133943, \"scale\": 1.2238954631080248}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_81_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_81_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -169.57691070181107, \"translation_dx\": 67.3776951722352, \"translation_dy\": 6.393739311338578, \"scale\": 0.8283042543093307}\nB: {\"rotation_angle\": -128.93587705152078, \"translation_dx\": 48.830662388872895, \"translation_dy\": 65.60255696435819, \"scale\": 0.5618983722639579}\nC: {\"rotation_angle\": -126.23248080179604, \"translation_dx\": -18.04313623288388, \"translation_dy\": 59.052880720386156, \"scale\": 1.3827835175940266}\nD: {\"rotation_angle\": -120.90208363304777, \"translation_dx\": -24.471100960859047, \"translation_dy\": -96.60346561133943, \"scale\": 1.2238954631080248}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 159.25105466068987, \"translation_dx\": -126.35420360425098, \"translation_dy\": -17.54721978726404, \"scale\": 1.4952435062275256}\nB: {\"rotation_angle\": -59.18065174130953, \"translation_dx\": -66.15733764198566, \"translation_dy\": -32.06450758946801, \"scale\": 1.1967157159259998}\nC: {\"rotation_angle\": 134.66606893121838, \"translation_dx\": 30.71289427748178, \"translation_dy\": 31.00111281943242, \"scale\": 0.9716368665085688}\nD: {\"rotation_angle\": 32.170058088704565, \"translation_dx\": 62.48780444449932, \"translation_dy\": 36.464458087386475, \"scale\": 0.8338243238440678}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_82_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_82_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 159.25105466068987, \"translation_dx\": -126.35420360425098, \"translation_dy\": -17.54721978726404, \"scale\": 1.4952435062275256}\nB: {\"rotation_angle\": -59.18065174130953, \"translation_dx\": -66.15733764198566, \"translation_dy\": -32.06450758946801, \"scale\": 1.1967157159259998}\nC: {\"rotation_angle\": 134.66606893121838, \"translation_dx\": 30.71289427748178, \"translation_dy\": 31.00111281943242, \"scale\": 0.9716368665085688}\nD: {\"rotation_angle\": 32.170058088704565, \"translation_dx\": 62.48780444449932, \"translation_dy\": 36.464458087386475, \"scale\": 0.8338243238440678}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -38.67054772511392, \"translation_dx\": 68.1059088983965, \"translation_dy\": -80.75433684597641, \"scale\": 1.0669693911306672}\nB: {\"rotation_angle\": 178.3015459217881, \"translation_dx\": 2.1592483018484785, \"translation_dy\": -86.15095567396924, \"scale\": 1.206185814877298}\nC: {\"rotation_angle\": 98.88222011850513, \"translation_dx\": 98.58699088344886, \"translation_dy\": 52.424259863835346, \"scale\": 0.8670994673205047}\nD: {\"rotation_angle\": -53.475823147809436, \"translation_dx\": -52.11444637245131, \"translation_dy\": -7.974464084606126, \"scale\": 1.302004904680502}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_83_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_83_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -38.67054772511392, \"translation_dx\": 68.1059088983965, \"translation_dy\": -80.75433684597641, \"scale\": 1.0669693911306672}\nB: {\"rotation_angle\": 178.3015459217881, \"translation_dx\": 2.1592483018484785, \"translation_dy\": -86.15095567396924, \"scale\": 1.206185814877298}\nC: {\"rotation_angle\": 98.88222011850513, \"translation_dx\": 98.58699088344886, \"translation_dy\": 52.424259863835346, \"scale\": 0.8670994673205047}\nD: {\"rotation_angle\": -53.475823147809436, \"translation_dx\": -52.11444637245131, \"translation_dy\": -7.974464084606126, \"scale\": 1.302004904680502}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -31.020660516088725, \"translation_dx\": 105.99805178546191, \"translation_dy\": -82.8489656004858, \"scale\": 1.0703563169477137}\nB: {\"rotation_angle\": 98.12478073081388, \"translation_dx\": 82.24255679101596, \"translation_dy\": 10.638794739410258, \"scale\": 1.454613875934863}\nC: {\"rotation_angle\": -4.364889011784271, \"translation_dx\": 74.89385338851659, \"translation_dy\": 29.259521498010997, \"scale\": 1.2877948451877137}\nD: {\"rotation_angle\": 106.62912259997893, \"translation_dx\": -62.19399566166837, \"translation_dy\": -63.078041204745844, \"scale\": 1.4577244189370733}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_84_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_84_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -31.020660516088725, \"translation_dx\": 105.99805178546191, \"translation_dy\": -82.8489656004858, \"scale\": 1.0703563169477137}\nB: {\"rotation_angle\": 98.12478073081388, \"translation_dx\": 82.24255679101596, \"translation_dy\": 10.638794739410258, \"scale\": 1.454613875934863}\nC: {\"rotation_angle\": -4.364889011784271, \"translation_dx\": 74.89385338851659, \"translation_dy\": 29.259521498010997, \"scale\": 1.2877948451877137}\nD: {\"rotation_angle\": 106.62912259997893, \"translation_dx\": -62.19399566166837, \"translation_dy\": -63.078041204745844, \"scale\": 1.4577244189370733}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 12.872370969250312, \"translation_dx\": -43.1533458138392, \"translation_dy\": -64.88511529320917, \"scale\": 1.3092068537816153}\nB: {\"rotation_angle\": -14.958482221349612, \"translation_dx\": 49.62118662103501, \"translation_dy\": -13.943537967490855, \"scale\": 1.489574484959727}\nC: {\"rotation_angle\": 48.71833122181758, \"translation_dx\": -105.22683210092106, \"translation_dy\": -63.34096559919908, \"scale\": 0.7204478932238769}\nD: {\"rotation_angle\": 173.6372649335733, \"translation_dx\": -7.357207392874017, \"translation_dy\": -51.70776156994498, \"scale\": 1.09720142096939}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_85_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_85_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 12.872370969250312, \"translation_dx\": -43.1533458138392, \"translation_dy\": -64.88511529320917, \"scale\": 1.3092068537816153}\nB: {\"rotation_angle\": -14.958482221349612, \"translation_dx\": 49.62118662103501, \"translation_dy\": -13.943537967490855, \"scale\": 1.489574484959727}\nC: {\"rotation_angle\": 48.71833122181758, \"translation_dx\": -105.22683210092106, \"translation_dy\": -63.34096559919908, \"scale\": 0.7204478932238769}\nD: {\"rotation_angle\": 173.6372649335733, \"translation_dx\": -7.357207392874017, \"translation_dy\": -51.70776156994498, \"scale\": 1.09720142096939}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -137.58016126496426, \"translation_dx\": 45.631572391068715, \"translation_dy\": -54.72741054396442, \"scale\": 1.391656794638211}\nB: {\"rotation_angle\": 78.52234880801677, \"translation_dx\": -41.05806913924104, \"translation_dy\": -5.158893155372851, \"scale\": 1.0182841116233097}\nC: {\"rotation_angle\": -0.45613579718829556, \"translation_dx\": 98.71619714866841, \"translation_dy\": 70.1100439641223, \"scale\": 0.6491919010173006}\nD: {\"rotation_angle\": -161.22593365548192, \"translation_dx\": -119.73961882572601, \"translation_dy\": -93.50838821854722, \"scale\": 1.4476413063179399}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_86_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_86_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -137.58016126496426, \"translation_dx\": 45.631572391068715, \"translation_dy\": -54.72741054396442, \"scale\": 1.391656794638211}\nB: {\"rotation_angle\": 78.52234880801677, \"translation_dx\": -41.05806913924104, \"translation_dy\": -5.158893155372851, \"scale\": 1.0182841116233097}\nC: {\"rotation_angle\": -0.45613579718829556, \"translation_dx\": 98.71619714866841, \"translation_dy\": 70.1100439641223, \"scale\": 0.6491919010173006}\nD: {\"rotation_angle\": -161.22593365548192, \"translation_dx\": -119.73961882572601, \"translation_dy\": -93.50838821854722, \"scale\": 1.4476413063179399}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -32.96407209098831, \"translation_dx\": -27.518946535455143, \"translation_dy\": 2.5370159689679213, \"scale\": 1.259328459428434}\nB: {\"rotation_angle\": -50.19218790392131, \"translation_dx\": -27.31734251737683, \"translation_dy\": 8.514724344494553, \"scale\": 1.0874517053433594}\nC: {\"rotation_angle\": -14.958482221349612, \"translation_dx\": 49.62118662103501, \"translation_dy\": -13.943537967490855, \"scale\": 1.489574484959727}\nD: {\"rotation_angle\": 14.369437993555863, \"translation_dx\": -23.54312301695805, \"translation_dy\": 55.41046511147678, \"scale\": 1.115345902394854}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_87_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_87_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -32.96407209098831, \"translation_dx\": -27.518946535455143, \"translation_dy\": 2.5370159689679213, \"scale\": 1.259328459428434}\nB: {\"rotation_angle\": -50.19218790392131, \"translation_dx\": -27.31734251737683, \"translation_dy\": 8.514724344494553, \"scale\": 1.0874517053433594}\nC: {\"rotation_angle\": -14.958482221349612, \"translation_dx\": 49.62118662103501, \"translation_dy\": -13.943537967490855, \"scale\": 1.489574484959727}\nD: {\"rotation_angle\": 14.369437993555863, \"translation_dx\": -23.54312301695805, \"translation_dy\": 55.41046511147678, \"scale\": 1.115345902394854}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 78.52234880801677, \"translation_dx\": -41.05806913924104, \"translation_dy\": -5.158893155372851, \"scale\": 1.0182841116233097}\nB: {\"rotation_angle\": -137.69110011960493, \"translation_dx\": -11.76155657697187, \"translation_dy\": 15.916526895382503, \"scale\": 1.164396221339579}\nC: {\"rotation_angle\": -51.98717119490195, \"translation_dx\": -83.93544420557635, \"translation_dy\": -17.359661719977098, \"scale\": 1.0858344969275349}\nD: {\"rotation_angle\": 111.11665430921613, \"translation_dx\": -45.526232266105865, \"translation_dy\": -71.56835409165808, \"scale\": 0.5234271564227445}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_88_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_88_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 78.52234880801677, \"translation_dx\": -41.05806913924104, \"translation_dy\": -5.158893155372851, \"scale\": 1.0182841116233097}\nB: {\"rotation_angle\": -137.69110011960493, \"translation_dx\": -11.76155657697187, \"translation_dy\": 15.916526895382503, \"scale\": 1.164396221339579}\nC: {\"rotation_angle\": -51.98717119490195, \"translation_dx\": -83.93544420557635, \"translation_dy\": -17.359661719977098, \"scale\": 1.0858344969275349}\nD: {\"rotation_angle\": 111.11665430921613, \"translation_dx\": -45.526232266105865, \"translation_dy\": -71.56835409165808, \"scale\": 0.5234271564227445}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -5.683971346231118, \"translation_dx\": -0.7123036436211407, \"translation_dy\": -23.660599152813326, \"scale\": 1.1241034499451734}\nB: {\"rotation_angle\": -137.58016126496426, \"translation_dx\": 45.631572391068715, \"translation_dy\": -54.72741054396442, \"scale\": 1.391656794638211}\nC: {\"rotation_angle\": -101.64893396855386, \"translation_dx\": -96.08306753711838, \"translation_dy\": 14.852477797043775, \"scale\": 1.3017377870800058}\nD: {\"rotation_angle\": -137.69315675508605, \"translation_dx\": -14.965017175186233, \"translation_dy\": 28.85856493302694, \"scale\": 0.6970825252863025}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_89_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_89_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -5.683971346231118, \"translation_dx\": -0.7123036436211407, \"translation_dy\": -23.660599152813326, \"scale\": 1.1241034499451734}\nB: {\"rotation_angle\": -137.58016126496426, \"translation_dx\": 45.631572391068715, \"translation_dy\": -54.72741054396442, \"scale\": 1.391656794638211}\nC: {\"rotation_angle\": -101.64893396855386, \"translation_dx\": -96.08306753711838, \"translation_dy\": 14.852477797043775, \"scale\": 1.3017377870800058}\nD: {\"rotation_angle\": -137.69315675508605, \"translation_dx\": -14.965017175186233, \"translation_dy\": 28.85856493302694, \"scale\": 0.6970825252863025}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -163.07830945514343, \"translation_dx\": 107.25371607945826, \"translation_dy\": 44.19319462200147, \"scale\": 1.0330497674624493}\nB: {\"rotation_angle\": -5.683971346231118, \"translation_dx\": -0.7123036436211407, \"translation_dy\": -23.660599152813326, \"scale\": 1.1241034499451734}\nC: {\"rotation_angle\": 179.8013352752547, \"translation_dx\": -90.5548533247824, \"translation_dy\": 17.23782922418306, \"scale\": 0.9885365626195518}\nD: {\"rotation_angle\": 142.66976946716716, \"translation_dx\": 29.963541003119957, \"translation_dy\": 66.07065092305665, \"scale\": 1.42144068359999}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_90_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_90_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -163.07830945514343, \"translation_dx\": 107.25371607945826, \"translation_dy\": 44.19319462200147, \"scale\": 1.0330497674624493}\nB: {\"rotation_angle\": -5.683971346231118, \"translation_dx\": -0.7123036436211407, \"translation_dy\": -23.660599152813326, \"scale\": 1.1241034499451734}\nC: {\"rotation_angle\": 179.8013352752547, \"translation_dx\": -90.5548533247824, \"translation_dy\": 17.23782922418306, \"scale\": 0.9885365626195518}\nD: {\"rotation_angle\": 142.66976946716716, \"translation_dx\": 29.963541003119957, \"translation_dy\": 66.07065092305665, \"scale\": 1.42144068359999}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 78.52234880801677, \"translation_dx\": -41.05806913924104, \"translation_dy\": -5.158893155372851, \"scale\": 1.0182841116233097}\nB: {\"rotation_angle\": 171.23105805984426, \"translation_dx\": 28.800906238980815, \"translation_dy\": 60.921924115709544, \"scale\": 1.4441070487112413}\nC: {\"rotation_angle\": 159.18509857624855, \"translation_dx\": 94.5972413522399, \"translation_dy\": -87.01463724053234, \"scale\": 0.7914176569510836}\nD: {\"rotation_angle\": -5.683971346231118, \"translation_dx\": -0.7123036436211407, \"translation_dy\": -23.660599152813326, \"scale\": 1.1241034499451734}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_91_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_91_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 78.52234880801677, \"translation_dx\": -41.05806913924104, \"translation_dy\": -5.158893155372851, \"scale\": 1.0182841116233097}\nB: {\"rotation_angle\": 171.23105805984426, \"translation_dx\": 28.800906238980815, \"translation_dy\": 60.921924115709544, \"scale\": 1.4441070487112413}\nC: {\"rotation_angle\": 159.18509857624855, \"translation_dx\": 94.5972413522399, \"translation_dy\": -87.01463724053234, \"scale\": 0.7914176569510836}\nD: {\"rotation_angle\": -5.683971346231118, \"translation_dx\": -0.7123036436211407, \"translation_dy\": -23.660599152813326, \"scale\": 1.1241034499451734}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -137.69110011960493, \"translation_dx\": -11.76155657697187, \"translation_dy\": 15.916526895382503, \"scale\": 1.164396221339579}\nB: {\"rotation_angle\": 22.924180775031914, \"translation_dx\": 8.278066534063711, \"translation_dy\": 39.03722404706397, \"scale\": 0.6972670428813228}\nC: {\"rotation_angle\": -132.6730586187399, \"translation_dx\": -14.723128468316531, \"translation_dy\": -95.44210429834934, \"scale\": 1.0421065600095725}\nD: {\"rotation_angle\": 32.25033099080062, \"translation_dx\": -33.246475706714875, \"translation_dy\": -9.848772328845214, \"scale\": 0.986502265576198}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_92_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_92_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -137.69110011960493, \"translation_dx\": -11.76155657697187, \"translation_dy\": 15.916526895382503, \"scale\": 1.164396221339579}\nB: {\"rotation_angle\": 22.924180775031914, \"translation_dx\": 8.278066534063711, \"translation_dy\": 39.03722404706397, \"scale\": 0.6972670428813228}\nC: {\"rotation_angle\": -132.6730586187399, \"translation_dx\": -14.723128468316531, \"translation_dy\": -95.44210429834934, \"scale\": 1.0421065600095725}\nD: {\"rotation_angle\": 32.25033099080062, \"translation_dx\": -33.246475706714875, \"translation_dy\": -9.848772328845214, \"scale\": 0.986502265576198}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -38.58021171568234, \"translation_dx\": -80.14139661496048, \"translation_dy\": 7.985099889843255, \"scale\": 1.029545268033875}\nB: {\"rotation_angle\": 138.15953129001275, \"translation_dx\": 108.29077351507729, \"translation_dy\": 11.25207260435026, \"scale\": 1.2682750116992958}\nC: {\"rotation_angle\": 22.924180775031914, \"translation_dx\": 8.278066534063711, \"translation_dy\": 39.03722404706397, \"scale\": 0.6972670428813228}\nD: {\"rotation_angle\": 99.38174871704592, \"translation_dx\": 57.870588734166205, \"translation_dy\": 17.413162007690403, \"scale\": 1.4113398114931053}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_93_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_93_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -38.58021171568234, \"translation_dx\": -80.14139661496048, \"translation_dy\": 7.985099889843255, \"scale\": 1.029545268033875}\nB: {\"rotation_angle\": 138.15953129001275, \"translation_dx\": 108.29077351507729, \"translation_dy\": 11.25207260435026, \"scale\": 1.2682750116992958}\nC: {\"rotation_angle\": 22.924180775031914, \"translation_dx\": 8.278066534063711, \"translation_dy\": 39.03722404706397, \"scale\": 0.6972670428813228}\nD: {\"rotation_angle\": 99.38174871704592, \"translation_dx\": 57.870588734166205, \"translation_dy\": 17.413162007690403, \"scale\": 1.4113398114931053}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 161.7596265938729, \"translation_dx\": -9.170216354863072, \"translation_dy\": -19.23222492696047, \"scale\": 1.1821087248622173}\nB: {\"rotation_angle\": -103.24791656906933, \"translation_dx\": -2.2454836983213227, \"translation_dy\": 24.014319900588845, \"scale\": 1.3204557483507742}\nC: {\"rotation_angle\": 26.06413776863195, \"translation_dx\": 104.54441011530889, \"translation_dy\": -2.802993361858995, \"scale\": 0.6919535578881184}\nD: {\"rotation_angle\": -132.6730586187399, \"translation_dx\": -14.723128468316531, \"translation_dy\": -95.44210429834934, \"scale\": 1.0421065600095725}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_94_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_94_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 161.7596265938729, \"translation_dx\": -9.170216354863072, \"translation_dy\": -19.23222492696047, \"scale\": 1.1821087248622173}\nB: {\"rotation_angle\": -103.24791656906933, \"translation_dx\": -2.2454836983213227, \"translation_dy\": 24.014319900588845, \"scale\": 1.3204557483507742}\nC: {\"rotation_angle\": 26.06413776863195, \"translation_dx\": 104.54441011530889, \"translation_dy\": -2.802993361858995, \"scale\": 0.6919535578881184}\nD: {\"rotation_angle\": -132.6730586187399, \"translation_dx\": -14.723128468316531, \"translation_dy\": -95.44210429834934, \"scale\": 1.0421065600095725}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 115.16030768984217, \"translation_dx\": -1.9669547188467504, \"translation_dy\": 38.42152609256746, \"scale\": 1.3403221872922475}\nB: {\"rotation_angle\": -127.2688410750471, \"translation_dx\": 10.330064507300825, \"translation_dy\": -25.010404065134438, \"scale\": 1.1376215421095472}\nC: {\"rotation_angle\": 36.19361803007027, \"translation_dx\": -50.40071399889004, \"translation_dy\": -85.39533040467117, \"scale\": 0.6522247071940848}\nD: {\"rotation_angle\": 136.2943203908062, \"translation_dx\": 59.15508525636656, \"translation_dy\": -38.46099161723379, \"scale\": 0.6414776081953896}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_95_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_95_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 115.16030768984217, \"translation_dx\": -1.9669547188467504, \"translation_dy\": 38.42152609256746, \"scale\": 1.3403221872922475}\nB: {\"rotation_angle\": -127.2688410750471, \"translation_dx\": 10.330064507300825, \"translation_dy\": -25.010404065134438, \"scale\": 1.1376215421095472}\nC: {\"rotation_angle\": 36.19361803007027, \"translation_dx\": -50.40071399889004, \"translation_dy\": -85.39533040467117, \"scale\": 0.6522247071940848}\nD: {\"rotation_angle\": 136.2943203908062, \"translation_dx\": 59.15508525636656, \"translation_dy\": -38.46099161723379, \"scale\": 0.6414776081953896}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -38.67054772511392, \"translation_dx\": 68.1059088983965, \"translation_dy\": -80.75433684597641, \"scale\": 1.0669693911306672}\nB: {\"rotation_angle\": -97.38730278840897, \"translation_dx\": 79.58431404822528, \"translation_dy\": -65.17570525641105, \"scale\": 0.8501057849742453}\nC: {\"rotation_angle\": -173.49565975712173, \"translation_dx\": 30.5303454517925, \"translation_dy\": 77.86216107455405, \"scale\": 1.067173806992701}\nD: {\"rotation_angle\": 78.52234880801677, \"translation_dx\": -41.05806913924104, \"translation_dy\": -5.158893155372851, \"scale\": 1.0182841116233097}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_96_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_96_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -38.67054772511392, \"translation_dx\": 68.1059088983965, \"translation_dy\": -80.75433684597641, \"scale\": 1.0669693911306672}\nB: {\"rotation_angle\": -97.38730278840897, \"translation_dx\": 79.58431404822528, \"translation_dy\": -65.17570525641105, \"scale\": 0.8501057849742453}\nC: {\"rotation_angle\": -173.49565975712173, \"translation_dx\": 30.5303454517925, \"translation_dy\": 77.86216107455405, \"scale\": 1.067173806992701}\nD: {\"rotation_angle\": 78.52234880801677, \"translation_dx\": -41.05806913924104, \"translation_dy\": -5.158893155372851, \"scale\": 1.0182841116233097}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -50.19218790392131, \"translation_dx\": -27.31734251737683, \"translation_dy\": 8.514724344494553, \"scale\": 1.0874517053433594}\nB: {\"rotation_angle\": 33.426384392539006, \"translation_dx\": -12.448609293998487, \"translation_dy\": 64.03367069956386, \"scale\": 0.6340926377236346}\nC: {\"rotation_angle\": 22.924180775031914, \"translation_dx\": 8.278066534063711, \"translation_dy\": 39.03722404706397, \"scale\": 0.6972670428813228}\nD: {\"rotation_angle\": -115.34417090075787, \"translation_dx\": -118.63121430094503, \"translation_dy\": 41.63412082488844, \"scale\": 0.9001856788272352}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_97_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_97_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -50.19218790392131, \"translation_dx\": -27.31734251737683, \"translation_dy\": 8.514724344494553, \"scale\": 1.0874517053433594}\nB: {\"rotation_angle\": 33.426384392539006, \"translation_dx\": -12.448609293998487, \"translation_dy\": 64.03367069956386, \"scale\": 0.6340926377236346}\nC: {\"rotation_angle\": 22.924180775031914, \"translation_dx\": 8.278066534063711, \"translation_dy\": 39.03722404706397, \"scale\": 0.6972670428813228}\nD: {\"rotation_angle\": -115.34417090075787, \"translation_dx\": -118.63121430094503, \"translation_dy\": 41.63412082488844, \"scale\": 0.9001856788272352}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -68.79930104020924, \"translation_dx\": -103.12901971602221, \"translation_dy\": 94.89161684072867, \"scale\": 1.2295411735859756}\nB: {\"rotation_angle\": -164.42105085554024, \"translation_dx\": 53.959081038248144, \"translation_dy\": -27.892450679654182, \"scale\": 1.1369631742880046}\nC: {\"rotation_angle\": 103.56580652114087, \"translation_dx\": -76.88940345297716, \"translation_dy\": -3.4544443607121593, \"scale\": 1.3949152683659345}\nD: {\"rotation_angle\": 53.86809011441332, \"translation_dx\": -15.131168518097624, \"translation_dy\": -31.300037391593577, \"scale\": 1.3154620606808156}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_98_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_98_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -68.79930104020924, \"translation_dx\": -103.12901971602221, \"translation_dy\": 94.89161684072867, \"scale\": 1.2295411735859756}\nB: {\"rotation_angle\": -164.42105085554024, \"translation_dx\": 53.959081038248144, \"translation_dy\": -27.892450679654182, \"scale\": 1.1369631742880046}\nC: {\"rotation_angle\": 103.56580652114087, \"translation_dx\": -76.88940345297716, \"translation_dy\": -3.4544443607121593, \"scale\": 1.3949152683659345}\nD: {\"rotation_angle\": 53.86809011441332, \"translation_dx\": -15.131168518097624, \"translation_dy\": -31.300037391593577, \"scale\": 1.3154620606808156}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 173.6372649335733, \"translation_dx\": -7.357207392874017, \"translation_dy\": -51.70776156994498, \"scale\": 1.09720142096939}\nB: {\"rotation_angle\": 18.52926347539298, \"translation_dx\": -26.155433185237058, \"translation_dy\": -39.799299198218556, \"scale\": 0.9355127285855813}\nC: {\"rotation_angle\": 107.15748471049534, \"translation_dx\": -112.04520804841785, \"translation_dy\": 107.36899853350675, \"scale\": 0.784106447062462}\nD: {\"rotation_angle\": -49.11147497176091, \"translation_dx\": -21.61309921155923, \"translation_dy\": 41.841400081955015, \"scale\": 1.3374733710705384}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_99_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_99_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 173.6372649335733, \"translation_dx\": -7.357207392874017, \"translation_dy\": -51.70776156994498, \"scale\": 1.09720142096939}\nB: {\"rotation_angle\": 18.52926347539298, \"translation_dx\": -26.155433185237058, \"translation_dy\": -39.799299198218556, \"scale\": 0.9355127285855813}\nC: {\"rotation_angle\": 107.15748471049534, \"translation_dx\": -112.04520804841785, \"translation_dy\": 107.36899853350675, \"scale\": 0.784106447062462}\nD: {\"rotation_angle\": -49.11147497176091, \"translation_dx\": -21.61309921155923, \"translation_dy\": 41.841400081955015, \"scale\": 1.3374733710705384}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 107.15748471049534, \"translation_dx\": -112.04520804841785, \"translation_dy\": 107.36899853350675, \"scale\": 0.784106447062462}\nB: {\"rotation_angle\": 97.08459407481979, \"translation_dx\": 38.76418659488206, \"translation_dy\": 44.81166266995322, \"scale\": 1.27585958531192}\nC: {\"rotation_angle\": -124.27587082376021, \"translation_dx\": -88.19288051455345, \"translation_dy\": 24.145134775980125, \"scale\": 1.4414104211047083}\nD: {\"rotation_angle\": 8.705969178532513, \"translation_dx\": -108.98578445869327, \"translation_dy\": -85.91179454441009, \"scale\": 0.5132717751865925}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_100_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_100_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 107.15748471049534, \"translation_dx\": -112.04520804841785, \"translation_dy\": 107.36899853350675, \"scale\": 0.784106447062462}\nB: {\"rotation_angle\": 97.08459407481979, \"translation_dx\": 38.76418659488206, \"translation_dy\": 44.81166266995322, \"scale\": 1.27585958531192}\nC: {\"rotation_angle\": -124.27587082376021, \"translation_dx\": -88.19288051455345, \"translation_dy\": 24.145134775980125, \"scale\": 1.4414104211047083}\nD: {\"rotation_angle\": 8.705969178532513, \"translation_dx\": -108.98578445869327, \"translation_dy\": -85.91179454441009, \"scale\": 0.5132717751865925}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -38.58021171568234, \"translation_dx\": -80.14139661496048, \"translation_dy\": 7.985099889843255, \"scale\": 1.029545268033875}\nB: {\"rotation_angle\": 83.8873422171626, \"translation_dx\": -89.51171417178318, \"translation_dy\": 44.525876215713694, \"scale\": 0.7096671999666376}\nC: {\"rotation_angle\": 123.61853421760617, \"translation_dx\": -93.63136806510369, \"translation_dy\": -15.65687765252683, \"scale\": 0.9834422929774667}\nD: {\"rotation_angle\": -38.67054772511392, \"translation_dx\": 68.1059088983965, \"translation_dy\": -80.75433684597641, \"scale\": 1.0669693911306672}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_101_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_101_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -38.58021171568234, \"translation_dx\": -80.14139661496048, \"translation_dy\": 7.985099889843255, \"scale\": 1.029545268033875}\nB: {\"rotation_angle\": 83.8873422171626, \"translation_dx\": -89.51171417178318, \"translation_dy\": 44.525876215713694, \"scale\": 0.7096671999666376}\nC: {\"rotation_angle\": 123.61853421760617, \"translation_dx\": -93.63136806510369, \"translation_dy\": -15.65687765252683, \"scale\": 0.9834422929774667}\nD: {\"rotation_angle\": -38.67054772511392, \"translation_dx\": 68.1059088983965, \"translation_dy\": -80.75433684597641, \"scale\": 1.0669693911306672}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -160.6395227566207, \"translation_dx\": 53.66643366551958, \"translation_dy\": -27.712376159428388, \"scale\": 1.1084051689599654}\nB: {\"rotation_angle\": 37.640985396206986, \"translation_dx\": -97.39428669742068, \"translation_dy\": 17.900860680283458, \"scale\": 1.0930243251030827}\nC: {\"rotation_angle\": 95.69634927891752, \"translation_dx\": -96.46148729426875, \"translation_dy\": -25.496381966922478, \"scale\": 0.7479348241153333}\nD: {\"rotation_angle\": 137.6047485759084, \"translation_dx\": -27.00857214512888, \"translation_dy\": -94.97246325619065, \"scale\": 1.1628545134465245}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_102_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_102_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -160.6395227566207, \"translation_dx\": 53.66643366551958, \"translation_dy\": -27.712376159428388, \"scale\": 1.1084051689599654}\nB: {\"rotation_angle\": 37.640985396206986, \"translation_dx\": -97.39428669742068, \"translation_dy\": 17.900860680283458, \"scale\": 1.0930243251030827}\nC: {\"rotation_angle\": 95.69634927891752, \"translation_dx\": -96.46148729426875, \"translation_dy\": -25.496381966922478, \"scale\": 0.7479348241153333}\nD: {\"rotation_angle\": 137.6047485759084, \"translation_dx\": -27.00857214512888, \"translation_dy\": -94.97246325619065, \"scale\": 1.1628545134465245}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 159.39197876032466, \"translation_dx\": -101.87275621292875, \"translation_dy\": -32.606176111808466, \"scale\": 0.6647290774480178}\nB: {\"rotation_angle\": -153.3687774434925, \"translation_dx\": 50.92336593606055, \"translation_dy\": -56.81603844715568, \"scale\": 1.398231264497651}\nC: {\"rotation_angle\": 137.6047485759084, \"translation_dx\": -27.00857214512888, \"translation_dy\": -94.97246325619065, \"scale\": 1.1628545134465245}\nD: {\"rotation_angle\": -76.09611957445006, \"translation_dx\": -118.19634710213703, \"translation_dy\": 85.91610719889127, \"scale\": 1.371999627635525}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_103_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_103_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 159.39197876032466, \"translation_dx\": -101.87275621292875, \"translation_dy\": -32.606176111808466, \"scale\": 0.6647290774480178}\nB: {\"rotation_angle\": -153.3687774434925, \"translation_dx\": 50.92336593606055, \"translation_dy\": -56.81603844715568, \"scale\": 1.398231264497651}\nC: {\"rotation_angle\": 137.6047485759084, \"translation_dx\": -27.00857214512888, \"translation_dy\": -94.97246325619065, \"scale\": 1.1628545134465245}\nD: {\"rotation_angle\": -76.09611957445006, \"translation_dx\": -118.19634710213703, \"translation_dy\": 85.91610719889127, \"scale\": 1.371999627635525}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -38.67054772511392, \"translation_dx\": 68.1059088983965, \"translation_dy\": -80.75433684597641, \"scale\": 1.0669693911306672}\nB: {\"rotation_angle\": -176.3085334768787, \"translation_dx\": -26.09189325642553, \"translation_dy\": 21.458056495366975, \"scale\": 0.7934334422653395}\nC: {\"rotation_angle\": 97.08459407481979, \"translation_dx\": 38.76418659488206, \"translation_dy\": 44.81166266995322, \"scale\": 1.27585958531192}\nD: {\"rotation_angle\": -79.55706788063112, \"translation_dx\": -38.613403166877674, \"translation_dy\": 48.56888435185245, \"scale\": 1.368947012195521}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_104_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_104_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -38.67054772511392, \"translation_dx\": 68.1059088983965, \"translation_dy\": -80.75433684597641, \"scale\": 1.0669693911306672}\nB: {\"rotation_angle\": -176.3085334768787, \"translation_dx\": -26.09189325642553, \"translation_dy\": 21.458056495366975, \"scale\": 0.7934334422653395}\nC: {\"rotation_angle\": 97.08459407481979, \"translation_dx\": 38.76418659488206, \"translation_dy\": 44.81166266995322, \"scale\": 1.27585958531192}\nD: {\"rotation_angle\": -79.55706788063112, \"translation_dx\": -38.613403166877674, \"translation_dy\": 48.56888435185245, \"scale\": 1.368947012195521}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 159.25105466068987, \"translation_dx\": -126.35420360425098, \"translation_dy\": -17.54721978726404, \"scale\": 1.4952435062275256}\nB: {\"rotation_angle\": -5.816806483512181, \"translation_dx\": -70.40329792935935, \"translation_dy\": -21.418007440252175, \"scale\": 1.0041476956174793}\nC: {\"rotation_angle\": 171.23105805984426, \"translation_dx\": 28.800906238980815, \"translation_dy\": 60.921924115709544, \"scale\": 1.4441070487112413}\nD: {\"rotation_angle\": 1.3693998936690264, \"translation_dx\": -71.94174431428723, \"translation_dy\": 25.661133958182248, \"scale\": 1.468813327861592}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_105_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_105_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 159.25105466068987, \"translation_dx\": -126.35420360425098, \"translation_dy\": -17.54721978726404, \"scale\": 1.4952435062275256}\nB: {\"rotation_angle\": -5.816806483512181, \"translation_dx\": -70.40329792935935, \"translation_dy\": -21.418007440252175, \"scale\": 1.0041476956174793}\nC: {\"rotation_angle\": 171.23105805984426, \"translation_dx\": 28.800906238980815, \"translation_dy\": 60.921924115709544, \"scale\": 1.4441070487112413}\nD: {\"rotation_angle\": 1.3693998936690264, \"translation_dx\": -71.94174431428723, \"translation_dy\": 25.661133958182248, \"scale\": 1.468813327861592}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 162.98131081099467, \"translation_dx\": -80.19473687776261, \"translation_dy\": -17.70282064458462, \"scale\": 1.2855975600149028}\nB: {\"rotation_angle\": -79.55706788063112, \"translation_dx\": -38.613403166877674, \"translation_dy\": 48.56888435185245, \"scale\": 1.368947012195521}\nC: {\"rotation_angle\": 33.36657735274014, \"translation_dx\": -110.42271839281483, \"translation_dy\": 35.783043595963875, \"scale\": 1.1017945125321793}\nD: {\"rotation_angle\": 115.4472434811122, \"translation_dx\": 69.00896887231048, \"translation_dy\": -26.016218629159226, \"scale\": 0.9339901852292719}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_106_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_106_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 162.98131081099467, \"translation_dx\": -80.19473687776261, \"translation_dy\": -17.70282064458462, \"scale\": 1.2855975600149028}\nB: {\"rotation_angle\": -79.55706788063112, \"translation_dx\": -38.613403166877674, \"translation_dy\": 48.56888435185245, \"scale\": 1.368947012195521}\nC: {\"rotation_angle\": 33.36657735274014, \"translation_dx\": -110.42271839281483, \"translation_dy\": 35.783043595963875, \"scale\": 1.1017945125321793}\nD: {\"rotation_angle\": 115.4472434811122, \"translation_dx\": 69.00896887231048, \"translation_dy\": -26.016218629159226, \"scale\": 0.9339901852292719}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 179.8013352752547, \"translation_dx\": -90.5548533247824, \"translation_dy\": 17.23782922418306, \"scale\": 0.9885365626195518}\nB: {\"rotation_angle\": 14.369437993555863, \"translation_dx\": -23.54312301695805, \"translation_dy\": 55.41046511147678, \"scale\": 1.115345902394854}\nC: {\"rotation_angle\": -164.42105085554024, \"translation_dx\": 53.959081038248144, \"translation_dy\": -27.892450679654182, \"scale\": 1.1369631742880046}\nD: {\"rotation_angle\": -113.69332067912192, \"translation_dx\": -23.005200251858383, \"translation_dy\": 57.916315250854666, \"scale\": 0.5483419258047426}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_107_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_107_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 179.8013352752547, \"translation_dx\": -90.5548533247824, \"translation_dy\": 17.23782922418306, \"scale\": 0.9885365626195518}\nB: {\"rotation_angle\": 14.369437993555863, \"translation_dx\": -23.54312301695805, \"translation_dy\": 55.41046511147678, \"scale\": 1.115345902394854}\nC: {\"rotation_angle\": -164.42105085554024, \"translation_dx\": 53.959081038248144, \"translation_dy\": -27.892450679654182, \"scale\": 1.1369631742880046}\nD: {\"rotation_angle\": -113.69332067912192, \"translation_dx\": -23.005200251858383, \"translation_dy\": 57.916315250854666, \"scale\": 0.5483419258047426}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -164.42105085554024, \"translation_dx\": 53.959081038248144, \"translation_dy\": -27.892450679654182, \"scale\": 1.1369631742880046}\nB: {\"rotation_angle\": 97.63348280388993, \"translation_dx\": 59.62332527691919, \"translation_dy\": 12.549462794922746, \"scale\": 0.6927080624806098}\nC: {\"rotation_angle\": 46.42160956908356, \"translation_dx\": -90.04619228512212, \"translation_dy\": -15.749486436572411, \"scale\": 1.005156310055277}\nD: {\"rotation_angle\": 136.76946369368522, \"translation_dx\": 86.13615517916296, \"translation_dy\": 47.49597577737802, \"scale\": 1.1842967613683704}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_108_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_108_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -164.42105085554024, \"translation_dx\": 53.959081038248144, \"translation_dy\": -27.892450679654182, \"scale\": 1.1369631742880046}\nB: {\"rotation_angle\": 97.63348280388993, \"translation_dx\": 59.62332527691919, \"translation_dy\": 12.549462794922746, \"scale\": 0.6927080624806098}\nC: {\"rotation_angle\": 46.42160956908356, \"translation_dx\": -90.04619228512212, \"translation_dy\": -15.749486436572411, \"scale\": 1.005156310055277}\nD: {\"rotation_angle\": 136.76946369368522, \"translation_dx\": 86.13615517916296, \"translation_dy\": 47.49597577737802, \"scale\": 1.1842967613683704}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -127.03310490562403, \"translation_dx\": -44.497972498107885, \"translation_dy\": 53.252184804163164, \"scale\": 0.8807762361133948}\nB: {\"rotation_angle\": -4.364889011784271, \"translation_dx\": 74.89385338851659, \"translation_dy\": 29.259521498010997, \"scale\": 1.2877948451877137}\nC: {\"rotation_angle\": -162.31682909306286, \"translation_dx\": 94.60975693720637, \"translation_dy\": -28.569332128995313, \"scale\": 1.1251281587345527}\nD: {\"rotation_angle\": -15.445234303955033, \"translation_dx\": 52.656313993324545, \"translation_dy\": 4.243768644047549, \"scale\": 0.8747335302455691}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_109_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_109_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -127.03310490562403, \"translation_dx\": -44.497972498107885, \"translation_dy\": 53.252184804163164, \"scale\": 0.8807762361133948}\nB: {\"rotation_angle\": -4.364889011784271, \"translation_dx\": 74.89385338851659, \"translation_dy\": 29.259521498010997, \"scale\": 1.2877948451877137}\nC: {\"rotation_angle\": -162.31682909306286, \"translation_dx\": 94.60975693720637, \"translation_dy\": -28.569332128995313, \"scale\": 1.1251281587345527}\nD: {\"rotation_angle\": -15.445234303955033, \"translation_dx\": 52.656313993324545, \"translation_dy\": 4.243768644047549, \"scale\": 0.8747335302455691}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 49.896013394485834, \"translation_dx\": -25.763756683237403, \"translation_dy\": -26.432232271484168, \"scale\": 1.1619310734744932}\nB: {\"rotation_angle\": 133.22970053001933, \"translation_dx\": 30.83867253278636, \"translation_dy\": 9.987607615316023, \"scale\": 0.9746642566652708}\nC: {\"rotation_angle\": 36.19361803007027, \"translation_dx\": -50.40071399889004, \"translation_dy\": -85.39533040467117, \"scale\": 0.6522247071940848}\nD: {\"rotation_angle\": 136.2943203908062, \"translation_dx\": 59.15508525636656, \"translation_dy\": -38.46099161723379, \"scale\": 0.6414776081953896}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_110_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_110_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 49.896013394485834, \"translation_dx\": -25.763756683237403, \"translation_dy\": -26.432232271484168, \"scale\": 1.1619310734744932}\nB: {\"rotation_angle\": 133.22970053001933, \"translation_dx\": 30.83867253278636, \"translation_dy\": 9.987607615316023, \"scale\": 0.9746642566652708}\nC: {\"rotation_angle\": 36.19361803007027, \"translation_dx\": -50.40071399889004, \"translation_dy\": -85.39533040467117, \"scale\": 0.6522247071940848}\nD: {\"rotation_angle\": 136.2943203908062, \"translation_dx\": 59.15508525636656, \"translation_dy\": -38.46099161723379, \"scale\": 0.6414776081953896}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -97.38730278840897, \"translation_dx\": 79.58431404822528, \"translation_dy\": -65.17570525641105, \"scale\": 0.8501057849742453}\nB: {\"rotation_angle\": -72.82027143369304, \"translation_dx\": -44.85481158127062, \"translation_dy\": 106.69131407191517, \"scale\": 0.716080341101258}\nC: {\"rotation_angle\": -113.69332067912192, \"translation_dx\": -23.005200251858383, \"translation_dy\": 57.916315250854666, \"scale\": 0.5483419258047426}\nD: {\"rotation_angle\": 139.13421797404374, \"translation_dx\": -107.62188977651758, \"translation_dy\": -65.35657968686931, \"scale\": 0.569575564082204}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_111_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_111_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -97.38730278840897, \"translation_dx\": 79.58431404822528, \"translation_dy\": -65.17570525641105, \"scale\": 0.8501057849742453}\nB: {\"rotation_angle\": -72.82027143369304, \"translation_dx\": -44.85481158127062, \"translation_dy\": 106.69131407191517, \"scale\": 0.716080341101258}\nC: {\"rotation_angle\": -113.69332067912192, \"translation_dx\": -23.005200251858383, \"translation_dy\": 57.916315250854666, \"scale\": 0.5483419258047426}\nD: {\"rotation_angle\": 139.13421797404374, \"translation_dx\": -107.62188977651758, \"translation_dy\": -65.35657968686931, \"scale\": 0.569575564082204}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 159.39197876032466, \"translation_dx\": -101.87275621292875, \"translation_dy\": -32.606176111808466, \"scale\": 0.6647290774480178}\nB: {\"rotation_angle\": 111.11665430921613, \"translation_dx\": -45.526232266105865, \"translation_dy\": -71.56835409165808, \"scale\": 0.5234271564227445}\nC: {\"rotation_angle\": -49.11147497176091, \"translation_dx\": -21.61309921155923, \"translation_dy\": 41.841400081955015, \"scale\": 1.3374733710705384}\nD: {\"rotation_angle\": -128.74497971799806, \"translation_dx\": -55.835206426128764, \"translation_dy\": 54.178252983369276, \"scale\": 0.8905979693160588}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_112_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_112_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 159.39197876032466, \"translation_dx\": -101.87275621292875, \"translation_dy\": -32.606176111808466, \"scale\": 0.6647290774480178}\nB: {\"rotation_angle\": 111.11665430921613, \"translation_dx\": -45.526232266105865, \"translation_dy\": -71.56835409165808, \"scale\": 0.5234271564227445}\nC: {\"rotation_angle\": -49.11147497176091, \"translation_dx\": -21.61309921155923, \"translation_dy\": 41.841400081955015, \"scale\": 1.3374733710705384}\nD: {\"rotation_angle\": -128.74497971799806, \"translation_dx\": -55.835206426128764, \"translation_dy\": 54.178252983369276, \"scale\": 0.8905979693160588}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 127.0599036632886, \"translation_dx\": -26.73103881794438, \"translation_dy\": 16.785326739741976, \"scale\": 1.1214331244941351}\nB: {\"rotation_angle\": -137.69315675508605, \"translation_dx\": -14.965017175186233, \"translation_dy\": 28.85856493302694, \"scale\": 0.6970825252863025}\nC: {\"rotation_angle\": -174.94064668132228, \"translation_dx\": 73.73079207136513, \"translation_dy\": 58.25534486945551, \"scale\": 1.178357936048121}\nD: {\"rotation_angle\": 168.86687879669455, \"translation_dx\": 30.327287286076626, \"translation_dy\": -73.84263373893171, \"scale\": 1.0887904122788439}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_113_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_113_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 127.0599036632886, \"translation_dx\": -26.73103881794438, \"translation_dy\": 16.785326739741976, \"scale\": 1.1214331244941351}\nB: {\"rotation_angle\": -137.69315675508605, \"translation_dx\": -14.965017175186233, \"translation_dy\": 28.85856493302694, \"scale\": 0.6970825252863025}\nC: {\"rotation_angle\": -174.94064668132228, \"translation_dx\": 73.73079207136513, \"translation_dy\": 58.25534486945551, \"scale\": 1.178357936048121}\nD: {\"rotation_angle\": 168.86687879669455, \"translation_dx\": 30.327287286076626, \"translation_dy\": -73.84263373893171, \"scale\": 1.0887904122788439}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -31.020660516088725, \"translation_dx\": 105.99805178546191, \"translation_dy\": -82.8489656004858, \"scale\": 1.0703563169477137}\nB: {\"rotation_angle\": 45.786611297437304, \"translation_dx\": 45.53183354666939, \"translation_dy\": -112.45880863798888, \"scale\": 0.5686394776423458}\nC: {\"rotation_angle\": -83.37935946961306, \"translation_dx\": -63.440112200681114, \"translation_dy\": -47.62616010479583, \"scale\": 0.6518247509991958}\nD: {\"rotation_angle\": 26.06413776863195, \"translation_dx\": 104.54441011530889, \"translation_dy\": -2.802993361858995, \"scale\": 0.6919535578881184}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_114_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_114_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -31.020660516088725, \"translation_dx\": 105.99805178546191, \"translation_dy\": -82.8489656004858, \"scale\": 1.0703563169477137}\nB: {\"rotation_angle\": 45.786611297437304, \"translation_dx\": 45.53183354666939, \"translation_dy\": -112.45880863798888, \"scale\": 0.5686394776423458}\nC: {\"rotation_angle\": -83.37935946961306, \"translation_dx\": -63.440112200681114, \"translation_dy\": -47.62616010479583, \"scale\": 0.6518247509991958}\nD: {\"rotation_angle\": 26.06413776863195, \"translation_dx\": 104.54441011530889, \"translation_dy\": -2.802993361858995, \"scale\": 0.6919535578881184}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -68.79930104020924, \"translation_dx\": -103.12901971602221, \"translation_dy\": 94.89161684072867, \"scale\": 1.2295411735859756}\nB: {\"rotation_angle\": -176.3085334768787, \"translation_dx\": -26.09189325642553, \"translation_dy\": 21.458056495366975, \"scale\": 0.7934334422653395}\nC: {\"rotation_angle\": 107.15748471049534, \"translation_dx\": -112.04520804841785, \"translation_dy\": 107.36899853350675, \"scale\": 0.784106447062462}\nD: {\"rotation_angle\": -76.09611957445006, \"translation_dx\": -118.19634710213703, \"translation_dy\": 85.91610719889127, \"scale\": 1.371999627635525}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_115_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_115_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -68.79930104020924, \"translation_dx\": -103.12901971602221, \"translation_dy\": 94.89161684072867, \"scale\": 1.2295411735859756}\nB: {\"rotation_angle\": -176.3085334768787, \"translation_dx\": -26.09189325642553, \"translation_dy\": 21.458056495366975, \"scale\": 0.7934334422653395}\nC: {\"rotation_angle\": 107.15748471049534, \"translation_dx\": -112.04520804841785, \"translation_dy\": 107.36899853350675, \"scale\": 0.784106447062462}\nD: {\"rotation_angle\": -76.09611957445006, \"translation_dx\": -118.19634710213703, \"translation_dy\": 85.91610719889127, \"scale\": 1.371999627635525}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 120.9888581359325, \"translation_dx\": 2.43720894071744, \"translation_dy\": -7.865691814940682, \"scale\": 0.5519813971136048}\nB: {\"rotation_angle\": 49.896013394485834, \"translation_dx\": -25.763756683237403, \"translation_dy\": -26.432232271484168, \"scale\": 1.1619310734744932}\nC: {\"rotation_angle\": 46.42160956908356, \"translation_dx\": -90.04619228512212, \"translation_dy\": -15.749486436572411, \"scale\": 1.005156310055277}\nD: {\"rotation_angle\": 123.61853421760617, \"translation_dx\": -93.63136806510369, \"translation_dy\": -15.65687765252683, \"scale\": 0.9834422929774667}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_116_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_116_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 120.9888581359325, \"translation_dx\": 2.43720894071744, \"translation_dy\": -7.865691814940682, \"scale\": 0.5519813971136048}\nB: {\"rotation_angle\": 49.896013394485834, \"translation_dx\": -25.763756683237403, \"translation_dy\": -26.432232271484168, \"scale\": 1.1619310734744932}\nC: {\"rotation_angle\": 46.42160956908356, \"translation_dx\": -90.04619228512212, \"translation_dy\": -15.749486436572411, \"scale\": 1.005156310055277}\nD: {\"rotation_angle\": 123.61853421760617, \"translation_dx\": -93.63136806510369, \"translation_dy\": -15.65687765252683, \"scale\": 0.9834422929774667}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -31.020660516088725, \"translation_dx\": 105.99805178546191, \"translation_dy\": -82.8489656004858, \"scale\": 1.0703563169477137}\nB: {\"rotation_angle\": -46.75272698463425, \"translation_dx\": 16.424107524155175, \"translation_dy\": -60.683488552754085, \"scale\": 1.375025476214386}\nC: {\"rotation_angle\": 4.601729825002167, \"translation_dx\": -92.34842360064926, \"translation_dy\": 78.34726427877602, \"scale\": 0.7620115680057987}\nD: {\"rotation_angle\": -75.97132980340905, \"translation_dx\": 6.960702322199779, \"translation_dy\": 90.08754109424518, \"scale\": 1.363389071715864}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_117_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_117_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -31.020660516088725, \"translation_dx\": 105.99805178546191, \"translation_dy\": -82.8489656004858, \"scale\": 1.0703563169477137}\nB: {\"rotation_angle\": -46.75272698463425, \"translation_dx\": 16.424107524155175, \"translation_dy\": -60.683488552754085, \"scale\": 1.375025476214386}\nC: {\"rotation_angle\": 4.601729825002167, \"translation_dx\": -92.34842360064926, \"translation_dy\": 78.34726427877602, \"scale\": 0.7620115680057987}\nD: {\"rotation_angle\": -75.97132980340905, \"translation_dx\": 6.960702322199779, \"translation_dy\": 90.08754109424518, \"scale\": 1.363389071715864}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 104.66960596229086, \"translation_dx\": 122.9579606372167, \"translation_dy\": -32.21502556645471, \"scale\": 0.5791563638149022}\nB: {\"rotation_angle\": -44.30781692045639, \"translation_dx\": -23.473696812537305, \"translation_dy\": -94.42952089946652, \"scale\": 1.4029179362735564}\nC: {\"rotation_angle\": 37.640985396206986, \"translation_dx\": -97.39428669742068, \"translation_dy\": 17.900860680283458, \"scale\": 1.0930243251030827}\nD: {\"rotation_angle\": 110.02825264959768, \"translation_dx\": -53.26387197670213, \"translation_dy\": 88.43864976013427, \"scale\": 1.4833645013101147}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_118_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_118_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 104.66960596229086, \"translation_dx\": 122.9579606372167, \"translation_dy\": -32.21502556645471, \"scale\": 0.5791563638149022}\nB: {\"rotation_angle\": -44.30781692045639, \"translation_dx\": -23.473696812537305, \"translation_dy\": -94.42952089946652, \"scale\": 1.4029179362735564}\nC: {\"rotation_angle\": 37.640985396206986, \"translation_dx\": -97.39428669742068, \"translation_dy\": 17.900860680283458, \"scale\": 1.0930243251030827}\nD: {\"rotation_angle\": 110.02825264959768, \"translation_dx\": -53.26387197670213, \"translation_dy\": 88.43864976013427, \"scale\": 1.4833645013101147}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 83.8873422171626, \"translation_dx\": -89.51171417178318, \"translation_dy\": 44.525876215713694, \"scale\": 0.7096671999666376}\nB: {\"rotation_angle\": -32.057796286961064, \"translation_dx\": 119.50392135854452, \"translation_dy\": -17.786253698900993, \"scale\": 1.4583062003808291}\nC: {\"rotation_angle\": -31.020660516088725, \"translation_dx\": 105.99805178546191, \"translation_dy\": -82.8489656004858, \"scale\": 1.0703563169477137}\nD: {\"rotation_angle\": 99.38174871704592, \"translation_dx\": 57.870588734166205, \"translation_dy\": 17.413162007690403, \"scale\": 1.4113398114931053}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_119_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_119_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 83.8873422171626, \"translation_dx\": -89.51171417178318, \"translation_dy\": 44.525876215713694, \"scale\": 0.7096671999666376}\nB: {\"rotation_angle\": -32.057796286961064, \"translation_dx\": 119.50392135854452, \"translation_dy\": -17.786253698900993, \"scale\": 1.4583062003808291}\nC: {\"rotation_angle\": -31.020660516088725, \"translation_dx\": 105.99805178546191, \"translation_dy\": -82.8489656004858, \"scale\": 1.0703563169477137}\nD: {\"rotation_angle\": 99.38174871704592, \"translation_dx\": 57.870588734166205, \"translation_dy\": 17.413162007690403, \"scale\": 1.4113398114931053}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -110.46391589612124, \"translation_dx\": -77.96644542647721, \"translation_dy\": -50.23500265461973, \"scale\": 0.7651088884143488}\nB: {\"rotation_angle\": -22.98450105670534, \"translation_dx\": -24.343109907781525, \"translation_dy\": -75.50859401578859, \"scale\": 0.5077440368943875}\nC: {\"rotation_angle\": -97.38730278840897, \"translation_dx\": 79.58431404822528, \"translation_dy\": -65.17570525641105, \"scale\": 0.8501057849742453}\nD: {\"rotation_angle\": -147.17742740700606, \"translation_dx\": 99.79022385553455, \"translation_dy\": -46.32888217161055, \"scale\": 1.2561938294527635}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_120_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_120_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -110.46391589612124, \"translation_dx\": -77.96644542647721, \"translation_dy\": -50.23500265461973, \"scale\": 0.7651088884143488}\nB: {\"rotation_angle\": -22.98450105670534, \"translation_dx\": -24.343109907781525, \"translation_dy\": -75.50859401578859, \"scale\": 0.5077440368943875}\nC: {\"rotation_angle\": -97.38730278840897, \"translation_dx\": 79.58431404822528, \"translation_dy\": -65.17570525641105, \"scale\": 0.8501057849742453}\nD: {\"rotation_angle\": -147.17742740700606, \"translation_dx\": 99.79022385553455, \"translation_dy\": -46.32888217161055, \"scale\": 1.2561938294527635}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 37.640985396206986, \"translation_dx\": -97.39428669742068, \"translation_dy\": 17.900860680283458, \"scale\": 1.0930243251030827}\nB: {\"rotation_angle\": -106.99875725121946, \"translation_dx\": 87.96881157950656, \"translation_dy\": -34.70529343588741, \"scale\": 1.407305489874207}\nC: {\"rotation_angle\": -95.56761680572791, \"translation_dx\": -92.07587430861633, \"translation_dy\": -64.18919222058364, \"scale\": 1.033728049154846}\nD: {\"rotation_angle\": 84.88997243843744, \"translation_dx\": 19.30269357274682, \"translation_dy\": 9.929350250110147, \"scale\": 1.0595552381550672}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_121_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_121_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 37.640985396206986, \"translation_dx\": -97.39428669742068, \"translation_dy\": 17.900860680283458, \"scale\": 1.0930243251030827}\nB: {\"rotation_angle\": -106.99875725121946, \"translation_dx\": 87.96881157950656, \"translation_dy\": -34.70529343588741, \"scale\": 1.407305489874207}\nC: {\"rotation_angle\": -95.56761680572791, \"translation_dx\": -92.07587430861633, \"translation_dy\": -64.18919222058364, \"scale\": 1.033728049154846}\nD: {\"rotation_angle\": 84.88997243843744, \"translation_dx\": 19.30269357274682, \"translation_dy\": 9.929350250110147, \"scale\": 1.0595552381550672}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 159.74516071456964, \"translation_dx\": 18.36539372865252, \"translation_dy\": -32.68583255299669, \"scale\": 0.6283421405871866}\nB: {\"rotation_angle\": 84.88997243843744, \"translation_dx\": 19.30269357274682, \"translation_dy\": 9.929350250110147, \"scale\": 1.0595552381550672}\nC: {\"rotation_angle\": -148.06770236959966, \"translation_dx\": 76.71938731609727, \"translation_dy\": 125.67697929104389, \"scale\": 1.1600663307259453}\nD: {\"rotation_angle\": -131.1795029858263, \"translation_dx\": 17.908074544940433, \"translation_dy\": 120.17637833747304, \"scale\": 0.9471882483559888}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_122_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_122_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 159.74516071456964, \"translation_dx\": 18.36539372865252, \"translation_dy\": -32.68583255299669, \"scale\": 0.6283421405871866}\nB: {\"rotation_angle\": 84.88997243843744, \"translation_dx\": 19.30269357274682, \"translation_dy\": 9.929350250110147, \"scale\": 1.0595552381550672}\nC: {\"rotation_angle\": -148.06770236959966, \"translation_dx\": 76.71938731609727, \"translation_dy\": 125.67697929104389, \"scale\": 1.1600663307259453}\nD: {\"rotation_angle\": -131.1795029858263, \"translation_dx\": 17.908074544940433, \"translation_dy\": 120.17637833747304, \"scale\": 0.9471882483559888}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 70.46713054198463, \"translation_dx\": 21.906055640356044, \"translation_dy\": -12.161170387444017, \"scale\": 0.6983211043742098}\nB: {\"rotation_angle\": -176.3085334768787, \"translation_dx\": -26.09189325642553, \"translation_dy\": 21.458056495366975, \"scale\": 0.7934334422653395}\nC: {\"rotation_angle\": -5.816806483512181, \"translation_dx\": -70.40329792935935, \"translation_dy\": -21.418007440252175, \"scale\": 1.0041476956174793}\nD: {\"rotation_angle\": 97.63348280388993, \"translation_dx\": 59.62332527691919, \"translation_dy\": 12.549462794922746, \"scale\": 0.6927080624806098}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_123_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_123_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 70.46713054198463, \"translation_dx\": 21.906055640356044, \"translation_dy\": -12.161170387444017, \"scale\": 0.6983211043742098}\nB: {\"rotation_angle\": -176.3085334768787, \"translation_dx\": -26.09189325642553, \"translation_dy\": 21.458056495366975, \"scale\": 0.7934334422653395}\nC: {\"rotation_angle\": -5.816806483512181, \"translation_dx\": -70.40329792935935, \"translation_dy\": -21.418007440252175, \"scale\": 1.0041476956174793}\nD: {\"rotation_angle\": 97.63348280388993, \"translation_dx\": 59.62332527691919, \"translation_dy\": 12.549462794922746, \"scale\": 0.6927080624806098}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -38.67054772511392, \"translation_dx\": 68.1059088983965, \"translation_dy\": -80.75433684597641, \"scale\": 1.0669693911306672}\nB: {\"rotation_angle\": -165.5576257925042, \"translation_dx\": 120.02978270991923, \"translation_dy\": -94.68626204020723, \"scale\": 1.377433782383828}\nC: {\"rotation_angle\": -174.94064668132228, \"translation_dx\": 73.73079207136513, \"translation_dy\": 58.25534486945551, \"scale\": 1.178357936048121}\nD: {\"rotation_angle\": -128.74497971799806, \"translation_dx\": -55.835206426128764, \"translation_dy\": 54.178252983369276, \"scale\": 0.8905979693160588}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_124_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_124_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -38.67054772511392, \"translation_dx\": 68.1059088983965, \"translation_dy\": -80.75433684597641, \"scale\": 1.0669693911306672}\nB: {\"rotation_angle\": -165.5576257925042, \"translation_dx\": 120.02978270991923, \"translation_dy\": -94.68626204020723, \"scale\": 1.377433782383828}\nC: {\"rotation_angle\": -174.94064668132228, \"translation_dx\": 73.73079207136513, \"translation_dy\": 58.25534486945551, \"scale\": 1.178357936048121}\nD: {\"rotation_angle\": -128.74497971799806, \"translation_dx\": -55.835206426128764, \"translation_dy\": 54.178252983369276, \"scale\": 0.8905979693160588}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 95.56102360167273, \"translation_dx\": -57.629857243876444, \"translation_dy\": -95.34824117323305, \"scale\": 0.9533126568708786}\nB: {\"rotation_angle\": 36.19361803007027, \"translation_dx\": -50.40071399889004, \"translation_dy\": -85.39533040467117, \"scale\": 0.6522247071940848}\nC: {\"rotation_angle\": -78.36766094840773, \"translation_dx\": -86.41466180609471, \"translation_dy\": 63.19530077419013, \"scale\": 0.608403973907593}\nD: {\"rotation_angle\": -23.02063628299686, \"translation_dx\": -42.06347070905805, \"translation_dy\": 68.90308226059909, \"scale\": 0.7321107429069119}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_125_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_125_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 95.56102360167273, \"translation_dx\": -57.629857243876444, \"translation_dy\": -95.34824117323305, \"scale\": 0.9533126568708786}\nB: {\"rotation_angle\": 36.19361803007027, \"translation_dx\": -50.40071399889004, \"translation_dy\": -85.39533040467117, \"scale\": 0.6522247071940848}\nC: {\"rotation_angle\": -78.36766094840773, \"translation_dx\": -86.41466180609471, \"translation_dy\": 63.19530077419013, \"scale\": 0.608403973907593}\nD: {\"rotation_angle\": -23.02063628299686, \"translation_dx\": -42.06347070905805, \"translation_dy\": 68.90308226059909, \"scale\": 0.7321107429069119}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -103.24791656906933, \"translation_dx\": -2.2454836983213227, \"translation_dy\": 24.014319900588845, \"scale\": 1.3204557483507742}\nB: {\"rotation_angle\": 37.640985396206986, \"translation_dx\": -97.39428669742068, \"translation_dy\": 17.900860680283458, \"scale\": 1.0930243251030827}\nC: {\"rotation_angle\": -94.06455293225282, \"translation_dx\": -52.04430006776356, \"translation_dy\": 88.55937507710391, \"scale\": 0.8369046461483086}\nD: {\"rotation_angle\": -95.56761680572791, \"translation_dx\": -92.07587430861633, \"translation_dy\": -64.18919222058364, \"scale\": 1.033728049154846}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_126_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_126_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -103.24791656906933, \"translation_dx\": -2.2454836983213227, \"translation_dy\": 24.014319900588845, \"scale\": 1.3204557483507742}\nB: {\"rotation_angle\": 37.640985396206986, \"translation_dx\": -97.39428669742068, \"translation_dy\": 17.900860680283458, \"scale\": 1.0930243251030827}\nC: {\"rotation_angle\": -94.06455293225282, \"translation_dx\": -52.04430006776356, \"translation_dy\": 88.55937507710391, \"scale\": 0.8369046461483086}\nD: {\"rotation_angle\": -95.56761680572791, \"translation_dx\": -92.07587430861633, \"translation_dy\": -64.18919222058364, \"scale\": 1.033728049154846}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 115.4472434811122, \"translation_dx\": 69.00896887231048, \"translation_dy\": -26.016218629159226, \"scale\": 0.9339901852292719}\nB: {\"rotation_angle\": -149.34069149386406, \"translation_dx\": 81.63420911320063, \"translation_dy\": -26.073567429384056, \"scale\": 1.427947630130646}\nC: {\"rotation_angle\": 37.640985396206986, \"translation_dx\": -97.39428669742068, \"translation_dy\": 17.900860680283458, \"scale\": 1.0930243251030827}\nD: {\"rotation_angle\": 98.62110540120432, \"translation_dx\": 55.8324503005326, \"translation_dy\": -53.32963696213369, \"scale\": 1.3342375308232577}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_127_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_127_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 115.4472434811122, \"translation_dx\": 69.00896887231048, \"translation_dy\": -26.016218629159226, \"scale\": 0.9339901852292719}\nB: {\"rotation_angle\": -149.34069149386406, \"translation_dx\": 81.63420911320063, \"translation_dy\": -26.073567429384056, \"scale\": 1.427947630130646}\nC: {\"rotation_angle\": 37.640985396206986, \"translation_dx\": -97.39428669742068, \"translation_dy\": 17.900860680283458, \"scale\": 1.0930243251030827}\nD: {\"rotation_angle\": 98.62110540120432, \"translation_dx\": 55.8324503005326, \"translation_dy\": -53.32963696213369, \"scale\": 1.3342375308232577}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 148.22875373623708, \"translation_dx\": 53.75338658972072, \"translation_dy\": -63.78583022927253, \"scale\": 0.9304836306567924}\nB: {\"rotation_angle\": -5.683971346231118, \"translation_dx\": -0.7123036436211407, \"translation_dy\": -23.660599152813326, \"scale\": 1.1241034499451734}\nC: {\"rotation_angle\": -42.98651909317854, \"translation_dx\": 114.49293313374625, \"translation_dy\": -39.53290228333596, \"scale\": 1.442019387031135}\nD: {\"rotation_angle\": -31.020660516088725, \"translation_dx\": 105.99805178546191, \"translation_dy\": -82.8489656004858, \"scale\": 1.0703563169477137}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_128_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_128_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 148.22875373623708, \"translation_dx\": 53.75338658972072, \"translation_dy\": -63.78583022927253, \"scale\": 0.9304836306567924}\nB: {\"rotation_angle\": -5.683971346231118, \"translation_dx\": -0.7123036436211407, \"translation_dy\": -23.660599152813326, \"scale\": 1.1241034499451734}\nC: {\"rotation_angle\": -42.98651909317854, \"translation_dx\": 114.49293313374625, \"translation_dy\": -39.53290228333596, \"scale\": 1.442019387031135}\nD: {\"rotation_angle\": -31.020660516088725, \"translation_dx\": 105.99805178546191, \"translation_dy\": -82.8489656004858, \"scale\": 1.0703563169477137}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -163.07830945514343, \"translation_dx\": 107.25371607945826, \"translation_dy\": 44.19319462200147, \"scale\": 1.0330497674624493}\nB: {\"rotation_angle\": 137.6047485759084, \"translation_dx\": -27.00857214512888, \"translation_dy\": -94.97246325619065, \"scale\": 1.1628545134465245}\nC: {\"rotation_angle\": 137.29869982747988, \"translation_dx\": 75.41375097241084, \"translation_dy\": 55.66358575693553, \"scale\": 1.1335508281242805}\nD: {\"rotation_angle\": -53.475823147809436, \"translation_dx\": -52.11444637245131, \"translation_dy\": -7.974464084606126, \"scale\": 1.302004904680502}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_129_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_129_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -163.07830945514343, \"translation_dx\": 107.25371607945826, \"translation_dy\": 44.19319462200147, \"scale\": 1.0330497674624493}\nB: {\"rotation_angle\": 137.6047485759084, \"translation_dx\": -27.00857214512888, \"translation_dy\": -94.97246325619065, \"scale\": 1.1628545134465245}\nC: {\"rotation_angle\": 137.29869982747988, \"translation_dx\": 75.41375097241084, \"translation_dy\": 55.66358575693553, \"scale\": 1.1335508281242805}\nD: {\"rotation_angle\": -53.475823147809436, \"translation_dx\": -52.11444637245131, \"translation_dy\": -7.974464084606126, \"scale\": 1.302004904680502}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 153.24034529323683, \"translation_dx\": -80.95083564593054, \"translation_dy\": 58.17854805068575, \"scale\": 0.8564275095577245}\nB: {\"rotation_angle\": 171.23105805984426, \"translation_dx\": 28.800906238980815, \"translation_dy\": 60.921924115709544, \"scale\": 1.4441070487112413}\nC: {\"rotation_angle\": -44.30781692045639, \"translation_dx\": -23.473696812537305, \"translation_dy\": -94.42952089946652, \"scale\": 1.4029179362735564}\nD: {\"rotation_angle\": 172.84173099768327, \"translation_dx\": -36.82796075364796, \"translation_dy\": -15.346257103503191, \"scale\": 0.8112655094699114}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_130_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_130_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 153.24034529323683, \"translation_dx\": -80.95083564593054, \"translation_dy\": 58.17854805068575, \"scale\": 0.8564275095577245}\nB: {\"rotation_angle\": 171.23105805984426, \"translation_dx\": 28.800906238980815, \"translation_dy\": 60.921924115709544, \"scale\": 1.4441070487112413}\nC: {\"rotation_angle\": -44.30781692045639, \"translation_dx\": -23.473696812537305, \"translation_dy\": -94.42952089946652, \"scale\": 1.4029179362735564}\nD: {\"rotation_angle\": 172.84173099768327, \"translation_dx\": -36.82796075364796, \"translation_dy\": -15.346257103503191, \"scale\": 0.8112655094699114}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -6.970858631484532, \"translation_dx\": -2.793256631611797, \"translation_dy\": 83.08133552847667, \"scale\": 1.4237697720578382}\nB: {\"rotation_angle\": -79.55706788063112, \"translation_dx\": -38.613403166877674, \"translation_dy\": 48.56888435185245, \"scale\": 1.368947012195521}\nC: {\"rotation_angle\": 88.199522854527, \"translation_dx\": 18.814421533590917, \"translation_dy\": -27.135307313502466, \"scale\": 1.37855935527965}\nD: {\"rotation_angle\": 163.34031080178892, \"translation_dx\": -21.567151354845635, \"translation_dy\": -30.72615389540148, \"scale\": 1.2439888416024685}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_131_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_131_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -6.970858631484532, \"translation_dx\": -2.793256631611797, \"translation_dy\": 83.08133552847667, \"scale\": 1.4237697720578382}\nB: {\"rotation_angle\": -79.55706788063112, \"translation_dx\": -38.613403166877674, \"translation_dy\": 48.56888435185245, \"scale\": 1.368947012195521}\nC: {\"rotation_angle\": 88.199522854527, \"translation_dx\": 18.814421533590917, \"translation_dy\": -27.135307313502466, \"scale\": 1.37855935527965}\nD: {\"rotation_angle\": 163.34031080178892, \"translation_dx\": -21.567151354845635, \"translation_dy\": -30.72615389540148, \"scale\": 1.2439888416024685}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -100.94596249363259, \"translation_dx\": 18.493532966543597, \"translation_dy\": -4.904135882610319, \"scale\": 1.1575890826518318}\nB: {\"rotation_angle\": 134.59992138556464, \"translation_dx\": 5.908404103559974, \"translation_dy\": 47.60587687007518, \"scale\": 1.0105063493742612}\nC: {\"rotation_angle\": -31.020660516088725, \"translation_dx\": 105.99805178546191, \"translation_dy\": -82.8489656004858, \"scale\": 1.0703563169477137}\nD: {\"rotation_angle\": 157.75388648393812, \"translation_dx\": 20.356281771878216, \"translation_dy\": 16.09866009065132, \"scale\": 0.523349135390574}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_132_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_132_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -100.94596249363259, \"translation_dx\": 18.493532966543597, \"translation_dy\": -4.904135882610319, \"scale\": 1.1575890826518318}\nB: {\"rotation_angle\": 134.59992138556464, \"translation_dx\": 5.908404103559974, \"translation_dy\": 47.60587687007518, \"scale\": 1.0105063493742612}\nC: {\"rotation_angle\": -31.020660516088725, \"translation_dx\": 105.99805178546191, \"translation_dy\": -82.8489656004858, \"scale\": 1.0703563169477137}\nD: {\"rotation_angle\": 157.75388648393812, \"translation_dx\": 20.356281771878216, \"translation_dy\": 16.09866009065132, \"scale\": 0.523349135390574}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -97.38730278840897, \"translation_dx\": 79.58431404822528, \"translation_dy\": -65.17570525641105, \"scale\": 0.8501057849742453}\nB: {\"rotation_angle\": 83.49682873903629, \"translation_dx\": -127.2042493945246, \"translation_dy\": 2.6616959584396938, \"scale\": 0.9488759478249397}\nC: {\"rotation_angle\": -149.42147215379055, \"translation_dx\": 2.3444194857030283, \"translation_dy\": 35.92779325530762, \"scale\": 1.0223945055206394}\nD: {\"rotation_angle\": -13.219279868292688, \"translation_dx\": -95.87022677446828, \"translation_dy\": -58.31347876468597, \"scale\": 1.3722022398508045}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_133_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_133_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -97.38730278840897, \"translation_dx\": 79.58431404822528, \"translation_dy\": -65.17570525641105, \"scale\": 0.8501057849742453}\nB: {\"rotation_angle\": 83.49682873903629, \"translation_dx\": -127.2042493945246, \"translation_dy\": 2.6616959584396938, \"scale\": 0.9488759478249397}\nC: {\"rotation_angle\": -149.42147215379055, \"translation_dx\": 2.3444194857030283, \"translation_dy\": 35.92779325530762, \"scale\": 1.0223945055206394}\nD: {\"rotation_angle\": -13.219279868292688, \"translation_dx\": -95.87022677446828, \"translation_dy\": -58.31347876468597, \"scale\": 1.3722022398508045}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 45.786611297437304, \"translation_dx\": 45.53183354666939, \"translation_dy\": -112.45880863798888, \"scale\": 0.5686394776423458}\nB: {\"rotation_angle\": 136.2943203908062, \"translation_dx\": 59.15508525636656, \"translation_dy\": -38.46099161723379, \"scale\": 0.6414776081953896}\nC: {\"rotation_angle\": 98.88222011850513, \"translation_dx\": 98.58699088344886, \"translation_dy\": 52.424259863835346, \"scale\": 0.8670994673205047}\nD: {\"rotation_angle\": -16.878745814478265, \"translation_dx\": -68.86659110743665, \"translation_dy\": -98.54142762965468, \"scale\": 1.2648663928919022}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_134_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_134_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 45.786611297437304, \"translation_dx\": 45.53183354666939, \"translation_dy\": -112.45880863798888, \"scale\": 0.5686394776423458}\nB: {\"rotation_angle\": 136.2943203908062, \"translation_dx\": 59.15508525636656, \"translation_dy\": -38.46099161723379, \"scale\": 0.6414776081953896}\nC: {\"rotation_angle\": 98.88222011850513, \"translation_dx\": 98.58699088344886, \"translation_dy\": 52.424259863835346, \"scale\": 0.8670994673205047}\nD: {\"rotation_angle\": -16.878745814478265, \"translation_dx\": -68.86659110743665, \"translation_dy\": -98.54142762965468, \"scale\": 1.2648663928919022}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -152.40502323992493, \"translation_dx\": -0.6096313646742146, \"translation_dy\": 26.2224872549711, \"scale\": 0.6008305458537412}\nB: {\"rotation_angle\": 134.59992138556464, \"translation_dx\": 5.908404103559974, \"translation_dy\": 47.60587687007518, \"scale\": 1.0105063493742612}\nC: {\"rotation_angle\": -16.878745814478265, \"translation_dx\": -68.86659110743665, \"translation_dy\": -98.54142762965468, \"scale\": 1.2648663928919022}\nD: {\"rotation_angle\": 130.382151153576, \"translation_dx\": 48.77925626504499, \"translation_dy\": 54.89982459749416, \"scale\": 1.3647831130001666}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_135_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_135_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -152.40502323992493, \"translation_dx\": -0.6096313646742146, \"translation_dy\": 26.2224872549711, \"scale\": 0.6008305458537412}\nB: {\"rotation_angle\": 134.59992138556464, \"translation_dx\": 5.908404103559974, \"translation_dy\": 47.60587687007518, \"scale\": 1.0105063493742612}\nC: {\"rotation_angle\": -16.878745814478265, \"translation_dx\": -68.86659110743665, \"translation_dy\": -98.54142762965468, \"scale\": 1.2648663928919022}\nD: {\"rotation_angle\": 130.382151153576, \"translation_dx\": 48.77925626504499, \"translation_dy\": 54.89982459749416, \"scale\": 1.3647831130001666}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 45.786611297437304, \"translation_dx\": 45.53183354666939, \"translation_dy\": -112.45880863798888, \"scale\": 0.5686394776423458}\nB: {\"rotation_angle\": -160.6395227566207, \"translation_dx\": 53.66643366551958, \"translation_dy\": -27.712376159428388, \"scale\": 1.1084051689599654}\nC: {\"rotation_angle\": -124.27587082376021, \"translation_dx\": -88.19288051455345, \"translation_dy\": 24.145134775980125, \"scale\": 1.4414104211047083}\nD: {\"rotation_angle\": 83.8873422171626, \"translation_dx\": -89.51171417178318, \"translation_dy\": 44.525876215713694, \"scale\": 0.7096671999666376}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_136_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_136_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 45.786611297437304, \"translation_dx\": 45.53183354666939, \"translation_dy\": -112.45880863798888, \"scale\": 0.5686394776423458}\nB: {\"rotation_angle\": -160.6395227566207, \"translation_dx\": 53.66643366551958, \"translation_dy\": -27.712376159428388, \"scale\": 1.1084051689599654}\nC: {\"rotation_angle\": -124.27587082376021, \"translation_dx\": -88.19288051455345, \"translation_dy\": 24.145134775980125, \"scale\": 1.4414104211047083}\nD: {\"rotation_angle\": 83.8873422171626, \"translation_dx\": -89.51171417178318, \"translation_dy\": 44.525876215713694, \"scale\": 0.7096671999666376}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 83.49682873903629, \"translation_dx\": -127.2042493945246, \"translation_dy\": 2.6616959584396938, \"scale\": 0.9488759478249397}\nB: {\"rotation_angle\": 111.11665430921613, \"translation_dx\": -45.526232266105865, \"translation_dy\": -71.56835409165808, \"scale\": 0.5234271564227445}\nC: {\"rotation_angle\": -165.5576257925042, \"translation_dx\": 120.02978270991923, \"translation_dy\": -94.68626204020723, \"scale\": 1.377433782383828}\nD: {\"rotation_angle\": -95.56761680572791, \"translation_dx\": -92.07587430861633, \"translation_dy\": -64.18919222058364, \"scale\": 1.033728049154846}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_137_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_137_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 83.49682873903629, \"translation_dx\": -127.2042493945246, \"translation_dy\": 2.6616959584396938, \"scale\": 0.9488759478249397}\nB: {\"rotation_angle\": 111.11665430921613, \"translation_dx\": -45.526232266105865, \"translation_dy\": -71.56835409165808, \"scale\": 0.5234271564227445}\nC: {\"rotation_angle\": -165.5576257925042, \"translation_dx\": 120.02978270991923, \"translation_dy\": -94.68626204020723, \"scale\": 1.377433782383828}\nD: {\"rotation_angle\": -95.56761680572791, \"translation_dx\": -92.07587430861633, \"translation_dy\": -64.18919222058364, \"scale\": 1.033728049154846}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -50.19218790392131, \"translation_dx\": -27.31734251737683, \"translation_dy\": 8.514724344494553, \"scale\": 1.0874517053433594}\nB: {\"rotation_angle\": -176.3085334768787, \"translation_dx\": -26.09189325642553, \"translation_dy\": 21.458056495366975, \"scale\": 0.7934334422653395}\nC: {\"rotation_angle\": -6.970858631484532, \"translation_dx\": -2.793256631611797, \"translation_dy\": 83.08133552847667, \"scale\": 1.4237697720578382}\nD: {\"rotation_angle\": 115.4472434811122, \"translation_dx\": 69.00896887231048, \"translation_dy\": -26.016218629159226, \"scale\": 0.9339901852292719}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_138_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_138_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -50.19218790392131, \"translation_dx\": -27.31734251737683, \"translation_dy\": 8.514724344494553, \"scale\": 1.0874517053433594}\nB: {\"rotation_angle\": -176.3085334768787, \"translation_dx\": -26.09189325642553, \"translation_dy\": 21.458056495366975, \"scale\": 0.7934334422653395}\nC: {\"rotation_angle\": -6.970858631484532, \"translation_dx\": -2.793256631611797, \"translation_dy\": 83.08133552847667, \"scale\": 1.4237697720578382}\nD: {\"rotation_angle\": 115.4472434811122, \"translation_dx\": 69.00896887231048, \"translation_dy\": -26.016218629159226, \"scale\": 0.9339901852292719}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 98.88222011850513, \"translation_dx\": 98.58699088344886, \"translation_dy\": 52.424259863835346, \"scale\": 0.8670994673205047}\nB: {\"rotation_angle\": -128.93587705152078, \"translation_dx\": 48.830662388872895, \"translation_dy\": 65.60255696435819, \"scale\": 0.5618983722639579}\nC: {\"rotation_angle\": -49.11147497176091, \"translation_dx\": -21.61309921155923, \"translation_dy\": 41.841400081955015, \"scale\": 1.3374733710705384}\nD: {\"rotation_angle\": 107.15748471049534, \"translation_dx\": -112.04520804841785, \"translation_dy\": 107.36899853350675, \"scale\": 0.784106447062462}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_139_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_139_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 98.88222011850513, \"translation_dx\": 98.58699088344886, \"translation_dy\": 52.424259863835346, \"scale\": 0.8670994673205047}\nB: {\"rotation_angle\": -128.93587705152078, \"translation_dx\": 48.830662388872895, \"translation_dy\": 65.60255696435819, \"scale\": 0.5618983722639579}\nC: {\"rotation_angle\": -49.11147497176091, \"translation_dx\": -21.61309921155923, \"translation_dy\": 41.841400081955015, \"scale\": 1.3374733710705384}\nD: {\"rotation_angle\": 107.15748471049534, \"translation_dx\": -112.04520804841785, \"translation_dy\": 107.36899853350675, \"scale\": 0.784106447062462}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 172.84173099768327, \"translation_dx\": -36.82796075364796, \"translation_dy\": -15.346257103503191, \"scale\": 0.8112655094699114}\nB: {\"rotation_angle\": -169.57691070181107, \"translation_dx\": 67.3776951722352, \"translation_dy\": 6.393739311338578, \"scale\": 0.8283042543093307}\nC: {\"rotation_angle\": -178.96154331790243, \"translation_dx\": -45.831117140591004, \"translation_dy\": 14.962223802901406, \"scale\": 1.4059876442036168}\nD: {\"rotation_angle\": -127.2688410750471, \"translation_dx\": 10.330064507300825, \"translation_dy\": -25.010404065134438, \"scale\": 1.1376215421095472}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_140_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_140_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 172.84173099768327, \"translation_dx\": -36.82796075364796, \"translation_dy\": -15.346257103503191, \"scale\": 0.8112655094699114}\nB: {\"rotation_angle\": -169.57691070181107, \"translation_dx\": 67.3776951722352, \"translation_dy\": 6.393739311338578, \"scale\": 0.8283042543093307}\nC: {\"rotation_angle\": -178.96154331790243, \"translation_dx\": -45.831117140591004, \"translation_dy\": 14.962223802901406, \"scale\": 1.4059876442036168}\nD: {\"rotation_angle\": -127.2688410750471, \"translation_dx\": 10.330064507300825, \"translation_dy\": -25.010404065134438, \"scale\": 1.1376215421095472}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 134.59992138556464, \"translation_dx\": 5.908404103559974, \"translation_dy\": 47.60587687007518, \"scale\": 1.0105063493742612}\nB: {\"rotation_angle\": -79.55706788063112, \"translation_dx\": -38.613403166877674, \"translation_dy\": 48.56888435185245, \"scale\": 1.368947012195521}\nC: {\"rotation_angle\": 115.44035395260755, \"translation_dx\": 104.38539690843712, \"translation_dy\": -82.71757148170198, \"scale\": 0.6534862534786243}\nD: {\"rotation_angle\": 83.49682873903629, \"translation_dx\": -127.2042493945246, \"translation_dy\": 2.6616959584396938, \"scale\": 0.9488759478249397}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_141_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_141_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 134.59992138556464, \"translation_dx\": 5.908404103559974, \"translation_dy\": 47.60587687007518, \"scale\": 1.0105063493742612}\nB: {\"rotation_angle\": -79.55706788063112, \"translation_dx\": -38.613403166877674, \"translation_dy\": 48.56888435185245, \"scale\": 1.368947012195521}\nC: {\"rotation_angle\": 115.44035395260755, \"translation_dx\": 104.38539690843712, \"translation_dy\": -82.71757148170198, \"scale\": 0.6534862534786243}\nD: {\"rotation_angle\": 83.49682873903629, \"translation_dx\": -127.2042493945246, \"translation_dy\": 2.6616959584396938, \"scale\": 0.9488759478249397}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -49.11147497176091, \"translation_dx\": -21.61309921155923, \"translation_dy\": 41.841400081955015, \"scale\": 1.3374733710705384}\nB: {\"rotation_angle\": -178.96154331790243, \"translation_dx\": -45.831117140591004, \"translation_dy\": 14.962223802901406, \"scale\": 1.4059876442036168}\nC: {\"rotation_angle\": -70.97525301082955, \"translation_dx\": -28.380848037876873, \"translation_dy\": 54.37723426674512, \"scale\": 0.9024922197892329}\nD: {\"rotation_angle\": 120.9888581359325, \"translation_dx\": 2.43720894071744, \"translation_dy\": -7.865691814940682, \"scale\": 0.5519813971136048}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_142_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_142_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -49.11147497176091, \"translation_dx\": -21.61309921155923, \"translation_dy\": 41.841400081955015, \"scale\": 1.3374733710705384}\nB: {\"rotation_angle\": -178.96154331790243, \"translation_dx\": -45.831117140591004, \"translation_dy\": 14.962223802901406, \"scale\": 1.4059876442036168}\nC: {\"rotation_angle\": -70.97525301082955, \"translation_dx\": -28.380848037876873, \"translation_dy\": 54.37723426674512, \"scale\": 0.9024922197892329}\nD: {\"rotation_angle\": 120.9888581359325, \"translation_dx\": 2.43720894071744, \"translation_dy\": -7.865691814940682, \"scale\": 0.5519813971136048}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 12.872370969250312, \"translation_dx\": -43.1533458138392, \"translation_dy\": -64.88511529320917, \"scale\": 1.3092068537816153}\nB: {\"rotation_angle\": -123.92621597373325, \"translation_dx\": 115.25994331141689, \"translation_dy\": -45.13111299141354, \"scale\": 1.164470344420729}\nC: {\"rotation_angle\": 115.4472434811122, \"translation_dx\": 69.00896887231048, \"translation_dy\": -26.016218629159226, \"scale\": 0.9339901852292719}\nD: {\"rotation_angle\": 55.990963226006784, \"translation_dx\": 71.2358057599877, \"translation_dy\": 22.751866785772563, \"scale\": 1.4964705985201703}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_143_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_143_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 12.872370969250312, \"translation_dx\": -43.1533458138392, \"translation_dy\": -64.88511529320917, \"scale\": 1.3092068537816153}\nB: {\"rotation_angle\": -123.92621597373325, \"translation_dx\": 115.25994331141689, \"translation_dy\": -45.13111299141354, \"scale\": 1.164470344420729}\nC: {\"rotation_angle\": 115.4472434811122, \"translation_dx\": 69.00896887231048, \"translation_dy\": -26.016218629159226, \"scale\": 0.9339901852292719}\nD: {\"rotation_angle\": 55.990963226006784, \"translation_dx\": 71.2358057599877, \"translation_dy\": 22.751866785772563, \"scale\": 1.4964705985201703}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 136.2943203908062, \"translation_dx\": 59.15508525636656, \"translation_dy\": -38.46099161723379, \"scale\": 0.6414776081953896}\nB: {\"rotation_angle\": 163.34031080178892, \"translation_dx\": -21.567151354845635, \"translation_dy\": -30.72615389540148, \"scale\": 1.2439888416024685}\nC: {\"rotation_angle\": -5.816806483512181, \"translation_dx\": -70.40329792935935, \"translation_dy\": -21.418007440252175, \"scale\": 1.0041476956174793}\nD: {\"rotation_angle\": -95.56761680572791, \"translation_dx\": -92.07587430861633, \"translation_dy\": -64.18919222058364, \"scale\": 1.033728049154846}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_144_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_144_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 136.2943203908062, \"translation_dx\": 59.15508525636656, \"translation_dy\": -38.46099161723379, \"scale\": 0.6414776081953896}\nB: {\"rotation_angle\": 163.34031080178892, \"translation_dx\": -21.567151354845635, \"translation_dy\": -30.72615389540148, \"scale\": 1.2439888416024685}\nC: {\"rotation_angle\": -5.816806483512181, \"translation_dx\": -70.40329792935935, \"translation_dy\": -21.418007440252175, \"scale\": 1.0041476956174793}\nD: {\"rotation_angle\": -95.56761680572791, \"translation_dx\": -92.07587430861633, \"translation_dy\": -64.18919222058364, \"scale\": 1.033728049154846}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -42.98651909317854, \"translation_dx\": 114.49293313374625, \"translation_dy\": -39.53290228333596, \"scale\": 1.442019387031135}\nB: {\"rotation_angle\": 98.88222011850513, \"translation_dx\": 98.58699088344886, \"translation_dy\": 52.424259863835346, \"scale\": 0.8670994673205047}\nC: {\"rotation_angle\": 120.9888581359325, \"translation_dx\": 2.43720894071744, \"translation_dy\": -7.865691814940682, \"scale\": 0.5519813971136048}\nD: {\"rotation_angle\": 123.61853421760617, \"translation_dx\": -93.63136806510369, \"translation_dy\": -15.65687765252683, \"scale\": 0.9834422929774667}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_145_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_145_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -42.98651909317854, \"translation_dx\": 114.49293313374625, \"translation_dy\": -39.53290228333596, \"scale\": 1.442019387031135}\nB: {\"rotation_angle\": 98.88222011850513, \"translation_dx\": 98.58699088344886, \"translation_dy\": 52.424259863835346, \"scale\": 0.8670994673205047}\nC: {\"rotation_angle\": 120.9888581359325, \"translation_dx\": 2.43720894071744, \"translation_dy\": -7.865691814940682, \"scale\": 0.5519813971136048}\nD: {\"rotation_angle\": 123.61853421760617, \"translation_dx\": -93.63136806510369, \"translation_dy\": -15.65687765252683, \"scale\": 0.9834422929774667}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -6.38420562293993, \"translation_dx\": -106.80670691302902, \"translation_dy\": -3.5935098985529663, \"scale\": 1.3037846299861797}\nB: {\"rotation_angle\": 170.5673161572617, \"translation_dx\": -54.14309140946517, \"translation_dy\": -20.9067824061149, \"scale\": 0.74080987054586}\nC: {\"rotation_angle\": 97.08459407481979, \"translation_dx\": 38.76418659488206, \"translation_dy\": 44.81166266995322, \"scale\": 1.27585958531192}\nD: {\"rotation_angle\": 137.29869982747988, \"translation_dx\": 75.41375097241084, \"translation_dy\": 55.66358575693553, \"scale\": 1.1335508281242805}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_146_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_146_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -6.38420562293993, \"translation_dx\": -106.80670691302902, \"translation_dy\": -3.5935098985529663, \"scale\": 1.3037846299861797}\nB: {\"rotation_angle\": 170.5673161572617, \"translation_dx\": -54.14309140946517, \"translation_dy\": -20.9067824061149, \"scale\": 0.74080987054586}\nC: {\"rotation_angle\": 97.08459407481979, \"translation_dx\": 38.76418659488206, \"translation_dy\": 44.81166266995322, \"scale\": 1.27585958531192}\nD: {\"rotation_angle\": 137.29869982747988, \"translation_dx\": 75.41375097241084, \"translation_dy\": 55.66358575693553, \"scale\": 1.1335508281242805}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 83.49682873903629, \"translation_dx\": -127.2042493945246, \"translation_dy\": 2.6616959584396938, \"scale\": 0.9488759478249397}\nB: {\"rotation_angle\": -8.756342422911757, \"translation_dx\": -120.12147874311805, \"translation_dy\": -16.659510954699698, \"scale\": 0.8471832394055047}\nC: {\"rotation_angle\": -128.93587705152078, \"translation_dx\": 48.830662388872895, \"translation_dy\": 65.60255696435819, \"scale\": 0.5618983722639579}\nD: {\"rotation_angle\": -4.364889011784271, \"translation_dx\": 74.89385338851659, \"translation_dy\": 29.259521498010997, \"scale\": 1.2877948451877137}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_147_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_147_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 83.49682873903629, \"translation_dx\": -127.2042493945246, \"translation_dy\": 2.6616959584396938, \"scale\": 0.9488759478249397}\nB: {\"rotation_angle\": -8.756342422911757, \"translation_dx\": -120.12147874311805, \"translation_dy\": -16.659510954699698, \"scale\": 0.8471832394055047}\nC: {\"rotation_angle\": -128.93587705152078, \"translation_dx\": 48.830662388872895, \"translation_dy\": 65.60255696435819, \"scale\": 0.5618983722639579}\nD: {\"rotation_angle\": -4.364889011784271, \"translation_dx\": 74.89385338851659, \"translation_dy\": 29.259521498010997, \"scale\": 1.2877948451877137}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -127.03310490562403, \"translation_dx\": -44.497972498107885, \"translation_dy\": 53.252184804163164, \"scale\": 0.8807762361133948}\nB: {\"rotation_angle\": -152.40502323992493, \"translation_dx\": -0.6096313646742146, \"translation_dy\": 26.2224872549711, \"scale\": 0.6008305458537412}\nC: {\"rotation_angle\": 161.7596265938729, \"translation_dx\": -9.170216354863072, \"translation_dy\": -19.23222492696047, \"scale\": 1.1821087248622173}\nD: {\"rotation_angle\": -76.09611957445006, \"translation_dx\": -118.19634710213703, \"translation_dy\": 85.91610719889127, \"scale\": 1.371999627635525}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_148_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_148_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -127.03310490562403, \"translation_dx\": -44.497972498107885, \"translation_dy\": 53.252184804163164, \"scale\": 0.8807762361133948}\nB: {\"rotation_angle\": -152.40502323992493, \"translation_dx\": -0.6096313646742146, \"translation_dy\": 26.2224872549711, \"scale\": 0.6008305458537412}\nC: {\"rotation_angle\": 161.7596265938729, \"translation_dx\": -9.170216354863072, \"translation_dy\": -19.23222492696047, \"scale\": 1.1821087248622173}\nD: {\"rotation_angle\": -76.09611957445006, \"translation_dx\": -118.19634710213703, \"translation_dy\": 85.91610719889127, \"scale\": 1.371999627635525}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -32.96407209098831, \"translation_dx\": -27.518946535455143, \"translation_dy\": 2.5370159689679213, \"scale\": 1.259328459428434}\nB: {\"rotation_angle\": -148.06770236959966, \"translation_dx\": 76.71938731609727, \"translation_dy\": 125.67697929104389, \"scale\": 1.1600663307259453}\nC: {\"rotation_angle\": -137.58016126496426, \"translation_dx\": 45.631572391068715, \"translation_dy\": -54.72741054396442, \"scale\": 1.391656794638211}\nD: {\"rotation_angle\": -6.258618837806779, \"translation_dx\": -117.56200624611057, \"translation_dy\": -84.92852320396813, \"scale\": 0.8703619649920769}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_149_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_149_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -32.96407209098831, \"translation_dx\": -27.518946535455143, \"translation_dy\": 2.5370159689679213, \"scale\": 1.259328459428434}\nB: {\"rotation_angle\": -148.06770236959966, \"translation_dx\": 76.71938731609727, \"translation_dy\": 125.67697929104389, \"scale\": 1.1600663307259453}\nC: {\"rotation_angle\": -137.58016126496426, \"translation_dx\": 45.631572391068715, \"translation_dy\": -54.72741054396442, \"scale\": 1.391656794638211}\nD: {\"rotation_angle\": -6.258618837806779, \"translation_dx\": -117.56200624611057, \"translation_dy\": -84.92852320396813, \"scale\": 0.8703619649920769}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -14.958482221349612, \"translation_dx\": 49.62118662103501, \"translation_dy\": -13.943537967490855, \"scale\": 1.489574484959727}\nB: {\"rotation_angle\": 134.59992138556464, \"translation_dx\": 5.908404103559974, \"translation_dy\": 47.60587687007518, \"scale\": 1.0105063493742612}\nC: {\"rotation_angle\": 156.4647723112265, \"translation_dx\": -66.53886800122852, \"translation_dy\": 64.98500274528308, \"scale\": 1.1427015309184732}\nD: {\"rotation_angle\": 111.11665430921613, \"translation_dx\": -45.526232266105865, \"translation_dy\": -71.56835409165808, \"scale\": 0.5234271564227445}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_150_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_150_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -14.958482221349612, \"translation_dx\": 49.62118662103501, \"translation_dy\": -13.943537967490855, \"scale\": 1.489574484959727}\nB: {\"rotation_angle\": 134.59992138556464, \"translation_dx\": 5.908404103559974, \"translation_dy\": 47.60587687007518, \"scale\": 1.0105063493742612}\nC: {\"rotation_angle\": 156.4647723112265, \"translation_dx\": -66.53886800122852, \"translation_dy\": 64.98500274528308, \"scale\": 1.1427015309184732}\nD: {\"rotation_angle\": 111.11665430921613, \"translation_dx\": -45.526232266105865, \"translation_dy\": -71.56835409165808, \"scale\": 0.5234271564227445}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -51.98717119490195, \"translation_dx\": -83.93544420557635, \"translation_dy\": -17.359661719977098, \"scale\": 1.0858344969275349}\nB: {\"rotation_angle\": 163.34031080178892, \"translation_dx\": -21.567151354845635, \"translation_dy\": -30.72615389540148, \"scale\": 1.2439888416024685}\nC: {\"rotation_angle\": 143.38145335973087, \"translation_dx\": 86.67970142496799, \"translation_dy\": -33.57640317277091, \"scale\": 0.6114655384261714}\nD: {\"rotation_angle\": 96.727171962103, \"translation_dx\": 36.81177221178956, \"translation_dy\": 18.012374651364837, \"scale\": 0.7274955443317854}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_151_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_151_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -51.98717119490195, \"translation_dx\": -83.93544420557635, \"translation_dy\": -17.359661719977098, \"scale\": 1.0858344969275349}\nB: {\"rotation_angle\": 163.34031080178892, \"translation_dx\": -21.567151354845635, \"translation_dy\": -30.72615389540148, \"scale\": 1.2439888416024685}\nC: {\"rotation_angle\": 143.38145335973087, \"translation_dx\": 86.67970142496799, \"translation_dy\": -33.57640317277091, \"scale\": 0.6114655384261714}\nD: {\"rotation_angle\": 96.727171962103, \"translation_dx\": 36.81177221178956, \"translation_dy\": 18.012374651364837, \"scale\": 0.7274955443317854}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 18.52926347539298, \"translation_dx\": -26.155433185237058, \"translation_dy\": -39.799299198218556, \"scale\": 0.9355127285855813}\nB: {\"rotation_angle\": 74.4727172984789, \"translation_dx\": 83.0498783040965, \"translation_dy\": 24.573318419119772, \"scale\": 1.4775593630739356}\nC: {\"rotation_angle\": -97.38730278840897, \"translation_dx\": 79.58431404822528, \"translation_dy\": -65.17570525641105, \"scale\": 0.8501057849742453}\nD: {\"rotation_angle\": 95.56102360167273, \"translation_dx\": -57.629857243876444, \"translation_dy\": -95.34824117323305, \"scale\": 0.9533126568708786}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_152_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_152_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 18.52926347539298, \"translation_dx\": -26.155433185237058, \"translation_dy\": -39.799299198218556, \"scale\": 0.9355127285855813}\nB: {\"rotation_angle\": 74.4727172984789, \"translation_dx\": 83.0498783040965, \"translation_dy\": 24.573318419119772, \"scale\": 1.4775593630739356}\nC: {\"rotation_angle\": -97.38730278840897, \"translation_dx\": 79.58431404822528, \"translation_dy\": -65.17570525641105, \"scale\": 0.8501057849742453}\nD: {\"rotation_angle\": 95.56102360167273, \"translation_dx\": -57.629857243876444, \"translation_dy\": -95.34824117323305, \"scale\": 0.9533126568708786}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -106.99875725121946, \"translation_dx\": 87.96881157950656, \"translation_dy\": -34.70529343588741, \"scale\": 1.407305489874207}\nB: {\"rotation_angle\": 115.4472434811122, \"translation_dx\": 69.00896887231048, \"translation_dy\": -26.016218629159226, \"scale\": 0.9339901852292719}\nC: {\"rotation_angle\": 133.22970053001933, \"translation_dx\": 30.83867253278636, \"translation_dy\": 9.987607615316023, \"scale\": 0.9746642566652708}\nD: {\"rotation_angle\": -38.58021171568234, \"translation_dx\": -80.14139661496048, \"translation_dy\": 7.985099889843255, \"scale\": 1.029545268033875}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_153_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_153_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -106.99875725121946, \"translation_dx\": 87.96881157950656, \"translation_dy\": -34.70529343588741, \"scale\": 1.407305489874207}\nB: {\"rotation_angle\": 115.4472434811122, \"translation_dx\": 69.00896887231048, \"translation_dy\": -26.016218629159226, \"scale\": 0.9339901852292719}\nC: {\"rotation_angle\": 133.22970053001933, \"translation_dx\": 30.83867253278636, \"translation_dy\": 9.987607615316023, \"scale\": 0.9746642566652708}\nD: {\"rotation_angle\": -38.58021171568234, \"translation_dx\": -80.14139661496048, \"translation_dy\": 7.985099889843255, \"scale\": 1.029545268033875}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 103.56580652114087, \"translation_dx\": -76.88940345297716, \"translation_dy\": -3.4544443607121593, \"scale\": 1.3949152683659345}\nB: {\"rotation_angle\": 123.61853421760617, \"translation_dx\": -93.63136806510369, \"translation_dy\": -15.65687765252683, \"scale\": 0.9834422929774667}\nC: {\"rotation_angle\": -99.80397961792426, \"translation_dx\": 113.2252387398062, \"translation_dy\": -61.846052830557056, \"scale\": 1.080357872583317}\nD: {\"rotation_angle\": 170.5673161572617, \"translation_dx\": -54.14309140946517, \"translation_dy\": -20.9067824061149, \"scale\": 0.74080987054586}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_154_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_154_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 103.56580652114087, \"translation_dx\": -76.88940345297716, \"translation_dy\": -3.4544443607121593, \"scale\": 1.3949152683659345}\nB: {\"rotation_angle\": 123.61853421760617, \"translation_dx\": -93.63136806510369, \"translation_dy\": -15.65687765252683, \"scale\": 0.9834422929774667}\nC: {\"rotation_angle\": -99.80397961792426, \"translation_dx\": 113.2252387398062, \"translation_dy\": -61.846052830557056, \"scale\": 1.080357872583317}\nD: {\"rotation_angle\": 170.5673161572617, \"translation_dx\": -54.14309140946517, \"translation_dy\": -20.9067824061149, \"scale\": 0.74080987054586}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -132.6730586187399, \"translation_dx\": -14.723128468316531, \"translation_dy\": -95.44210429834934, \"scale\": 1.0421065600095725}\nB: {\"rotation_angle\": -15.445234303955033, \"translation_dx\": 52.656313993324545, \"translation_dy\": 4.243768644047549, \"scale\": 0.8747335302455691}\nC: {\"rotation_angle\": -59.18065174130953, \"translation_dx\": -66.15733764198566, \"translation_dy\": -32.06450758946801, \"scale\": 1.1967157159259998}\nD: {\"rotation_angle\": -153.3687774434925, \"translation_dx\": 50.92336593606055, \"translation_dy\": -56.81603844715568, \"scale\": 1.398231264497651}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_155_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_155_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -132.6730586187399, \"translation_dx\": -14.723128468316531, \"translation_dy\": -95.44210429834934, \"scale\": 1.0421065600095725}\nB: {\"rotation_angle\": -15.445234303955033, \"translation_dx\": 52.656313993324545, \"translation_dy\": 4.243768644047549, \"scale\": 0.8747335302455691}\nC: {\"rotation_angle\": -59.18065174130953, \"translation_dx\": -66.15733764198566, \"translation_dy\": -32.06450758946801, \"scale\": 1.1967157159259998}\nD: {\"rotation_angle\": -153.3687774434925, \"translation_dx\": 50.92336593606055, \"translation_dy\": -56.81603844715568, \"scale\": 1.398231264497651}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -153.3687774434925, \"translation_dx\": 50.92336593606055, \"translation_dy\": -56.81603844715568, \"scale\": 1.398231264497651}\nB: {\"rotation_angle\": -124.74198080809023, \"translation_dx\": -48.23531115232953, \"translation_dy\": 52.62526617026404, \"scale\": 1.3484625774406969}\nC: {\"rotation_angle\": -132.6730586187399, \"translation_dx\": -14.723128468316531, \"translation_dy\": -95.44210429834934, \"scale\": 1.0421065600095725}\nD: {\"rotation_angle\": -32.057796286961064, \"translation_dx\": 119.50392135854452, \"translation_dy\": -17.786253698900993, \"scale\": 1.4583062003808291}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_156_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_156_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -153.3687774434925, \"translation_dx\": 50.92336593606055, \"translation_dy\": -56.81603844715568, \"scale\": 1.398231264497651}\nB: {\"rotation_angle\": -124.74198080809023, \"translation_dx\": -48.23531115232953, \"translation_dy\": 52.62526617026404, \"scale\": 1.3484625774406969}\nC: {\"rotation_angle\": -132.6730586187399, \"translation_dx\": -14.723128468316531, \"translation_dy\": -95.44210429834934, \"scale\": 1.0421065600095725}\nD: {\"rotation_angle\": -32.057796286961064, \"translation_dx\": 119.50392135854452, \"translation_dy\": -17.786253698900993, \"scale\": 1.4583062003808291}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 52.27392299801002, \"translation_dx\": -7.943242591889941, \"translation_dy\": -1.8318597711701017, \"scale\": 1.489664776133741}\nB: {\"rotation_angle\": -153.95647753312159, \"translation_dx\": 64.08546266437509, \"translation_dy\": -34.554486291313935, \"scale\": 1.423360690418288}\nC: {\"rotation_angle\": -126.15991399279281, \"translation_dx\": 24.895638463286446, \"translation_dy\": -35.71086816730676, \"scale\": 1.30648936857296}\nD: {\"rotation_angle\": 98.62110540120432, \"translation_dx\": 55.8324503005326, \"translation_dy\": -53.32963696213369, \"scale\": 1.3342375308232577}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_157_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_157_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 52.27392299801002, \"translation_dx\": -7.943242591889941, \"translation_dy\": -1.8318597711701017, \"scale\": 1.489664776133741}\nB: {\"rotation_angle\": -153.95647753312159, \"translation_dx\": 64.08546266437509, \"translation_dy\": -34.554486291313935, \"scale\": 1.423360690418288}\nC: {\"rotation_angle\": -126.15991399279281, \"translation_dx\": 24.895638463286446, \"translation_dy\": -35.71086816730676, \"scale\": 1.30648936857296}\nD: {\"rotation_angle\": 98.62110540120432, \"translation_dx\": 55.8324503005326, \"translation_dy\": -53.32963696213369, \"scale\": 1.3342375308232577}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -44.30781692045639, \"translation_dx\": -23.473696812537305, \"translation_dy\": -94.42952089946652, \"scale\": 1.4029179362735564}\nB: {\"rotation_angle\": 157.75388648393812, \"translation_dx\": 20.356281771878216, \"translation_dy\": 16.09866009065132, \"scale\": 0.523349135390574}\nC: {\"rotation_angle\": -76.09611957445006, \"translation_dx\": -118.19634710213703, \"translation_dy\": 85.91610719889127, \"scale\": 1.371999627635525}\nD: {\"rotation_angle\": 168.86687879669455, \"translation_dx\": 30.327287286076626, \"translation_dy\": -73.84263373893171, \"scale\": 1.0887904122788439}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_158_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_158_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -44.30781692045639, \"translation_dx\": -23.473696812537305, \"translation_dy\": -94.42952089946652, \"scale\": 1.4029179362735564}\nB: {\"rotation_angle\": 157.75388648393812, \"translation_dx\": 20.356281771878216, \"translation_dy\": 16.09866009065132, \"scale\": 0.523349135390574}\nC: {\"rotation_angle\": -76.09611957445006, \"translation_dx\": -118.19634710213703, \"translation_dy\": 85.91610719889127, \"scale\": 1.371999627635525}\nD: {\"rotation_angle\": 168.86687879669455, \"translation_dx\": 30.327287286076626, \"translation_dy\": -73.84263373893171, \"scale\": 1.0887904122788439}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 107.15748471049534, \"translation_dx\": -112.04520804841785, \"translation_dy\": 107.36899853350675, \"scale\": 0.784106447062462}\nB: {\"rotation_angle\": -76.09611957445006, \"translation_dx\": -118.19634710213703, \"translation_dy\": 85.91610719889127, \"scale\": 1.371999627635525}\nC: {\"rotation_angle\": -16.878745814478265, \"translation_dx\": -68.86659110743665, \"translation_dy\": -98.54142762965468, \"scale\": 1.2648663928919022}\nD: {\"rotation_angle\": 46.42160956908356, \"translation_dx\": -90.04619228512212, \"translation_dy\": -15.749486436572411, \"scale\": 1.005156310055277}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_159_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_159_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 107.15748471049534, \"translation_dx\": -112.04520804841785, \"translation_dy\": 107.36899853350675, \"scale\": 0.784106447062462}\nB: {\"rotation_angle\": -76.09611957445006, \"translation_dx\": -118.19634710213703, \"translation_dy\": 85.91610719889127, \"scale\": 1.371999627635525}\nC: {\"rotation_angle\": -16.878745814478265, \"translation_dx\": -68.86659110743665, \"translation_dy\": -98.54142762965468, \"scale\": 1.2648663928919022}\nD: {\"rotation_angle\": 46.42160956908356, \"translation_dx\": -90.04619228512212, \"translation_dy\": -15.749486436572411, \"scale\": 1.005156310055277}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 2.6800660606496933, \"translation_dx\": 8.805898944242955, \"translation_dy\": -61.557448223727356, \"scale\": 0.7338009245004858}\nB: {\"rotation_angle\": -162.34443008832744, \"translation_dx\": 11.222356042803995, \"translation_dy\": -20.913798214168963, \"scale\": 0.5876305148063811}\nC: {\"rotation_angle\": -41.748048059314925, \"translation_dx\": 84.2495675740148, \"translation_dy\": -81.02778113177463, \"scale\": 1.207158201764622}\nD: {\"rotation_angle\": 97.63348280388993, \"translation_dx\": 59.62332527691919, \"translation_dy\": 12.549462794922746, \"scale\": 0.6927080624806098}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_160_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_160_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 2.6800660606496933, \"translation_dx\": 8.805898944242955, \"translation_dy\": -61.557448223727356, \"scale\": 0.7338009245004858}\nB: {\"rotation_angle\": -162.34443008832744, \"translation_dx\": 11.222356042803995, \"translation_dy\": -20.913798214168963, \"scale\": 0.5876305148063811}\nC: {\"rotation_angle\": -41.748048059314925, \"translation_dx\": 84.2495675740148, \"translation_dy\": -81.02778113177463, \"scale\": 1.207158201764622}\nD: {\"rotation_angle\": 97.63348280388993, \"translation_dx\": 59.62332527691919, \"translation_dy\": 12.549462794922746, \"scale\": 0.6927080624806098}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -127.2688410750471, \"translation_dx\": 10.330064507300825, \"translation_dy\": -25.010404065134438, \"scale\": 1.1376215421095472}\nB: {\"rotation_angle\": 123.61853421760617, \"translation_dx\": -93.63136806510369, \"translation_dy\": -15.65687765252683, \"scale\": 0.9834422929774667}\nC: {\"rotation_angle\": -49.11147497176091, \"translation_dx\": -21.61309921155923, \"translation_dy\": 41.841400081955015, \"scale\": 1.3374733710705384}\nD: {\"rotation_angle\": -22.98450105670534, \"translation_dx\": -24.343109907781525, \"translation_dy\": -75.50859401578859, \"scale\": 0.5077440368943875}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_161_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_161_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -127.2688410750471, \"translation_dx\": 10.330064507300825, \"translation_dy\": -25.010404065134438, \"scale\": 1.1376215421095472}\nB: {\"rotation_angle\": 123.61853421760617, \"translation_dx\": -93.63136806510369, \"translation_dy\": -15.65687765252683, \"scale\": 0.9834422929774667}\nC: {\"rotation_angle\": -49.11147497176091, \"translation_dx\": -21.61309921155923, \"translation_dy\": 41.841400081955015, \"scale\": 1.3374733710705384}\nD: {\"rotation_angle\": -22.98450105670534, \"translation_dx\": -24.343109907781525, \"translation_dy\": -75.50859401578859, \"scale\": 0.5077440368943875}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 4.601729825002167, \"translation_dx\": -92.34842360064926, \"translation_dy\": 78.34726427877602, \"scale\": 0.7620115680057987}\nB: {\"rotation_angle\": 2.6800660606496933, \"translation_dx\": 8.805898944242955, \"translation_dy\": -61.557448223727356, \"scale\": 0.7338009245004858}\nC: {\"rotation_angle\": -110.46391589612124, \"translation_dx\": -77.96644542647721, \"translation_dy\": -50.23500265461973, \"scale\": 0.7651088884143488}\nD: {\"rotation_angle\": 159.74516071456964, \"translation_dx\": 18.36539372865252, \"translation_dy\": -32.68583255299669, \"scale\": 0.6283421405871866}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_162_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_162_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 4.601729825002167, \"translation_dx\": -92.34842360064926, \"translation_dy\": 78.34726427877602, \"scale\": 0.7620115680057987}\nB: {\"rotation_angle\": 2.6800660606496933, \"translation_dx\": 8.805898944242955, \"translation_dy\": -61.557448223727356, \"scale\": 0.7338009245004858}\nC: {\"rotation_angle\": -110.46391589612124, \"translation_dx\": -77.96644542647721, \"translation_dy\": -50.23500265461973, \"scale\": 0.7651088884143488}\nD: {\"rotation_angle\": 159.74516071456964, \"translation_dx\": 18.36539372865252, \"translation_dy\": -32.68583255299669, \"scale\": 0.6283421405871866}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 111.11665430921613, \"translation_dx\": -45.526232266105865, \"translation_dy\": -71.56835409165808, \"scale\": 0.5234271564227445}\nB: {\"rotation_angle\": -137.58016126496426, \"translation_dx\": 45.631572391068715, \"translation_dy\": -54.72741054396442, \"scale\": 1.391656794638211}\nC: {\"rotation_angle\": -162.34443008832744, \"translation_dx\": 11.222356042803995, \"translation_dy\": -20.913798214168963, \"scale\": 0.5876305148063811}\nD: {\"rotation_angle\": 107.15748471049534, \"translation_dx\": -112.04520804841785, \"translation_dy\": 107.36899853350675, \"scale\": 0.784106447062462}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_163_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_163_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 111.11665430921613, \"translation_dx\": -45.526232266105865, \"translation_dy\": -71.56835409165808, \"scale\": 0.5234271564227445}\nB: {\"rotation_angle\": -137.58016126496426, \"translation_dx\": 45.631572391068715, \"translation_dy\": -54.72741054396442, \"scale\": 1.391656794638211}\nC: {\"rotation_angle\": -162.34443008832744, \"translation_dx\": 11.222356042803995, \"translation_dy\": -20.913798214168963, \"scale\": 0.5876305148063811}\nD: {\"rotation_angle\": 107.15748471049534, \"translation_dx\": -112.04520804841785, \"translation_dy\": 107.36899853350675, \"scale\": 0.784106447062462}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -127.2688410750471, \"translation_dx\": 10.330064507300825, \"translation_dy\": -25.010404065134438, \"scale\": 1.1376215421095472}\nB: {\"rotation_angle\": -162.34443008832744, \"translation_dx\": 11.222356042803995, \"translation_dy\": -20.913798214168963, \"scale\": 0.5876305148063811}\nC: {\"rotation_angle\": -53.475823147809436, \"translation_dx\": -52.11444637245131, \"translation_dy\": -7.974464084606126, \"scale\": 1.302004904680502}\nD: {\"rotation_angle\": 64.33574528550244, \"translation_dx\": -83.09111528364858, \"translation_dy\": 12.26726314152404, \"scale\": 0.7845370507816389}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_164_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_164_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -127.2688410750471, \"translation_dx\": 10.330064507300825, \"translation_dy\": -25.010404065134438, \"scale\": 1.1376215421095472}\nB: {\"rotation_angle\": -162.34443008832744, \"translation_dx\": 11.222356042803995, \"translation_dy\": -20.913798214168963, \"scale\": 0.5876305148063811}\nC: {\"rotation_angle\": -53.475823147809436, \"translation_dx\": -52.11444637245131, \"translation_dy\": -7.974464084606126, \"scale\": 1.302004904680502}\nD: {\"rotation_angle\": 64.33574528550244, \"translation_dx\": -83.09111528364858, \"translation_dy\": 12.26726314152404, \"scale\": 0.7845370507816389}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 26.051749493295517, \"translation_dx\": 8.674153667650117, \"translation_dy\": 81.98381249796742, \"scale\": 1.4721363798843865}\nB: {\"rotation_angle\": 23.955007488404988, \"translation_dx\": 90.0018582930472, \"translation_dy\": 38.03553582875617, \"scale\": 1.3380437802347522}\nC: {\"rotation_angle\": 136.76946369368522, \"translation_dx\": 86.13615517916296, \"translation_dy\": 47.49597577737802, \"scale\": 1.1842967613683704}\nD: {\"rotation_angle\": 157.75388648393812, \"translation_dx\": 20.356281771878216, \"translation_dy\": 16.09866009065132, \"scale\": 0.523349135390574}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_165_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_165_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 26.051749493295517, \"translation_dx\": 8.674153667650117, \"translation_dy\": 81.98381249796742, \"scale\": 1.4721363798843865}\nB: {\"rotation_angle\": 23.955007488404988, \"translation_dx\": 90.0018582930472, \"translation_dy\": 38.03553582875617, \"scale\": 1.3380437802347522}\nC: {\"rotation_angle\": 136.76946369368522, \"translation_dx\": 86.13615517916296, \"translation_dy\": 47.49597577737802, \"scale\": 1.1842967613683704}\nD: {\"rotation_angle\": 157.75388648393812, \"translation_dx\": 20.356281771878216, \"translation_dy\": 16.09866009065132, \"scale\": 0.523349135390574}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -128.93587705152078, \"translation_dx\": 48.830662388872895, \"translation_dy\": 65.60255696435819, \"scale\": 0.5618983722639579}\nB: {\"rotation_angle\": 159.25105466068987, \"translation_dx\": -126.35420360425098, \"translation_dy\": -17.54721978726404, \"scale\": 1.4952435062275256}\nC: {\"rotation_angle\": -178.96154331790243, \"translation_dx\": -45.831117140591004, \"translation_dy\": 14.962223802901406, \"scale\": 1.4059876442036168}\nD: {\"rotation_angle\": -97.38730278840897, \"translation_dx\": 79.58431404822528, \"translation_dy\": -65.17570525641105, \"scale\": 0.8501057849742453}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_166_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_166_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -128.93587705152078, \"translation_dx\": 48.830662388872895, \"translation_dy\": 65.60255696435819, \"scale\": 0.5618983722639579}\nB: {\"rotation_angle\": 159.25105466068987, \"translation_dx\": -126.35420360425098, \"translation_dy\": -17.54721978726404, \"scale\": 1.4952435062275256}\nC: {\"rotation_angle\": -178.96154331790243, \"translation_dx\": -45.831117140591004, \"translation_dy\": 14.962223802901406, \"scale\": 1.4059876442036168}\nD: {\"rotation_angle\": -97.38730278840897, \"translation_dx\": 79.58431404822528, \"translation_dy\": -65.17570525641105, \"scale\": 0.8501057849742453}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 115.16030768984217, \"translation_dx\": -1.9669547188467504, \"translation_dy\": 38.42152609256746, \"scale\": 1.3403221872922475}\nB: {\"rotation_angle\": -100.94596249363259, \"translation_dx\": 18.493532966543597, \"translation_dy\": -4.904135882610319, \"scale\": 1.1575890826518318}\nC: {\"rotation_angle\": 28.728757892682808, \"translation_dx\": 12.065384659700086, \"translation_dy\": -119.64549643343977, \"scale\": 1.126100132224236}\nD: {\"rotation_angle\": 173.6372649335733, \"translation_dx\": -7.357207392874017, \"translation_dy\": -51.70776156994498, \"scale\": 1.09720142096939}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_167_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_167_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 115.16030768984217, \"translation_dx\": -1.9669547188467504, \"translation_dy\": 38.42152609256746, \"scale\": 1.3403221872922475}\nB: {\"rotation_angle\": -100.94596249363259, \"translation_dx\": 18.493532966543597, \"translation_dy\": -4.904135882610319, \"scale\": 1.1575890826518318}\nC: {\"rotation_angle\": 28.728757892682808, \"translation_dx\": 12.065384659700086, \"translation_dy\": -119.64549643343977, \"scale\": 1.126100132224236}\nD: {\"rotation_angle\": 173.6372649335733, \"translation_dx\": -7.357207392874017, \"translation_dy\": -51.70776156994498, \"scale\": 1.09720142096939}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 115.16030768984217, \"translation_dx\": -1.9669547188467504, \"translation_dy\": 38.42152609256746, \"scale\": 1.3403221872922475}\nB: {\"rotation_angle\": 64.33574528550244, \"translation_dx\": -83.09111528364858, \"translation_dy\": 12.26726314152404, \"scale\": 0.7845370507816389}\nC: {\"rotation_angle\": -97.38730278840897, \"translation_dx\": 79.58431404822528, \"translation_dy\": -65.17570525641105, \"scale\": 0.8501057849742453}\nD: {\"rotation_angle\": -4.956802948250129, \"translation_dx\": -46.115491929325685, \"translation_dy\": 39.01349173096322, \"scale\": 1.02280257064298}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_168_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_168_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 115.16030768984217, \"translation_dx\": -1.9669547188467504, \"translation_dy\": 38.42152609256746, \"scale\": 1.3403221872922475}\nB: {\"rotation_angle\": 64.33574528550244, \"translation_dx\": -83.09111528364858, \"translation_dy\": 12.26726314152404, \"scale\": 0.7845370507816389}\nC: {\"rotation_angle\": -97.38730278840897, \"translation_dx\": 79.58431404822528, \"translation_dy\": -65.17570525641105, \"scale\": 0.8501057849742453}\nD: {\"rotation_angle\": -4.956802948250129, \"translation_dx\": -46.115491929325685, \"translation_dy\": 39.01349173096322, \"scale\": 1.02280257064298}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -44.902472769484746, \"translation_dx\": -36.85475324083902, \"translation_dy\": 36.81692000181951, \"scale\": 1.0769710077370194}\nB: {\"rotation_angle\": -161.22593365548192, \"translation_dx\": -119.73961882572601, \"translation_dy\": -93.50838821854722, \"scale\": 1.4476413063179399}\nC: {\"rotation_angle\": 32.25033099080062, \"translation_dx\": -33.246475706714875, \"translation_dy\": -9.848772328845214, \"scale\": 0.986502265576198}\nD: {\"rotation_angle\": 55.990963226006784, \"translation_dx\": 71.2358057599877, \"translation_dy\": 22.751866785772563, \"scale\": 1.4964705985201703}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_169_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_169_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -44.902472769484746, \"translation_dx\": -36.85475324083902, \"translation_dy\": 36.81692000181951, \"scale\": 1.0769710077370194}\nB: {\"rotation_angle\": -161.22593365548192, \"translation_dx\": -119.73961882572601, \"translation_dy\": -93.50838821854722, \"scale\": 1.4476413063179399}\nC: {\"rotation_angle\": 32.25033099080062, \"translation_dx\": -33.246475706714875, \"translation_dy\": -9.848772328845214, \"scale\": 0.986502265576198}\nD: {\"rotation_angle\": 55.990963226006784, \"translation_dx\": 71.2358057599877, \"translation_dy\": 22.751866785772563, \"scale\": 1.4964705985201703}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -79.27003163090343, \"translation_dx\": 8.207736130313549, \"translation_dy\": 6.670417118750038, \"scale\": 1.3327657238113826}\nB: {\"rotation_angle\": -32.057796286961064, \"translation_dx\": 119.50392135854452, \"translation_dy\": -17.786253698900993, \"scale\": 1.4583062003808291}\nC: {\"rotation_angle\": 172.84173099768327, \"translation_dx\": -36.82796075364796, \"translation_dy\": -15.346257103503191, \"scale\": 0.8112655094699114}\nD: {\"rotation_angle\": 138.15953129001275, \"translation_dx\": 108.29077351507729, \"translation_dy\": 11.25207260435026, \"scale\": 1.2682750116992958}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_170_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_170_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -79.27003163090343, \"translation_dx\": 8.207736130313549, \"translation_dy\": 6.670417118750038, \"scale\": 1.3327657238113826}\nB: {\"rotation_angle\": -32.057796286961064, \"translation_dx\": 119.50392135854452, \"translation_dy\": -17.786253698900993, \"scale\": 1.4583062003808291}\nC: {\"rotation_angle\": 172.84173099768327, \"translation_dx\": -36.82796075364796, \"translation_dy\": -15.346257103503191, \"scale\": 0.8112655094699114}\nD: {\"rotation_angle\": 138.15953129001275, \"translation_dx\": 108.29077351507729, \"translation_dy\": 11.25207260435026, \"scale\": 1.2682750116992958}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 111.11665430921613, \"translation_dx\": -45.526232266105865, \"translation_dy\": -71.56835409165808, \"scale\": 0.5234271564227445}\nB: {\"rotation_angle\": -152.40502323992493, \"translation_dx\": -0.6096313646742146, \"translation_dy\": 26.2224872549711, \"scale\": 0.6008305458537412}\nC: {\"rotation_angle\": 136.2943203908062, \"translation_dx\": 59.15508525636656, \"translation_dy\": -38.46099161723379, \"scale\": 0.6414776081953896}\nD: {\"rotation_angle\": 142.66976946716716, \"translation_dx\": 29.963541003119957, \"translation_dy\": 66.07065092305665, \"scale\": 1.42144068359999}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_171_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_171_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 111.11665430921613, \"translation_dx\": -45.526232266105865, \"translation_dy\": -71.56835409165808, \"scale\": 0.5234271564227445}\nB: {\"rotation_angle\": -152.40502323992493, \"translation_dx\": -0.6096313646742146, \"translation_dy\": 26.2224872549711, \"scale\": 0.6008305458537412}\nC: {\"rotation_angle\": 136.2943203908062, \"translation_dx\": 59.15508525636656, \"translation_dy\": -38.46099161723379, \"scale\": 0.6414776081953896}\nD: {\"rotation_angle\": 142.66976946716716, \"translation_dx\": 29.963541003119957, \"translation_dy\": 66.07065092305665, \"scale\": 1.42144068359999}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 163.34031080178892, \"translation_dx\": -21.567151354845635, \"translation_dy\": -30.72615389540148, \"scale\": 1.2439888416024685}\nB: {\"rotation_angle\": 107.15748471049534, \"translation_dx\": -112.04520804841785, \"translation_dy\": 107.36899853350675, \"scale\": 0.784106447062462}\nC: {\"rotation_angle\": -35.37165300247324, \"translation_dx\": -51.674784510203665, \"translation_dy\": 35.0550301640573, \"scale\": 1.181842779166554}\nD: {\"rotation_angle\": -147.17742740700606, \"translation_dx\": 99.79022385553455, \"translation_dy\": -46.32888217161055, \"scale\": 1.2561938294527635}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_172_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_172_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 163.34031080178892, \"translation_dx\": -21.567151354845635, \"translation_dy\": -30.72615389540148, \"scale\": 1.2439888416024685}\nB: {\"rotation_angle\": 107.15748471049534, \"translation_dx\": -112.04520804841785, \"translation_dy\": 107.36899853350675, \"scale\": 0.784106447062462}\nC: {\"rotation_angle\": -35.37165300247324, \"translation_dx\": -51.674784510203665, \"translation_dy\": 35.0550301640573, \"scale\": 1.181842779166554}\nD: {\"rotation_angle\": -147.17742740700606, \"translation_dx\": 99.79022385553455, \"translation_dy\": -46.32888217161055, \"scale\": 1.2561938294527635}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 139.13421797404374, \"translation_dx\": -107.62188977651758, \"translation_dy\": -65.35657968686931, \"scale\": 0.569575564082204}\nB: {\"rotation_angle\": 14.369437993555863, \"translation_dx\": -23.54312301695805, \"translation_dy\": 55.41046511147678, \"scale\": 1.115345902394854}\nC: {\"rotation_angle\": -165.5576257925042, \"translation_dx\": 120.02978270991923, \"translation_dy\": -94.68626204020723, \"scale\": 1.377433782383828}\nD: {\"rotation_angle\": 26.06413776863195, \"translation_dx\": 104.54441011530889, \"translation_dy\": -2.802993361858995, \"scale\": 0.6919535578881184}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_173_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_173_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 139.13421797404374, \"translation_dx\": -107.62188977651758, \"translation_dy\": -65.35657968686931, \"scale\": 0.569575564082204}\nB: {\"rotation_angle\": 14.369437993555863, \"translation_dx\": -23.54312301695805, \"translation_dy\": 55.41046511147678, \"scale\": 1.115345902394854}\nC: {\"rotation_angle\": -165.5576257925042, \"translation_dx\": 120.02978270991923, \"translation_dy\": -94.68626204020723, \"scale\": 1.377433782383828}\nD: {\"rotation_angle\": 26.06413776863195, \"translation_dx\": 104.54441011530889, \"translation_dy\": -2.802993361858995, \"scale\": 0.6919535578881184}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -53.475823147809436, \"translation_dx\": -52.11444637245131, \"translation_dy\": -7.974464084606126, \"scale\": 1.302004904680502}\nB: {\"rotation_angle\": 104.66960596229086, \"translation_dx\": 122.9579606372167, \"translation_dy\": -32.21502556645471, \"scale\": 0.5791563638149022}\nC: {\"rotation_angle\": -14.958482221349612, \"translation_dx\": 49.62118662103501, \"translation_dy\": -13.943537967490855, \"scale\": 1.489574484959727}\nD: {\"rotation_angle\": 51.652651058291696, \"translation_dx\": -79.60059266318888, \"translation_dy\": 40.24223939512936, \"scale\": 1.045377495061187}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_174_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_174_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -53.475823147809436, \"translation_dx\": -52.11444637245131, \"translation_dy\": -7.974464084606126, \"scale\": 1.302004904680502}\nB: {\"rotation_angle\": 104.66960596229086, \"translation_dx\": 122.9579606372167, \"translation_dy\": -32.21502556645471, \"scale\": 0.5791563638149022}\nC: {\"rotation_angle\": -14.958482221349612, \"translation_dx\": 49.62118662103501, \"translation_dy\": -13.943537967490855, \"scale\": 1.489574484959727}\nD: {\"rotation_angle\": 51.652651058291696, \"translation_dx\": -79.60059266318888, \"translation_dy\": 40.24223939512936, \"scale\": 1.045377495061187}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 160.04018122869564, \"translation_dx\": -10.031879581871024, \"translation_dy\": 74.10075881851205, \"scale\": 0.8976020445815951}\nB: {\"rotation_angle\": 134.22497079750707, \"translation_dx\": -56.33244292094708, \"translation_dy\": 12.15417280277697, \"scale\": 1.260404381889235}\nC: {\"rotation_angle\": 143.38145335973087, \"translation_dx\": 86.67970142496799, \"translation_dy\": -33.57640317277091, \"scale\": 0.6114655384261714}\nD: {\"rotation_angle\": 162.98131081099467, \"translation_dx\": -80.19473687776261, \"translation_dy\": -17.70282064458462, \"scale\": 1.2855975600149028}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_175_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_175_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 160.04018122869564, \"translation_dx\": -10.031879581871024, \"translation_dy\": 74.10075881851205, \"scale\": 0.8976020445815951}\nB: {\"rotation_angle\": 134.22497079750707, \"translation_dx\": -56.33244292094708, \"translation_dy\": 12.15417280277697, \"scale\": 1.260404381889235}\nC: {\"rotation_angle\": 143.38145335973087, \"translation_dx\": 86.67970142496799, \"translation_dy\": -33.57640317277091, \"scale\": 0.6114655384261714}\nD: {\"rotation_angle\": 162.98131081099467, \"translation_dx\": -80.19473687776261, \"translation_dy\": -17.70282064458462, \"scale\": 1.2855975600149028}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 170.5673161572617, \"translation_dx\": -54.14309140946517, \"translation_dy\": -20.9067824061149, \"scale\": 0.74080987054586}\nB: {\"rotation_angle\": 98.88222011850513, \"translation_dx\": 98.58699088344886, \"translation_dy\": 52.424259863835346, \"scale\": 0.8670994673205047}\nC: {\"rotation_angle\": 107.15748471049534, \"translation_dx\": -112.04520804841785, \"translation_dy\": 107.36899853350675, \"scale\": 0.784106447062462}\nD: {\"rotation_angle\": -78.36766094840773, \"translation_dx\": -86.41466180609471, \"translation_dy\": 63.19530077419013, \"scale\": 0.608403973907593}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_176_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_176_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 170.5673161572617, \"translation_dx\": -54.14309140946517, \"translation_dy\": -20.9067824061149, \"scale\": 0.74080987054586}\nB: {\"rotation_angle\": 98.88222011850513, \"translation_dx\": 98.58699088344886, \"translation_dy\": 52.424259863835346, \"scale\": 0.8670994673205047}\nC: {\"rotation_angle\": 107.15748471049534, \"translation_dx\": -112.04520804841785, \"translation_dy\": 107.36899853350675, \"scale\": 0.784106447062462}\nD: {\"rotation_angle\": -78.36766094840773, \"translation_dx\": -86.41466180609471, \"translation_dy\": 63.19530077419013, \"scale\": 0.608403973907593}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -75.97132980340905, \"translation_dx\": 6.960702322199779, \"translation_dy\": 90.08754109424518, \"scale\": 1.363389071715864}\nB: {\"rotation_angle\": 84.88997243843744, \"translation_dx\": 19.30269357274682, \"translation_dy\": 9.929350250110147, \"scale\": 1.0595552381550672}\nC: {\"rotation_angle\": 106.62912259997893, \"translation_dx\": -62.19399566166837, \"translation_dy\": -63.078041204745844, \"scale\": 1.4577244189370733}\nD: {\"rotation_angle\": 26.06413776863195, \"translation_dx\": 104.54441011530889, \"translation_dy\": -2.802993361858995, \"scale\": 0.6919535578881184}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_177_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_177_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -75.97132980340905, \"translation_dx\": 6.960702322199779, \"translation_dy\": 90.08754109424518, \"scale\": 1.363389071715864}\nB: {\"rotation_angle\": 84.88997243843744, \"translation_dx\": 19.30269357274682, \"translation_dy\": 9.929350250110147, \"scale\": 1.0595552381550672}\nC: {\"rotation_angle\": 106.62912259997893, \"translation_dx\": -62.19399566166837, \"translation_dy\": -63.078041204745844, \"scale\": 1.4577244189370733}\nD: {\"rotation_angle\": 26.06413776863195, \"translation_dx\": 104.54441011530889, \"translation_dy\": -2.802993361858995, \"scale\": 0.6919535578881184}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -149.42147215379055, \"translation_dx\": 2.3444194857030283, \"translation_dy\": 35.92779325530762, \"scale\": 1.0223945055206394}\nB: {\"rotation_angle\": 26.051749493295517, \"translation_dx\": 8.674153667650117, \"translation_dy\": 81.98381249796742, \"scale\": 1.4721363798843865}\nC: {\"rotation_angle\": -106.99875725121946, \"translation_dx\": 87.96881157950656, \"translation_dy\": -34.70529343588741, \"scale\": 1.407305489874207}\nD: {\"rotation_angle\": 14.369437993555863, \"translation_dx\": -23.54312301695805, \"translation_dy\": 55.41046511147678, \"scale\": 1.115345902394854}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_178_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_178_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -149.42147215379055, \"translation_dx\": 2.3444194857030283, \"translation_dy\": 35.92779325530762, \"scale\": 1.0223945055206394}\nB: {\"rotation_angle\": 26.051749493295517, \"translation_dx\": 8.674153667650117, \"translation_dy\": 81.98381249796742, \"scale\": 1.4721363798843865}\nC: {\"rotation_angle\": -106.99875725121946, \"translation_dx\": 87.96881157950656, \"translation_dy\": -34.70529343588741, \"scale\": 1.407305489874207}\nD: {\"rotation_angle\": 14.369437993555863, \"translation_dx\": -23.54312301695805, \"translation_dy\": 55.41046511147678, \"scale\": 1.115345902394854}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 104.66960596229086, \"translation_dx\": 122.9579606372167, \"translation_dy\": -32.21502556645471, \"scale\": 0.5791563638149022}\nB: {\"rotation_angle\": -138.01409324857718, \"translation_dx\": -15.316687484355015, \"translation_dy\": 65.85955726482798, \"scale\": 0.7544815678306976}\nC: {\"rotation_angle\": 143.38145335973087, \"translation_dx\": 86.67970142496799, \"translation_dy\": -33.57640317277091, \"scale\": 0.6114655384261714}\nD: {\"rotation_angle\": -106.99875725121946, \"translation_dx\": 87.96881157950656, \"translation_dy\": -34.70529343588741, \"scale\": 1.407305489874207}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_179_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_179_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 104.66960596229086, \"translation_dx\": 122.9579606372167, \"translation_dy\": -32.21502556645471, \"scale\": 0.5791563638149022}\nB: {\"rotation_angle\": -138.01409324857718, \"translation_dx\": -15.316687484355015, \"translation_dy\": 65.85955726482798, \"scale\": 0.7544815678306976}\nC: {\"rotation_angle\": 143.38145335973087, \"translation_dx\": 86.67970142496799, \"translation_dy\": -33.57640317277091, \"scale\": 0.6114655384261714}\nD: {\"rotation_angle\": -106.99875725121946, \"translation_dx\": 87.96881157950656, \"translation_dy\": -34.70529343588741, \"scale\": 1.407305489874207}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -103.5561502427767, \"translation_dx\": -75.76940431238745, \"translation_dy\": -48.3479107136017, \"scale\": 1.0522987713432983}\nB: {\"rotation_angle\": 136.76946369368522, \"translation_dx\": 86.13615517916296, \"translation_dy\": 47.49597577737802, \"scale\": 1.1842967613683704}\nC: {\"rotation_angle\": 159.74516071456964, \"translation_dx\": 18.36539372865252, \"translation_dy\": -32.68583255299669, \"scale\": 0.6283421405871866}\nD: {\"rotation_angle\": 84.88997243843744, \"translation_dx\": 19.30269357274682, \"translation_dy\": 9.929350250110147, \"scale\": 1.0595552381550672}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_180_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_180_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -103.5561502427767, \"translation_dx\": -75.76940431238745, \"translation_dy\": -48.3479107136017, \"scale\": 1.0522987713432983}\nB: {\"rotation_angle\": 136.76946369368522, \"translation_dx\": 86.13615517916296, \"translation_dy\": 47.49597577737802, \"scale\": 1.1842967613683704}\nC: {\"rotation_angle\": 159.74516071456964, \"translation_dx\": 18.36539372865252, \"translation_dy\": -32.68583255299669, \"scale\": 0.6283421405871866}\nD: {\"rotation_angle\": 84.88997243843744, \"translation_dx\": 19.30269357274682, \"translation_dy\": 9.929350250110147, \"scale\": 1.0595552381550672}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -8.756342422911757, \"translation_dx\": -120.12147874311805, \"translation_dy\": -16.659510954699698, \"scale\": 0.8471832394055047}\nB: {\"rotation_angle\": 134.22497079750707, \"translation_dx\": -56.33244292094708, \"translation_dy\": 12.15417280277697, \"scale\": 1.260404381889235}\nC: {\"rotation_angle\": -173.49565975712173, \"translation_dx\": 30.5303454517925, \"translation_dy\": 77.86216107455405, \"scale\": 1.067173806992701}\nD: {\"rotation_angle\": 148.22875373623708, \"translation_dx\": 53.75338658972072, \"translation_dy\": -63.78583022927253, \"scale\": 0.9304836306567924}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_181_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_181_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -8.756342422911757, \"translation_dx\": -120.12147874311805, \"translation_dy\": -16.659510954699698, \"scale\": 0.8471832394055047}\nB: {\"rotation_angle\": 134.22497079750707, \"translation_dx\": -56.33244292094708, \"translation_dy\": 12.15417280277697, \"scale\": 1.260404381889235}\nC: {\"rotation_angle\": -173.49565975712173, \"translation_dx\": 30.5303454517925, \"translation_dy\": 77.86216107455405, \"scale\": 1.067173806992701}\nD: {\"rotation_angle\": 148.22875373623708, \"translation_dx\": 53.75338658972072, \"translation_dy\": -63.78583022927253, \"scale\": 0.9304836306567924}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -169.57691070181107, \"translation_dx\": 67.3776951722352, \"translation_dy\": 6.393739311338578, \"scale\": 0.8283042543093307}\nB: {\"rotation_angle\": -6.38420562293993, \"translation_dx\": -106.80670691302902, \"translation_dy\": -3.5935098985529663, \"scale\": 1.3037846299861797}\nC: {\"rotation_angle\": 134.66606893121838, \"translation_dx\": 30.71289427748178, \"translation_dy\": 31.00111281943242, \"scale\": 0.9716368665085688}\nD: {\"rotation_angle\": 171.23105805984426, \"translation_dx\": 28.800906238980815, \"translation_dy\": 60.921924115709544, \"scale\": 1.4441070487112413}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_182_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_182_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -169.57691070181107, \"translation_dx\": 67.3776951722352, \"translation_dy\": 6.393739311338578, \"scale\": 0.8283042543093307}\nB: {\"rotation_angle\": -6.38420562293993, \"translation_dx\": -106.80670691302902, \"translation_dy\": -3.5935098985529663, \"scale\": 1.3037846299861797}\nC: {\"rotation_angle\": 134.66606893121838, \"translation_dx\": 30.71289427748178, \"translation_dy\": 31.00111281943242, \"scale\": 0.9716368665085688}\nD: {\"rotation_angle\": 171.23105805984426, \"translation_dx\": 28.800906238980815, \"translation_dy\": 60.921924115709544, \"scale\": 1.4441070487112413}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 18.52926347539298, \"translation_dx\": -26.155433185237058, \"translation_dy\": -39.799299198218556, \"scale\": 0.9355127285855813}\nB: {\"rotation_angle\": 148.22875373623708, \"translation_dx\": 53.75338658972072, \"translation_dy\": -63.78583022927253, \"scale\": 0.9304836306567924}\nC: {\"rotation_angle\": 72.25092677282458, \"translation_dx\": 61.389740502873025, \"translation_dy\": -36.86538640455047, \"scale\": 1.0748600769835353}\nD: {\"rotation_angle\": -75.97132980340905, \"translation_dx\": 6.960702322199779, \"translation_dy\": 90.08754109424518, \"scale\": 1.363389071715864}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_183_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_183_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 18.52926347539298, \"translation_dx\": -26.155433185237058, \"translation_dy\": -39.799299198218556, \"scale\": 0.9355127285855813}\nB: {\"rotation_angle\": 148.22875373623708, \"translation_dx\": 53.75338658972072, \"translation_dy\": -63.78583022927253, \"scale\": 0.9304836306567924}\nC: {\"rotation_angle\": 72.25092677282458, \"translation_dx\": 61.389740502873025, \"translation_dy\": -36.86538640455047, \"scale\": 1.0748600769835353}\nD: {\"rotation_angle\": -75.97132980340905, \"translation_dx\": 6.960702322199779, \"translation_dy\": 90.08754109424518, \"scale\": 1.363389071715864}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -75.97132980340905, \"translation_dx\": 6.960702322199779, \"translation_dy\": 90.08754109424518, \"scale\": 1.363389071715864}\nB: {\"rotation_angle\": 44.2601421515034, \"translation_dx\": -84.9832744911761, \"translation_dy\": -78.07982572554322, \"scale\": 0.5612120736859965}\nC: {\"rotation_angle\": 2.6800660606496933, \"translation_dx\": 8.805898944242955, \"translation_dy\": -61.557448223727356, \"scale\": 0.7338009245004858}\nD: {\"rotation_angle\": -101.64893396855386, \"translation_dx\": -96.08306753711838, \"translation_dy\": 14.852477797043775, \"scale\": 1.3017377870800058}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_184_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_184_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -75.97132980340905, \"translation_dx\": 6.960702322199779, \"translation_dy\": 90.08754109424518, \"scale\": 1.363389071715864}\nB: {\"rotation_angle\": 44.2601421515034, \"translation_dx\": -84.9832744911761, \"translation_dy\": -78.07982572554322, \"scale\": 0.5612120736859965}\nC: {\"rotation_angle\": 2.6800660606496933, \"translation_dx\": 8.805898944242955, \"translation_dy\": -61.557448223727356, \"scale\": 0.7338009245004858}\nD: {\"rotation_angle\": -101.64893396855386, \"translation_dx\": -96.08306753711838, \"translation_dy\": 14.852477797043775, \"scale\": 1.3017377870800058}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -178.96154331790243, \"translation_dx\": -45.831117140591004, \"translation_dy\": 14.962223802901406, \"scale\": 1.4059876442036168}\nB: {\"rotation_angle\": 115.4472434811122, \"translation_dx\": 69.00896887231048, \"translation_dy\": -26.016218629159226, \"scale\": 0.9339901852292719}\nC: {\"rotation_angle\": 2.6800660606496933, \"translation_dx\": 8.805898944242955, \"translation_dy\": -61.557448223727356, \"scale\": 0.7338009245004858}\nD: {\"rotation_angle\": -149.34069149386406, \"translation_dx\": 81.63420911320063, \"translation_dy\": -26.073567429384056, \"scale\": 1.427947630130646}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_185_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_185_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -178.96154331790243, \"translation_dx\": -45.831117140591004, \"translation_dy\": 14.962223802901406, \"scale\": 1.4059876442036168}\nB: {\"rotation_angle\": 115.4472434811122, \"translation_dx\": 69.00896887231048, \"translation_dy\": -26.016218629159226, \"scale\": 0.9339901852292719}\nC: {\"rotation_angle\": 2.6800660606496933, \"translation_dx\": 8.805898944242955, \"translation_dy\": -61.557448223727356, \"scale\": 0.7338009245004858}\nD: {\"rotation_angle\": -149.34069149386406, \"translation_dx\": 81.63420911320063, \"translation_dy\": -26.073567429384056, \"scale\": 1.427947630130646}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -61.308258156024195, \"translation_dx\": -92.42627707406731, \"translation_dy\": -21.076199203141364, \"scale\": 1.1133621977071444}\nB: {\"rotation_angle\": 83.49682873903629, \"translation_dx\": -127.2042493945246, \"translation_dy\": 2.6616959584396938, \"scale\": 0.9488759478249397}\nC: {\"rotation_angle\": -0.45613579718829556, \"translation_dx\": 98.71619714866841, \"translation_dy\": 70.1100439641223, \"scale\": 0.6491919010173006}\nD: {\"rotation_angle\": -124.27587082376021, \"translation_dx\": -88.19288051455345, \"translation_dy\": 24.145134775980125, \"scale\": 1.4414104211047083}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_186_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_186_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -61.308258156024195, \"translation_dx\": -92.42627707406731, \"translation_dy\": -21.076199203141364, \"scale\": 1.1133621977071444}\nB: {\"rotation_angle\": 83.49682873903629, \"translation_dx\": -127.2042493945246, \"translation_dy\": 2.6616959584396938, \"scale\": 0.9488759478249397}\nC: {\"rotation_angle\": -0.45613579718829556, \"translation_dx\": 98.71619714866841, \"translation_dy\": 70.1100439641223, \"scale\": 0.6491919010173006}\nD: {\"rotation_angle\": -124.27587082376021, \"translation_dx\": -88.19288051455345, \"translation_dy\": 24.145134775980125, \"scale\": 1.4414104211047083}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -163.07830945514343, \"translation_dx\": 107.25371607945826, \"translation_dy\": 44.19319462200147, \"scale\": 1.0330497674624493}\nB: {\"rotation_angle\": 115.16030768984217, \"translation_dx\": -1.9669547188467504, \"translation_dy\": 38.42152609256746, \"scale\": 1.3403221872922475}\nC: {\"rotation_angle\": -148.06770236959966, \"translation_dx\": 76.71938731609727, \"translation_dy\": 125.67697929104389, \"scale\": 1.1600663307259453}\nD: {\"rotation_angle\": -98.17490649350026, \"translation_dx\": 5.744855173473269, \"translation_dy\": -10.705504600001973, \"scale\": 1.1182428392253487}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_187_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_187_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -163.07830945514343, \"translation_dx\": 107.25371607945826, \"translation_dy\": 44.19319462200147, \"scale\": 1.0330497674624493}\nB: {\"rotation_angle\": 115.16030768984217, \"translation_dx\": -1.9669547188467504, \"translation_dy\": 38.42152609256746, \"scale\": 1.3403221872922475}\nC: {\"rotation_angle\": -148.06770236959966, \"translation_dx\": 76.71938731609727, \"translation_dy\": 125.67697929104389, \"scale\": 1.1600663307259453}\nD: {\"rotation_angle\": -98.17490649350026, \"translation_dx\": 5.744855173473269, \"translation_dy\": -10.705504600001973, \"scale\": 1.1182428392253487}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 143.38145335973087, \"translation_dx\": 86.67970142496799, \"translation_dy\": -33.57640317277091, \"scale\": 0.6114655384261714}\nB: {\"rotation_angle\": 83.8873422171626, \"translation_dx\": -89.51171417178318, \"translation_dy\": 44.525876215713694, \"scale\": 0.7096671999666376}\nC: {\"rotation_angle\": 44.2601421515034, \"translation_dx\": -84.9832744911761, \"translation_dy\": -78.07982572554322, \"scale\": 0.5612120736859965}\nD: {\"rotation_angle\": 127.1396993936072, \"translation_dx\": -29.08894824101361, \"translation_dy\": -80.84475014775404, \"scale\": 1.2834497894588772}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_188_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_188_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 143.38145335973087, \"translation_dx\": 86.67970142496799, \"translation_dy\": -33.57640317277091, \"scale\": 0.6114655384261714}\nB: {\"rotation_angle\": 83.8873422171626, \"translation_dx\": -89.51171417178318, \"translation_dy\": 44.525876215713694, \"scale\": 0.7096671999666376}\nC: {\"rotation_angle\": 44.2601421515034, \"translation_dx\": -84.9832744911761, \"translation_dy\": -78.07982572554322, \"scale\": 0.5612120736859965}\nD: {\"rotation_angle\": 127.1396993936072, \"translation_dx\": -29.08894824101361, \"translation_dy\": -80.84475014775404, \"scale\": 1.2834497894588772}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -6.258618837806779, \"translation_dx\": -117.56200624611057, \"translation_dy\": -84.92852320396813, \"scale\": 0.8703619649920769}\nB: {\"rotation_angle\": -92.49508697379828, \"translation_dx\": 63.09853740086383, \"translation_dy\": 99.47995409556995, \"scale\": 0.9495145406508286}\nC: {\"rotation_angle\": -46.75272698463425, \"translation_dx\": 16.424107524155175, \"translation_dy\": -60.683488552754085, \"scale\": 1.375025476214386}\nD: {\"rotation_angle\": 99.38174871704592, \"translation_dx\": 57.870588734166205, \"translation_dy\": 17.413162007690403, \"scale\": 1.4113398114931053}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_189_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_189_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -6.258618837806779, \"translation_dx\": -117.56200624611057, \"translation_dy\": -84.92852320396813, \"scale\": 0.8703619649920769}\nB: {\"rotation_angle\": -92.49508697379828, \"translation_dx\": 63.09853740086383, \"translation_dy\": 99.47995409556995, \"scale\": 0.9495145406508286}\nC: {\"rotation_angle\": -46.75272698463425, \"translation_dx\": 16.424107524155175, \"translation_dy\": -60.683488552754085, \"scale\": 1.375025476214386}\nD: {\"rotation_angle\": 99.38174871704592, \"translation_dx\": 57.870588734166205, \"translation_dy\": 17.413162007690403, \"scale\": 1.4113398114931053}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -42.98651909317854, \"translation_dx\": 114.49293313374625, \"translation_dy\": -39.53290228333596, \"scale\": 1.442019387031135}\nB: {\"rotation_angle\": 49.896013394485834, \"translation_dx\": -25.763756683237403, \"translation_dy\": -26.432232271484168, \"scale\": 1.1619310734744932}\nC: {\"rotation_angle\": 97.63348280388993, \"translation_dx\": 59.62332527691919, \"translation_dy\": 12.549462794922746, \"scale\": 0.6927080624806098}\nD: {\"rotation_angle\": -79.27003163090343, \"translation_dx\": 8.207736130313549, \"translation_dy\": 6.670417118750038, \"scale\": 1.3327657238113826}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_190_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_190_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -42.98651909317854, \"translation_dx\": 114.49293313374625, \"translation_dy\": -39.53290228333596, \"scale\": 1.442019387031135}\nB: {\"rotation_angle\": 49.896013394485834, \"translation_dx\": -25.763756683237403, \"translation_dy\": -26.432232271484168, \"scale\": 1.1619310734744932}\nC: {\"rotation_angle\": 97.63348280388993, \"translation_dx\": 59.62332527691919, \"translation_dy\": 12.549462794922746, \"scale\": 0.6927080624806098}\nD: {\"rotation_angle\": -79.27003163090343, \"translation_dx\": 8.207736130313549, \"translation_dy\": 6.670417118750038, \"scale\": 1.3327657238113826}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 46.42160956908356, \"translation_dx\": -90.04619228512212, \"translation_dy\": -15.749486436572411, \"scale\": 1.005156310055277}\nB: {\"rotation_angle\": 142.66976946716716, \"translation_dx\": 29.963541003119957, \"translation_dy\": 66.07065092305665, \"scale\": 1.42144068359999}\nC: {\"rotation_angle\": 123.61853421760617, \"translation_dx\": -93.63136806510369, \"translation_dy\": -15.65687765252683, \"scale\": 0.9834422929774667}\nD: {\"rotation_angle\": 53.86809011441332, \"translation_dx\": -15.131168518097624, \"translation_dy\": -31.300037391593577, \"scale\": 1.3154620606808156}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_191_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_191_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 46.42160956908356, \"translation_dx\": -90.04619228512212, \"translation_dy\": -15.749486436572411, \"scale\": 1.005156310055277}\nB: {\"rotation_angle\": 142.66976946716716, \"translation_dx\": 29.963541003119957, \"translation_dy\": 66.07065092305665, \"scale\": 1.42144068359999}\nC: {\"rotation_angle\": 123.61853421760617, \"translation_dx\": -93.63136806510369, \"translation_dy\": -15.65687765252683, \"scale\": 0.9834422929774667}\nD: {\"rotation_angle\": 53.86809011441332, \"translation_dx\": -15.131168518097624, \"translation_dy\": -31.300037391593577, \"scale\": 1.3154620606808156}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -78.36766094840773, \"translation_dx\": -86.41466180609471, \"translation_dy\": 63.19530077419013, \"scale\": 0.608403973907593}\nB: {\"rotation_angle\": -99.80397961792426, \"translation_dx\": 113.2252387398062, \"translation_dy\": -61.846052830557056, \"scale\": 1.080357872583317}\nC: {\"rotation_angle\": -84.90425841207441, \"translation_dx\": -96.22975116611923, \"translation_dy\": -54.13037688992304, \"scale\": 1.161476925450186}\nD: {\"rotation_angle\": 46.42160956908356, \"translation_dx\": -90.04619228512212, \"translation_dy\": -15.749486436572411, \"scale\": 1.005156310055277}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_192_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_192_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -78.36766094840773, \"translation_dx\": -86.41466180609471, \"translation_dy\": 63.19530077419013, \"scale\": 0.608403973907593}\nB: {\"rotation_angle\": -99.80397961792426, \"translation_dx\": 113.2252387398062, \"translation_dy\": -61.846052830557056, \"scale\": 1.080357872583317}\nC: {\"rotation_angle\": -84.90425841207441, \"translation_dx\": -96.22975116611923, \"translation_dy\": -54.13037688992304, \"scale\": 1.161476925450186}\nD: {\"rotation_angle\": 46.42160956908356, \"translation_dx\": -90.04619228512212, \"translation_dy\": -15.749486436572411, \"scale\": 1.005156310055277}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 99.4759866737457, \"translation_dx\": -117.67383777244245, \"translation_dy\": -44.645046657688624, \"scale\": 1.4332006009229632}\nB: {\"rotation_angle\": -162.31682909306286, \"translation_dx\": 94.60975693720637, \"translation_dy\": -28.569332128995313, \"scale\": 1.1251281587345527}\nC: {\"rotation_angle\": 12.872370969250312, \"translation_dx\": -43.1533458138392, \"translation_dy\": -64.88511529320917, \"scale\": 1.3092068537816153}\nD: {\"rotation_angle\": -23.247975965134003, \"translation_dx\": 108.97564353658032, \"translation_dy\": 27.267413374938258, \"scale\": 1.2292170424899498}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_193_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_193_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 99.4759866737457, \"translation_dx\": -117.67383777244245, \"translation_dy\": -44.645046657688624, \"scale\": 1.4332006009229632}\nB: {\"rotation_angle\": -162.31682909306286, \"translation_dx\": 94.60975693720637, \"translation_dy\": -28.569332128995313, \"scale\": 1.1251281587345527}\nC: {\"rotation_angle\": 12.872370969250312, \"translation_dx\": -43.1533458138392, \"translation_dy\": -64.88511529320917, \"scale\": 1.3092068537816153}\nD: {\"rotation_angle\": -23.247975965134003, \"translation_dx\": 108.97564353658032, \"translation_dy\": 27.267413374938258, \"scale\": 1.2292170424899498}"}, "output": {"output_text": "C"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 137.29869982747988, \"translation_dx\": 75.41375097241084, \"translation_dy\": 55.66358575693553, \"scale\": 1.1335508281242805}\nB: {\"rotation_angle\": 83.8873422171626, \"translation_dx\": -89.51171417178318, \"translation_dy\": 44.525876215713694, \"scale\": 0.7096671999666376}\nC: {\"rotation_angle\": -13.219279868292688, \"translation_dx\": -95.87022677446828, \"translation_dy\": -58.31347876468597, \"scale\": 1.3722022398508045}\nD: {\"rotation_angle\": -6.970858631484532, \"translation_dx\": -2.793256631611797, \"translation_dy\": 83.08133552847667, \"scale\": 1.4237697720578382}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_194_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_194_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 137.29869982747988, \"translation_dx\": 75.41375097241084, \"translation_dy\": 55.66358575693553, \"scale\": 1.1335508281242805}\nB: {\"rotation_angle\": 83.8873422171626, \"translation_dx\": -89.51171417178318, \"translation_dy\": 44.525876215713694, \"scale\": 0.7096671999666376}\nC: {\"rotation_angle\": -13.219279868292688, \"translation_dx\": -95.87022677446828, \"translation_dy\": -58.31347876468597, \"scale\": 1.3722022398508045}\nD: {\"rotation_angle\": -6.970858631484532, \"translation_dx\": -2.793256631611797, \"translation_dy\": 83.08133552847667, \"scale\": 1.4237697720578382}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -100.94596249363259, \"translation_dx\": 18.493532966543597, \"translation_dy\": -4.904135882610319, \"scale\": 1.1575890826518318}\nB: {\"rotation_angle\": -44.30781692045639, \"translation_dx\": -23.473696812537305, \"translation_dy\": -94.42952089946652, \"scale\": 1.4029179362735564}\nC: {\"rotation_angle\": -92.49508697379828, \"translation_dx\": 63.09853740086383, \"translation_dy\": 99.47995409556995, \"scale\": 0.9495145406508286}\nD: {\"rotation_angle\": -61.308258156024195, \"translation_dx\": -92.42627707406731, \"translation_dy\": -21.076199203141364, \"scale\": 1.1133621977071444}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_195_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_195_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -100.94596249363259, \"translation_dx\": 18.493532966543597, \"translation_dy\": -4.904135882610319, \"scale\": 1.1575890826518318}\nB: {\"rotation_angle\": -44.30781692045639, \"translation_dx\": -23.473696812537305, \"translation_dy\": -94.42952089946652, \"scale\": 1.4029179362735564}\nC: {\"rotation_angle\": -92.49508697379828, \"translation_dx\": 63.09853740086383, \"translation_dy\": 99.47995409556995, \"scale\": 0.9495145406508286}\nD: {\"rotation_angle\": -61.308258156024195, \"translation_dx\": -92.42627707406731, \"translation_dy\": -21.076199203141364, \"scale\": 1.1133621977071444}"}, "output": {"output_text": "B"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -23.247975965134003, \"translation_dx\": 108.97564353658032, \"translation_dy\": 27.267413374938258, \"scale\": 1.2292170424899498}\nB: {\"rotation_angle\": 111.11665430921613, \"translation_dx\": -45.526232266105865, \"translation_dy\": -71.56835409165808, \"scale\": 0.5234271564227445}\nC: {\"rotation_angle\": 48.71833122181758, \"translation_dx\": -105.22683210092106, \"translation_dy\": -63.34096559919908, \"scale\": 0.7204478932238769}\nD: {\"rotation_angle\": 88.199522854527, \"translation_dx\": 18.814421533590917, \"translation_dy\": -27.135307313502466, \"scale\": 1.37855935527965}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_196_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_196_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -23.247975965134003, \"translation_dx\": 108.97564353658032, \"translation_dy\": 27.267413374938258, \"scale\": 1.2292170424899498}\nB: {\"rotation_angle\": 111.11665430921613, \"translation_dx\": -45.526232266105865, \"translation_dy\": -71.56835409165808, \"scale\": 0.5234271564227445}\nC: {\"rotation_angle\": 48.71833122181758, \"translation_dx\": -105.22683210092106, \"translation_dy\": -63.34096559919908, \"scale\": 0.7204478932238769}\nD: {\"rotation_angle\": 88.199522854527, \"translation_dx\": 18.814421533590917, \"translation_dy\": -27.135307313502466, \"scale\": 1.37855935527965}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": 142.66976946716716, \"translation_dx\": 29.963541003119957, \"translation_dy\": 66.07065092305665, \"scale\": 1.42144068359999}\nB: {\"rotation_angle\": 53.86809011441332, \"translation_dx\": -15.131168518097624, \"translation_dy\": -31.300037391593577, \"scale\": 1.3154620606808156}\nC: {\"rotation_angle\": 179.8013352752547, \"translation_dx\": -90.5548533247824, \"translation_dy\": 17.23782922418306, \"scale\": 0.9885365626195518}\nD: {\"rotation_angle\": 148.22875373623708, \"translation_dx\": 53.75338658972072, \"translation_dy\": -63.78583022927253, \"scale\": 0.9304836306567924}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_197_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_197_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": 142.66976946716716, \"translation_dx\": 29.963541003119957, \"translation_dy\": 66.07065092305665, \"scale\": 1.42144068359999}\nB: {\"rotation_angle\": 53.86809011441332, \"translation_dx\": -15.131168518097624, \"translation_dy\": -31.300037391593577, \"scale\": 1.3154620606808156}\nC: {\"rotation_angle\": 179.8013352752547, \"translation_dx\": -90.5548533247824, \"translation_dy\": 17.23782922418306, \"scale\": 0.9885365626195518}\nD: {\"rotation_angle\": 148.22875373623708, \"translation_dx\": 53.75338658972072, \"translation_dy\": -63.78583022927253, \"scale\": 0.9304836306567924}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -23.247975965134003, \"translation_dx\": 108.97564353658032, \"translation_dy\": 27.267413374938258, \"scale\": 1.2292170424899498}\nB: {\"rotation_angle\": 46.42160956908356, \"translation_dx\": -90.04619228512212, \"translation_dy\": -15.749486436572411, \"scale\": 1.005156310055277}\nC: {\"rotation_angle\": 26.051749493295517, \"translation_dx\": 8.674153667650117, \"translation_dy\": 81.98381249796742, \"scale\": 1.4721363798843865}\nD: {\"rotation_angle\": -160.6395227566207, \"translation_dx\": 53.66643366551958, \"translation_dy\": -27.712376159428388, \"scale\": 1.1084051689599654}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_198_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_198_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -23.247975965134003, \"translation_dx\": 108.97564353658032, \"translation_dy\": 27.267413374938258, \"scale\": 1.2292170424899498}\nB: {\"rotation_angle\": 46.42160956908356, \"translation_dx\": -90.04619228512212, \"translation_dy\": -15.749486436572411, \"scale\": 1.005156310055277}\nC: {\"rotation_angle\": 26.051749493295517, \"translation_dx\": 8.674153667650117, \"translation_dy\": 81.98381249796742, \"scale\": 1.4721363798843865}\nD: {\"rotation_angle\": -160.6395227566207, \"translation_dx\": 53.66643366551958, \"translation_dy\": -27.712376159428388, \"scale\": 1.1084051689599654}"}, "output": {"output_text": "D"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "COCO_spatial", "options": "A: {\"rotation_angle\": -70.97525301082955, \"translation_dx\": -28.380848037876873, \"translation_dy\": 54.37723426674512, \"scale\": 0.9024922197892329}\nB: {\"rotation_angle\": -5.816806483512181, \"translation_dx\": -70.40329792935935, \"translation_dy\": -21.418007440252175, \"scale\": 1.0041476956174793}\nC: {\"rotation_angle\": 163.34031080178892, \"translation_dx\": -21.567151354845635, \"translation_dy\": -30.72615389540148, \"scale\": 1.2439888416024685}\nD: {\"rotation_angle\": -14.958482221349612, \"translation_dx\": 49.62118662103501, \"translation_dy\": -13.943537967490855, \"scale\": 1.489574484959727}", "visual_input_component": "natural image", "input": {"input_image_path": ["2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_199_0.jpg", "2D-spatial/Image_Spatial_Transformation_Estimation/Image_Spatial_Transformation_Estimation_199_1.jpg"], "question": "Please compute the type and parameters of the spatial transformation between these two images.", "context": "Given pairs of images depicting scenes before and after a spatial transformation (e.g., rotation, translation), your task is to predict the type and magnitude of the transformation that occurred. \nSelect from the following choices.\nA: {\"rotation_angle\": -70.97525301082955, \"translation_dx\": -28.380848037876873, \"translation_dy\": 54.37723426674512, \"scale\": 0.9024922197892329}\nB: {\"rotation_angle\": -5.816806483512181, \"translation_dx\": -70.40329792935935, \"translation_dy\": -21.418007440252175, \"scale\": 1.0041476956174793}\nC: {\"rotation_angle\": 163.34031080178892, \"translation_dx\": -21.567151354845635, \"translation_dy\": -30.72615389540148, \"scale\": 1.2439888416024685}\nD: {\"rotation_angle\": -14.958482221349612, \"translation_dx\": 49.62118662103501, \"translation_dy\": -13.943537967490855, \"scale\": 1.489574484959727}"}, "output": {"output_text": "A"}, "task": "Image_Spatial_Transformation_Estimation"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 1, 4, 2]\nB: [2, 3, 4, 1]\nC: [2, 1, 3, 4]\nD: [4, 2, 1, 3]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_0_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_0_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_0_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_0_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_0_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 1, 4, 2]\nB: [2, 3, 4, 1]\nC: [2, 1, 3, 4]\nD: [4, 2, 1, 3]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 3, 4, 1]\nB: [3, 1, 2, 4]\nC: [4, 3, 1, 2]\nD: [2, 4, 3, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_1_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_1_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_1_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_1_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_1_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 3, 4, 1]\nB: [3, 1, 2, 4]\nC: [4, 3, 1, 2]\nD: [2, 4, 3, 1]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 4, 1, 2]\nB: [3, 4, 2, 1]\nC: [4, 3, 2, 1]\nD: [1, 2, 4, 3]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_2_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_2_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_2_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_2_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_2_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 4, 1, 2]\nB: [3, 4, 2, 1]\nC: [4, 3, 2, 1]\nD: [1, 2, 4, 3]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 4, 1, 2]\nB: [4, 1, 3, 2]\nC: [1, 3, 4, 2]\nD: [3, 2, 4, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_3_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_3_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_3_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_3_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_3_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 4, 1, 2]\nB: [4, 1, 3, 2]\nC: [1, 3, 4, 2]\nD: [3, 2, 4, 1]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 1, 4, 3]\nB: [3, 1, 2, 4]\nC: [4, 3, 1, 2]\nD: [1, 4, 3, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_4_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_4_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_4_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_4_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_4_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 4, 3]\nB: [3, 1, 2, 4]\nC: [4, 3, 1, 2]\nD: [1, 4, 3, 2]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 2, 4, 1]\nB: [3, 4, 2, 1]\nC: [1, 3, 4, 2]\nD: [3, 1, 4, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_5_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_5_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_5_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_5_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_5_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 2, 4, 1]\nB: [3, 4, 2, 1]\nC: [1, 3, 4, 2]\nD: [3, 1, 4, 2]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 2, 4, 1]\nB: [3, 4, 1, 2]\nC: [2, 1, 3, 4]\nD: [4, 2, 3, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_6_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_6_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_6_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_6_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_6_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 2, 4, 1]\nB: [3, 4, 1, 2]\nC: [2, 1, 3, 4]\nD: [4, 2, 3, 1]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 1, 3, 2]\nB: [4, 1, 2, 3]\nC: [2, 3, 4, 1]\nD: [2, 4, 3, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_7_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_7_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_7_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_7_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_7_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 3, 2]\nB: [4, 1, 2, 3]\nC: [2, 3, 4, 1]\nD: [2, 4, 3, 1]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 4, 3, 1]\nB: [2, 3, 4, 1]\nC: [1, 3, 4, 2]\nD: [4, 3, 2, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_8_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_8_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_8_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_8_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_8_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 4, 3, 1]\nB: [2, 3, 4, 1]\nC: [1, 3, 4, 2]\nD: [4, 3, 2, 1]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 1, 2, 3]\nB: [1, 3, 2, 4]\nC: [3, 1, 2, 4]\nD: [3, 4, 2, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_9_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_9_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_9_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_9_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_9_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 2, 3]\nB: [1, 3, 2, 4]\nC: [3, 1, 2, 4]\nD: [3, 4, 2, 1]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 2, 4, 1]\nB: [2, 1, 3, 4]\nC: [1, 3, 2, 4]\nD: [2, 3, 1, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_10_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_10_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_10_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_10_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_10_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 2, 4, 1]\nB: [2, 1, 3, 4]\nC: [1, 3, 2, 4]\nD: [2, 3, 1, 4]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [1, 4, 3, 2]\nB: [3, 4, 2, 1]\nC: [4, 1, 3, 2]\nD: [2, 4, 1, 3]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_11_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_11_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_11_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_11_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_11_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 3, 2]\nB: [3, 4, 2, 1]\nC: [4, 1, 3, 2]\nD: [2, 4, 1, 3]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 3, 1, 2]\nB: [2, 1, 3, 4]\nC: [1, 2, 4, 3]\nD: [1, 3, 2, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_12_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_12_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_12_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_12_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_12_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 1, 2]\nB: [2, 1, 3, 4]\nC: [1, 2, 4, 3]\nD: [1, 3, 2, 4]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [1, 4, 3, 2]\nB: [4, 3, 1, 2]\nC: [3, 2, 1, 4]\nD: [3, 1, 2, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_13_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_13_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_13_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_13_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_13_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 3, 2]\nB: [4, 3, 1, 2]\nC: [3, 2, 1, 4]\nD: [3, 1, 2, 4]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 3, 2, 1]\nB: [3, 4, 1, 2]\nC: [1, 4, 2, 3]\nD: [4, 3, 1, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_14_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_14_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_14_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_14_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_14_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 2, 1]\nB: [3, 4, 1, 2]\nC: [1, 4, 2, 3]\nD: [4, 3, 1, 2]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 1, 4, 2]\nB: [4, 2, 3, 1]\nC: [1, 4, 2, 3]\nD: [3, 4, 2, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_15_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_15_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_15_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_15_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_15_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 1, 4, 2]\nB: [4, 2, 3, 1]\nC: [1, 4, 2, 3]\nD: [3, 4, 2, 1]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 4, 2, 1]\nB: [4, 2, 3, 1]\nC: [1, 3, 2, 4]\nD: [3, 2, 1, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_16_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_16_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_16_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_16_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_16_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 4, 2, 1]\nB: [4, 2, 3, 1]\nC: [1, 3, 2, 4]\nD: [3, 2, 1, 4]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 1, 4, 3]\nB: [4, 2, 1, 3]\nC: [4, 2, 3, 1]\nD: [3, 4, 1, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_17_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_17_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_17_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_17_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_17_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 4, 3]\nB: [4, 2, 1, 3]\nC: [4, 2, 3, 1]\nD: [3, 4, 1, 2]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 4, 3, 1]\nB: [3, 1, 2, 4]\nC: [1, 3, 2, 4]\nD: [4, 2, 1, 3]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_18_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_18_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_18_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_18_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_18_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 4, 3, 1]\nB: [3, 1, 2, 4]\nC: [1, 3, 2, 4]\nD: [4, 2, 1, 3]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 1, 4, 2]\nB: [3, 2, 1, 4]\nC: [2, 4, 3, 1]\nD: [1, 2, 4, 3]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_19_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_19_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_19_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_19_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_19_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 1, 4, 2]\nB: [3, 2, 1, 4]\nC: [2, 4, 3, 1]\nD: [1, 2, 4, 3]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 1, 4, 3]\nB: [4, 1, 2, 3]\nC: [4, 3, 1, 2]\nD: [1, 2, 4, 3]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_20_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_20_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_20_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_20_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_20_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 4, 3]\nB: [4, 1, 2, 3]\nC: [4, 3, 1, 2]\nD: [1, 2, 4, 3]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 4, 3, 1]\nB: [3, 2, 1, 4]\nC: [3, 2, 4, 1]\nD: [1, 2, 3, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_21_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_21_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_21_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_21_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_21_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 4, 3, 1]\nB: [3, 2, 1, 4]\nC: [3, 2, 4, 1]\nD: [1, 2, 3, 4]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 1, 4, 3]\nB: [2, 3, 4, 1]\nC: [1, 4, 2, 3]\nD: [2, 1, 3, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_22_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_22_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_22_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_22_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_22_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 4, 3]\nB: [2, 3, 4, 1]\nC: [1, 4, 2, 3]\nD: [2, 1, 3, 4]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 4, 1, 3]\nB: [4, 2, 1, 3]\nC: [2, 1, 4, 3]\nD: [1, 3, 2, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_23_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_23_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_23_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_23_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_23_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 4, 1, 3]\nB: [4, 2, 1, 3]\nC: [2, 1, 4, 3]\nD: [1, 3, 2, 4]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 1, 2, 4]\nB: [1, 3, 2, 4]\nC: [2, 1, 4, 3]\nD: [4, 2, 3, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_24_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_24_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_24_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_24_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_24_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 1, 2, 4]\nB: [1, 3, 2, 4]\nC: [2, 1, 4, 3]\nD: [4, 2, 3, 1]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 2, 3, 1]\nB: [1, 4, 3, 2]\nC: [4, 2, 1, 3]\nD: [2, 3, 1, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_25_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_25_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_25_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_25_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_25_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 2, 3, 1]\nB: [1, 4, 3, 2]\nC: [4, 2, 1, 3]\nD: [2, 3, 1, 4]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 4, 1, 2]\nB: [2, 4, 3, 1]\nC: [4, 3, 1, 2]\nD: [3, 1, 4, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_26_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_26_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_26_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_26_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_26_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 4, 1, 2]\nB: [2, 4, 3, 1]\nC: [4, 3, 1, 2]\nD: [3, 1, 4, 2]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [1, 3, 2, 4]\nB: [2, 4, 3, 1]\nC: [1, 4, 2, 3]\nD: [1, 2, 3, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_27_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_27_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_27_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_27_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_27_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 3, 2, 4]\nB: [2, 4, 3, 1]\nC: [1, 4, 2, 3]\nD: [1, 2, 3, 4]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [1, 4, 3, 2]\nB: [4, 1, 3, 2]\nC: [2, 1, 3, 4]\nD: [4, 3, 2, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_28_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_28_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_28_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_28_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_28_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 3, 2]\nB: [4, 1, 3, 2]\nC: [2, 1, 3, 4]\nD: [4, 3, 2, 1]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 2, 1, 4]\nB: [3, 1, 2, 4]\nC: [4, 1, 2, 3]\nD: [1, 4, 3, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_29_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_29_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_29_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_29_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_29_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 2, 1, 4]\nB: [3, 1, 2, 4]\nC: [4, 1, 2, 3]\nD: [1, 4, 3, 2]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [1, 2, 4, 3]\nB: [3, 2, 1, 4]\nC: [1, 3, 2, 4]\nD: [4, 3, 1, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_30_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_30_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_30_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_30_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_30_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 2, 4, 3]\nB: [3, 2, 1, 4]\nC: [1, 3, 2, 4]\nD: [4, 3, 1, 2]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 1, 4, 3]\nB: [1, 4, 3, 2]\nC: [1, 3, 4, 2]\nD: [1, 2, 4, 3]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_31_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_31_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_31_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_31_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_31_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 4, 3]\nB: [1, 4, 3, 2]\nC: [1, 3, 4, 2]\nD: [1, 2, 4, 3]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 3, 1, 4]\nB: [4, 3, 1, 2]\nC: [2, 3, 4, 1]\nD: [2, 1, 4, 3]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_32_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_32_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_32_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_32_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_32_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 3, 1, 4]\nB: [4, 3, 1, 2]\nC: [2, 3, 4, 1]\nD: [2, 1, 4, 3]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 1, 4, 3]\nB: [3, 2, 4, 1]\nC: [3, 4, 1, 2]\nD: [1, 2, 4, 3]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_33_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_33_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_33_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_33_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_33_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 4, 3]\nB: [3, 2, 4, 1]\nC: [3, 4, 1, 2]\nD: [1, 2, 4, 3]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 2, 4, 1]\nB: [3, 1, 2, 4]\nC: [2, 3, 4, 1]\nD: [1, 3, 2, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_34_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_34_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_34_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_34_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_34_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 2, 4, 1]\nB: [3, 1, 2, 4]\nC: [2, 3, 4, 1]\nD: [1, 3, 2, 4]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 4, 2, 1]\nB: [1, 4, 2, 3]\nC: [2, 1, 3, 4]\nD: [2, 3, 1, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_35_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_35_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_35_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_35_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_35_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 4, 2, 1]\nB: [1, 4, 2, 3]\nC: [2, 1, 3, 4]\nD: [2, 3, 1, 4]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 3, 2, 1]\nB: [4, 1, 2, 3]\nC: [3, 2, 1, 4]\nD: [1, 3, 2, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_36_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_36_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_36_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_36_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_36_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 2, 1]\nB: [4, 1, 2, 3]\nC: [3, 2, 1, 4]\nD: [1, 3, 2, 4]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 3, 4, 1]\nB: [4, 1, 2, 3]\nC: [3, 4, 2, 1]\nD: [3, 4, 1, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_37_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_37_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_37_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_37_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_37_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 3, 4, 1]\nB: [4, 1, 2, 3]\nC: [3, 4, 2, 1]\nD: [3, 4, 1, 2]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 3, 1, 2]\nB: [4, 2, 1, 3]\nC: [1, 3, 4, 2]\nD: [3, 1, 2, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_38_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_38_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_38_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_38_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_38_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 1, 2]\nB: [4, 2, 1, 3]\nC: [1, 3, 4, 2]\nD: [3, 1, 2, 4]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 1, 3, 2]\nB: [1, 3, 4, 2]\nC: [2, 3, 4, 1]\nD: [3, 1, 4, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_39_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_39_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_39_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_39_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_39_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 3, 2]\nB: [1, 3, 4, 2]\nC: [2, 3, 4, 1]\nD: [3, 1, 4, 2]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 1, 4, 3]\nB: [3, 4, 1, 2]\nC: [3, 2, 4, 1]\nD: [1, 2, 4, 3]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_40_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_40_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_40_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_40_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_40_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 4, 3]\nB: [3, 4, 1, 2]\nC: [3, 2, 4, 1]\nD: [1, 2, 4, 3]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 4, 1, 2]\nB: [1, 2, 3, 4]\nC: [2, 4, 3, 1]\nD: [2, 3, 1, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_41_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_41_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_41_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_41_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_41_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 4, 1, 2]\nB: [1, 2, 3, 4]\nC: [2, 4, 3, 1]\nD: [2, 3, 1, 4]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 3, 2, 1]\nB: [1, 2, 4, 3]\nC: [2, 1, 3, 4]\nD: [4, 2, 3, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_42_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_42_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_42_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_42_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_42_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 2, 1]\nB: [1, 2, 4, 3]\nC: [2, 1, 3, 4]\nD: [4, 2, 3, 1]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 2, 1, 3]\nB: [3, 1, 4, 2]\nC: [1, 2, 3, 4]\nD: [3, 4, 1, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_43_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_43_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_43_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_43_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_43_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 2, 1, 3]\nB: [3, 1, 4, 2]\nC: [1, 2, 3, 4]\nD: [3, 4, 1, 2]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [1, 3, 4, 2]\nB: [1, 4, 3, 2]\nC: [2, 3, 4, 1]\nD: [2, 1, 3, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_44_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_44_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_44_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_44_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_44_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 3, 4, 2]\nB: [1, 4, 3, 2]\nC: [2, 3, 4, 1]\nD: [2, 1, 3, 4]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 2, 1, 3]\nB: [2, 3, 4, 1]\nC: [4, 3, 2, 1]\nD: [2, 1, 4, 3]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_45_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_45_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_45_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_45_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_45_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 2, 1, 3]\nB: [2, 3, 4, 1]\nC: [4, 3, 2, 1]\nD: [2, 1, 4, 3]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 1, 2, 3]\nB: [1, 3, 2, 4]\nC: [2, 4, 1, 3]\nD: [2, 1, 3, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_46_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_46_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_46_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_46_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_46_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 2, 3]\nB: [1, 3, 2, 4]\nC: [2, 4, 1, 3]\nD: [2, 1, 3, 4]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 1, 4, 3]\nB: [4, 2, 3, 1]\nC: [1, 3, 2, 4]\nD: [3, 1, 2, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_47_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_47_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_47_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_47_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_47_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 4, 3]\nB: [4, 2, 3, 1]\nC: [1, 3, 2, 4]\nD: [3, 1, 2, 4]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 1, 3, 4]\nB: [1, 2, 4, 3]\nC: [3, 1, 2, 4]\nD: [3, 1, 4, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_48_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_48_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_48_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_48_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_48_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 3, 4]\nB: [1, 2, 4, 3]\nC: [3, 1, 2, 4]\nD: [3, 1, 4, 2]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 1, 4, 3]\nB: [1, 4, 2, 3]\nC: [1, 3, 2, 4]\nD: [1, 2, 3, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_49_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_49_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_49_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_49_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_49_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 4, 3]\nB: [1, 4, 2, 3]\nC: [1, 3, 2, 4]\nD: [1, 2, 3, 4]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [1, 2, 4, 3]\nB: [3, 1, 2, 4]\nC: [2, 4, 1, 3]\nD: [3, 4, 2, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_50_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_50_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_50_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_50_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_50_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 2, 4, 3]\nB: [3, 1, 2, 4]\nC: [2, 4, 1, 3]\nD: [3, 4, 2, 1]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 4, 2, 1]\nB: [1, 4, 2, 3]\nC: [4, 2, 3, 1]\nD: [1, 3, 2, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_51_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_51_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_51_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_51_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_51_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 4, 2, 1]\nB: [1, 4, 2, 3]\nC: [4, 2, 3, 1]\nD: [1, 3, 2, 4]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 4, 1, 2]\nB: [3, 2, 4, 1]\nC: [1, 3, 4, 2]\nD: [4, 1, 2, 3]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_52_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_52_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_52_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_52_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_52_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 4, 1, 2]\nB: [3, 2, 4, 1]\nC: [1, 3, 4, 2]\nD: [4, 1, 2, 3]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 2, 3, 1]\nB: [1, 3, 4, 2]\nC: [4, 3, 2, 1]\nD: [3, 4, 1, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_53_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_53_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_53_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_53_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_53_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 2, 3, 1]\nB: [1, 3, 4, 2]\nC: [4, 3, 2, 1]\nD: [3, 4, 1, 2]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [1, 2, 3, 4]\nB: [1, 3, 4, 2]\nC: [4, 3, 1, 2]\nD: [4, 3, 2, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_54_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_54_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_54_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_54_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_54_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 2, 3, 4]\nB: [1, 3, 4, 2]\nC: [4, 3, 1, 2]\nD: [4, 3, 2, 1]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [1, 2, 4, 3]\nB: [2, 1, 4, 3]\nC: [3, 1, 4, 2]\nD: [4, 2, 3, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_55_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_55_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_55_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_55_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_55_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 2, 4, 3]\nB: [2, 1, 4, 3]\nC: [3, 1, 4, 2]\nD: [4, 2, 3, 1]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [1, 4, 3, 2]\nB: [1, 4, 2, 3]\nC: [4, 3, 2, 1]\nD: [1, 3, 4, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_56_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_56_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_56_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_56_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_56_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 3, 2]\nB: [1, 4, 2, 3]\nC: [4, 3, 2, 1]\nD: [1, 3, 4, 2]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [1, 4, 2, 3]\nB: [3, 2, 1, 4]\nC: [4, 2, 1, 3]\nD: [4, 3, 2, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_57_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_57_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_57_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_57_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_57_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 2, 3]\nB: [3, 2, 1, 4]\nC: [4, 2, 1, 3]\nD: [4, 3, 2, 1]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 4, 2, 1]\nB: [2, 1, 3, 4]\nC: [4, 1, 2, 3]\nD: [2, 1, 4, 3]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_58_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_58_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_58_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_58_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_58_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 4, 2, 1]\nB: [2, 1, 3, 4]\nC: [4, 1, 2, 3]\nD: [2, 1, 4, 3]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 1, 4, 2]\nB: [2, 3, 4, 1]\nC: [1, 4, 3, 2]\nD: [1, 4, 2, 3]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_59_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_59_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_59_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_59_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_59_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 1, 4, 2]\nB: [2, 3, 4, 1]\nC: [1, 4, 3, 2]\nD: [1, 4, 2, 3]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 1, 4, 3]\nB: [3, 1, 4, 2]\nC: [2, 3, 1, 4]\nD: [3, 1, 2, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_60_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_60_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_60_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_60_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_60_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 4, 3]\nB: [3, 1, 4, 2]\nC: [2, 3, 1, 4]\nD: [3, 1, 2, 4]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 4, 1, 2]\nB: [4, 3, 1, 2]\nC: [2, 4, 1, 3]\nD: [1, 2, 3, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_61_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_61_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_61_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_61_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_61_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 4, 1, 2]\nB: [4, 3, 1, 2]\nC: [2, 4, 1, 3]\nD: [1, 2, 3, 4]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [1, 4, 2, 3]\nB: [4, 3, 1, 2]\nC: [3, 1, 4, 2]\nD: [2, 3, 4, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_62_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_62_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_62_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_62_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_62_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 2, 3]\nB: [4, 3, 1, 2]\nC: [3, 1, 4, 2]\nD: [2, 3, 4, 1]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [1, 2, 3, 4]\nB: [3, 1, 4, 2]\nC: [4, 3, 2, 1]\nD: [4, 2, 3, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_63_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_63_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_63_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_63_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_63_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 2, 3, 4]\nB: [3, 1, 4, 2]\nC: [4, 3, 2, 1]\nD: [4, 2, 3, 1]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [1, 3, 4, 2]\nB: [4, 1, 2, 3]\nC: [2, 3, 1, 4]\nD: [3, 4, 1, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_64_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_64_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_64_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_64_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_64_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 3, 4, 2]\nB: [4, 1, 2, 3]\nC: [2, 3, 1, 4]\nD: [3, 4, 1, 2]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 3, 2, 1]\nB: [4, 2, 3, 1]\nC: [2, 1, 4, 3]\nD: [3, 2, 4, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_65_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_65_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_65_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_65_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_65_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 2, 1]\nB: [4, 2, 3, 1]\nC: [2, 1, 4, 3]\nD: [3, 2, 4, 1]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 4, 1, 2]\nB: [4, 3, 1, 2]\nC: [1, 3, 2, 4]\nD: [1, 3, 4, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_66_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_66_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_66_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_66_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_66_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 4, 1, 2]\nB: [4, 3, 1, 2]\nC: [1, 3, 2, 4]\nD: [1, 3, 4, 2]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 4, 1, 3]\nB: [4, 3, 1, 2]\nC: [4, 2, 1, 3]\nD: [3, 4, 2, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_67_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_67_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_67_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_67_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_67_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 4, 1, 3]\nB: [4, 3, 1, 2]\nC: [4, 2, 1, 3]\nD: [3, 4, 2, 1]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 4, 2, 1]\nB: [1, 3, 2, 4]\nC: [4, 2, 1, 3]\nD: [3, 2, 4, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_68_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_68_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_68_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_68_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_68_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 4, 2, 1]\nB: [1, 3, 2, 4]\nC: [4, 2, 1, 3]\nD: [3, 2, 4, 1]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 1, 4, 2]\nB: [4, 2, 1, 3]\nC: [3, 2, 4, 1]\nD: [2, 1, 3, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_69_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_69_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_69_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_69_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_69_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 1, 4, 2]\nB: [4, 2, 1, 3]\nC: [3, 2, 4, 1]\nD: [2, 1, 3, 4]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 3, 1, 2]\nB: [1, 4, 2, 3]\nC: [1, 3, 4, 2]\nD: [4, 1, 2, 3]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_70_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_70_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_70_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_70_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_70_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 1, 2]\nB: [1, 4, 2, 3]\nC: [1, 3, 4, 2]\nD: [4, 1, 2, 3]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [1, 2, 3, 4]\nB: [2, 4, 1, 3]\nC: [3, 4, 2, 1]\nD: [3, 2, 4, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_71_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_71_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_71_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_71_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_71_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 2, 3, 4]\nB: [2, 4, 1, 3]\nC: [3, 4, 2, 1]\nD: [3, 2, 4, 1]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 4, 3, 1]\nB: [4, 2, 3, 1]\nC: [2, 1, 3, 4]\nD: [3, 4, 1, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_72_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_72_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_72_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_72_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_72_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 4, 3, 1]\nB: [4, 2, 3, 1]\nC: [2, 1, 3, 4]\nD: [3, 4, 1, 2]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 1, 4, 3]\nB: [1, 4, 2, 3]\nC: [3, 1, 4, 2]\nD: [1, 3, 4, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_73_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_73_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_73_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_73_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_73_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 4, 3]\nB: [1, 4, 2, 3]\nC: [3, 1, 4, 2]\nD: [1, 3, 4, 2]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [1, 2, 3, 4]\nB: [4, 3, 1, 2]\nC: [1, 4, 2, 3]\nD: [4, 3, 2, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_74_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_74_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_74_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_74_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_74_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 2, 3, 4]\nB: [4, 3, 1, 2]\nC: [1, 4, 2, 3]\nD: [4, 3, 2, 1]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 1, 3, 2]\nB: [2, 3, 4, 1]\nC: [4, 3, 1, 2]\nD: [2, 1, 3, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_75_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_75_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_75_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_75_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_75_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 3, 2]\nB: [2, 3, 4, 1]\nC: [4, 3, 1, 2]\nD: [2, 1, 3, 4]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 4, 2, 1]\nB: [4, 2, 1, 3]\nC: [3, 2, 1, 4]\nD: [1, 3, 4, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_76_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_76_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_76_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_76_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_76_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 4, 2, 1]\nB: [4, 2, 1, 3]\nC: [3, 2, 1, 4]\nD: [1, 3, 4, 2]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 4, 1, 2]\nB: [3, 1, 2, 4]\nC: [4, 1, 2, 3]\nD: [4, 3, 1, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_77_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_77_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_77_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_77_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_77_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 4, 1, 2]\nB: [3, 1, 2, 4]\nC: [4, 1, 2, 3]\nD: [4, 3, 1, 2]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [1, 4, 2, 3]\nB: [4, 3, 1, 2]\nC: [4, 1, 3, 2]\nD: [2, 3, 4, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_78_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_78_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_78_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_78_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_78_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 2, 3]\nB: [4, 3, 1, 2]\nC: [4, 1, 3, 2]\nD: [2, 3, 4, 1]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 1, 2, 3]\nB: [1, 3, 4, 2]\nC: [2, 1, 3, 4]\nD: [1, 4, 2, 3]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_79_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_79_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_79_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_79_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_79_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 2, 3]\nB: [1, 3, 4, 2]\nC: [2, 1, 3, 4]\nD: [1, 4, 2, 3]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 1, 2, 3]\nB: [4, 2, 1, 3]\nC: [1, 3, 4, 2]\nD: [2, 3, 1, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_80_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_80_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_80_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_80_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_80_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 2, 3]\nB: [4, 2, 1, 3]\nC: [1, 3, 4, 2]\nD: [2, 3, 1, 4]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 3, 4, 1]\nB: [2, 3, 1, 4]\nC: [4, 2, 1, 3]\nD: [4, 1, 2, 3]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_81_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_81_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_81_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_81_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_81_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 3, 4, 1]\nB: [2, 3, 1, 4]\nC: [4, 2, 1, 3]\nD: [4, 1, 2, 3]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [1, 4, 3, 2]\nB: [2, 1, 4, 3]\nC: [2, 3, 1, 4]\nD: [3, 1, 4, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_82_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_82_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_82_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_82_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_82_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 3, 2]\nB: [2, 1, 4, 3]\nC: [2, 3, 1, 4]\nD: [3, 1, 4, 2]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 4, 3, 1]\nB: [1, 3, 2, 4]\nC: [4, 2, 1, 3]\nD: [4, 3, 2, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_83_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_83_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_83_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_83_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_83_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 4, 3, 1]\nB: [1, 3, 2, 4]\nC: [4, 2, 1, 3]\nD: [4, 3, 2, 1]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 1, 3, 4]\nB: [3, 2, 4, 1]\nC: [1, 3, 4, 2]\nD: [4, 3, 1, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_84_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_84_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_84_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_84_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_84_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 3, 4]\nB: [3, 2, 4, 1]\nC: [1, 3, 4, 2]\nD: [4, 3, 1, 2]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 4, 3, 1]\nB: [1, 3, 2, 4]\nC: [3, 4, 1, 2]\nD: [2, 1, 3, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_85_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_85_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_85_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_85_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_85_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 4, 3, 1]\nB: [1, 3, 2, 4]\nC: [3, 4, 1, 2]\nD: [2, 1, 3, 4]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 4, 1, 3]\nB: [4, 2, 1, 3]\nC: [1, 3, 4, 2]\nD: [3, 2, 1, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_86_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_86_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_86_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_86_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_86_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 4, 1, 3]\nB: [4, 2, 1, 3]\nC: [1, 3, 4, 2]\nD: [3, 2, 1, 4]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 4, 3, 1]\nB: [1, 3, 2, 4]\nC: [1, 4, 3, 2]\nD: [1, 2, 4, 3]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_87_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_87_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_87_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_87_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_87_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 4, 3, 1]\nB: [1, 3, 2, 4]\nC: [1, 4, 3, 2]\nD: [1, 2, 4, 3]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 2, 3, 1]\nB: [3, 2, 1, 4]\nC: [4, 3, 2, 1]\nD: [1, 4, 3, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_88_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_88_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_88_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_88_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_88_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 2, 3, 1]\nB: [3, 2, 1, 4]\nC: [4, 3, 2, 1]\nD: [1, 4, 3, 2]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 4, 2, 1]\nB: [3, 2, 4, 1]\nC: [4, 2, 1, 3]\nD: [4, 1, 3, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_89_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_89_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_89_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_89_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_89_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 4, 2, 1]\nB: [3, 2, 4, 1]\nC: [4, 2, 1, 3]\nD: [4, 1, 3, 2]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 3, 1, 4]\nB: [2, 1, 3, 4]\nC: [3, 4, 2, 1]\nD: [3, 4, 1, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_90_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_90_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_90_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_90_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_90_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 3, 1, 4]\nB: [2, 1, 3, 4]\nC: [3, 4, 2, 1]\nD: [3, 4, 1, 2]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 2, 1, 3]\nB: [4, 1, 3, 2]\nC: [4, 3, 2, 1]\nD: [2, 1, 4, 3]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_91_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_91_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_91_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_91_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_91_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 2, 1, 3]\nB: [4, 1, 3, 2]\nC: [4, 3, 2, 1]\nD: [2, 1, 4, 3]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 3, 1, 2]\nB: [2, 1, 3, 4]\nC: [4, 1, 2, 3]\nD: [1, 3, 4, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_92_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_92_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_92_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_92_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_92_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 1, 2]\nB: [2, 1, 3, 4]\nC: [4, 1, 2, 3]\nD: [1, 3, 4, 2]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [1, 4, 3, 2]\nB: [1, 3, 4, 2]\nC: [2, 4, 1, 3]\nD: [4, 2, 3, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_93_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_93_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_93_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_93_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_93_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 3, 2]\nB: [1, 3, 4, 2]\nC: [2, 4, 1, 3]\nD: [4, 2, 3, 1]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 3, 1, 2]\nB: [1, 4, 3, 2]\nC: [1, 3, 4, 2]\nD: [1, 3, 2, 4]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_94_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_94_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_94_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_94_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_94_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 1, 2]\nB: [1, 4, 3, 2]\nC: [1, 3, 4, 2]\nD: [1, 3, 2, 4]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 1, 2, 4]\nB: [1, 3, 4, 2]\nC: [2, 4, 3, 1]\nD: [3, 2, 4, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_95_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_95_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_95_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_95_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_95_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 1, 2, 4]\nB: [1, 3, 4, 2]\nC: [2, 4, 3, 1]\nD: [3, 2, 4, 1]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 1, 3, 2]\nB: [1, 2, 3, 4]\nC: [2, 4, 3, 1]\nD: [3, 4, 2, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_96_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_96_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_96_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_96_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_96_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 3, 2]\nB: [1, 2, 3, 4]\nC: [2, 4, 3, 1]\nD: [3, 4, 2, 1]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [4, 1, 3, 2]\nB: [2, 4, 1, 3]\nC: [3, 2, 4, 1]\nD: [4, 3, 2, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_97_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_97_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_97_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_97_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_97_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 3, 2]\nB: [2, 4, 1, 3]\nC: [3, 2, 4, 1]\nD: [4, 3, 2, 1]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [3, 2, 4, 1]\nB: [1, 4, 2, 3]\nC: [3, 1, 2, 4]\nD: [4, 3, 2, 1]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_98_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_98_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_98_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_98_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_98_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 2, 4, 1]\nB: [1, 4, 2, 3]\nC: [3, 1, 2, 4]\nD: [4, 3, 2, 1]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_natural", "options": "A: [2, 4, 3, 1]\nB: [3, 4, 2, 1]\nC: [4, 1, 2, 3]\nD: [1, 3, 4, 2]", "visual_input_component": ["natural_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_99_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_99_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_99_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_99_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_99_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 4, 3, 1]\nB: [3, 4, 2, 1]\nC: [4, 1, 2, 3]\nD: [1, 3, 4, 2]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 4, 3, 1]\nB: [2, 1, 4, 3]\nC: [3, 2, 1, 4]\nD: [1, 2, 4, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_100_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_100_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_100_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_100_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_100_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 4, 3, 1]\nB: [2, 1, 4, 3]\nC: [3, 2, 1, 4]\nD: [1, 2, 4, 3]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 4, 3, 2]\nB: [1, 3, 4, 2]\nC: [3, 1, 2, 4]\nD: [2, 4, 1, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_101_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_101_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_101_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_101_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_101_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 3, 2]\nB: [1, 3, 4, 2]\nC: [3, 1, 2, 4]\nD: [2, 4, 1, 3]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 4, 2, 3]\nB: [2, 4, 1, 3]\nC: [2, 1, 4, 3]\nD: [3, 4, 2, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_102_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_102_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_102_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_102_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_102_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 2, 3]\nB: [2, 4, 1, 3]\nC: [2, 1, 4, 3]\nD: [3, 4, 2, 1]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 3, 2, 4]\nB: [1, 3, 4, 2]\nC: [2, 4, 3, 1]\nD: [4, 3, 1, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_103_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_103_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_103_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_103_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_103_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 3, 2, 4]\nB: [1, 3, 4, 2]\nC: [2, 4, 3, 1]\nD: [4, 3, 1, 2]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 1, 2, 3]\nB: [3, 4, 1, 2]\nC: [4, 1, 3, 2]\nD: [4, 3, 1, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_104_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_104_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_104_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_104_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_104_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 2, 3]\nB: [3, 4, 1, 2]\nC: [4, 1, 3, 2]\nD: [4, 3, 1, 2]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 3, 4, 1]\nB: [1, 4, 2, 3]\nC: [2, 3, 1, 4]\nD: [1, 3, 2, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_105_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_105_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_105_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_105_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_105_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 3, 4, 1]\nB: [1, 4, 2, 3]\nC: [2, 3, 1, 4]\nD: [1, 3, 2, 4]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 3, 4, 1]\nB: [3, 4, 1, 2]\nC: [2, 1, 4, 3]\nD: [2, 3, 1, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_106_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_106_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_106_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_106_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_106_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 3, 4, 1]\nB: [3, 4, 1, 2]\nC: [2, 1, 4, 3]\nD: [2, 3, 1, 4]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [3, 4, 1, 2]\nB: [1, 4, 2, 3]\nC: [3, 2, 4, 1]\nD: [4, 2, 1, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_107_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_107_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_107_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_107_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_107_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 4, 1, 2]\nB: [1, 4, 2, 3]\nC: [3, 2, 4, 1]\nD: [4, 2, 1, 3]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 3, 1, 2]\nB: [3, 4, 2, 1]\nC: [3, 2, 4, 1]\nD: [4, 2, 3, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_108_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_108_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_108_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_108_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_108_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 1, 2]\nB: [3, 4, 2, 1]\nC: [3, 2, 4, 1]\nD: [4, 2, 3, 1]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 3, 4, 2]\nB: [3, 1, 2, 4]\nC: [3, 1, 4, 2]\nD: [2, 3, 1, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_109_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_109_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_109_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_109_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_109_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 3, 4, 2]\nB: [3, 1, 2, 4]\nC: [3, 1, 4, 2]\nD: [2, 3, 1, 4]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 3, 2, 1]\nB: [3, 1, 2, 4]\nC: [2, 4, 3, 1]\nD: [1, 4, 3, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_110_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_110_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_110_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_110_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_110_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 2, 1]\nB: [3, 1, 2, 4]\nC: [2, 4, 3, 1]\nD: [1, 4, 3, 2]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 2, 3, 4]\nB: [1, 4, 3, 2]\nC: [2, 1, 3, 4]\nD: [3, 1, 2, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_111_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_111_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_111_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_111_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_111_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 2, 3, 4]\nB: [1, 4, 3, 2]\nC: [2, 1, 3, 4]\nD: [3, 1, 2, 4]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 3, 2, 4]\nB: [4, 2, 1, 3]\nC: [1, 4, 3, 2]\nD: [3, 4, 2, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_112_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_112_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_112_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_112_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_112_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 3, 2, 4]\nB: [4, 2, 1, 3]\nC: [1, 4, 3, 2]\nD: [3, 4, 2, 1]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 3, 2, 4]\nB: [1, 4, 3, 2]\nC: [2, 4, 3, 1]\nD: [1, 4, 2, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_113_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_113_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_113_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_113_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_113_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 3, 2, 4]\nB: [1, 4, 3, 2]\nC: [2, 4, 3, 1]\nD: [1, 4, 2, 3]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 3, 2, 4]\nB: [2, 3, 1, 4]\nC: [3, 4, 2, 1]\nD: [3, 1, 4, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_114_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_114_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_114_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_114_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_114_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 3, 2, 4]\nB: [2, 3, 1, 4]\nC: [3, 4, 2, 1]\nD: [3, 1, 4, 2]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 3, 2, 1]\nB: [1, 3, 4, 2]\nC: [3, 1, 2, 4]\nD: [4, 3, 1, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_115_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_115_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_115_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_115_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_115_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 2, 1]\nB: [1, 3, 4, 2]\nC: [3, 1, 2, 4]\nD: [4, 3, 1, 2]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [3, 2, 1, 4]\nB: [3, 1, 4, 2]\nC: [4, 3, 2, 1]\nD: [1, 3, 2, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_116_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_116_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_116_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_116_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_116_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 2, 1, 4]\nB: [3, 1, 4, 2]\nC: [4, 3, 2, 1]\nD: [1, 3, 2, 4]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 1, 2, 3]\nB: [1, 2, 4, 3]\nC: [3, 2, 1, 4]\nD: [1, 3, 4, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_117_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_117_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_117_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_117_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_117_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 2, 3]\nB: [1, 2, 4, 3]\nC: [3, 2, 1, 4]\nD: [1, 3, 4, 2]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 3, 4, 2]\nB: [4, 3, 2, 1]\nC: [3, 4, 2, 1]\nD: [1, 4, 3, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_118_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_118_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_118_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_118_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_118_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 3, 4, 2]\nB: [4, 3, 2, 1]\nC: [3, 4, 2, 1]\nD: [1, 4, 3, 2]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 3, 1, 2]\nB: [2, 3, 4, 1]\nC: [1, 3, 2, 4]\nD: [1, 3, 4, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_119_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_119_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_119_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_119_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_119_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 1, 2]\nB: [2, 3, 4, 1]\nC: [1, 3, 2, 4]\nD: [1, 3, 4, 2]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 1, 2, 3]\nB: [1, 4, 2, 3]\nC: [3, 1, 2, 4]\nD: [3, 1, 4, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_120_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_120_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_120_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_120_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_120_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 2, 3]\nB: [1, 4, 2, 3]\nC: [3, 1, 2, 4]\nD: [3, 1, 4, 2]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 2, 3, 4]\nB: [4, 3, 2, 1]\nC: [1, 4, 3, 2]\nD: [2, 3, 1, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_121_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_121_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_121_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_121_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_121_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 2, 3, 4]\nB: [4, 3, 2, 1]\nC: [1, 4, 3, 2]\nD: [2, 3, 1, 4]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 4, 3, 2]\nB: [1, 2, 3, 4]\nC: [4, 1, 3, 2]\nD: [1, 4, 2, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_122_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_122_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_122_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_122_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_122_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 3, 2]\nB: [1, 2, 3, 4]\nC: [4, 1, 3, 2]\nD: [1, 4, 2, 3]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 4, 2, 3]\nB: [1, 2, 3, 4]\nC: [1, 3, 4, 2]\nD: [2, 4, 3, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_123_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_123_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_123_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_123_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_123_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 2, 3]\nB: [1, 2, 3, 4]\nC: [1, 3, 4, 2]\nD: [2, 4, 3, 1]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 1, 4, 3]\nB: [2, 4, 3, 1]\nC: [1, 4, 3, 2]\nD: [1, 2, 4, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_124_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_124_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_124_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_124_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_124_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 4, 3]\nB: [2, 4, 3, 1]\nC: [1, 4, 3, 2]\nD: [1, 2, 4, 3]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 4, 2, 3]\nB: [2, 4, 1, 3]\nC: [1, 2, 4, 3]\nD: [4, 1, 3, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_125_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_125_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_125_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_125_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_125_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 2, 3]\nB: [2, 4, 1, 3]\nC: [1, 2, 4, 3]\nD: [4, 1, 3, 2]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [3, 1, 2, 4]\nB: [4, 2, 1, 3]\nC: [3, 4, 1, 2]\nD: [2, 1, 3, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_126_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_126_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_126_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_126_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_126_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 1, 2, 4]\nB: [4, 2, 1, 3]\nC: [3, 4, 1, 2]\nD: [2, 1, 3, 4]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 4, 2, 3]\nB: [3, 2, 4, 1]\nC: [2, 4, 1, 3]\nD: [1, 4, 3, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_127_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_127_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_127_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_127_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_127_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 2, 3]\nB: [3, 2, 4, 1]\nC: [2, 4, 1, 3]\nD: [1, 4, 3, 2]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 4, 3, 1]\nB: [1, 3, 4, 2]\nC: [3, 1, 2, 4]\nD: [1, 2, 3, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_128_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_128_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_128_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_128_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_128_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 4, 3, 1]\nB: [1, 3, 4, 2]\nC: [3, 1, 2, 4]\nD: [1, 2, 3, 4]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 1, 3, 2]\nB: [2, 4, 1, 3]\nC: [2, 4, 3, 1]\nD: [4, 3, 1, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_129_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_129_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_129_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_129_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_129_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 3, 2]\nB: [2, 4, 1, 3]\nC: [2, 4, 3, 1]\nD: [4, 3, 1, 2]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [3, 2, 4, 1]\nB: [2, 4, 3, 1]\nC: [2, 1, 3, 4]\nD: [1, 2, 4, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_130_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_130_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_130_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_130_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_130_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 2, 4, 1]\nB: [2, 4, 3, 1]\nC: [2, 1, 3, 4]\nD: [1, 2, 4, 3]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [3, 1, 2, 4]\nB: [4, 1, 3, 2]\nC: [3, 4, 1, 2]\nD: [4, 3, 1, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_131_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_131_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_131_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_131_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_131_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 1, 2, 4]\nB: [4, 1, 3, 2]\nC: [3, 4, 1, 2]\nD: [4, 3, 1, 2]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 4, 1, 3]\nB: [4, 3, 2, 1]\nC: [4, 1, 3, 2]\nD: [2, 3, 4, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_132_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_132_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_132_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_132_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_132_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 4, 1, 3]\nB: [4, 3, 2, 1]\nC: [4, 1, 3, 2]\nD: [2, 3, 4, 1]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 1, 2, 3]\nB: [2, 3, 1, 4]\nC: [4, 1, 3, 2]\nD: [1, 3, 2, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_133_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_133_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_133_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_133_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_133_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 2, 3]\nB: [2, 3, 1, 4]\nC: [4, 1, 3, 2]\nD: [1, 3, 2, 4]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 1, 4, 3]\nB: [2, 4, 3, 1]\nC: [4, 3, 1, 2]\nD: [1, 2, 3, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_134_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_134_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_134_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_134_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_134_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 4, 3]\nB: [2, 4, 3, 1]\nC: [4, 3, 1, 2]\nD: [1, 2, 3, 4]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 4, 3, 2]\nB: [4, 3, 2, 1]\nC: [4, 1, 2, 3]\nD: [3, 1, 2, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_135_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_135_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_135_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_135_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_135_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 3, 2]\nB: [4, 3, 2, 1]\nC: [4, 1, 2, 3]\nD: [3, 1, 2, 4]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [3, 1, 2, 4]\nB: [4, 2, 3, 1]\nC: [1, 2, 4, 3]\nD: [3, 1, 4, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_136_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_136_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_136_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_136_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_136_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 1, 2, 4]\nB: [4, 2, 3, 1]\nC: [1, 2, 4, 3]\nD: [3, 1, 4, 2]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 4, 2, 3]\nB: [1, 3, 2, 4]\nC: [2, 4, 1, 3]\nD: [1, 4, 3, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_137_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_137_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_137_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_137_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_137_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 2, 3]\nB: [1, 3, 2, 4]\nC: [2, 4, 1, 3]\nD: [1, 4, 3, 2]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 3, 1, 2]\nB: [4, 3, 2, 1]\nC: [4, 2, 3, 1]\nD: [4, 1, 2, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_138_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_138_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_138_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_138_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_138_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 1, 2]\nB: [4, 3, 2, 1]\nC: [4, 2, 3, 1]\nD: [4, 1, 2, 3]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 1, 4, 3]\nB: [3, 1, 2, 4]\nC: [4, 2, 3, 1]\nD: [4, 3, 1, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_139_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_139_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_139_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_139_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_139_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 4, 3]\nB: [3, 1, 2, 4]\nC: [4, 2, 3, 1]\nD: [4, 3, 1, 2]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 1, 3, 2]\nB: [2, 1, 4, 3]\nC: [1, 4, 2, 3]\nD: [2, 3, 4, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_140_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_140_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_140_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_140_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_140_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 3, 2]\nB: [2, 1, 4, 3]\nC: [1, 4, 2, 3]\nD: [2, 3, 4, 1]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 3, 1, 2]\nB: [1, 4, 3, 2]\nC: [2, 4, 3, 1]\nD: [3, 2, 1, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_141_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_141_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_141_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_141_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_141_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 1, 2]\nB: [1, 4, 3, 2]\nC: [2, 4, 3, 1]\nD: [3, 2, 1, 4]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 4, 1, 3]\nB: [1, 4, 2, 3]\nC: [2, 1, 4, 3]\nD: [4, 1, 3, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_142_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_142_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_142_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_142_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_142_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 4, 1, 3]\nB: [1, 4, 2, 3]\nC: [2, 1, 4, 3]\nD: [4, 1, 3, 2]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 2, 3, 1]\nB: [4, 3, 2, 1]\nC: [3, 1, 2, 4]\nD: [4, 2, 1, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_143_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_143_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_143_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_143_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_143_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 2, 3, 1]\nB: [4, 3, 2, 1]\nC: [3, 1, 2, 4]\nD: [4, 2, 1, 3]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [3, 1, 2, 4]\nB: [3, 1, 4, 2]\nC: [3, 2, 1, 4]\nD: [2, 4, 1, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_144_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_144_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_144_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_144_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_144_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 1, 2, 4]\nB: [3, 1, 4, 2]\nC: [3, 2, 1, 4]\nD: [2, 4, 1, 3]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [3, 1, 4, 2]\nB: [2, 4, 1, 3]\nC: [4, 1, 3, 2]\nD: [1, 4, 2, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_145_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_145_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_145_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_145_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_145_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 1, 4, 2]\nB: [2, 4, 1, 3]\nC: [4, 1, 3, 2]\nD: [1, 4, 2, 3]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 3, 1, 2]\nB: [4, 2, 3, 1]\nC: [1, 4, 2, 3]\nD: [2, 4, 3, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_146_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_146_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_146_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_146_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_146_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 1, 2]\nB: [4, 2, 3, 1]\nC: [1, 4, 2, 3]\nD: [2, 4, 3, 1]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 3, 1, 4]\nB: [2, 4, 1, 3]\nC: [4, 1, 3, 2]\nD: [1, 2, 3, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_147_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_147_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_147_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_147_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_147_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 3, 1, 4]\nB: [2, 4, 1, 3]\nC: [4, 1, 3, 2]\nD: [1, 2, 3, 4]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 1, 4, 3]\nB: [2, 3, 1, 4]\nC: [3, 1, 4, 2]\nD: [2, 4, 1, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_148_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_148_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_148_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_148_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_148_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 4, 3]\nB: [2, 3, 1, 4]\nC: [3, 1, 4, 2]\nD: [2, 4, 1, 3]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 2, 4, 3]\nB: [4, 1, 3, 2]\nC: [2, 3, 1, 4]\nD: [4, 2, 1, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_149_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_149_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_149_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_149_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_149_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 2, 4, 3]\nB: [4, 1, 3, 2]\nC: [2, 3, 1, 4]\nD: [4, 2, 1, 3]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 2, 3, 4]\nB: [2, 3, 4, 1]\nC: [4, 1, 3, 2]\nD: [3, 4, 2, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_150_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_150_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_150_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_150_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_150_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 2, 3, 4]\nB: [2, 3, 4, 1]\nC: [4, 1, 3, 2]\nD: [3, 4, 2, 1]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [3, 2, 4, 1]\nB: [3, 2, 1, 4]\nC: [3, 1, 2, 4]\nD: [4, 2, 3, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_151_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_151_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_151_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_151_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_151_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 2, 4, 1]\nB: [3, 2, 1, 4]\nC: [3, 1, 2, 4]\nD: [4, 2, 3, 1]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 3, 1, 2]\nB: [3, 1, 4, 2]\nC: [3, 2, 1, 4]\nD: [4, 1, 3, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_152_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_152_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_152_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_152_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_152_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 1, 2]\nB: [3, 1, 4, 2]\nC: [3, 2, 1, 4]\nD: [4, 1, 3, 2]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [3, 2, 1, 4]\nB: [1, 3, 4, 2]\nC: [2, 3, 1, 4]\nD: [4, 2, 3, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_153_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_153_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_153_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_153_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_153_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 2, 1, 4]\nB: [1, 3, 4, 2]\nC: [2, 3, 1, 4]\nD: [4, 2, 3, 1]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 3, 2, 1]\nB: [4, 3, 1, 2]\nC: [4, 1, 2, 3]\nD: [3, 4, 1, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_154_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_154_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_154_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_154_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_154_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 2, 1]\nB: [4, 3, 1, 2]\nC: [4, 1, 2, 3]\nD: [3, 4, 1, 2]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 3, 2, 1]\nB: [1, 4, 3, 2]\nC: [2, 1, 3, 4]\nD: [1, 3, 4, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_155_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_155_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_155_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_155_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_155_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 2, 1]\nB: [1, 4, 3, 2]\nC: [2, 1, 3, 4]\nD: [1, 3, 4, 2]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [3, 1, 4, 2]\nB: [3, 2, 4, 1]\nC: [4, 2, 3, 1]\nD: [2, 4, 1, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_156_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_156_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_156_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_156_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_156_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 1, 4, 2]\nB: [3, 2, 4, 1]\nC: [4, 2, 3, 1]\nD: [2, 4, 1, 3]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 2, 3, 1]\nB: [1, 3, 2, 4]\nC: [3, 4, 1, 2]\nD: [2, 3, 4, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_157_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_157_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_157_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_157_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_157_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 2, 3, 1]\nB: [1, 3, 2, 4]\nC: [3, 4, 1, 2]\nD: [2, 3, 4, 1]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 3, 4, 1]\nB: [1, 3, 2, 4]\nC: [2, 3, 1, 4]\nD: [3, 4, 2, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_158_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_158_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_158_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_158_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_158_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 3, 4, 1]\nB: [1, 3, 2, 4]\nC: [2, 3, 1, 4]\nD: [3, 4, 2, 1]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 3, 2, 4]\nB: [2, 1, 3, 4]\nC: [3, 4, 2, 1]\nD: [2, 1, 4, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_159_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_159_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_159_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_159_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_159_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 3, 2, 4]\nB: [2, 1, 3, 4]\nC: [3, 4, 2, 1]\nD: [2, 1, 4, 3]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [3, 4, 2, 1]\nB: [4, 3, 1, 2]\nC: [4, 3, 2, 1]\nD: [2, 1, 3, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_160_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_160_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_160_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_160_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_160_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 4, 2, 1]\nB: [4, 3, 1, 2]\nC: [4, 3, 2, 1]\nD: [2, 1, 3, 4]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 1, 3, 4]\nB: [4, 2, 1, 3]\nC: [1, 4, 2, 3]\nD: [1, 2, 4, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_161_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_161_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_161_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_161_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_161_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 3, 4]\nB: [4, 2, 1, 3]\nC: [1, 4, 2, 3]\nD: [1, 2, 4, 3]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 1, 2, 3]\nB: [4, 2, 1, 3]\nC: [1, 4, 2, 3]\nD: [3, 4, 1, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_162_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_162_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_162_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_162_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_162_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 2, 3]\nB: [4, 2, 1, 3]\nC: [1, 4, 2, 3]\nD: [3, 4, 1, 2]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 1, 4, 3]\nB: [4, 2, 1, 3]\nC: [1, 2, 3, 4]\nD: [2, 3, 1, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_163_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_163_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_163_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_163_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_163_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 4, 3]\nB: [4, 2, 1, 3]\nC: [1, 2, 3, 4]\nD: [2, 3, 1, 4]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 4, 3, 1]\nB: [3, 1, 4, 2]\nC: [3, 2, 1, 4]\nD: [2, 1, 4, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_164_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_164_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_164_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_164_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_164_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 4, 3, 1]\nB: [3, 1, 4, 2]\nC: [3, 2, 1, 4]\nD: [2, 1, 4, 3]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [3, 2, 4, 1]\nB: [2, 4, 3, 1]\nC: [1, 2, 4, 3]\nD: [2, 4, 1, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_165_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_165_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_165_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_165_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_165_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 2, 4, 1]\nB: [2, 4, 3, 1]\nC: [1, 2, 4, 3]\nD: [2, 4, 1, 3]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 2, 4, 3]\nB: [1, 4, 2, 3]\nC: [4, 3, 1, 2]\nD: [3, 1, 4, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_166_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_166_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_166_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_166_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_166_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 2, 4, 3]\nB: [1, 4, 2, 3]\nC: [4, 3, 1, 2]\nD: [3, 1, 4, 2]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 4, 1, 3]\nB: [2, 1, 4, 3]\nC: [1, 3, 2, 4]\nD: [3, 1, 4, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_167_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_167_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_167_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_167_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_167_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 4, 1, 3]\nB: [2, 1, 4, 3]\nC: [1, 3, 2, 4]\nD: [3, 1, 4, 2]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 4, 3, 1]\nB: [4, 3, 1, 2]\nC: [4, 1, 3, 2]\nD: [3, 1, 2, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_168_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_168_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_168_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_168_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_168_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 4, 3, 1]\nB: [4, 3, 1, 2]\nC: [4, 1, 3, 2]\nD: [3, 1, 2, 4]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 2, 4, 3]\nB: [3, 2, 4, 1]\nC: [4, 1, 2, 3]\nD: [4, 2, 3, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_169_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_169_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_169_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_169_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_169_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 2, 4, 3]\nB: [3, 2, 4, 1]\nC: [4, 1, 2, 3]\nD: [4, 2, 3, 1]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [3, 2, 1, 4]\nB: [1, 4, 2, 3]\nC: [1, 4, 3, 2]\nD: [1, 2, 4, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_170_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_170_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_170_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_170_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_170_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 2, 1, 4]\nB: [1, 4, 2, 3]\nC: [1, 4, 3, 2]\nD: [1, 2, 4, 3]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 4, 3, 2]\nB: [3, 1, 2, 4]\nC: [2, 4, 3, 1]\nD: [4, 2, 3, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_171_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_171_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_171_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_171_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_171_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 3, 2]\nB: [3, 1, 2, 4]\nC: [2, 4, 3, 1]\nD: [4, 2, 3, 1]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 1, 2, 3]\nB: [4, 2, 1, 3]\nC: [3, 1, 4, 2]\nD: [3, 2, 1, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_172_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_172_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_172_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_172_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_172_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 2, 3]\nB: [4, 2, 1, 3]\nC: [3, 1, 4, 2]\nD: [3, 2, 1, 4]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 3, 4, 1]\nB: [1, 4, 3, 2]\nC: [4, 2, 3, 1]\nD: [4, 1, 3, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_173_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_173_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_173_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_173_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_173_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 3, 4, 1]\nB: [1, 4, 3, 2]\nC: [4, 2, 3, 1]\nD: [4, 1, 3, 2]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 1, 3, 4]\nB: [2, 3, 4, 1]\nC: [3, 1, 4, 2]\nD: [4, 1, 2, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_174_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_174_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_174_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_174_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_174_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 3, 4]\nB: [2, 3, 4, 1]\nC: [3, 1, 4, 2]\nD: [4, 1, 2, 3]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 1, 3, 2]\nB: [1, 4, 2, 3]\nC: [3, 1, 4, 2]\nD: [4, 2, 1, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_175_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_175_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_175_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_175_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_175_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 3, 2]\nB: [1, 4, 2, 3]\nC: [3, 1, 4, 2]\nD: [4, 2, 1, 3]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [3, 2, 1, 4]\nB: [3, 4, 2, 1]\nC: [4, 1, 2, 3]\nD: [2, 1, 3, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_176_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_176_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_176_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_176_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_176_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 2, 1, 4]\nB: [3, 4, 2, 1]\nC: [4, 1, 2, 3]\nD: [2, 1, 3, 4]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 4, 2, 3]\nB: [1, 4, 3, 2]\nC: [2, 1, 4, 3]\nD: [3, 4, 1, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_177_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_177_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_177_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_177_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_177_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 2, 3]\nB: [1, 4, 3, 2]\nC: [2, 1, 4, 3]\nD: [3, 4, 1, 2]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 2, 1, 3]\nB: [1, 4, 3, 2]\nC: [2, 1, 3, 4]\nD: [4, 3, 1, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_178_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_178_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_178_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_178_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_178_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 2, 1, 3]\nB: [1, 4, 3, 2]\nC: [2, 1, 3, 4]\nD: [4, 3, 1, 2]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 1, 2, 3]\nB: [3, 1, 4, 2]\nC: [1, 2, 4, 3]\nD: [1, 2, 3, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_179_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_179_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_179_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_179_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_179_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 2, 3]\nB: [3, 1, 4, 2]\nC: [1, 2, 4, 3]\nD: [1, 2, 3, 4]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 3, 2, 1]\nB: [3, 4, 2, 1]\nC: [3, 1, 4, 2]\nD: [1, 4, 2, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_180_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_180_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_180_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_180_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_180_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 2, 1]\nB: [3, 4, 2, 1]\nC: [3, 1, 4, 2]\nD: [1, 4, 2, 3]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 1, 3, 4]\nB: [4, 1, 3, 2]\nC: [1, 4, 3, 2]\nD: [3, 4, 2, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_181_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_181_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_181_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_181_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_181_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 1, 3, 4]\nB: [4, 1, 3, 2]\nC: [1, 4, 3, 2]\nD: [3, 4, 2, 1]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 1, 3, 2]\nB: [3, 4, 1, 2]\nC: [2, 3, 1, 4]\nD: [3, 2, 4, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_182_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_182_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_182_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_182_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_182_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 3, 2]\nB: [3, 4, 1, 2]\nC: [2, 3, 1, 4]\nD: [3, 2, 4, 1]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 2, 3, 1]\nB: [4, 1, 3, 2]\nC: [2, 1, 4, 3]\nD: [1, 4, 3, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_183_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_183_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_183_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_183_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_183_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 2, 3, 1]\nB: [4, 1, 3, 2]\nC: [2, 1, 4, 3]\nD: [1, 4, 3, 2]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [3, 4, 2, 1]\nB: [3, 2, 4, 1]\nC: [4, 1, 2, 3]\nD: [4, 2, 3, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_184_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_184_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_184_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_184_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_184_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 4, 2, 1]\nB: [3, 2, 4, 1]\nC: [4, 1, 2, 3]\nD: [4, 2, 3, 1]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 3, 2, 4]\nB: [4, 2, 3, 1]\nC: [3, 2, 1, 4]\nD: [3, 1, 4, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_185_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_185_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_185_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_185_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_185_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 3, 2, 4]\nB: [4, 2, 3, 1]\nC: [3, 2, 1, 4]\nD: [3, 1, 4, 2]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 4, 2, 3]\nB: [3, 1, 4, 2]\nC: [2, 1, 4, 3]\nD: [4, 2, 3, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_186_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_186_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_186_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_186_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_186_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 2, 3]\nB: [3, 1, 4, 2]\nC: [2, 1, 4, 3]\nD: [4, 2, 3, 1]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 3, 2, 1]\nB: [4, 3, 1, 2]\nC: [1, 2, 4, 3]\nD: [1, 2, 3, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_187_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_187_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_187_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_187_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_187_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 3, 2, 1]\nB: [4, 3, 1, 2]\nC: [1, 2, 4, 3]\nD: [1, 2, 3, 4]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 2, 3, 1]\nB: [4, 3, 2, 1]\nC: [1, 3, 4, 2]\nD: [1, 3, 2, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_188_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_188_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_188_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_188_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_188_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 2, 3, 1]\nB: [4, 3, 2, 1]\nC: [1, 3, 4, 2]\nD: [1, 3, 2, 4]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [3, 1, 4, 2]\nB: [3, 2, 4, 1]\nC: [1, 2, 4, 3]\nD: [1, 4, 2, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_189_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_189_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_189_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_189_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_189_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 1, 4, 2]\nB: [3, 2, 4, 1]\nC: [1, 2, 4, 3]\nD: [1, 4, 2, 3]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 2, 3, 1]\nB: [1, 2, 3, 4]\nC: [1, 2, 4, 3]\nD: [1, 3, 4, 2]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_190_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_190_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_190_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_190_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_190_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 2, 3, 1]\nB: [1, 2, 3, 4]\nC: [1, 2, 4, 3]\nD: [1, 3, 4, 2]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 3, 4, 1]\nB: [3, 1, 4, 2]\nC: [4, 3, 2, 1]\nD: [4, 1, 2, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_191_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_191_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_191_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_191_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_191_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 3, 4, 1]\nB: [3, 1, 4, 2]\nC: [4, 3, 2, 1]\nD: [4, 1, 2, 3]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [2, 3, 4, 1]\nB: [2, 4, 1, 3]\nC: [1, 4, 2, 3]\nD: [4, 2, 3, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_192_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_192_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_192_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_192_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_192_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [2, 3, 4, 1]\nB: [2, 4, 1, 3]\nC: [1, 4, 2, 3]\nD: [4, 2, 3, 1]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 2, 3, 4]\nB: [4, 2, 1, 3]\nC: [1, 3, 4, 2]\nD: [1, 4, 2, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_193_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_193_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_193_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_193_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_193_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 2, 3, 4]\nB: [4, 2, 1, 3]\nC: [1, 3, 4, 2]\nD: [1, 4, 2, 3]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 1, 3, 2]\nB: [4, 2, 1, 3]\nC: [2, 4, 1, 3]\nD: [1, 3, 2, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_194_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_194_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_194_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_194_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_194_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 1, 3, 2]\nB: [4, 2, 1, 3]\nC: [2, 4, 1, 3]\nD: [1, 3, 2, 4]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 4, 3, 2]\nB: [1, 2, 3, 4]\nC: [4, 1, 2, 3]\nD: [1, 3, 2, 4]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_195_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_195_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_195_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_195_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_195_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 4, 3, 2]\nB: [1, 2, 3, 4]\nC: [4, 1, 2, 3]\nD: [1, 3, 2, 4]"}, "output": {"output_text": "C"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 2, 4, 3]\nB: [2, 4, 3, 1]\nC: [3, 1, 4, 2]\nD: [3, 4, 2, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_196_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_196_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_196_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_196_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_196_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 2, 4, 3]\nB: [2, 4, 3, 1]\nC: [3, 1, 4, 2]\nD: [3, 4, 2, 1]"}, "output": {"output_text": "D"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [3, 2, 1, 4]\nB: [3, 4, 2, 1]\nC: [4, 2, 3, 1]\nD: [2, 4, 3, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_197_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_197_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_197_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_197_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_197_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [3, 2, 1, 4]\nB: [3, 4, 2, 1]\nC: [4, 2, 3, 1]\nD: [2, 4, 3, 1]"}, "output": {"output_text": "A"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [4, 2, 3, 1]\nB: [1, 4, 2, 3]\nC: [3, 1, 4, 2]\nD: [2, 4, 3, 1]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_198_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_198_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_198_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_198_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_198_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [4, 2, 3, 1]\nB: [1, 4, 2, 3]\nC: [3, 1, 4, 2]\nD: [2, 4, 3, 1]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "jigsaw_puzzle_solving_painting", "options": "A: [1, 2, 3, 4]\nB: [2, 4, 1, 3]\nC: [4, 1, 3, 2]\nD: [2, 1, 4, 3]", "visual_input_component": ["painting_image", "visual_mark"], "input": {"input_image_path": ["2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_199_0.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_199_1.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_199_2.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_199_3.jpg", "2D-spatial/jigsaw_puzzle_solving/jigsaw_puzzle_solving_199_4.jpg"], "question": "The patches in the middle of the image might be disordered. Please state the correct order of the number indexes based on the given patches, following the sequence: top left, top right, bottom left, bottom right.", "context": "Your task is give a order of these given images\nSelect from the following choices.\nA: [1, 2, 3, 4]\nB: [2, 4, 1, 3]\nC: [4, 1, 3, 2]\nD: [2, 1, 4, 3]"}, "output": {"output_text": "B"}, "task": "jigsaw_puzzle_solving"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_0_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_0_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_0_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_0_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_0_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_0_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_0_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_0_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_0_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_0_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_0_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_0_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_0_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_0_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_0_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_0_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_0_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_0_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_1_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_1_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_1_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_1_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_1_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_1_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_1_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_1_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_1_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_1_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_1_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_1_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_1_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_1_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_1_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_1_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_1_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_1_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "E"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_2_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_2_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_2_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_2_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_2_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_2_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_2_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_2_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_2_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_2_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_2_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_2_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_2_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_2_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_2_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_2_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_2_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_2_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_3_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_3_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_3_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_3_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_3_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_3_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_3_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_3_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_3_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_3_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_3_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_3_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_3_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_3_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_3_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_3_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_3_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_3_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_4_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_4_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_4_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_4_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_4_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_4_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_4_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_4_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_4_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_4_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_4_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_4_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_4_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_4_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_4_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_4_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_4_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_4_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "G"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_5_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_5_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_5_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_5_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_5_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_5_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_5_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_5_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_6_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_6_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_6_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_6_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_6_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_6_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_6_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_6_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_6_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_6_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_6_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_6_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_6_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_6_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_6_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_6_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_6_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_6_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "G"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_7_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_7_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_7_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_7_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_7_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_7_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_7_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_7_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_8_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_8_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_8_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_8_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_8_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_8_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_8_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_8_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_8_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_8_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_8_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_8_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_8_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_8_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_8_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_8_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_8_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_8_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "I"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_9_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_9_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_9_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_9_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_9_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_9_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_9_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_9_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_9_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_9_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_9_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_9_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_9_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_9_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_9_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_9_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_9_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_9_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "E"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_10_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_10_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_10_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_10_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_10_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_10_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_10_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_10_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_10_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_10_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_10_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_10_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_10_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_10_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_10_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_10_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_10_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_10_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_11_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_11_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_11_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_11_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_11_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_11_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_11_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_11_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_12_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_12_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_12_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_12_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_12_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_12_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_12_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_12_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_12_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_12_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_12_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_12_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_12_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_12_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_12_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_12_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_12_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_12_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "I"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_13_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_13_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_13_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_13_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_13_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_13_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_13_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_13_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_13_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_13_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_13_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_13_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_13_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_13_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_13_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_13_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_13_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_13_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "I"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_14_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_14_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_14_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_14_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_14_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_14_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_14_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_14_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_15_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_15_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_15_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_15_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_15_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_15_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_15_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_15_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_15_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_15_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_15_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_15_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_15_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_15_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_15_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_15_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_15_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_15_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "G"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_16_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_16_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_16_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_16_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_16_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_16_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_16_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_16_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_16_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_16_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_16_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_16_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_16_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_16_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_16_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_16_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_16_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_16_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_17_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_17_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_17_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_17_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_17_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_17_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_17_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_17_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_17_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_17_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_17_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_17_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_17_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_17_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_17_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_17_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_17_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_17_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_18_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_18_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_18_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_18_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_18_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_18_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_18_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_18_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_18_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_18_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_18_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_18_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_18_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_18_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_18_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_18_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_18_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_18_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_19_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_19_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_19_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_19_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_19_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_19_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_19_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_19_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_19_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_19_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_19_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_19_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_19_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_19_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_19_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_19_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_19_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_19_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "I"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_20_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_20_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_20_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_20_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_20_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_20_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_20_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_20_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_21_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_21_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_21_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_21_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_21_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_21_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_21_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_21_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_21_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_21_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_21_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_21_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_21_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_21_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_21_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_21_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_21_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_21_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_22_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_22_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_22_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_22_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_22_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_22_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_22_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_22_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_22_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_22_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_22_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_22_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_22_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_22_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_22_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_22_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_22_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_22_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "F"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_23_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_23_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_23_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_23_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_23_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_23_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_23_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_23_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_24_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_24_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_24_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_24_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_24_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_24_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_24_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_24_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_25_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_25_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_25_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_25_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_25_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_25_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_25_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_25_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_25_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_25_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_25_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_25_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_25_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_25_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_25_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_25_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_25_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_25_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "I"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_26_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_26_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_26_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_26_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_26_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_26_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_26_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_26_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_26_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_26_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_26_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_26_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_26_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_26_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_26_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_26_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_26_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_26_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_27_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_27_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_27_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_27_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_27_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_27_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_27_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_27_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_28_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_28_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_28_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_28_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_28_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_28_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_28_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_28_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_28_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_28_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_28_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_28_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_28_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_28_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_28_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_28_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_28_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_28_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "G"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_29_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_29_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_29_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_29_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_29_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_29_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_29_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_29_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_29_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_29_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_29_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_29_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_29_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_29_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_29_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_29_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_29_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_29_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "H"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_30_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_30_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_30_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_30_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_30_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_30_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_30_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_30_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_30_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_30_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_30_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_30_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_30_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_30_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_30_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_30_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_30_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_30_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "H"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_31_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_31_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_31_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_31_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_31_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_31_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_31_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_31_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_31_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_31_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_31_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_31_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_31_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_31_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_31_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_31_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_31_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_31_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_32_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_32_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_32_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_32_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_32_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_32_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_32_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_32_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_32_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_32_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_32_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_32_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_32_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_32_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_32_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_32_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_32_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_32_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "H"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_33_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_33_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_33_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_33_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_33_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_33_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_33_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_33_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_34_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_34_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_34_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_34_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_34_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_34_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_34_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_34_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_34_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_34_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_34_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_34_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_34_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_34_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_34_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_34_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_34_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_34_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_35_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_35_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_35_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_35_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_35_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_35_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_35_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_35_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_35_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_35_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_35_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_35_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_35_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_35_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_35_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_35_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_35_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_35_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "G"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_36_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_36_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_36_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_36_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_36_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_36_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_36_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_36_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_36_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_36_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_36_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_36_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_36_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_36_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_36_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_36_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_36_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_36_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_37_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_37_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_37_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_37_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_37_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_37_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_37_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_37_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_38_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_38_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_38_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_38_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_38_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_38_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_38_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_38_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_38_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_38_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_38_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_38_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_38_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_38_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_38_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_38_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_38_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_38_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "G"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_39_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_39_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_39_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_39_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_39_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_39_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_39_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_39_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_40_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_40_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_40_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_40_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_40_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_40_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_40_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_40_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_40_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_40_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_40_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_40_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_40_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_40_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_40_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_40_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_40_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_40_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "I"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_41_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_41_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_41_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_41_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_41_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_41_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_41_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_41_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_41_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_41_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_41_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_41_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_41_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_41_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_41_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_41_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_41_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_41_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_42_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_42_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_42_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_42_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_42_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_42_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_42_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_42_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_43_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_43_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_43_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_43_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_43_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_43_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_43_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_43_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_44_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_44_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_44_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_44_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_44_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_44_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_44_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_44_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_44_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_44_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_44_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_44_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_44_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_44_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_44_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_44_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_44_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_44_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_45_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_45_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_45_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_45_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_45_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_45_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_45_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_45_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_45_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_45_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_45_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_45_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_45_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_45_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_45_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_45_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_45_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_45_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "I"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_46_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_46_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_46_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_46_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_46_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_46_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_46_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_46_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_47_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_47_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_47_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_47_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_47_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_47_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_47_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_47_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_47_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_47_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_47_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_47_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_47_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_47_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_47_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_47_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_47_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_47_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_48_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_48_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_48_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_48_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_48_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_48_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_48_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_48_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_48_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_48_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_48_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_48_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_48_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_48_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_48_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_48_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_48_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_48_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "E"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_49_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_49_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_49_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_49_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_49_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_49_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_49_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_49_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_49_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_49_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_49_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_49_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_49_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_49_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_49_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_49_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_49_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_49_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "E"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_50_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_50_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_50_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_50_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_50_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_50_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_50_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_50_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_50_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_50_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_50_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_50_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_50_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_50_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_50_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_50_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_50_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_50_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "G"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_51_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_51_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_51_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_51_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_51_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_51_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_51_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_51_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_51_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_51_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_51_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_51_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_51_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_51_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_51_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_51_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_51_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_51_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_52_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_52_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_52_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_52_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_52_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_52_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_52_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_52_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_52_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_52_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_52_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_52_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_52_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_52_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_52_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_52_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_52_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_52_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "F"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_53_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_53_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_53_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_53_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_53_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_53_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_53_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_53_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_54_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_54_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_54_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_54_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_54_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_54_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_54_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_54_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_54_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_54_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_54_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_54_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_54_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_54_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_54_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_54_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_54_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_54_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "G"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_55_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_55_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_55_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_55_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_55_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_55_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_55_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_55_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_55_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_55_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_55_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_55_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_55_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_55_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_55_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_55_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_55_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_55_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "F"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_56_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_56_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_56_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_56_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_56_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_56_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_56_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_56_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_56_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_56_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_56_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_56_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_56_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_56_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_56_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_56_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_56_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_56_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_57_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_57_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_57_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_57_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_57_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_57_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_57_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_57_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_57_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_57_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_57_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_57_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_57_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_57_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_57_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_57_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_57_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_57_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "I"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_58_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_58_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_58_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_58_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_58_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_58_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_58_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_58_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_59_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_59_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_59_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_59_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_59_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_59_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_59_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_59_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_59_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_59_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_59_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_59_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_59_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_59_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_59_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_59_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_59_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_59_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "F"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_60_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_60_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_60_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_60_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_60_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_60_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_60_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_60_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_60_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_60_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_60_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_60_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_60_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_60_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_60_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_60_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_60_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_60_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "H"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_61_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_61_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_61_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_61_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_61_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_61_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_61_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_61_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_61_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_61_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_61_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_61_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_61_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_61_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_61_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_61_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_61_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_61_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "E"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_62_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_62_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_62_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_62_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_62_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_62_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_62_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_62_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_62_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_62_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_62_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_62_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_62_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_62_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_62_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_62_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_62_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_62_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_63_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_63_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_63_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_63_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_63_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_63_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_63_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_63_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_63_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_63_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_63_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_63_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_63_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_63_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_63_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_63_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_63_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_63_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "H"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_64_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_64_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_64_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_64_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_64_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_64_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_64_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_64_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_64_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_64_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_64_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_64_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_64_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_64_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_64_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_64_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_64_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_64_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "F"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_65_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_65_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_65_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_65_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_65_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_65_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_65_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_65_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_66_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_66_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_66_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_66_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_66_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_66_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_66_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_66_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_67_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_67_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_67_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_67_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_67_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_67_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_67_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_67_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_67_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_67_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_67_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_67_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_67_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_67_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_67_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_67_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_67_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_67_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "H"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_68_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_68_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_68_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_68_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_68_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_68_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_68_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_68_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_68_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_68_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_68_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_68_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_68_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_68_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_68_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_68_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_68_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_68_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_69_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_69_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_69_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_69_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_69_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_69_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_69_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_69_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_69_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_69_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_69_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_69_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_69_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_69_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_69_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_69_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_69_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_69_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "F"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_70_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_70_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_70_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_70_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_70_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_70_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_70_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_70_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_71_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_71_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_71_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_71_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_71_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_71_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_71_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_71_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_72_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_72_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_72_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_72_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_72_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_72_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_72_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_72_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_72_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_72_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_72_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_72_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_72_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_72_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_72_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_72_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_72_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_72_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_73_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_73_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_73_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_73_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_73_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_73_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_73_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_73_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_73_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_73_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_73_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_73_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_73_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_73_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_73_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_73_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_73_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_73_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "E"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_74_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_74_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_74_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_74_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_74_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_74_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_74_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_74_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_74_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_74_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_74_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_74_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_74_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_74_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_74_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_74_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_74_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_74_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_75_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_75_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_75_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_75_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_75_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_75_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_75_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_75_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_76_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_76_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_76_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_76_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_76_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_76_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_76_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_76_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_76_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_76_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_76_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_76_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_76_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_76_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_76_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_76_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_76_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_76_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_77_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_77_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_77_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_77_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_77_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_77_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_77_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_77_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_78_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_78_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_78_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_78_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_78_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_78_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_78_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_78_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_79_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_79_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_79_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_79_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_79_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_79_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_79_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_79_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_79_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_79_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_79_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_79_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_79_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_79_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_79_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_79_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_79_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_79_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_80_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_80_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_80_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_80_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_80_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_80_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_80_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_80_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_80_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_80_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_80_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_80_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_80_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_80_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_80_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_80_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_80_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_80_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_81_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_81_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_81_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_81_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_81_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_81_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_81_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_81_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_82_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_82_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_82_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_82_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_82_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_82_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_82_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_82_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_82_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_82_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_82_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_82_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_82_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_82_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_82_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_82_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_82_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_82_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_83_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_83_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_83_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_83_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_83_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_83_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_83_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_83_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_83_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_83_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_83_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_83_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_83_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_83_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_83_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_83_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_83_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_83_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_84_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_84_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_84_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_84_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_84_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_84_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_84_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_84_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_84_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_84_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_84_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_84_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_84_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_84_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_84_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_84_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_84_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_84_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_85_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_85_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_85_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_85_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_85_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_85_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_85_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_85_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_85_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_85_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_85_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_85_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_85_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_85_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_85_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_85_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_85_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_85_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "I"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_86_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_86_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_86_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_86_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_86_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_86_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_86_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_86_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_86_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_86_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_86_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_86_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_86_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_86_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_86_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_86_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_86_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_86_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_87_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_87_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_87_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_87_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_87_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_87_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_87_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_87_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_87_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_87_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_87_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_87_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_87_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_87_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_87_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_87_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_87_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_87_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "F"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_88_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_88_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_88_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_88_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_88_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_88_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_88_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_88_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_88_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_88_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_88_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_88_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_88_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_88_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_88_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_88_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_88_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_88_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "H"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_89_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_89_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_89_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_89_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_89_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_89_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_89_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_89_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_89_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_89_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_89_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_89_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_89_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_89_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_89_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_89_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_89_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_89_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "E"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_90_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_90_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_90_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_90_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_90_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_90_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_90_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_90_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_90_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_90_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_90_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_90_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_90_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_90_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_90_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_90_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_90_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_90_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "G"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_91_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_91_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_91_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_91_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_91_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_91_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_91_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_91_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_91_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_91_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_91_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_91_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_91_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_91_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_91_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_91_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_91_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_91_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "G"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_92_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_92_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_92_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_92_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_92_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_92_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_92_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_92_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_92_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_92_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_92_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_92_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_92_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_92_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_92_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_92_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_92_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_92_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_93_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_93_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_93_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_93_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_93_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_93_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_93_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_93_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_93_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_93_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_93_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_93_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_93_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_93_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_93_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_93_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_93_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_93_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_94_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_94_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_94_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_94_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_94_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_94_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_94_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_94_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_94_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_94_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_94_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_94_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_94_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_94_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_94_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_94_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_94_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_94_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "H"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_95_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_95_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_95_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_95_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_95_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_95_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_95_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_95_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_96_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_96_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_96_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_96_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_96_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_96_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_96_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_96_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_96_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_96_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_96_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_96_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_96_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_96_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_96_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_96_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_96_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_96_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_97_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_97_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_97_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_97_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_97_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_97_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_97_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_97_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_97_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_97_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_97_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_97_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_97_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_97_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_97_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_97_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_97_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_97_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "H"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_98_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_98_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_98_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_98_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_98_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_98_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_98_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_98_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_98_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_98_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_98_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_98_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_98_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_98_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_98_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_98_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_98_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_98_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "I"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_99_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_99_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_99_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_99_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_99_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_99_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_99_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_99_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_100_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_100_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_100_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_100_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_100_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_100_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_100_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_100_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_100_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_100_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_100_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_100_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_100_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_100_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_100_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_100_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_100_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_100_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "G"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_101_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_101_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_101_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_101_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_101_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_101_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_101_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_101_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_102_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_102_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_102_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_102_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_102_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_102_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_102_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_102_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_102_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_102_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_102_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_102_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_102_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_102_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_102_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_102_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_102_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_102_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_103_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_103_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_103_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_103_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_103_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_103_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_103_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_103_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_104_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_104_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_104_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_104_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_104_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_104_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_104_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_104_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_105_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_105_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_105_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_105_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_105_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_105_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_105_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_105_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_105_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_105_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_105_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_105_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_105_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_105_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_105_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_105_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_105_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_105_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "H"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_106_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_106_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_106_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_106_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_106_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_106_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_106_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_106_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_106_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_106_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_106_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_106_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_106_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_106_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_106_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_106_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_106_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_106_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "E"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_107_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_107_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_107_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_107_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_107_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_107_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_107_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_107_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_107_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_107_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_107_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_107_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_107_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_107_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_107_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_107_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_107_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_107_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "F"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_108_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_108_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_108_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_108_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_108_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_108_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_108_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_108_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_108_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_108_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_108_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_108_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_108_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_108_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_108_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_108_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_108_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_108_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_109_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_109_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_109_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_109_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_109_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_109_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_109_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_109_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_109_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_109_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_109_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_109_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_109_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_109_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_109_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_109_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_109_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_109_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_110_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_110_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_110_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_110_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_110_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_110_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_110_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_110_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_110_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_110_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_110_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_110_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_110_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_110_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_110_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_110_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_110_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_110_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_111_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_111_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_111_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_111_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_111_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_111_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_111_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_111_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_112_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_112_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_112_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_112_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_112_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_112_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_112_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_112_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_112_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_112_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_112_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_112_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_112_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_112_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_112_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_112_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_112_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_112_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "E"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_113_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_113_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_113_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_113_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_113_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_113_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_113_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_113_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_113_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_113_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_113_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_113_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_113_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_113_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_113_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_113_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_113_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_113_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "F"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_114_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_114_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_114_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_114_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_114_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_114_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_114_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_114_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_114_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_114_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_114_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_114_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_114_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_114_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_114_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_114_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_114_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_114_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "H"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_115_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_115_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_115_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_115_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_115_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_115_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_115_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_115_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_115_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_115_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_115_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_115_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_115_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_115_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_115_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_115_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_115_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_115_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "E"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_116_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_116_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_116_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_116_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_116_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_116_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_116_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_116_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_116_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_116_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_116_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_116_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_116_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_116_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_116_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_116_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_116_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_116_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_117_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_117_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_117_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_117_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_117_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_117_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_117_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_117_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_118_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_118_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_118_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_118_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_118_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_118_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_118_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_118_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_118_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_118_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_118_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_118_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_118_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_118_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_118_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_118_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_118_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_118_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_119_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_119_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_119_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_119_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_119_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_119_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_119_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_119_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_119_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_119_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_119_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_119_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_119_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_119_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_119_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_119_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_119_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_119_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_120_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_120_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_120_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_120_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_120_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_120_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_120_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_120_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_120_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_120_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_120_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_120_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_120_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_120_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_120_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_120_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_120_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_120_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_121_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_121_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_121_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_121_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_121_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_121_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_121_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_121_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_121_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_121_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_121_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_121_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_121_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_121_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_121_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_121_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_121_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_121_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "F"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_122_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_122_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_122_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_122_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_122_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_122_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_122_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_122_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_122_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_122_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_122_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_122_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_122_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_122_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_122_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_122_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_122_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_122_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_123_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_123_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_123_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_123_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_123_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_123_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_123_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_123_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_123_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_123_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_123_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_123_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_123_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_123_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_123_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_123_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_123_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_123_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "H"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_124_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_124_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_124_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_124_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_124_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_124_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_124_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_124_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_124_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_124_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_124_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_124_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_124_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_124_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_124_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_124_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_124_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_124_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "I"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_125_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_125_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_125_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_125_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_125_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_125_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_125_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_125_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_125_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_125_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_125_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_125_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_125_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_125_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_125_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_125_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_125_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_125_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_126_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_126_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_126_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_126_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_126_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_126_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_126_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_126_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_126_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_126_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_126_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_126_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_126_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_126_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_126_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_126_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_126_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_126_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_127_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_127_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_127_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_127_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_127_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_127_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_127_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_127_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_127_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_127_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_127_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_127_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_127_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_127_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_127_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_127_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_127_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_127_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "I"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_128_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_128_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_128_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_128_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_128_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_128_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_128_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_128_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_128_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_128_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_128_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_128_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_128_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_128_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_128_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_128_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_128_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_128_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_129_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_129_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_129_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_129_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_129_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_129_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_129_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_129_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_129_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_129_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_129_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_129_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_129_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_129_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_129_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_129_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_129_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_129_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_130_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_130_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_130_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_130_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_130_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_130_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_130_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_130_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_130_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_130_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_130_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_130_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_130_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_130_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_130_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_130_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_130_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_130_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_131_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_131_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_131_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_131_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_131_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_131_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_131_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_131_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_132_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_132_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_132_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_132_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_132_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_132_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_132_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_132_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_132_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_132_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_132_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_132_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_132_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_132_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_132_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_132_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_132_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_132_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "F"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_133_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_133_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_133_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_133_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_133_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_133_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_133_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_133_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_133_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_133_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_133_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_133_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_133_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_133_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_133_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_133_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_133_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_133_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_134_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_134_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_134_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_134_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_134_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_134_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_134_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_134_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_135_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_135_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_135_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_135_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_135_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_135_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_135_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_135_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_135_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_135_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_135_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_135_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_135_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_135_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_135_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_135_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_135_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_135_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "E"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_136_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_136_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_136_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_136_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_136_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_136_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_136_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_136_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_136_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_136_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_136_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_136_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_136_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_136_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_136_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_136_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_136_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_136_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_137_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_137_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_137_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_137_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_137_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_137_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_137_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_137_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_137_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_137_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_137_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_137_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_137_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_137_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_137_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_137_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_137_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_137_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_138_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_138_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_138_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_138_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_138_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_138_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_138_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_138_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_138_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_138_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_138_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_138_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_138_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_138_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_138_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_138_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_138_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_138_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_139_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_139_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_139_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_139_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_139_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_139_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_139_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_139_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_139_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_139_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_139_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_139_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_139_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_139_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_139_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_139_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_139_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_139_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "I"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_140_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_140_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_140_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_140_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_140_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_140_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_140_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_140_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_140_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_140_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_140_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_140_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_140_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_140_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_140_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_140_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_140_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_140_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_141_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_141_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_141_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_141_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_141_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_141_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_141_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_141_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_141_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_141_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_141_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_141_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_141_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_141_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_141_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_141_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_141_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_141_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "I"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_142_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_142_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_142_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_142_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_142_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_142_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_142_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_142_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_142_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_142_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_142_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_142_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_142_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_142_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_142_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_142_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_142_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_142_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "H"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_143_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_143_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_143_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_143_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_143_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_143_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_143_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_143_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_143_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_143_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_143_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_143_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_143_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_143_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_143_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_143_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_143_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_143_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_144_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_144_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_144_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_144_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_144_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_144_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_144_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_144_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_144_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_144_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_144_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_144_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_144_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_144_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_144_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_144_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_144_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_144_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_145_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_145_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_145_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_145_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_145_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_145_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_145_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_145_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_145_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_145_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_145_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_145_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_145_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_145_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_145_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_145_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_145_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_145_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_146_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_146_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_146_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_146_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_146_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_146_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_146_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_146_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_146_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_146_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_146_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_146_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_146_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_146_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_146_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_146_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_146_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_146_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_147_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_147_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_147_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_147_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_147_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_147_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_147_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_147_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_147_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_147_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_147_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_147_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_147_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_147_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_147_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_147_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_147_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_147_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "G"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_148_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_148_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_148_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_148_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_148_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_148_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_148_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_148_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_149_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_149_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_149_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_149_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_149_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_149_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_149_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_149_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_149_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_149_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_149_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_149_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_149_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_149_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_149_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_149_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_149_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_149_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_150_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_150_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_150_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_150_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_150_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_150_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_150_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_150_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_150_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_150_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_150_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_150_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_150_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_150_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_150_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_150_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_150_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_150_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "E"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_151_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_151_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_151_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_151_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_151_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_151_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_151_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_151_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_151_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_151_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_151_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_151_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_151_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_151_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_151_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_151_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_151_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_151_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "F"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_152_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_152_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_152_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_152_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_152_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_152_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_152_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_152_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_153_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_153_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_153_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_153_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_153_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_153_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_153_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_153_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_153_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_153_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_153_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_153_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_153_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_153_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_153_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_153_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_153_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_153_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_154_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_154_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_154_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_154_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_154_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_154_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_154_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_154_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_154_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_154_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_154_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_154_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_154_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_154_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_154_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_154_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_154_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_154_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_155_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_155_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_155_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_155_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_155_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_155_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_155_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_155_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_155_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_155_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_155_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_155_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_155_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_155_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_155_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_155_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_155_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_155_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "I"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_156_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_156_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_156_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_156_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_156_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_156_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_156_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_156_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_156_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_156_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_156_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_156_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_156_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_156_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_156_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_156_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_156_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_156_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_157_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_157_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_157_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_157_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_157_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_157_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_157_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_157_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_158_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_158_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_158_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_158_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_158_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_158_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_158_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_158_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_158_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_158_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_158_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_158_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_158_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_158_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_158_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_158_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_158_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_158_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_159_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_159_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_159_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_159_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_159_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_159_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_159_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_159_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_160_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_160_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_160_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_160_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_160_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_160_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_160_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_160_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_161_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_161_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_161_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_161_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_161_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_161_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_161_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_161_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_161_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_161_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_161_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_161_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_161_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_161_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_161_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_161_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_161_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_161_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_162_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_162_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_162_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_162_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_162_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_162_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_162_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_162_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_162_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_162_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_162_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_162_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_162_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_162_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_162_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_162_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_162_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_162_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_163_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_163_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_163_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_163_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_163_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_163_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_163_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_163_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_163_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_163_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_163_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_163_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_163_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_163_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_163_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_163_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_163_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_163_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_164_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_164_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_164_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_164_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_164_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_164_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_164_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_164_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_164_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_164_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_164_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_164_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_164_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_164_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_164_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_164_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_164_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_164_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "E"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_165_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_165_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_165_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_165_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_165_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_165_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_165_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_165_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_165_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_165_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_165_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_165_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_165_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_165_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_165_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_165_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_165_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_165_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_166_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_166_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_166_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_166_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_166_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_166_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_166_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_166_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_167_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_167_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_167_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_167_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_167_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_167_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_167_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_167_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_167_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_167_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_167_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_167_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_167_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_167_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_167_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_167_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_167_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_167_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "H"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_168_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_168_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_168_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_168_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_168_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_168_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_168_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_168_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_168_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_168_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_168_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_168_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_168_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_168_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_168_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_168_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_168_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_168_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "G"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_169_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_169_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_169_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_169_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_169_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_169_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_169_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_169_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_169_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_169_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_169_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_169_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_169_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_169_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_169_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_169_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_169_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_169_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "G"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_170_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_170_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_170_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_170_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_170_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_170_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_170_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_170_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_170_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_170_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_170_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_170_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_170_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_170_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_170_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_170_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_170_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_170_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "E"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_171_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_171_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_171_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_171_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_171_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_171_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_171_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_171_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_172_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_172_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_172_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_172_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_172_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_172_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_172_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_172_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_172_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_172_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_172_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_172_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_172_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_172_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_172_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_172_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_172_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_172_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_173_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_173_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_173_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_173_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_173_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_173_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_173_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_173_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_173_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_173_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_173_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_173_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_173_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_173_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_173_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_173_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_173_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_173_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_174_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_174_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_174_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_174_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_174_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_174_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_174_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_174_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_174_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_174_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_174_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_174_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_174_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_174_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_174_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_174_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_174_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_174_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_175_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_175_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_175_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_175_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_175_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_175_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_175_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_175_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_175_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_175_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_175_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_175_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_175_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_175_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_175_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_175_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_175_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_175_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "G"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_176_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_176_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_176_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_176_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_176_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_176_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_176_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_176_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_177_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_177_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_177_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_177_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_177_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_177_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_177_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_177_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_177_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_177_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_177_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_177_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_177_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_177_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_177_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_177_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_177_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_177_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_178_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_178_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_178_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_178_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_178_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_178_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_178_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_178_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_178_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_178_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_178_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_178_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_178_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_178_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_178_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_178_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_178_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_178_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_179_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_179_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_179_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_179_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_179_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_179_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_179_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_179_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_180_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_180_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_180_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_180_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_180_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_180_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_180_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_180_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_180_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_180_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_180_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_180_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_180_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_180_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_180_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_180_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_180_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_180_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_181_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_181_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_181_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_181_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_181_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_181_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_181_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_181_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_181_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_181_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_181_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_181_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_181_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_181_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_181_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_181_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_181_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_181_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_182_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_182_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_182_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_182_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_182_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_182_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_182_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_182_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_183_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_183_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_183_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_183_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_183_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_183_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_183_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_183_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_183_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_183_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_183_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_183_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_183_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_183_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_183_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_183_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_183_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_183_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_184_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_184_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_184_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_184_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_184_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_184_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_184_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_184_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_185_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_185_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_185_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_185_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_185_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_185_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_185_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_185_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_186_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_186_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_186_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_186_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_186_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_186_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_186_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_186_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_186_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_186_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_186_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_186_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_186_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_186_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_186_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_186_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_186_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_186_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_187_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_187_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_187_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_187_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_187_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_187_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_187_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_187_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_187_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_187_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_187_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_187_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_187_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_187_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_187_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_187_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_187_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_187_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_188_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_188_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_188_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_188_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_188_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_188_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_188_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_188_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_188_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_188_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_188_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_188_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_188_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_188_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_188_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_188_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_188_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_188_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "H"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_189_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_189_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_189_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_189_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_189_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_189_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_189_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_189_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_189_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_189_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_189_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_189_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_189_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_189_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_189_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_189_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_189_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_189_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_190_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_190_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_190_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_190_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_190_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_190_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_190_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_190_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_190_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_190_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_190_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_190_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_190_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_190_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_190_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_190_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_190_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_190_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_191_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_191_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_191_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_191_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_191_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_191_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_191_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_191_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_191_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_191_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_191_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_191_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_191_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_191_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_191_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_191_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_191_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_191_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "E"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_192_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_192_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_192_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_192_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_192_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_192_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_192_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_192_7.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_193_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_193_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_193_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_193_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_193_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_193_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_193_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_193_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_193_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_193_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_193_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_193_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_193_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_193_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_193_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_193_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_193_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_193_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_194_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_194_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_194_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_194_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_194_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_194_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_194_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_194_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_194_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_194_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_194_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_194_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_194_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_194_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_194_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_194_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_194_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_194_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "C"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_195_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_195_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_195_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_195_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_195_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_195_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_195_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_195_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_195_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_195_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_195_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_195_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_195_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_195_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_195_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_195_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_195_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_195_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "D"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_196_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_196_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_196_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_196_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_196_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_196_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_196_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_196_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_196_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_196_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_196_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_196_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_196_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_196_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_196_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_196_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_196_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_196_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "E"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_197_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_197_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_197_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_197_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_197_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_197_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_197_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_197_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_197_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_197_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_197_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_197_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_197_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_197_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_197_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_197_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_197_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_197_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "B"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_198_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_198_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_198_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_198_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_198_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_198_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_198_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_198_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_198_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_198_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_198_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_198_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_198_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_198_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_198_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_198_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_198_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_198_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "F"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "SPEC", "options": "A: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_199_0.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_199_1.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_199_2.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_199_3.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_199_4.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_199_5.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_199_6.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_199_7.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_199_8.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_199_9.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_199_10.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_199_11.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_199_12.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_199_13.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_199_14.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_199_15.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_199_16.jpg", "2D-spatial/Image_text_retrieval_with_Spatial_Context/Image_text_retrieval_with_Spatial_Context_199_17.jpg"], "question": "Please retrieve the matching image to the query text in the candidate images.", "context": "Your task is : Given a text addressing spatial context, identify the matched image within candidates. The input images are the first 9 images\nSelect from the following choices.\nA: The 10th image\nB: The 11th image\nC: The 12th image\nD: The 13th image\nE: The 14th image\nF: The 15th image\nG: The 16th image\nH: The 17th image\nI: The 18th image"}, "output": {"output_text": "A"}, "task": "Image_text_retrieval_with_Spatial_Context"}
{"source": "tapvid_davis", "options": "A: [0.627, 0.2]\nB: [0.166, 0.657]\nC: [0.95, 0.907]\nD: [0.328, 0.477]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_0_0.jpg", "2D-spatial/point_tracking/point_tracking_0_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.627, 0.2]\nB: [0.166, 0.657]\nC: [0.95, 0.907]\nD: [0.328, 0.477]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.368, 0.265]\nB: [0.925, 0.128]\nC: [0.133, 0.261]\nD: [0.488, 0.101]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_1_0.jpg", "2D-spatial/point_tracking/point_tracking_1_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.366, 0.265]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.368, 0.265]\nB: [0.925, 0.128]\nC: [0.133, 0.261]\nD: [0.488, 0.101]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.398, 0.165]\nB: [0.606, 0.999]\nC: [0.955, 0.756]\nD: [0.976, 0.964]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_2_0.jpg", "2D-spatial/point_tracking/point_tracking_2_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.488, -0.073]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.398, 0.165]\nB: [0.606, 0.999]\nC: [0.955, 0.756]\nD: [0.976, 0.964]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.411, 0.483]\nB: [0.624, 0.13]\nC: [0.256, 0.845]\nD: [0.393, 0.328]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_3_0.jpg", "2D-spatial/point_tracking/point_tracking_3_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.411, 0.483]\nB: [0.624, 0.13]\nC: [0.256, 0.845]\nD: [0.393, 0.328]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.851, 0.69]\nB: [0.112, 0.164]\nC: [0.561, 0.3]\nD: [0.69, 0.205]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_4_0.jpg", "2D-spatial/point_tracking/point_tracking_4_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.572, 0.294]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.851, 0.69]\nB: [0.112, 0.164]\nC: [0.561, 0.3]\nD: [0.69, 0.205]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.71, 0.765]\nB: [0.039, 0.565]\nC: [0.599, 0.897]\nD: [0.077, 0.037]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_5_0.jpg", "2D-spatial/point_tracking/point_tracking_5_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.127, 0.205]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.71, 0.765]\nB: [0.039, 0.565]\nC: [0.599, 0.897]\nD: [0.077, 0.037]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.0, 0.0]\nB: [0.75, 0.266]\nC: [0.658, 0.765]\nD: [0.825, 0.377]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_6_0.jpg", "2D-spatial/point_tracking/point_tracking_6_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.0, 0.0]\nB: [0.75, 0.266]\nC: [0.658, 0.765]\nD: [0.825, 0.377]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.458, 0.112]\nB: [0.522, 0.216]\nC: [0.672, 0.493]\nD: [0.435, 0.891]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_7_0.jpg", "2D-spatial/point_tracking/point_tracking_7_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.392, 0.15]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.458, 0.112]\nB: [0.522, 0.216]\nC: [0.672, 0.493]\nD: [0.435, 0.891]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.0, 0.0]\nB: [0.055, 0.212]\nC: [0.926, 0.897]\nD: [0.088, 0.69]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_8_0.jpg", "2D-spatial/point_tracking/point_tracking_8_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.0, 0.0]\nB: [0.055, 0.212]\nC: [0.926, 0.897]\nD: [0.088, 0.69]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.572, 0.347]\nB: [0.822, 0.524]\nC: [0.668, 0.975]\nD: [0.228, 0.421]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_9_0.jpg", "2D-spatial/point_tracking/point_tracking_9_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.84, 0.359]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.572, 0.347]\nB: [0.822, 0.524]\nC: [0.668, 0.975]\nD: [0.228, 0.421]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.55, 0.157]\nB: [0.225, 0.407]\nC: [0.428, 0.202]\nD: [0.848, 0.045]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_10_0.jpg", "2D-spatial/point_tracking/point_tracking_10_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.195, 0.402]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.55, 0.157]\nB: [0.225, 0.407]\nC: [0.428, 0.202]\nD: [0.848, 0.045]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.606, 0.811]\nB: [0.463, 0.023]\nC: [0.307, 0.429]\nD: [0.789, 0.214]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_11_0.jpg", "2D-spatial/point_tracking/point_tracking_11_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.793, 0.216]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.606, 0.811]\nB: [0.463, 0.023]\nC: [0.307, 0.429]\nD: [0.789, 0.214]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.276, 0.532]\nB: [0.401, 0.534]\nC: [0.28, 0.157]\nD: [0.0, 0.0]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_12_0.jpg", "2D-spatial/point_tracking/point_tracking_12_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.276, 0.532]\nB: [0.401, 0.534]\nC: [0.28, 0.157]\nD: [0.0, 0.0]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.447, 0.29]\nB: [0.574, 0.304]\nC: [0.111, 0.034]\nD: [0.966, 0.262]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_13_0.jpg", "2D-spatial/point_tracking/point_tracking_13_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.574, 0.304]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.447, 0.29]\nB: [0.574, 0.304]\nC: [0.111, 0.034]\nD: [0.966, 0.262]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.769, 0.374]\nB: [0.69, -0.054]\nC: [0.182, 0.457]\nD: [0.423, 0.809]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_14_0.jpg", "2D-spatial/point_tracking/point_tracking_14_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.723, -0.019]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.769, 0.374]\nB: [0.69, -0.054]\nC: [0.182, 0.457]\nD: [0.423, 0.809]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.861, 0.924]\nB: [0.976, 0.801]\nC: [0.63, 0.946]\nD: [0.457, 0.566]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_15_0.jpg", "2D-spatial/point_tracking/point_tracking_15_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.491, 0.572]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.861, 0.924]\nB: [0.976, 0.801]\nC: [0.63, 0.946]\nD: [0.457, 0.566]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.737, 0.324]\nB: [0.346, 0.386]\nC: [0.464, 0.662]\nD: [0.24, 0.833]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_16_0.jpg", "2D-spatial/point_tracking/point_tracking_16_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.24, 0.833]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.737, 0.324]\nB: [0.346, 0.386]\nC: [0.464, 0.662]\nD: [0.24, 0.833]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.902, 0.889]\nB: [0.734, 0.179]\nC: [0.695, 0.313]\nD: [0.552, 0.586]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_17_0.jpg", "2D-spatial/point_tracking/point_tracking_17_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.552, 0.586]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.902, 0.889]\nB: [0.734, 0.179]\nC: [0.695, 0.313]\nD: [0.552, 0.586]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.015, 0.757]\nB: [0.493, 0.371]\nC: [0.002, 0.142]\nD: [0.438, 0.698]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_18_0.jpg", "2D-spatial/point_tracking/point_tracking_18_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.496, 0.371]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.015, 0.757]\nB: [0.493, 0.371]\nC: [0.002, 0.142]\nD: [0.438, 0.698]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.629, 0.185]\nB: [0.357, 0.413]\nC: [0.521, 0.95]\nD: [0.591, 0.415]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_19_0.jpg", "2D-spatial/point_tracking/point_tracking_19_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.598, 0.417]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.629, 0.185]\nB: [0.357, 0.413]\nC: [0.521, 0.95]\nD: [0.591, 0.415]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.244, 0.498]\nB: [0.749, 0.317]\nC: [0.76, 0.581]\nD: [0.806, 0.63]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_20_0.jpg", "2D-spatial/point_tracking/point_tracking_20_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.678, 0.324]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.244, 0.498]\nB: [0.749, 0.317]\nC: [0.76, 0.581]\nD: [0.806, 0.63]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.786, 0.763]\nB: [0.139, 0.661]\nC: [0.549, 0.391]\nD: [0.901, 0.478]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_21_0.jpg", "2D-spatial/point_tracking/point_tracking_21_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.577, 0.479]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.786, 0.763]\nB: [0.139, 0.661]\nC: [0.549, 0.391]\nD: [0.901, 0.478]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.84, 0.364]\nB: [0.664, 0.326]\nC: [0.643, 0.579]\nD: [0.486, 0.458]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_22_0.jpg", "2D-spatial/point_tracking/point_tracking_22_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.836, 0.364]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.84, 0.364]\nB: [0.664, 0.326]\nC: [0.643, 0.579]\nD: [0.486, 0.458]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.667, 0.104]\nB: [0.801, 0.792]\nC: [0.271, 0.317]\nD: [0.699, 0.539]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_23_0.jpg", "2D-spatial/point_tracking/point_tracking_23_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.631, 0.551]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.667, 0.104]\nB: [0.801, 0.792]\nC: [0.271, 0.317]\nD: [0.699, 0.539]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.433, 0.435]\nB: [0.509, 0.298]\nC: [0.517, 0.969]\nD: [0.096, 0.626]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_24_0.jpg", "2D-spatial/point_tracking/point_tracking_24_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.517, 0.969]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.433, 0.435]\nB: [0.509, 0.298]\nC: [0.517, 0.969]\nD: [0.096, 0.626]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.572, 0.447]\nB: [0.317, 0.394]\nC: [0.276, 0.148]\nD: [0.404, 0.225]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_25_0.jpg", "2D-spatial/point_tracking/point_tracking_25_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.571, 0.446]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.572, 0.447]\nB: [0.317, 0.394]\nC: [0.276, 0.148]\nD: [0.404, 0.225]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.082, 0.932]\nB: [0.086, 0.159]\nC: [0.711, 0.457]\nD: [0.056, 0.373]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_26_0.jpg", "2D-spatial/point_tracking/point_tracking_26_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.082, 0.932]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.082, 0.932]\nB: [0.086, 0.159]\nC: [0.711, 0.457]\nD: [0.056, 0.373]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.151, 0.743]\nB: [0.746, 0.222]\nC: [0.439, 0.384]\nD: [0.367, 0.888]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_27_0.jpg", "2D-spatial/point_tracking/point_tracking_27_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.717, 0.34]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.151, 0.743]\nB: [0.746, 0.222]\nC: [0.439, 0.384]\nD: [0.367, 0.888]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.215, 0.968]\nB: [0.558, 0.522]\nC: [0.967, 0.723]\nD: [0.212, 0.809]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_28_0.jpg", "2D-spatial/point_tracking/point_tracking_28_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.584, 0.596]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.215, 0.968]\nB: [0.558, 0.522]\nC: [0.967, 0.723]\nD: [0.212, 0.809]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.413, 0.07]\nB: [0.437, 0.318]\nC: [0.155, 0.833]\nD: [0.607, 0.498]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_29_0.jpg", "2D-spatial/point_tracking/point_tracking_29_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.525, 0.482]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.413, 0.07]\nB: [0.437, 0.318]\nC: [0.155, 0.833]\nD: [0.607, 0.498]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.438, 0.097]\nB: [0.631, 0.018]\nC: [0.215, 0.313]\nD: [0.263, 0.723]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_30_0.jpg", "2D-spatial/point_tracking/point_tracking_30_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.438, 0.097]\nB: [0.631, 0.018]\nC: [0.215, 0.313]\nD: [0.263, 0.723]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.896, 0.061]\nB: [0.167, 0.451]\nC: [0.216, 0.513]\nD: [0.57, 0.361]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_31_0.jpg", "2D-spatial/point_tracking/point_tracking_31_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.569, 0.361]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.896, 0.061]\nB: [0.167, 0.451]\nC: [0.216, 0.513]\nD: [0.57, 0.361]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.917, 0.582]\nB: [0.858, 0.833]\nC: [0.962, 0.955]\nD: [0.285, 0.385]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_32_0.jpg", "2D-spatial/point_tracking/point_tracking_32_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.285, 0.385]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.917, 0.582]\nB: [0.858, 0.833]\nC: [0.962, 0.955]\nD: [0.285, 0.385]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.65, 0.016]\nB: [0.761, 0.985]\nC: [0.538, 0.359]\nD: [0.842, 0.025]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_33_0.jpg", "2D-spatial/point_tracking/point_tracking_33_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.537, 0.35]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.65, 0.016]\nB: [0.761, 0.985]\nC: [0.538, 0.359]\nD: [0.842, 0.025]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.9, 0.904]\nB: [0.664, 0.466]\nC: [0.273, 0.03]\nD: [0.393, 0.275]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_34_0.jpg", "2D-spatial/point_tracking/point_tracking_34_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.427, 0.335]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.9, 0.904]\nB: [0.664, 0.466]\nC: [0.273, 0.03]\nD: [0.393, 0.275]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.051, 0.768]\nB: [0.363, 0.364]\nC: [0.376, 0.685]\nD: [0.454, 0.177]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_35_0.jpg", "2D-spatial/point_tracking/point_tracking_35_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.051, 0.768]\nB: [0.363, 0.364]\nC: [0.376, 0.685]\nD: [0.454, 0.177]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.086, 0.538]\nB: [0.209, 0.589]\nC: [0.727, 0.366]\nD: [0.529, 0.299]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_36_0.jpg", "2D-spatial/point_tracking/point_tracking_36_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.789, 0.359]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.086, 0.538]\nB: [0.209, 0.589]\nC: [0.727, 0.366]\nD: [0.529, 0.299]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.5, 0.007]\nB: [0.731, 0.113]\nC: [0.636, 0.642]\nD: [0.325, 0.315]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_37_0.jpg", "2D-spatial/point_tracking/point_tracking_37_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.5, 0.007]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.5, 0.007]\nB: [0.731, 0.113]\nC: [0.636, 0.642]\nD: [0.325, 0.315]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.0, 0.0]\nB: [0.032, 0.829]\nC: [0.507, 0.48]\nD: [0.697, 0.839]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_38_0.jpg", "2D-spatial/point_tracking/point_tracking_38_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.296, 0.358]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.0, 0.0]\nB: [0.032, 0.829]\nC: [0.507, 0.48]\nD: [0.697, 0.839]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.773, 0.291]\nB: [0.256, 0.091]\nC: [0.561, 0.908]\nD: [0.572, 0.294]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_39_0.jpg", "2D-spatial/point_tracking/point_tracking_39_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.572, 0.294]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.773, 0.291]\nB: [0.256, 0.091]\nC: [0.561, 0.908]\nD: [0.572, 0.294]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.278, 0.564]\nB: [0.995, 0.367]\nC: [0.923, 0.335]\nD: [0.942, 0.46]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_40_0.jpg", "2D-spatial/point_tracking/point_tracking_40_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.995, 0.367]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.278, 0.564]\nB: [0.995, 0.367]\nC: [0.923, 0.335]\nD: [0.942, 0.46]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.791, 0.587]\nB: [0.006, 0.092]\nC: [0.454, 0.459]\nD: [0.339, 0.211]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_41_0.jpg", "2D-spatial/point_tracking/point_tracking_41_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.339, 0.211]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.791, 0.587]\nB: [0.006, 0.092]\nC: [0.454, 0.459]\nD: [0.339, 0.211]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.834, 0.042]\nB: [0.0, 0.0]\nC: [0.657, 0.031]\nD: [0.366, 0.215]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_42_0.jpg", "2D-spatial/point_tracking/point_tracking_42_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.834, 0.042]\nB: [0.0, 0.0]\nC: [0.657, 0.031]\nD: [0.366, 0.215]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.522, 0.936]\nB: [0.431, 0.505]\nC: [0.056, 0.43]\nD: [0.445, 0.055]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_43_0.jpg", "2D-spatial/point_tracking/point_tracking_43_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.465, 0.516]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.522, 0.936]\nB: [0.431, 0.505]\nC: [0.056, 0.43]\nD: [0.445, 0.055]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.441, 0.076]\nB: [0.638, 0.275]\nC: [0.844, 0.793]\nD: [0.485, 0.944]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_44_0.jpg", "2D-spatial/point_tracking/point_tracking_44_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.638, 0.276]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.441, 0.076]\nB: [0.638, 0.275]\nC: [0.844, 0.793]\nD: [0.485, 0.944]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.464, 0.801]\nB: [0.453, 0.251]\nC: [0.254, 0.642]\nD: [0.099, 0.252]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_45_0.jpg", "2D-spatial/point_tracking/point_tracking_45_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.254, 0.642]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.464, 0.801]\nB: [0.453, 0.251]\nC: [0.254, 0.642]\nD: [0.099, 0.252]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.281, 0.178]\nB: [0.162, 0.715]\nC: [0.761, 0.046]\nD: [0.557, 0.001]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_46_0.jpg", "2D-spatial/point_tracking/point_tracking_46_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.571, 0.033]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.281, 0.178]\nB: [0.162, 0.715]\nC: [0.761, 0.046]\nD: [0.557, 0.001]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [1.0, 0.279]\nB: [0.584, 0.204]\nC: [0.191, 0.877]\nD: [0.563, 0.267]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_47_0.jpg", "2D-spatial/point_tracking/point_tracking_47_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.582, 0.204]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [1.0, 0.279]\nB: [0.584, 0.204]\nC: [0.191, 0.877]\nD: [0.563, 0.267]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.002, 0.108]\nB: [0.549, 0.37]\nC: [0.846, 0.072]\nD: [0.502, 0.698]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_48_0.jpg", "2D-spatial/point_tracking/point_tracking_48_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.552, 0.368]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.002, 0.108]\nB: [0.549, 0.37]\nC: [0.846, 0.072]\nD: [0.502, 0.698]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.509, 0.858]\nB: [0.643, 0.572]\nC: [0.432, 0.735]\nD: [0.542, 0.338]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_49_0.jpg", "2D-spatial/point_tracking/point_tracking_49_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.542, 0.339]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.509, 0.858]\nB: [0.643, 0.572]\nC: [0.432, 0.735]\nD: [0.542, 0.338]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.048, 0.391]\nB: [0.787, 0.747]\nC: [0.518, 0.517]\nD: [0.507, 0.833]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_50_0.jpg", "2D-spatial/point_tracking/point_tracking_50_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.515, 0.514]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.048, 0.391]\nB: [0.787, 0.747]\nC: [0.518, 0.517]\nD: [0.507, 0.833]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.528, 0.45]\nB: [0.74, 0.315]\nC: [0.482, 0.584]\nD: [0.088, 0.042]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_51_0.jpg", "2D-spatial/point_tracking/point_tracking_51_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.723, 0.386]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.528, 0.45]\nB: [0.74, 0.315]\nC: [0.482, 0.584]\nD: [0.088, 0.042]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.04, 0.904]\nB: [0.4, 0.187]\nC: [0.134, 0.465]\nD: [0.294, 0.45]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_52_0.jpg", "2D-spatial/point_tracking/point_tracking_52_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.056, 0.907]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.04, 0.904]\nB: [0.4, 0.187]\nC: [0.134, 0.465]\nD: [0.294, 0.45]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.232, 0.071]\nB: [0.57, 0.335]\nC: [0.206, 0.4]\nD: [0.554, 0.081]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_53_0.jpg", "2D-spatial/point_tracking/point_tracking_53_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.585, 0.342]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.232, 0.071]\nB: [0.57, 0.335]\nC: [0.206, 0.4]\nD: [0.554, 0.081]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.043, 0.026]\nB: [0.536, 0.287]\nC: [0.878, 0.179]\nD: [0.519, 0.466]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_54_0.jpg", "2D-spatial/point_tracking/point_tracking_54_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.537, 0.483]) in Image 1 within the Image 2? Note that the width of the input RGB image is 910 and the height is 480.", "context": "Select from the following choices.\nA: [0.043, 0.026]\nB: [0.536, 0.287]\nC: [0.878, 0.179]\nD: [0.519, 0.466]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.712, 0.402]\nB: [0.937, 0.199]\nC: [0.286, 0.017]\nD: [0.843, 0.865]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_55_0.jpg", "2D-spatial/point_tracking/point_tracking_55_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.309, -0.011]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.712, 0.402]\nB: [0.937, 0.199]\nC: [0.286, 0.017]\nD: [0.843, 0.865]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.014, 0.882]\nB: [0.728, 0.689]\nC: [0.088, 0.375]\nD: [0.554, 0.511]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_56_0.jpg", "2D-spatial/point_tracking/point_tracking_56_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.6, 0.808]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.014, 0.882]\nB: [0.728, 0.689]\nC: [0.088, 0.375]\nD: [0.554, 0.511]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.109, 0.199]\nB: [0.021, 0.741]\nC: [0.0, 0.0]\nD: [0.405, 0.69]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_57_0.jpg", "2D-spatial/point_tracking/point_tracking_57_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.572, 0.171]) in Image 1 within the Image 2? Note that the width of the input RGB image is 910 and the height is 480.", "context": "Select from the following choices.\nA: [0.109, 0.199]\nB: [0.021, 0.741]\nC: [0.0, 0.0]\nD: [0.405, 0.69]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.38, 0.932]\nB: [0.47, 0.409]\nC: [0.528, 0.936]\nD: [0.533, 0.686]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_58_0.jpg", "2D-spatial/point_tracking/point_tracking_58_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.459, 0.412]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.38, 0.932]\nB: [0.47, 0.409]\nC: [0.528, 0.936]\nD: [0.533, 0.686]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.092, 0.225]\nB: [0.605, 0.232]\nC: [0.39, 0.458]\nD: [0.377, 0.065]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_59_0.jpg", "2D-spatial/point_tracking/point_tracking_59_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.064, 0.24]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.092, 0.225]\nB: [0.605, 0.232]\nC: [0.39, 0.458]\nD: [0.377, 0.065]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.307, 0.516]\nB: [0.508, 0.388]\nC: [0.368, 0.937]\nD: [0.527, 0.106]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_60_0.jpg", "2D-spatial/point_tracking/point_tracking_60_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.513, 0.478]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.307, 0.516]\nB: [0.508, 0.388]\nC: [0.368, 0.937]\nD: [0.527, 0.106]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.621, 0.322]\nB: [0.757, 0.909]\nC: [0.765, 0.887]\nD: [0.485, 0.282]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_61_0.jpg", "2D-spatial/point_tracking/point_tracking_61_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.543, 0.573]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.621, 0.322]\nB: [0.757, 0.909]\nC: [0.765, 0.887]\nD: [0.485, 0.282]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.148, 0.593]\nB: [0.867, 0.594]\nC: [0.363, 0.725]\nD: [0.988, 0.381]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_62_0.jpg", "2D-spatial/point_tracking/point_tracking_62_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.363, 0.725]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.148, 0.593]\nB: [0.867, 0.594]\nC: [0.363, 0.725]\nD: [0.988, 0.381]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.538, 0.67]\nB: [0.113, 0.312]\nC: [0.781, 0.017]\nD: [0.78, 0.124]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_63_0.jpg", "2D-spatial/point_tracking/point_tracking_63_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.113, 0.312]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.538, 0.67]\nB: [0.113, 0.312]\nC: [0.781, 0.017]\nD: [0.78, 0.124]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.409, 0.184]\nB: [0.327, 0.555]\nC: [0.304, 0.166]\nD: [0.398, 0.141]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_64_0.jpg", "2D-spatial/point_tracking/point_tracking_64_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.318, 0.204]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.409, 0.184]\nB: [0.327, 0.555]\nC: [0.304, 0.166]\nD: [0.398, 0.141]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.663, 0.685]\nB: [0.5, 0.562]\nC: [0.628, 0.094]\nD: [0.876, 0.492]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_65_0.jpg", "2D-spatial/point_tracking/point_tracking_65_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.5, 0.546]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.663, 0.685]\nB: [0.5, 0.562]\nC: [0.628, 0.094]\nD: [0.876, 0.492]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.148, 0.822]\nB: [0.654, 0.462]\nC: [0.274, 0.087]\nD: [0.294, 0.87]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_66_0.jpg", "2D-spatial/point_tracking/point_tracking_66_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.225, -0.034]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.148, 0.822]\nB: [0.654, 0.462]\nC: [0.274, 0.087]\nD: [0.294, 0.87]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.443, 0.32]\nB: [0.907, 0.404]\nC: [0.451, 0.543]\nD: [0.775, 0.465]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_67_0.jpg", "2D-spatial/point_tracking/point_tracking_67_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.775, 0.465]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.443, 0.32]\nB: [0.907, 0.404]\nC: [0.451, 0.543]\nD: [0.775, 0.465]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.912, 0.423]\nB: [0.477, 0.187]\nC: [0.439, 0.609]\nD: [0.127, 0.162]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_68_0.jpg", "2D-spatial/point_tracking/point_tracking_68_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.475, 0.188]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.912, 0.423]\nB: [0.477, 0.187]\nC: [0.439, 0.609]\nD: [0.127, 0.162]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.348, 0.247]\nB: [0.53, 0.395]\nC: [0.894, 0.004]\nD: [0.561, 0.958]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_69_0.jpg", "2D-spatial/point_tracking/point_tracking_69_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.528, 0.394]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.348, 0.247]\nB: [0.53, 0.395]\nC: [0.894, 0.004]\nD: [0.561, 0.958]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.451, 0.01]\nB: [0.588, 0.525]\nC: [0.542, 0.784]\nD: [0.271, 0.069]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_70_0.jpg", "2D-spatial/point_tracking/point_tracking_70_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.21, 0.024]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.451, 0.01]\nB: [0.588, 0.525]\nC: [0.542, 0.784]\nD: [0.271, 0.069]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.545, 0.343]\nB: [0.872, 0.767]\nC: [0.848, 0.331]\nD: [0.082, 0.655]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_71_0.jpg", "2D-spatial/point_tracking/point_tracking_71_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.546, 0.344]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.545, 0.343]\nB: [0.872, 0.767]\nC: [0.848, 0.331]\nD: [0.082, 0.655]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.246, 0.558]\nB: [0.213, 0.365]\nC: [0.605, 0.491]\nD: [0.56, -0.031]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_72_0.jpg", "2D-spatial/point_tracking/point_tracking_72_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.527, 0.136]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.246, 0.558]\nB: [0.213, 0.365]\nC: [0.605, 0.491]\nD: [0.56, -0.031]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.497, 0.448]\nB: [0.783, 0.271]\nC: [0.406, 0.738]\nD: [0.416, 0.886]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_73_0.jpg", "2D-spatial/point_tracking/point_tracking_73_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.783, 0.271]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.497, 0.448]\nB: [0.783, 0.271]\nC: [0.406, 0.738]\nD: [0.416, 0.886]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.939, 0.844]\nB: [0.453, 0.842]\nC: [0.019, 0.701]\nD: [0.33, 0.019]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_74_0.jpg", "2D-spatial/point_tracking/point_tracking_74_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.382, 0.074]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.939, 0.844]\nB: [0.453, 0.842]\nC: [0.019, 0.701]\nD: [0.33, 0.019]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.712, 0.468]\nB: [0.757, 0.203]\nC: [0.602, 0.149]\nD: [0.624, 0.442]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_75_0.jpg", "2D-spatial/point_tracking/point_tracking_75_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.625, 0.442]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.712, 0.468]\nB: [0.757, 0.203]\nC: [0.602, 0.149]\nD: [0.624, 0.442]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.775, 0.586]\nB: [0.403, 0.947]\nC: [0.0, 0.0]\nD: [0.095, 0.525]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_76_0.jpg", "2D-spatial/point_tracking/point_tracking_76_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 910 and the height is 480.", "context": "Select from the following choices.\nA: [0.775, 0.586]\nB: [0.403, 0.947]\nC: [0.0, 0.0]\nD: [0.095, 0.525]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.306, 0.517]\nB: [0.404, 0.704]\nC: [0.0, 0.0]\nD: [0.389, 0.429]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_77_0.jpg", "2D-spatial/point_tracking/point_tracking_77_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.306, 0.517]\nB: [0.404, 0.704]\nC: [0.0, 0.0]\nD: [0.389, 0.429]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.421, 0.202]\nB: [0.936, 0.193]\nC: [0.836, 0.093]\nD: [0.892, 0.905]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_78_0.jpg", "2D-spatial/point_tracking/point_tracking_78_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.603, 0.295]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.421, 0.202]\nB: [0.936, 0.193]\nC: [0.836, 0.093]\nD: [0.892, 0.905]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.415, 0.336]\nB: [0.147, 0.444]\nC: [0.469, 0.996]\nD: [0.759, 0.125]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_79_0.jpg", "2D-spatial/point_tracking/point_tracking_79_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.415, 0.336]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.415, 0.336]\nB: [0.147, 0.444]\nC: [0.469, 0.996]\nD: [0.759, 0.125]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.0, 0.0]\nB: [0.001, 0.519]\nC: [0.21, 0.901]\nD: [0.72, 0.872]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_80_0.jpg", "2D-spatial/point_tracking/point_tracking_80_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.0, 0.0]\nB: [0.001, 0.519]\nC: [0.21, 0.901]\nD: [0.72, 0.872]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.188, 0.294]\nB: [0.08, 0.837]\nC: [0.878, 0.923]\nD: [0.39, 0.215]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_81_0.jpg", "2D-spatial/point_tracking/point_tracking_81_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.39, 0.215]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.188, 0.294]\nB: [0.08, 0.837]\nC: [0.878, 0.923]\nD: [0.39, 0.215]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.725, 0.505]\nB: [0.825, 0.634]\nC: [0.772, 0.85]\nD: [0.521, 0.137]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_82_0.jpg", "2D-spatial/point_tracking/point_tracking_82_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.423, 0.126]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.725, 0.505]\nB: [0.825, 0.634]\nC: [0.772, 0.85]\nD: [0.521, 0.137]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.937, 0.437]\nB: [0.932, 0.955]\nC: [0.443, 0.473]\nD: [0.57, -0.021]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_83_0.jpg", "2D-spatial/point_tracking/point_tracking_83_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.379, -0.029]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.937, 0.437]\nB: [0.932, 0.955]\nC: [0.443, 0.473]\nD: [0.57, -0.021]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.482, 0.199]\nB: [0.043, 0.981]\nC: [0.419, 0.373]\nD: [0.325, 0.861]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_84_0.jpg", "2D-spatial/point_tracking/point_tracking_84_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.482, 0.199]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.482, 0.199]\nB: [0.043, 0.981]\nC: [0.419, 0.373]\nD: [0.325, 0.861]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.27, 0.844]\nB: [0.082, -0.197]\nC: [0.942, 0.56]\nD: [0.625, 0.212]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_85_0.jpg", "2D-spatial/point_tracking/point_tracking_85_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.314, -0.235]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.27, 0.844]\nB: [0.082, -0.197]\nC: [0.942, 0.56]\nD: [0.625, 0.212]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.493, 0.952]\nB: [0.403, 0.455]\nC: [0.764, 0.389]\nD: [0.3, 0.08]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_86_0.jpg", "2D-spatial/point_tracking/point_tracking_86_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.442, 0.361]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.493, 0.952]\nB: [0.403, 0.455]\nC: [0.764, 0.389]\nD: [0.3, 0.08]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [-0.038, 0.253]\nB: [0.77, 0.338]\nC: [0.766, 0.061]\nD: [0.958, 0.882]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_87_0.jpg", "2D-spatial/point_tracking/point_tracking_87_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.028, 0.3]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [-0.038, 0.253]\nB: [0.77, 0.338]\nC: [0.766, 0.061]\nD: [0.958, 0.882]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.005, 0.571]\nB: [0.168, 0.518]\nC: [0.523, 0.466]\nD: [0.784, 0.541]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_88_0.jpg", "2D-spatial/point_tracking/point_tracking_88_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.553, 0.401]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.005, 0.571]\nB: [0.168, 0.518]\nC: [0.523, 0.466]\nD: [0.784, 0.541]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.256, 0.018]\nB: [0.492, 0.583]\nC: [0.579, 0.753]\nD: [0.756, 0.803]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_89_0.jpg", "2D-spatial/point_tracking/point_tracking_89_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.536, 0.384]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.256, 0.018]\nB: [0.492, 0.583]\nC: [0.579, 0.753]\nD: [0.756, 0.803]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.4, 0.819]\nB: [0.315, 0.418]\nC: [0.695, 0.574]\nD: [0.934, 0.028]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_90_0.jpg", "2D-spatial/point_tracking/point_tracking_90_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.315, 0.418]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.4, 0.819]\nB: [0.315, 0.418]\nC: [0.695, 0.574]\nD: [0.934, 0.028]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.161, 0.915]\nB: [0.55, -0.109]\nC: [0.025, 0.306]\nD: [0.859, 0.383]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_91_0.jpg", "2D-spatial/point_tracking/point_tracking_91_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.556, -0.112]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.161, 0.915]\nB: [0.55, -0.109]\nC: [0.025, 0.306]\nD: [0.859, 0.383]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.796, 0.095]\nB: [0.902, 0.871]\nC: [0.454, 0.805]\nD: [0.399, 0.254]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_92_0.jpg", "2D-spatial/point_tracking/point_tracking_92_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.336, 0.127]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.796, 0.095]\nB: [0.902, 0.871]\nC: [0.454, 0.805]\nD: [0.399, 0.254]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.78, 0.578]\nB: [0.586, 0.492]\nC: [0.362, 0.862]\nD: [0.308, 0.418]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_93_0.jpg", "2D-spatial/point_tracking/point_tracking_93_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.516, 0.501]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.78, 0.578]\nB: [0.586, 0.492]\nC: [0.362, 0.862]\nD: [0.308, 0.418]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.771, 0.142]\nB: [0.516, 0.41]\nC: [0.068, 0.844]\nD: [0.331, 0.532]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_94_0.jpg", "2D-spatial/point_tracking/point_tracking_94_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.771, 0.142]\nB: [0.516, 0.41]\nC: [0.068, 0.844]\nD: [0.331, 0.532]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.0, 0.0]\nB: [0.53, 0.297]\nC: [0.365, 0.027]\nD: [0.781, 0.768]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_95_0.jpg", "2D-spatial/point_tracking/point_tracking_95_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.372, 0.327]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.0, 0.0]\nB: [0.53, 0.297]\nC: [0.365, 0.027]\nD: [0.781, 0.768]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.198, 0.526]\nB: [0.435, 0.603]\nC: [0.508, 0.551]\nD: [0.55, 0.363]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_96_0.jpg", "2D-spatial/point_tracking/point_tracking_96_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.508, 0.551]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.198, 0.526]\nB: [0.435, 0.603]\nC: [0.508, 0.551]\nD: [0.55, 0.363]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.12, 0.762]\nB: [0.674, 0.29]\nC: [0.557, 0.641]\nD: [0.055, 0.586]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_97_0.jpg", "2D-spatial/point_tracking/point_tracking_97_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.597, 0.28]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.12, 0.762]\nB: [0.674, 0.29]\nC: [0.557, 0.641]\nD: [0.055, 0.586]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.064, 0.785]\nB: [0.378, 0.667]\nC: [0.522, 0.235]\nD: [0.437, 0.118]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_98_0.jpg", "2D-spatial/point_tracking/point_tracking_98_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.378, 0.667]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.064, 0.785]\nB: [0.378, 0.667]\nC: [0.522, 0.235]\nD: [0.437, 0.118]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.875, 0.931]\nB: [0.087, 0.702]\nC: [0.508, 0.69]\nD: [0.046, 0.524]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_99_0.jpg", "2D-spatial/point_tracking/point_tracking_99_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.251, 0.5]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.875, 0.931]\nB: [0.087, 0.702]\nC: [0.508, 0.69]\nD: [0.046, 0.524]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.449, 0.349]\nB: [0.497, 0.606]\nC: [0.545, 0.303]\nD: [0.125, 0.458]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_100_0.jpg", "2D-spatial/point_tracking/point_tracking_100_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.527, 0.379]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.449, 0.349]\nB: [0.497, 0.606]\nC: [0.545, 0.303]\nD: [0.125, 0.458]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.276, 0.406]\nB: [0.94, 0.417]\nC: [0.807, 0.617]\nD: [0.151, 0.326]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_101_0.jpg", "2D-spatial/point_tracking/point_tracking_101_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.266, 0.607]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.276, 0.406]\nB: [0.94, 0.417]\nC: [0.807, 0.617]\nD: [0.151, 0.326]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.851, 0.365]\nB: [0.558, 0.074]\nC: [0.378, 0.002]\nD: [0.075, 0.676]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_102_0.jpg", "2D-spatial/point_tracking/point_tracking_102_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.852, 0.365]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.851, 0.365]\nB: [0.558, 0.074]\nC: [0.378, 0.002]\nD: [0.075, 0.676]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.0, 0.0]\nB: [0.515, 0.178]\nC: [0.197, 0.534]\nD: [0.536, 0.497]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_103_0.jpg", "2D-spatial/point_tracking/point_tracking_103_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 910 and the height is 480.", "context": "Select from the following choices.\nA: [0.0, 0.0]\nB: [0.515, 0.178]\nC: [0.197, 0.534]\nD: [0.536, 0.497]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.133, 0.966]\nB: [0.167, 0.473]\nC: [0.808, 0.497]\nD: [0.597, 0.39]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_104_0.jpg", "2D-spatial/point_tracking/point_tracking_104_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.502, 0.304]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.133, 0.966]\nB: [0.167, 0.473]\nC: [0.808, 0.497]\nD: [0.597, 0.39]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.635, 0.971]\nB: [0.243, 0.351]\nC: [0.0, 0.0]\nD: [0.995, 0.403]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_105_0.jpg", "2D-spatial/point_tracking/point_tracking_105_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.635, 0.971]\nB: [0.243, 0.351]\nC: [0.0, 0.0]\nD: [0.995, 0.403]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.0, 0.0]\nB: [0.766, 0.625]\nC: [0.702, 0.537]\nD: [0.4, 0.901]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_106_0.jpg", "2D-spatial/point_tracking/point_tracking_106_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.0, 0.0]\nB: [0.766, 0.625]\nC: [0.702, 0.537]\nD: [0.4, 0.901]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.04, 0.521]\nB: [0.013, 0.863]\nC: [0.041, 0.677]\nD: [0.471, 0.865]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_107_0.jpg", "2D-spatial/point_tracking/point_tracking_107_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.554, 0.401]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.04, 0.521]\nB: [0.013, 0.863]\nC: [0.041, 0.677]\nD: [0.471, 0.865]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.422, 0.094]\nB: [0.036, 0.241]\nC: [0.832, 0.759]\nD: [0.084, 0.371]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_108_0.jpg", "2D-spatial/point_tracking/point_tracking_108_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.016, 0.253]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.422, 0.094]\nB: [0.036, 0.241]\nC: [0.832, 0.759]\nD: [0.084, 0.371]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.435, 0.035]\nB: [0.758, 0.725]\nC: [0.428, 0.944]\nD: [0.191, 0.586]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_109_0.jpg", "2D-spatial/point_tracking/point_tracking_109_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.758, 0.725]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.435, 0.035]\nB: [0.758, 0.725]\nC: [0.428, 0.944]\nD: [0.191, 0.586]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.486, 0.472]\nB: [0.0, 0.409]\nC: [0.679, 0.71]\nD: [0.474, 0.443]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_110_0.jpg", "2D-spatial/point_tracking/point_tracking_110_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.383, 0.481]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.486, 0.472]\nB: [0.0, 0.409]\nC: [0.679, 0.71]\nD: [0.474, 0.443]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.832, 0.16]\nB: [0.767, 0.295]\nC: [0.238, 0.998]\nD: [0.231, 0.345]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_111_0.jpg", "2D-spatial/point_tracking/point_tracking_111_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.278, 0.312]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.832, 0.16]\nB: [0.767, 0.295]\nC: [0.238, 0.998]\nD: [0.231, 0.345]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.98, 0.565]\nB: [0.053, 0.674]\nC: [0.564, 0.876]\nD: [0.452, 0.539]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_112_0.jpg", "2D-spatial/point_tracking/point_tracking_112_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.98, 0.565]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.98, 0.565]\nB: [0.053, 0.674]\nC: [0.564, 0.876]\nD: [0.452, 0.539]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.335, 0.563]\nB: [0.88, 0.001]\nC: [0.119, 0.693]\nD: [0.484, 0.412]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_113_0.jpg", "2D-spatial/point_tracking/point_tracking_113_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.521, 0.426]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.335, 0.563]\nB: [0.88, 0.001]\nC: [0.119, 0.693]\nD: [0.484, 0.412]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.626, 0.275]\nB: [0.815, 0.877]\nC: [0.004, 0.083]\nD: [0.871, 0.172]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_114_0.jpg", "2D-spatial/point_tracking/point_tracking_114_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.631, 0.278]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.626, 0.275]\nB: [0.815, 0.877]\nC: [0.004, 0.083]\nD: [0.871, 0.172]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.017, 0.757]\nB: [0.637, 0.134]\nC: [0.823, 0.303]\nD: [0.415, 0.038]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_115_0.jpg", "2D-spatial/point_tracking/point_tracking_115_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.475, 0.03]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.017, 0.757]\nB: [0.637, 0.134]\nC: [0.823, 0.303]\nD: [0.415, 0.038]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.278, 0.07]\nB: [0.287, 0.704]\nC: [0.387, 0.197]\nD: [0.443, 0.105]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_116_0.jpg", "2D-spatial/point_tracking/point_tracking_116_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.414, -0.045]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.278, 0.07]\nB: [0.287, 0.704]\nC: [0.387, 0.197]\nD: [0.443, 0.105]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.243, 0.44]\nB: [0.089, 0.367]\nC: [0.322, 0.069]\nD: [0.126, 0.424]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_117_0.jpg", "2D-spatial/point_tracking/point_tracking_117_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.126, 0.424]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.243, 0.44]\nB: [0.089, 0.367]\nC: [0.322, 0.069]\nD: [0.126, 0.424]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.878, 0.91]\nB: [0.509, 0.022]\nC: [0.259, 0.162]\nD: [0.213, 0.977]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_118_0.jpg", "2D-spatial/point_tracking/point_tracking_118_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.265, 0.16]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.878, 0.91]\nB: [0.509, 0.022]\nC: [0.259, 0.162]\nD: [0.213, 0.977]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.451, 0.674]\nB: [0.529, 0.336]\nC: [0.137, 0.847]\nD: [0.081, 0.187]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_119_0.jpg", "2D-spatial/point_tracking/point_tracking_119_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.529, 0.336]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.451, 0.674]\nB: [0.529, 0.336]\nC: [0.137, 0.847]\nD: [0.081, 0.187]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.354, 0.137]\nB: [0.831, 0.926]\nC: [0.473, 0.743]\nD: [0.228, 0.73]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_120_0.jpg", "2D-spatial/point_tracking/point_tracking_120_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.473, 0.743]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.354, 0.137]\nB: [0.831, 0.926]\nC: [0.473, 0.743]\nD: [0.228, 0.73]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.703, 0.241]\nB: [0.985, 0.235]\nC: [0.439, 0.494]\nD: [0.614, 0.184]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_121_0.jpg", "2D-spatial/point_tracking/point_tracking_121_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.703, 0.241]\nB: [0.985, 0.235]\nC: [0.439, 0.494]\nD: [0.614, 0.184]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.035, 0.992]\nB: [0.994, 0.321]\nC: [0.839, 0.258]\nD: [0.414, 0.367]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_122_0.jpg", "2D-spatial/point_tracking/point_tracking_122_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.306, 0.334]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.035, 0.992]\nB: [0.994, 0.321]\nC: [0.839, 0.258]\nD: [0.414, 0.367]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.613, 0.309]\nB: [0.457, 0.931]\nC: [0.669, 0.383]\nD: [0.938, 0.837]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_123_0.jpg", "2D-spatial/point_tracking/point_tracking_123_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.602, 0.319]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.613, 0.309]\nB: [0.457, 0.931]\nC: [0.669, 0.383]\nD: [0.938, 0.837]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.533, 0.568]\nB: [0.394, 0.545]\nC: [0.429, 0.604]\nD: [0.299, 0.66]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_124_0.jpg", "2D-spatial/point_tracking/point_tracking_124_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.533, 0.568]\nB: [0.394, 0.545]\nC: [0.429, 0.604]\nD: [0.299, 0.66]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.418, 0.337]\nB: [0.703, 0.614]\nC: [0.256, 0.811]\nD: [0.753, 0.192]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_125_0.jpg", "2D-spatial/point_tracking/point_tracking_125_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.419, 0.337]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.418, 0.337]\nB: [0.703, 0.614]\nC: [0.256, 0.811]\nD: [0.753, 0.192]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.451, 0.63]\nB: [0.161, 0.672]\nC: [0.117, 0.38]\nD: [0.918, 0.717]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_126_0.jpg", "2D-spatial/point_tracking/point_tracking_126_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.161, 0.672]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.451, 0.63]\nB: [0.161, 0.672]\nC: [0.117, 0.38]\nD: [0.918, 0.717]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.487, 0.784]\nB: [0.155, 0.004]\nC: [0.336, 0.564]\nD: [0.045, 0.917]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_127_0.jpg", "2D-spatial/point_tracking/point_tracking_127_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.616, 0.544]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.487, 0.784]\nB: [0.155, 0.004]\nC: [0.336, 0.564]\nD: [0.045, 0.917]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.352, 0.409]\nB: [0.959, 0.481]\nC: [0.373, 0.245]\nD: [0.977, 0.091]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_128_0.jpg", "2D-spatial/point_tracking/point_tracking_128_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.352, 0.409]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.352, 0.409]\nB: [0.959, 0.481]\nC: [0.373, 0.245]\nD: [0.977, 0.091]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.859, 0.311]\nB: [0.589, 0.682]\nC: [0.306, 0.308]\nD: [0.219, 0.979]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_129_0.jpg", "2D-spatial/point_tracking/point_tracking_129_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.304, 0.307]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.859, 0.311]\nB: [0.589, 0.682]\nC: [0.306, 0.308]\nD: [0.219, 0.979]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.472, 0.938]\nB: [0.873, 0.948]\nC: [0.511, 0.28]\nD: [0.829, 0.346]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_130_0.jpg", "2D-spatial/point_tracking/point_tracking_130_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.472, 0.938]\nB: [0.873, 0.948]\nC: [0.511, 0.28]\nD: [0.829, 0.346]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.446, 0.638]\nB: [0.628, 0.456]\nC: [0.455, 0.627]\nD: [0.379, 0.405]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_131_0.jpg", "2D-spatial/point_tracking/point_tracking_131_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.56, 0.467]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.446, 0.638]\nB: [0.628, 0.456]\nC: [0.455, 0.627]\nD: [0.379, 0.405]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.322, 0.321]\nB: [0.15, 0.133]\nC: [0.989, 0.972]\nD: [0.16, 0.862]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_132_0.jpg", "2D-spatial/point_tracking/point_tracking_132_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.232, 0.188]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.322, 0.321]\nB: [0.15, 0.133]\nC: [0.989, 0.972]\nD: [0.16, 0.862]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.931, 0.959]\nB: [0.506, 0.286]\nC: [0.391, 0.531]\nD: [0.469, 0.383]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_133_0.jpg", "2D-spatial/point_tracking/point_tracking_133_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.465, 0.381]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.931, 0.959]\nB: [0.506, 0.286]\nC: [0.391, 0.531]\nD: [0.469, 0.383]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.109, 0.806]\nB: [0.197, 0.457]\nC: [0.203, 0.114]\nD: [0.135, 0.938]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_134_0.jpg", "2D-spatial/point_tracking/point_tracking_134_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.2, 0.047]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.109, 0.806]\nB: [0.197, 0.457]\nC: [0.203, 0.114]\nD: [0.135, 0.938]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.24, 0.833]\nB: [0.308, 0.425]\nC: [0.339, 0.639]\nD: [0.077, 0.998]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_135_0.jpg", "2D-spatial/point_tracking/point_tracking_135_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.24, 0.833]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.24, 0.833]\nB: [0.308, 0.425]\nC: [0.339, 0.639]\nD: [0.077, 0.998]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.0, 0.0]\nB: [0.721, 0.606]\nC: [0.121, 0.428]\nD: [0.252, 0.486]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_136_0.jpg", "2D-spatial/point_tracking/point_tracking_136_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.496, 0.539]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.0, 0.0]\nB: [0.721, 0.606]\nC: [0.121, 0.428]\nD: [0.252, 0.486]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.675, 0.84]\nB: [0.087, 0.791]\nC: [0.736, 0.705]\nD: [0.092, 0.465]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_137_0.jpg", "2D-spatial/point_tracking/point_tracking_137_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.131, 0.527]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.675, 0.84]\nB: [0.087, 0.791]\nC: [0.736, 0.705]\nD: [0.092, 0.465]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.188, 0.925]\nB: [0.922, 0.115]\nC: [0.894, 0.22]\nD: [0.022, 0.091]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_138_0.jpg", "2D-spatial/point_tracking/point_tracking_138_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.195, 0.928]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.188, 0.925]\nB: [0.922, 0.115]\nC: [0.894, 0.22]\nD: [0.022, 0.091]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.962, 0.897]\nB: [0.754, 0.628]\nC: [0.384, 0.96]\nD: [0.784, 0.178]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_139_0.jpg", "2D-spatial/point_tracking/point_tracking_139_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.384, 0.96]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.962, 0.897]\nB: [0.754, 0.628]\nC: [0.384, 0.96]\nD: [0.784, 0.178]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.021, 0.739]\nB: [0.0, 0.0]\nC: [0.701, 0.818]\nD: [0.335, 0.057]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_140_0.jpg", "2D-spatial/point_tracking/point_tracking_140_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.021, 0.739]\nB: [0.0, 0.0]\nC: [0.701, 0.818]\nD: [0.335, 0.057]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.167, 0.345]\nB: [0.618, 0.201]\nC: [0.805, 0.514]\nD: [0.027, 0.731]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_141_0.jpg", "2D-spatial/point_tracking/point_tracking_141_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.609, 0.209]) in Image 1 within the Image 2? Note that the width of the input RGB image is 910 and the height is 480.", "context": "Select from the following choices.\nA: [0.167, 0.345]\nB: [0.618, 0.201]\nC: [0.805, 0.514]\nD: [0.027, 0.731]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.373, 0.459]\nB: [0.416, 0.278]\nC: [0.662, 0.648]\nD: [0.304, 0.781]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_142_0.jpg", "2D-spatial/point_tracking/point_tracking_142_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.443, 0.285]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.373, 0.459]\nB: [0.416, 0.278]\nC: [0.662, 0.648]\nD: [0.304, 0.781]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.53, 0.42]\nB: [0.638, 0.766]\nC: [0.517, 0.984]\nD: [0.344, 0.268]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_143_0.jpg", "2D-spatial/point_tracking/point_tracking_143_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.345, 0.268]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.53, 0.42]\nB: [0.638, 0.766]\nC: [0.517, 0.984]\nD: [0.344, 0.268]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.603, 0.414]\nB: [0.61, 0.464]\nC: [0.292, 0.626]\nD: [0.062, 0.813]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_144_0.jpg", "2D-spatial/point_tracking/point_tracking_144_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.602, 0.412]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.603, 0.414]\nB: [0.61, 0.464]\nC: [0.292, 0.626]\nD: [0.062, 0.813]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.493, 0.798]\nB: [0.963, 0.818]\nC: [0.245, 0.105]\nD: [0.982, 0.515]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_145_0.jpg", "2D-spatial/point_tracking/point_tracking_145_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.169, 0.075]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.493, 0.798]\nB: [0.963, 0.818]\nC: [0.245, 0.105]\nD: [0.982, 0.515]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.84, 0.083]\nB: [0.114, 0.077]\nC: [0.273, 0.23]\nD: [0.485, 0.534]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_146_0.jpg", "2D-spatial/point_tracking/point_tracking_146_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.443, 0.524]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.84, 0.083]\nB: [0.114, 0.077]\nC: [0.273, 0.23]\nD: [0.485, 0.534]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.345, 0.262]\nB: [0.512, 0.224]\nC: [0.657, 0.276]\nD: [0.166, 0.841]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_147_0.jpg", "2D-spatial/point_tracking/point_tracking_147_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.501, 0.22]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.345, 0.262]\nB: [0.512, 0.224]\nC: [0.657, 0.276]\nD: [0.166, 0.841]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.357, 0.196]\nB: [0.42, 0.234]\nC: [0.718, 0.336]\nD: [0.573, 0.896]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_148_0.jpg", "2D-spatial/point_tracking/point_tracking_148_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.357, 0.196]\nB: [0.42, 0.234]\nC: [0.718, 0.336]\nD: [0.573, 0.896]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.793, 0.03]\nB: [0.879, 0.871]\nC: [0.781, 0.418]\nD: [0.549, 0.338]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_149_0.jpg", "2D-spatial/point_tracking/point_tracking_149_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.53, 0.332]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.793, 0.03]\nB: [0.879, 0.871]\nC: [0.781, 0.418]\nD: [0.549, 0.338]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.342, 0.072]\nB: [0.574, 0.028]\nC: [0.795, 0.301]\nD: [0.752, 0.99]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_150_0.jpg", "2D-spatial/point_tracking/point_tracking_150_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.342, 0.072]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.342, 0.072]\nB: [0.574, 0.028]\nC: [0.795, 0.301]\nD: [0.752, 0.99]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.082, 0.932]\nB: [0.262, 0.046]\nC: [0.434, 0.576]\nD: [0.686, 0.437]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_151_0.jpg", "2D-spatial/point_tracking/point_tracking_151_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.082, 0.932]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.082, 0.932]\nB: [0.262, 0.046]\nC: [0.434, 0.576]\nD: [0.686, 0.437]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.053, 0.623]\nB: [0.624, 0.428]\nC: [0.518, 0.784]\nD: [0.141, 0.376]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_152_0.jpg", "2D-spatial/point_tracking/point_tracking_152_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.624, 0.428]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.053, 0.623]\nB: [0.624, 0.428]\nC: [0.518, 0.784]\nD: [0.141, 0.376]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.059, 0.533]\nB: [0.697, 0.415]\nC: [0.114, 0.313]\nD: [0.328, 0.618]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_153_0.jpg", "2D-spatial/point_tracking/point_tracking_153_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.113, 0.313]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.059, 0.533]\nB: [0.697, 0.415]\nC: [0.114, 0.313]\nD: [0.328, 0.618]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.488, 0.838]\nB: [0.287, 0.106]\nC: [0.472, 0.074]\nD: [0.079, 0.354]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_154_0.jpg", "2D-spatial/point_tracking/point_tracking_154_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.572, -0.121]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.488, 0.838]\nB: [0.287, 0.106]\nC: [0.472, 0.074]\nD: [0.079, 0.354]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.631, 0.352]\nB: [0.646, 0.557]\nC: [0.682, 0.502]\nD: [0.586, 0.751]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_155_0.jpg", "2D-spatial/point_tracking/point_tracking_155_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.631, 0.352]\nB: [0.646, 0.557]\nC: [0.682, 0.502]\nD: [0.586, 0.751]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.125, 0.593]\nB: [0.518, 0.506]\nC: [0.515, 0.327]\nD: [0.285, 0.07]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_156_0.jpg", "2D-spatial/point_tracking/point_tracking_156_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.588, 0.496]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.125, 0.593]\nB: [0.518, 0.506]\nC: [0.515, 0.327]\nD: [0.285, 0.07]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.176, 0.766]\nB: [0.337, 0.765]\nC: [0.905, 0.67]\nD: [0.04, 0.456]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_157_0.jpg", "2D-spatial/point_tracking/point_tracking_157_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.04, 0.456]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.176, 0.766]\nB: [0.337, 0.765]\nC: [0.905, 0.67]\nD: [0.04, 0.456]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.232, 0.766]\nB: [0.161, 0.72]\nC: [0.323, 0.222]\nD: [0.795, 0.138]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_158_0.jpg", "2D-spatial/point_tracking/point_tracking_158_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.361, 0.266]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.232, 0.766]\nB: [0.161, 0.72]\nC: [0.323, 0.222]\nD: [0.795, 0.138]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.333, 0.389]\nB: [0.691, 0.301]\nC: [0.868, 0.47]\nD: [0.649, 0.094]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_159_0.jpg", "2D-spatial/point_tracking/point_tracking_159_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.333, 0.389]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.333, 0.389]\nB: [0.691, 0.301]\nC: [0.868, 0.47]\nD: [0.649, 0.094]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.412, 0.254]\nB: [0.803, 0.989]\nC: [0.898, 0.497]\nD: [0.43, 0.295]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_160_0.jpg", "2D-spatial/point_tracking/point_tracking_160_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.392, 0.302]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.412, 0.254]\nB: [0.803, 0.989]\nC: [0.898, 0.497]\nD: [0.43, 0.295]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.0, 0.0]\nB: [0.864, 0.427]\nC: [0.189, 0.222]\nD: [0.86, 0.108]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_161_0.jpg", "2D-spatial/point_tracking/point_tracking_161_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.0, 0.0]\nB: [0.864, 0.427]\nC: [0.189, 0.222]\nD: [0.86, 0.108]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.961, 0.515]\nB: [0.312, 0.682]\nC: [0.209, 0.16]\nD: [0.943, 0.395]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_162_0.jpg", "2D-spatial/point_tracking/point_tracking_162_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.181, 0.189]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.961, 0.515]\nB: [0.312, 0.682]\nC: [0.209, 0.16]\nD: [0.943, 0.395]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.606, 0.797]\nB: [0.0, 0.0]\nC: [0.538, 0.287]\nD: [0.14, 0.104]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_163_0.jpg", "2D-spatial/point_tracking/point_tracking_163_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.606, 0.797]\nB: [0.0, 0.0]\nC: [0.538, 0.287]\nD: [0.14, 0.104]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.289, 0.952]\nB: [0.872, 0.205]\nC: [0.0, 0.0]\nD: [0.633, 0.427]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_164_0.jpg", "2D-spatial/point_tracking/point_tracking_164_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.289, 0.952]\nB: [0.872, 0.205]\nC: [0.0, 0.0]\nD: [0.633, 0.427]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.47, 0.37]\nB: [0.35, 0.4]\nC: [0.042, 0.785]\nD: [0.081, 0.262]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_165_0.jpg", "2D-spatial/point_tracking/point_tracking_165_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.351, 0.401]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.47, 0.37]\nB: [0.35, 0.4]\nC: [0.042, 0.785]\nD: [0.081, 0.262]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.161, 0.071]\nB: [0.948, 0.753]\nC: [0.387, 0.629]\nD: [0.408, 0.774]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_166_0.jpg", "2D-spatial/point_tracking/point_tracking_166_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.718, 0.256]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.161, 0.071]\nB: [0.948, 0.753]\nC: [0.387, 0.629]\nD: [0.408, 0.774]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.18, 0.986]\nB: [0.148, 0.12]\nC: [0.474, 0.356]\nD: [0.634, 0.061]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_167_0.jpg", "2D-spatial/point_tracking/point_tracking_167_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.551, 0.394]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.18, 0.986]\nB: [0.148, 0.12]\nC: [0.474, 0.356]\nD: [0.634, 0.061]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.642, 0.55]\nB: [0.894, 0.525]\nC: [0.887, 0.681]\nD: [0.583, 0.912]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_168_0.jpg", "2D-spatial/point_tracking/point_tracking_168_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.724, 0.512]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.642, 0.55]\nB: [0.894, 0.525]\nC: [0.887, 0.681]\nD: [0.583, 0.912]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.987, 0.403]\nB: [0.465, 0.446]\nC: [0.05, 0.858]\nD: [0.457, 0.194]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_169_0.jpg", "2D-spatial/point_tracking/point_tracking_169_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.504, 0.202]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.987, 0.403]\nB: [0.465, 0.446]\nC: [0.05, 0.858]\nD: [0.457, 0.194]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.852, 0.571]\nB: [0.771, 0.593]\nC: [0.19, 0.794]\nD: [0.512, 0.314]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_170_0.jpg", "2D-spatial/point_tracking/point_tracking_170_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.513, 0.314]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.852, 0.571]\nB: [0.771, 0.593]\nC: [0.19, 0.794]\nD: [0.512, 0.314]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.998, 0.808]\nB: [0.0, 0.0]\nC: [0.98, 0.396]\nD: [0.419, 0.553]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_171_0.jpg", "2D-spatial/point_tracking/point_tracking_171_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.998, 0.808]\nB: [0.0, 0.0]\nC: [0.98, 0.396]\nD: [0.419, 0.553]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.52, 0.284]\nB: [0.475, 0.251]\nC: [0.321, 0.629]\nD: [0.432, 0.371]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_172_0.jpg", "2D-spatial/point_tracking/point_tracking_172_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.427, 0.372]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.52, 0.284]\nB: [0.475, 0.251]\nC: [0.321, 0.629]\nD: [0.432, 0.371]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.0, 0.0]\nB: [0.781, 0.578]\nC: [0.642, 0.382]\nD: [0.679, 0.324]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_173_0.jpg", "2D-spatial/point_tracking/point_tracking_173_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.751, 0.277]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.0, 0.0]\nB: [0.781, 0.578]\nC: [0.642, 0.382]\nD: [0.679, 0.324]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.525, 0.662]\nB: [0.774, 0.504]\nC: [0.263, 0.754]\nD: [0.896, 0.303]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_174_0.jpg", "2D-spatial/point_tracking/point_tracking_174_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.525, 0.662]\nB: [0.774, 0.504]\nC: [0.263, 0.754]\nD: [0.896, 0.303]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.336, 0.241]\nB: [0.754, 0.592]\nC: [0.711, 0.154]\nD: [0.814, 0.269]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_175_0.jpg", "2D-spatial/point_tracking/point_tracking_175_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.711, 0.154]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.336, 0.241]\nB: [0.754, 0.592]\nC: [0.711, 0.154]\nD: [0.814, 0.269]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.357, 0.26]\nB: [0.145, 0.457]\nC: [0.26, 0.791]\nD: [0.896, 0.054]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_176_0.jpg", "2D-spatial/point_tracking/point_tracking_176_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.357, 0.259]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.357, 0.26]\nB: [0.145, 0.457]\nC: [0.26, 0.791]\nD: [0.896, 0.054]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.0, 0.0]\nB: [0.249, 0.178]\nC: [0.969, 0.236]\nD: [0.363, 0.049]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_177_0.jpg", "2D-spatial/point_tracking/point_tracking_177_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.509, 0.617]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.0, 0.0]\nB: [0.249, 0.178]\nC: [0.969, 0.236]\nD: [0.363, 0.049]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.396, 0.165]\nB: [0.966, 0.511]\nC: [0.101, 0.549]\nD: [0.871, 0.899]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_178_0.jpg", "2D-spatial/point_tracking/point_tracking_178_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 910 and the height is 480.", "context": "Select from the following choices.\nA: [0.396, 0.165]\nB: [0.966, 0.511]\nC: [0.101, 0.549]\nD: [0.871, 0.899]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.335, 0.835]\nB: [0.526, 0.468]\nC: [0.441, 0.847]\nD: [0.584, 0.202]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_179_0.jpg", "2D-spatial/point_tracking/point_tracking_179_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.491, 0.453]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.335, 0.835]\nB: [0.526, 0.468]\nC: [0.441, 0.847]\nD: [0.584, 0.202]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.352, 0.43]\nB: [0.396, 0.842]\nC: [0.544, 0.168]\nD: [0.755, 0.432]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_180_0.jpg", "2D-spatial/point_tracking/point_tracking_180_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.352, 0.43]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.352, 0.43]\nB: [0.396, 0.842]\nC: [0.544, 0.168]\nD: [0.755, 0.432]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.738, 0.079]\nB: [0.295, 0.566]\nC: [0.04, 0.229]\nD: [0.771, 0.673]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_181_0.jpg", "2D-spatial/point_tracking/point_tracking_181_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.292, 0.642]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.738, 0.079]\nB: [0.295, 0.566]\nC: [0.04, 0.229]\nD: [0.771, 0.673]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.888, 0.387]\nB: [0.016, 0.294]\nC: [0.918, 0.591]\nD: [0.308, 0.501]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_182_0.jpg", "2D-spatial/point_tracking/point_tracking_182_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.888, 0.387]\nB: [0.016, 0.294]\nC: [0.918, 0.591]\nD: [0.308, 0.501]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.383, 0.798]\nB: [0.668, 0.133]\nC: [0.133, 0.739]\nD: [0.192, 0.076]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_183_0.jpg", "2D-spatial/point_tracking/point_tracking_183_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.383, 0.798]\nB: [0.668, 0.133]\nC: [0.133, 0.739]\nD: [0.192, 0.076]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.634, 0.284]\nB: [0.0, 0.0]\nC: [0.315, 0.604]\nD: [0.141, 0.357]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_184_0.jpg", "2D-spatial/point_tracking/point_tracking_184_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.634, 0.284]\nB: [0.0, 0.0]\nC: [0.315, 0.604]\nD: [0.141, 0.357]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.691, 0.879]\nB: [0.362, 0.72]\nC: [0.157, 0.764]\nD: [0.272, 0.551]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_185_0.jpg", "2D-spatial/point_tracking/point_tracking_185_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.272, 0.551]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.691, 0.879]\nB: [0.362, 0.72]\nC: [0.157, 0.764]\nD: [0.272, 0.551]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.448, 0.266]\nB: [0.5, 0.567]\nC: [0.943, 0.037]\nD: [0.019, 0.535]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_186_0.jpg", "2D-spatial/point_tracking/point_tracking_186_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.448, 0.266]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.448, 0.266]\nB: [0.5, 0.567]\nC: [0.943, 0.037]\nD: [0.019, 0.535]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.664, 0.291]\nB: [0.629, 0.96]\nC: [0.638, 0.438]\nD: [0.072, 0.128]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_187_0.jpg", "2D-spatial/point_tracking/point_tracking_187_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.59, 0.45]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.664, 0.291]\nB: [0.629, 0.96]\nC: [0.638, 0.438]\nD: [0.072, 0.128]"}, "output": {"output_text": "C"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.628, 0.379]\nB: [0.793, 0.079]\nC: [0.084, 0.828]\nD: [0.959, 0.595]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_188_0.jpg", "2D-spatial/point_tracking/point_tracking_188_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.959, 0.595]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.628, 0.379]\nB: [0.793, 0.079]\nC: [0.084, 0.828]\nD: [0.959, 0.595]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.086, 0.897]\nB: [0.891, 0.598]\nC: [0.731, 0.612]\nD: [0.338, -0.004]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_189_0.jpg", "2D-spatial/point_tracking/point_tracking_189_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.417, 0.005]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.086, 0.897]\nB: [0.891, 0.598]\nC: [0.731, 0.612]\nD: [0.338, -0.004]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.314, 0.635]\nB: [0.437, 0.344]\nC: [0.11, 0.731]\nD: [0.763, 0.089]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_190_0.jpg", "2D-spatial/point_tracking/point_tracking_190_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.437, 0.344]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.314, 0.635]\nB: [0.437, 0.344]\nC: [0.11, 0.731]\nD: [0.763, 0.089]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.303, 0.199]\nB: [0.353, 0.651]\nC: [0.302, 0.987]\nD: [0.305, 0.316]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_191_0.jpg", "2D-spatial/point_tracking/point_tracking_191_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.0, 0.0]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.303, 0.199]\nB: [0.353, 0.651]\nC: [0.302, 0.987]\nD: [0.305, 0.316]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.145, 0.87]\nB: [0.947, 0.301]\nC: [0.046, 0.995]\nD: [0.0, 0.0]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_192_0.jpg", "2D-spatial/point_tracking/point_tracking_192_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.465, 0.564]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.145, 0.87]\nB: [0.947, 0.301]\nC: [0.046, 0.995]\nD: [0.0, 0.0]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.622, 0.432]\nB: [0.421, 0.201]\nC: [0.707, 0.491]\nD: [0.55, 0.329]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_193_0.jpg", "2D-spatial/point_tracking/point_tracking_193_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.513, 0.53]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.622, 0.432]\nB: [0.421, 0.201]\nC: [0.707, 0.491]\nD: [0.55, 0.329]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.556, 0.744]\nB: [0.085, 0.886]\nC: [0.475, 0.451]\nD: [0.417, 0.52]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_194_0.jpg", "2D-spatial/point_tracking/point_tracking_194_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.735, 0.381]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.556, 0.744]\nB: [0.085, 0.886]\nC: [0.475, 0.451]\nD: [0.417, 0.52]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_davis", "options": "A: [0.089, 0.936]\nB: [0.642, 0.328]\nC: [0.611, 0.959]\nD: [0.166, 0.377]", "visual_input_component": ["natural_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_195_0.jpg", "2D-spatial/point_tracking/point_tracking_195_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.114, 0.302]) in Image 1 within the Image 2? Note that the width of the input RGB image is 854 and the height is 480.", "context": "Select from the following choices.\nA: [0.089, 0.936]\nB: [0.642, 0.328]\nC: [0.611, 0.959]\nD: [0.166, 0.377]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.443, 0.616]\nB: [0.663, 0.356]\nC: [0.079, 0.21]\nD: [0.586, -0.124]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_196_0.jpg", "2D-spatial/point_tracking/point_tracking_196_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.733, -0.02]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.443, 0.616]\nB: [0.663, 0.356]\nC: [0.079, 0.21]\nD: [0.586, -0.124]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.385, 0.321]\nB: [0.931, 0.242]\nC: [0.011, 0.867]\nD: [0.917, 0.788]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_197_0.jpg", "2D-spatial/point_tracking/point_tracking_197_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.385, 0.321]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.385, 0.321]\nB: [0.931, 0.242]\nC: [0.011, 0.867]\nD: [0.917, 0.788]"}, "output": {"output_text": "A"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.757, 0.024]\nB: [0.333, -0.045]\nC: [0.773, 0.154]\nD: [0.253, 0.821]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_198_0.jpg", "2D-spatial/point_tracking/point_tracking_198_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.314, -0.005]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.757, 0.024]\nB: [0.333, -0.045]\nC: [0.773, 0.154]\nD: [0.253, 0.821]"}, "output": {"output_text": "B"}, "task": "point_tracking"}
{"source": "tapvid_rgb_stacking", "options": "A: [0.627, 0.508]\nB: [0.71, 0.649]\nC: [0.888, 0.125]\nD: [0.302, 0.307]", "visual_input_component": ["synthetic_image"], "input": {"input_image_path": ["2D-spatial/point_tracking/point_tracking_199_0.jpg", "2D-spatial/point_tracking/point_tracking_199_1.jpg"], "question": "What is the position coordinates of the point with coordinates ([0.302, 0.306]) in Image 1 within the Image 2? Note that the width of the input RGB image is 256 and the height is 256.", "context": "Select from the following choices.\nA: [0.627, 0.508]\nB: [0.71, 0.649]\nC: [0.888, 0.125]\nD: [0.302, 0.307]"}, "output": {"output_text": "D"}, "task": "point_tracking"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_0_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_0_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_0_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_0_3.png"], "question": "What is at the bottom?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_1_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_1_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_1_2.png"], "question": "Which picture shows the water bottle inside the tent?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_2_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_2_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_2_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_2_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_2_4.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_2_5.png"], "question": "Which object is next to the block?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_3_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_3_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_3_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_3_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_3_4.png"], "question": "Which object is next to the one shaped like a cube?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_4_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_4_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_4_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_4_3.png"], "question": "Which object is next to the flashlight?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_5_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_5_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_5_2.png"], "question": "Which picture shows the piggy bank inside the gift box?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_6_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_6_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_6_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_6_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_6_4.png"], "question": "Which object is above the bench?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "D"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_7_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_7_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_7_2.png"], "question": "Which object is shaped like a cone and is above the desk?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_8_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_8_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_8_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_8_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_8_4.png"], "question": "Which object is beside the dice?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_9_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_9_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_9_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_9_3.png"], "question": "Which object is next to the watermelon?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_10_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_10_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_10_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_10_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_10_4.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_10_5.png"], "question": "Which object is beside the one shaped like a cone?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_11_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_11_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_11_2.png"], "question": "Which picture shows the cake inside the oven?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_12_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_12_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_12_2.png"], "question": "Which object is below the bed?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_13_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_13_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_13_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_13_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_13_4.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_13_5.png"], "question": "Which object is beside the one shaped like a cube?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image"}, "output": {"output_text": "D"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_14_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_14_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_14_2.png"], "question": "Which object is above the table?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_15_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_15_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_15_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_15_3.png"], "question": "What is on the right?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_16_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_16_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_16_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_16_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_16_4.png"], "question": "Which object is beside the volleyball?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "D"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_17_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_17_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_17_2.png"], "question": "Which object is shaped like a sphere and is below the table?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_18_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_18_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_18_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_18_3.png"], "question": "Which object is next to the clock?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_19_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_19_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_19_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_19_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_19_4.png"], "question": "Which object is below the table?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_20_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_20_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_20_2.png"], "question": "What is on the right?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_21_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_21_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_21_2.png"], "question": "Which object is below the bed?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_22_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_22_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_22_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_22_3.png"], "question": "What is on the right?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_23_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_23_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_23_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_23_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_23_4.png"], "question": "Which object is next to the pine cone?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_24_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_24_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_24_2.png"], "question": "What is on the left?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_25_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_25_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_25_2.png"], "question": "What is on the right?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_26_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_26_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_26_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_26_3.png"], "question": "Which object is above the bench?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_27_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_27_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_27_2.png"], "question": "What is at the top?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_28_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_28_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_28_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_28_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_28_4.png"], "question": "Which object is beside the bead?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_29_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_29_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_29_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_29_3.png"], "question": "Which object is beside the crate?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_30_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_30_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_30_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_30_3.png"], "question": "Which object is next to the cup?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_31_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_31_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_31_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_31_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_31_4.png"], "question": "Which object is above the bench?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_32_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_32_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_32_2.png"], "question": "Which object is below the table?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_33_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_33_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_33_2.png"], "question": "Which picture shows the muffins outside the oven?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_34_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_34_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_34_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_34_3.png"], "question": "Which object is below the table?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_35_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_35_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_35_2.png"], "question": "What is on the right?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_36_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_36_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_36_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_36_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_36_4.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_36_5.png"], "question": "Which object is next to the dog dish?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_37_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_37_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_37_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_37_3.png"], "question": "What is in the middle?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_38_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_38_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_38_2.png"], "question": "Which object below the bed is shaped like a cone?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_39_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_39_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_39_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_39_3.png"], "question": "What is in the middle?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_40_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_40_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_40_2.png"], "question": "Which object is below the table?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_41_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_41_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_41_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_41_3.png"], "question": "What is in the middle?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_42_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_42_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_42_2.png"], "question": "Which object is above the bench?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_43_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_43_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_43_2.png"], "question": "Which picture shows the cow outside the barn?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_44_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_44_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_44_2.png"], "question": "Which picture shows the soccer ball outside the gift box?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_45_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_45_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_45_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_45_3.png"], "question": "Which object is next to the flashlight?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_46_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_46_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_46_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_46_3.png"], "question": "Which object is next to the watermelon?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_47_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_47_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_47_2.png"], "question": "Which object is below the table?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_48_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_48_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_48_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_48_3.png"], "question": "What is on the left?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_49_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_49_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_49_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_49_3.png"], "question": "Which object is next to the bead?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_50_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_50_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_50_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_50_3.png"], "question": "Which object is next to the clock?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_51_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_51_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_51_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_51_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_51_4.png"], "question": "Which object is beside the pair of shoes?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_52_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_52_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_52_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_52_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_52_4.png"], "question": "Which object is beside the one shaped like a sphere?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "D"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_53_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_53_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_53_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_53_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_53_4.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_53_5.png"], "question": "Which object is beside the tub of ice cream?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_54_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_54_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_54_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_54_3.png"], "question": "Which object is below the table?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_55_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_55_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_55_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_55_3.png"], "question": "What is at the bottom?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_56_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_56_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_56_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_56_3.png"], "question": "Which object is next to the block?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_57_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_57_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_57_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_57_3.png"], "question": "Which object is below the desk?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_58_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_58_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_58_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_58_3.png"], "question": "Which object is above the bench?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_59_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_59_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_59_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_59_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_59_4.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_59_5.png"], "question": "Which object is next to the trash can?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_60_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_60_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_60_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_60_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_60_4.png"], "question": "Which object is beside the mailing box?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_61_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_61_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_61_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_61_3.png"], "question": "What is in the middle?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_62_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_62_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_62_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_62_3.png"], "question": "What is on the right?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_63_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_63_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_63_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_63_3.png"], "question": "What is on the left?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_64_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_64_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_64_2.png"], "question": "Which object is shaped like a sphere and is below the bench?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_65_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_65_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_65_2.png"], "question": "What is on the right?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_66_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_66_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_66_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_66_3.png"], "question": "Which object is next to the basketball?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_67_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_67_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_67_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_67_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_67_4.png"], "question": "Which object is below the table?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_68_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_68_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_68_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_68_3.png"], "question": "Which object is next to the flashlight?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_69_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_69_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_69_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_69_3.png"], "question": "Which object is next to the pine cone?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_70_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_70_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_70_2.png"], "question": "What is at the top?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_71_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_71_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_71_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_71_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_71_4.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_71_5.png"], "question": "Which object is beside the top?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_72_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_72_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_72_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_72_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_72_4.png"], "question": "Which object is beside the one shaped like a cone?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_73_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_73_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_73_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_73_3.png"], "question": "What is at the top?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_74_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_74_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_74_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_74_3.png"], "question": "What is on the right?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_75_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_75_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_75_2.png"], "question": "Which picture shows the roast beef inside the oven?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_76_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_76_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_76_2.png"], "question": "What is at the top?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_77_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_77_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_77_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_77_3.png"], "question": "Which object is next to the bead?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_78_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_78_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_78_2.png"], "question": "Which object is shaped like a cylinder and is below the bed?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_79_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_79_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_79_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_79_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_79_4.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_79_5.png"], "question": "Which object is next to the one shaped like a cube?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_80_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_80_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_80_2.png"], "question": "Which object below the bed is shaped like a cylinder?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_81_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_81_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_81_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_81_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_81_4.png"], "question": "Which object is beside the clock?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "D"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_82_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_82_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_82_2.png"], "question": "What is on the right?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_83_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_83_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_83_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_83_3.png"], "question": "What is on the left?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_84_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_84_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_84_2.png"], "question": "What is at the bottom?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_85_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_85_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_85_2.png"], "question": "Which object is shaped like a cube and is above the bed?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_86_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_86_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_86_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_86_3.png"], "question": "What is in the middle?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_87_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_87_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_87_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_87_3.png"], "question": "What is on the right?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_88_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_88_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_88_2.png"], "question": "What is on the left?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_89_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_89_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_89_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_89_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_89_4.png"], "question": "Which object is next to the storage bin?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_90_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_90_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_90_2.png"], "question": "Which object is below the desk?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_91_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_91_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_91_2.png"], "question": "Which picture shows the basketball inside the gift box?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_92_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_92_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_92_2.png"], "question": "Which picture shows the toy airplane outside the gift box?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_93_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_93_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_93_2.png"], "question": "Which object is shaped like a sphere and is below the table?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_94_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_94_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_94_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_94_3.png"], "question": "Which object is beside the pine cone?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_95_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_95_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_95_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_95_3.png"], "question": "What is on the left?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_96_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_96_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_96_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_96_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_96_4.png"], "question": "Which object is beside the box of cookies?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_97_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_97_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_97_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_97_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_97_4.png"], "question": "Which object is beside the computer?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "D"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_98_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_98_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_98_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_98_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_98_4.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_98_5.png"], "question": "Which object is beside the butterfly?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_99_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_99_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_99_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_99_3.png"], "question": "What is on the left?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_100_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_100_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_100_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_100_3.png"], "question": "Which object is next to the flashlight?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_101_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_101_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_101_2.png"], "question": "What is on the right?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_102_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_102_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_102_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_102_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_102_4.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_102_5.png"], "question": "Which object is beside the one shaped like a cylinder?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image"}, "output": {"output_text": "E"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_103_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_103_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_103_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_103_3.png"], "question": "What is at the bottom?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_104_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_104_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_104_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_104_3.png"], "question": "What is on the right?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_105_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_105_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_105_2.png"], "question": "What is on the right?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_106_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_106_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_106_2.png"], "question": "What is on the right?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_107_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_107_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_107_2.png"], "question": "What is on the left?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_108_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_108_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_108_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_108_3.png"], "question": "Which object is next to the pair of shoes?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_109_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_109_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_109_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_109_3.png"], "question": "What is in the middle?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_110_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_110_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_110_2.png"], "question": "Which object is below the table?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_111_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_111_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_111_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_111_3.png"], "question": "Which object is below the bench?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_112_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_112_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_112_2.png"], "question": "Which picture shows the book inside the gift box?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_113_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_113_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_113_2.png"], "question": "Which object is above the table?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_114_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_114_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_114_2.png"], "question": "Which object is above the table?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_115_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_115_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_115_2.png"], "question": "What is at the bottom?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_116_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_116_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_116_2.png"], "question": "Which object above the table is shaped like a cylinder?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_117_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_117_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_117_2.png"], "question": "What is on the right?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_118_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_118_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_118_2.png"], "question": "Which object above the desk is shaped like a cylinder?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_119_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_119_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_119_2.png"], "question": "What is at the bottom?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_120_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_120_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_120_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_120_3.png"], "question": "What is in the middle?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_121_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_121_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_121_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_121_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_121_4.png"], "question": "Which object is below the table?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_122_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_122_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_122_2.png"], "question": "Which object above the bench is shaped like a cube?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_123_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_123_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_123_2.png"], "question": "What is at the top?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_124_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_124_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_124_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_124_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_124_4.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_124_5.png"], "question": "Which object is next to the one shaped like a cube?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_125_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_125_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_125_2.png"], "question": "What is at the bottom?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_126_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_126_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_126_2.png"], "question": "What is on the left?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_127_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_127_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_127_2.png"], "question": "What is on the right?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_128_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_128_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_128_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_128_3.png"], "question": "What is at the top?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_129_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_129_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_129_2.png"], "question": "Which object is shaped like a sphere and is above the table?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_130_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_130_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_130_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_130_3.png"], "question": "What is in the middle?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_131_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_131_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_131_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_131_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_131_4.png"], "question": "Which object is beside the drum?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_132_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_132_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_132_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_132_3.png"], "question": "What is in the middle?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_133_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_133_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_133_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_133_3.png"], "question": "What is at the bottom?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_134_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_134_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_134_2.png"], "question": "Which object is shaped like a cone and is below the desk?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_135_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_135_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_135_2.png"], "question": "Which picture shows the toy pony outside the gift box?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_136_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_136_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_136_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_136_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_136_4.png"], "question": "Which object is beside the backpack?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_137_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_137_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_137_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_137_3.png"], "question": "Which object is next to the pair of shoes?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_138_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_138_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_138_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_138_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_138_4.png"], "question": "Which object is below the desk?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "D"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_139_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_139_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_139_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_139_3.png"], "question": "What is on the right?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_140_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_140_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_140_2.png"], "question": "Which picture shows the toy car inside the toy box?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_141_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_141_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_141_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_141_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_141_4.png"], "question": "Which object is beside the one shaped like a cube?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "D"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_142_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_142_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_142_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_142_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_142_4.png"], "question": "Which object is next to the one shaped like a cone?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_143_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_143_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_143_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_143_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_143_4.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_143_5.png"], "question": "Which object is next to the one shaped like a cone?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_144_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_144_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_144_2.png"], "question": "What is on the left?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_145_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_145_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_145_2.png"], "question": "Which object is above the bed?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_146_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_146_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_146_2.png"], "question": "What is on the left?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_147_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_147_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_147_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_147_3.png"], "question": "Which object is below the bench?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_148_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_148_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_148_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_148_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_148_4.png"], "question": "Which object is beside the butterfly?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_149_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_149_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_149_2.png"], "question": "Which object is shaped like a cylinder and is above the table?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_150_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_150_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_150_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_150_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_150_4.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_150_5.png"], "question": "Which object is next to the block?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_151_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_151_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_151_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_151_3.png"], "question": "What is in the middle?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_152_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_152_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_152_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_152_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_152_4.png"], "question": "Which object is beside the cake?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_153_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_153_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_153_2.png"], "question": "Which object is below the bed?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_154_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_154_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_154_2.png"], "question": "What is on the left?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_155_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_155_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_155_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_155_3.png"], "question": "What is at the top?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_156_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_156_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_156_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_156_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_156_4.png"], "question": "Which object is beside the pair of shoes?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_157_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_157_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_157_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_157_3.png"], "question": "What is in the middle?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_158_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_158_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_158_2.png"], "question": "Which object is below the table?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_159_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_159_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_159_2.png"], "question": "Which object is above the bench?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_160_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_160_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_160_2.png"], "question": "What is at the bottom?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_161_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_161_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_161_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_161_3.png"], "question": "What is on the left?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_162_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_162_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_162_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_162_3.png"], "question": "Which object is next to the roll of stickers?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_163_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_163_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_163_2.png"], "question": "Which picture shows the roast beef inside the oven?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_164_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_164_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_164_2.png"], "question": "Which picture shows the cookies outside the oven?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_165_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_165_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_165_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_165_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_165_4.png"], "question": "Which object is next to the one shaped like a sphere?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_166_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_166_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_166_2.png"], "question": "Which object is below the bench?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_167_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_167_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_167_2.png"], "question": "Which picture shows the muffins outside the oven?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_168_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_168_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_168_2.png"], "question": "What is on the right?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_169_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_169_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_169_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_169_3.png"], "question": "What is in the middle?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_170_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_170_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_170_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_170_3.png"], "question": "Which object is beside the storage bin?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_171_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_171_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_171_2.png"], "question": "Which object is shaped like a sphere and is below the bench?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_172_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_172_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_172_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_172_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_172_4.png"], "question": "Which object is next to the top?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_173_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_173_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_173_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_173_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_173_4.png"], "question": "Which object is beside the top?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_174_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_174_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_174_2.png"], "question": "What is at the bottom?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_175_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_175_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_175_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_175_3.png"], "question": "Which object is next to the drum?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_176_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_176_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_176_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_176_3.png"], "question": "What is in the middle?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_177_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_177_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_177_2.png"], "question": "Which object is shaped like a cube and is below the bench?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_178_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_178_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_178_2.png"], "question": "Which object is below the table?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_179_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_179_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_179_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_179_3.png"], "question": "Which object is next to the clock?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_180_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_180_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_180_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_180_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_180_4.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_180_5.png"], "question": "Which object is beside the flashlight?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_181_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_181_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_181_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_181_3.png"], "question": "Which object is above the table?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_182_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_182_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_182_2.png"], "question": "What is on the left?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_183_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_183_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_183_2.png"], "question": "Which object below the table is shaped like a sphere?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_184_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_184_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_184_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_184_3.png"], "question": "What is at the bottom?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_185_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_185_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_185_2.png"], "question": "Which object above the bench is shaped like a cone?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_186_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_186_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_186_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_186_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_186_4.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_186_5.png"], "question": "Which object is beside the watermelon?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image"}, "output": {"output_text": "E"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_187_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_187_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_187_2.png"], "question": "Which object below the bed is shaped like a cone?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_188_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_188_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_188_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_188_3.png"], "question": "Which object is next to the trash can?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_189_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_189_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_189_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_189_3.png"], "question": "What is on the right?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_190_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_190_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_190_2.png"], "question": "Which picture shows the cow outside the barn?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_191_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_191_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_191_2.png"], "question": "What is on the left?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_192_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_192_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_192_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_192_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_192_4.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_192_5.png"], "question": "Which object is next to the one shaped like a sphere?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_193_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_193_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_193_2.png"], "question": "Which object is below the bed?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_194_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_194_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_194_2.png"], "question": "Which object is shaped like a cone and is above the table?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "B"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_195_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_195_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_195_2.png"], "question": "What is at the bottom?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_196_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_196_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_196_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_196_3.png"], "question": "What is at the top?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image"}, "output": {"output_text": "C"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_197_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_197_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_197_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_197_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_197_4.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_197_5.png"], "question": "Which object is next to the top?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image\nE: The sixth image"}, "output": {"output_text": "D"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_198_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_198_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_198_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_198_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_198_4.png"], "question": "Which object is next to the bunch of bananas?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "iconqa", "options": "A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_199_0.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_199_1.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_199_2.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_199_3.png", "2D-spatial/Icon_Question_Answering_with_Spatial_Context/Icon_Question_Answering_with_Spatial_Context_199_4.png"], "question": "Which object is beside the one shaped like a cube?", "context": "Please answer a multi-choice question in the spatial context of icon images. The input image is the first image.\nSelect from the following choices.A: The second image\nB: The third image\nC: The fourth image\nD: The fifth image"}, "output": {"output_text": "A"}, "task": "Icon_Question_Answering_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box that has four items and the three are touching the side.\nB: There is a box that has five items and all are in the center.\nC: There is a box that has three items and the four are touching the side.\nD: There is a bag that has four items and the three are touching the side.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_0_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_0_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_0_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box that has four items and the three are touching the side.\nB: There is a box that has five items and all are in the center.\nC: There is a box that has three items and the four are touching the side.\nD: There is a bag that has four items and the three are touching the side."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there is a red square touching the base\nB: there is a white circle touching the base\nC: there is a black square touching the base\nD: there is a black triangle touching the base", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_1_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_1_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_1_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there is a red square touching the base\nB: there is a white circle touching the base\nC: there is a black square touching the base\nD: there is a black triangle touching the base"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box with 1 black and 1 blue item.\nB: There is a box with 1 black and 1 green item.\nC: There is a box with 2 black items.\nD: There is a box with 1 red and 1 blue item.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_2_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_2_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_2_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box with 1 black and 1 blue item.\nB: There is a box with 1 black and 1 green item.\nC: There is a box with 2 black items.\nD: There is a box with 1 red and 1 blue item."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a black block above a yellow block.\nB: There is a yellow block above a black block.\nC: There is a yellow block below a black block.\nD: There is a yellow block next to a black block.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_3_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_3_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_3_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a black block above a yellow block.\nB: There is a yellow block above a black block.\nC: There is a yellow block below a black block.\nD: There is a yellow block next to a black block."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a blue block as the top of a tower.\nB: There is a red ball at the top of a tower.\nC: There is a yellow block at the base of a tower.\nD: There is a yellow block as the top of a tower.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_4_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_4_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_4_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a blue block as the top of a tower.\nB: There is a red ball at the top of a tower.\nC: There is a yellow block at the base of a tower.\nD: There is a yellow block as the top of a tower."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 2 towers that contain white blocks\nB: There are 2 towers that contain black blocks\nC: There are 3 towers that contain black blocks\nD: There is 1 tower that contains black blocks", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_5_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_5_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_5_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 2 towers that contain white blocks\nB: There are 2 towers that contain black blocks\nC: There are 3 towers that contain black blocks\nD: There is 1 tower that contains black blocks"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: All three towers have a blue base.\nB: None of the towers have a blue base.\nC: Only one tower has a blue base.\nD: Two of the three towers has a blue base.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_6_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_6_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_6_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: All three towers have a blue base.\nB: None of the towers have a blue base.\nC: Only one tower has a blue base.\nD: Two of the three towers has a blue base."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a blue sphere as the base of a tower with more than two blocks\nB: There is a red block as the base of a tower with more than two blocks.\nC: There is a blue block as the base of a tower with more than two blocks.\nD: There is a blue block as the base of a single block tower.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_7_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_7_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_7_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a blue sphere as the base of a tower with more than two blocks\nB: There is a red block as the base of a tower with more than two blocks.\nC: There is a blue block as the base of a tower with more than two blocks.\nD: There is a blue block as the base of a single block tower."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are two colors touching the wall.\nB: The wall has multiple colors.\nC: No colors are touching the wall.\nD: There is only one color touching the wall.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_8_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_8_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_8_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are two colors touching the wall.\nB: The wall has multiple colors.\nC: No colors are touching the wall.\nD: There is only one color touching the wall."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is at least 1 triangle closely touching a box corner\nB: There is at least 1 circle closely touching a box edge\nC: There is at least 1 square closely touching a circle\nD: There is at least 1 square closely tocuhing a box corner", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_9_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_9_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_9_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is at least 1 triangle closely touching a box corner\nB: There is at least 1 circle closely touching a box edge\nC: There is at least 1 square closely touching a circle\nD: There is at least 1 square closely tocuhing a box corner"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is 1 box with 2 black circles\nB: There is 1 box with 3 black circles\nC: There are 3 boxes with 2 black circles\nD: There are 2 boxes with 1 black circle", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_10_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_10_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_10_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is 1 box with 2 black circles\nB: There is 1 box with 3 black circles\nC: There are 3 boxes with 2 black circles\nD: There are 2 boxes with 1 black circle"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there is one tower with a black block at the top\nB: there is one tower with a red block at the top\nC: there are two towers with a black block at the top\nD: there is one tower with no block at the top", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_11_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_11_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_11_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there is one tower with a black block at the top\nB: there is one tower with a red block at the top\nC: there are two towers with a black block at the top\nD: there is one tower with no block at the top"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: A yellow block is under a green block.\nB: There is a yellow block on a blue block.\nC: There is a red block next to a blue block.\nD: The green block is above the red block.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_12_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_12_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_12_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: A yellow block is under a green block.\nB: There is a yellow block on a blue block.\nC: There is a red block next to a blue block.\nD: The green block is above the red block."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: All towers have different base colors.\nB: There are only two towers which has the same base color.\nC: Only one tower has a unique base color.\nD: There are three towers with the same base color.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_13_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_13_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_13_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: All towers have different base colors.\nB: There are only two towers which has the same base color.\nC: Only one tower has a unique base color.\nD: There are three towers with the same base color."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are three yellow blocks in the middle of a tower.\nB: There are two yellow blocks as the base of a tower.\nC: There are two red blocks as the base of a tower.\nD: There is one yellow block at the top of a tower.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_14_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_14_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_14_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are three yellow blocks in the middle of a tower.\nB: There are two yellow blocks as the base of a tower.\nC: There are two red blocks as the base of a tower.\nD: There is one yellow block at the top of a tower."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box with items of orange and pink color.\nB: There is a box with items of only black and blue color.\nC: There is a box with items of red and white color.\nD: There is a box with items of green and yellow color.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_15_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_15_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_15_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box with items of orange and pink color.\nB: There is a box with items of only black and blue color.\nC: There is a box with items of red and white color.\nD: There is a box with items of green and yellow color."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a black tower.\nB: There is a black tree.\nC: There is a black bridge.\nD: There is a white tower.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_16_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_16_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_16_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a black tower.\nB: There is a black tree.\nC: There is a black bridge.\nD: There is a white tower."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is exactly one yellow triangle touching the edge\nB: There is exactly one red triangle touching the edge\nC: There are no yellow triangles touching the edge\nD: There are two yellow triangles touching the edge", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_17_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_17_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_17_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is exactly one yellow triangle touching the edge\nB: There is exactly one red triangle touching the edge\nC: There are no yellow triangles touching the edge\nD: There are two yellow triangles touching the edge"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are exactly 2 blue blocks\nB: There are no blue blocks\nC: There are at least 3 blue blocks\nD: There are more than 10 blue blocks", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_18_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_18_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_18_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are exactly 2 blue blocks\nB: There are no blue blocks\nC: There are at least 3 blue blocks\nD: There are more than 10 blue blocks"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are two white items in the middle of the box.\nB: There is one black item and one white item at the edge of the box.\nC: There are two black items closely touching the bottom of a box.\nD: There is a single black item at the top of the box.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_19_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_19_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_19_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are two white items in the middle of the box.\nB: There is one black item and one white item at the edge of the box.\nC: There are two black items closely touching the bottom of a box.\nD: There is a single black item at the top of the box."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there is no tower with a blue block at the base\nB: there is a tower with a red block at the base\nC: there are multiple towers with a blue block at the base\nD: there is exactly one tower with a blue block at the base", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_20_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_20_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_20_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there is no tower with a blue block at the base\nB: there is a tower with a red block at the base\nC: there are multiple towers with a blue block at the base\nD: there is exactly one tower with a blue block at the base"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box, which a blue triangle and at least two black items.\nB: There is a box, which a blue circle and at least two black items.\nC: There is a box, which a blue triangle and only one black item.\nD: There is a box, which a green triangle and at least two black items.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_21_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_21_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_21_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box, which a blue triangle and at least two black items.\nB: There is a box, which a blue circle and at least two black items.\nC: There is a box, which a blue triangle and only one black item.\nD: There is a box, which a green triangle and at least two black items."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: One tower has a red block on top of a blue block\nB: One tower has a yellow block on top of a green block\nC: One tower has a yellow block on top of a blue block\nD: One tower has a blue block on top of a yellow block", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_22_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_22_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_22_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: One tower has a red block on top of a blue block\nB: One tower has a yellow block on top of a green block\nC: One tower has a yellow block on top of a blue block\nD: One tower has a blue block on top of a yellow block"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 3 towers with black blocks\nB: No towers have black blocks\nC: There is 1 tower that contains black blocks\nD: There are 2 towers that contain at least 1 black block", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_23_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_23_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_23_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 3 towers with black blocks\nB: No towers have black blocks\nC: There is 1 tower that contains black blocks\nD: There are 2 towers that contain at least 1 black block"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: A black block is at the top of a tower\nB: There is 1 tower with a black block at the bottom\nC: A tower with a red block at the bottom\nD: There are 2 towers with black blocks", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_24_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_24_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_24_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: A black block is at the top of a tower\nB: There is 1 tower with a black block at the bottom\nC: A tower with a red block at the bottom\nD: There are 2 towers with black blocks"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a pyramid with four blocks.\nB: There is a tower with four blocks.\nC: There is a tower with three blocks.\nD: There is a tower with five blocks.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_25_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_25_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_25_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a pyramid with four blocks.\nB: There is a tower with four blocks.\nC: There is a tower with three blocks.\nD: There is a tower with five blocks."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a yellow block on a blue block.\nB: There is a yellow block on a green block.\nC: There is a red block on a blue block.\nD: There is a blue block on a yellow block.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_26_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_26_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_26_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a yellow block on a blue block.\nB: There is a yellow block on a green block.\nC: There is a red block on a blue block.\nD: There is a blue block on a yellow block."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 3 boxes with a black item on top.\nB: There are 2 boxes with a white item on top.\nC: There is 1 box with a black item on top.\nD: There are 2 boxes with a black item on top.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_27_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_27_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_27_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 3 boxes with a black item on top.\nB: There are 2 boxes with a white item on top.\nC: There is 1 box with a black item on top.\nD: There are 2 boxes with a black item on top."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there is exactly one red triangle touching the edge\nB: there are two blue triangles touching the edge\nC: there is exactly one blue square touching the edge\nD: there is exactly one blue triangle touching the edge", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_28_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_28_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_28_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there is exactly one red triangle touching the edge\nB: there are two blue triangles touching the edge\nC: there is exactly one blue square touching the edge\nD: there is exactly one blue triangle touching the edge"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: One of the grey boxes has exactly seven objects\nB: One of the grey boxes has exactly eight objects\nC: One of the grey boxes has exactly four objects\nD: One of the grey box has exactly six objects", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_29_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_29_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_29_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: One of the grey boxes has exactly seven objects\nB: One of the grey boxes has exactly eight objects\nC: One of the grey boxes has exactly four objects\nD: One of the grey box has exactly six objects"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there is exactly one tower with two blocks\nB: there are no towers with three blocks\nC: there are at least two towers with four blocks\nD: there is at least one tower with three blocks", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_30_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_30_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_30_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there is exactly one tower with two blocks\nB: there are no towers with three blocks\nC: there are at least two towers with four blocks\nD: there is at least one tower with three blocks"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a blue triangle touching the side.\nB: There is a red hexagon in the center.\nC: There is a yellow square touching the side.\nD: There is a green circle in the corner.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_31_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_31_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_31_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a blue triangle touching the side.\nB: There is a red hexagon in the center.\nC: There is a yellow square touching the side.\nD: There is a green circle in the corner."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a tower with exactly four blocks with a yellow block at the bottom\nB: There is a tower with exactly three blocks with a yellow block at the top\nC: There is a tower with three red blocks at the top\nD: There is a tower with exactly two blocks, both yellow", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_32_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_32_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_32_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a tower with exactly four blocks with a yellow block at the bottom\nB: There is a tower with exactly three blocks with a yellow block at the top\nC: There is a tower with three red blocks at the top\nD: There is a tower with exactly two blocks, both yellow"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: No boxes contain yellow items\nB: All boxes contain blue items\nC: There is at least 1 yellow item in each box\nD: Each box contains only red items", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_33_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_33_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_33_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: No boxes contain yellow items\nB: All boxes contain blue items\nC: There is at least 1 yellow item in each box\nD: Each box contains only red items"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: None of the black triangles are touching the center\nB: All of the black triangles are touching an edge\nC: None of the black triangles are touching a edge\nD: Some black triangles are touching an edge", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_34_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_34_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_34_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: None of the black triangles are touching the center\nB: All of the black triangles are touching an edge\nC: None of the black triangles are touching a edge\nD: Some black triangles are touching an edge"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is 1 stack with only purple and orange blocks\nB: There is 1 pile with only green and white blocks\nC: There is 1 tower with only blue and black blocks\nD: There is 1 tower with only red and yellow blocks", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_35_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_35_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_35_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is 1 stack with only purple and orange blocks\nB: There is 1 pile with only green and white blocks\nC: There is 1 tower with only blue and black blocks\nD: There is 1 tower with only red and yellow blocks"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 3 boxes with a triangle in the middle\nB: There are 2 boxes with a triangle far from the corner\nC: There are 2 circles with a square closely touching a corner\nD: There are 2 boxes with a triangle closely touching a corner", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_36_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_36_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_36_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 3 boxes with a triangle in the middle\nB: There are 2 boxes with a triangle far from the corner\nC: There are 2 circles with a square closely touching a corner\nD: There are 2 boxes with a triangle closely touching a corner"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there is exactly one circle touching the edge\nB: there are no circles touching the edge\nC: there are at least two circles touching the edge\nD: there are three triangles touching the edge", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_37_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_37_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_37_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there is exactly one circle touching the edge\nB: there are no circles touching the edge\nC: there are at least two circles touching the edge\nD: there are three triangles touching the edge"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box with only two items of black and yellow color.\nB: There is a box with two items of red and blue color.\nC: There is a box with three items of black and yellow color.\nD: There is a drawer with two items of green and yellow color.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_38_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_38_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_38_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box with only two items of black and yellow color.\nB: There is a box with two items of red and blue color.\nC: There is a box with three items of black and yellow color.\nD: There is a drawer with two items of green and yellow color."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a tower with three blocks.\nB: There is a tower with six blocks.\nC: There is a tower with four blocks.\nD: There is a tower with five blocks.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_39_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_39_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_39_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a tower with three blocks.\nB: There is a tower with six blocks.\nC: There is a tower with four blocks.\nD: There is a tower with five blocks."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a three blocks tower which has only one blue block.\nB: There is a three blocks tower which has only red blocks.\nC: There is a two blocks tower which has only one blue block.\nD: There is a four blocks tower which has two blue blocks.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_40_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_40_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_40_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a three blocks tower which has only one blue block.\nB: There is a three blocks tower which has only red blocks.\nC: There is a two blocks tower which has only one blue block.\nD: There is a four blocks tower which has two blue blocks."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is ablue block on a black block.\nB: There is no block in the picture.\nC: There is a blue block next to a black block.\nD: A black block is on top of a blue block.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_41_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_41_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_41_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is ablue block on a black block.\nB: There is no block in the picture.\nC: There is a blue block next to a black block.\nD: A black block is on top of a blue block."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 2 towers with 2 yellow blocks\nB: There is 1 tower with 3 yellow blocks\nC: There is 1 tower with 2 yellow blocks\nD: There is 1 tower with 2 blue blocks", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_42_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_42_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_42_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 2 towers with 2 yellow blocks\nB: There is 1 tower with 3 yellow blocks\nC: There is 1 tower with 2 yellow blocks\nD: There is 1 tower with 2 blue blocks"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: A box holds a blue triangle, a blue square, and a yellow circle.\nB: A box contains a blue circle, a yellow triangle, and a yellow square.\nC: There is a box with a blue triangle, a yellow square and a yellow circle.\nD: There is a box with a blue triangle, a yellow square", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_43_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_43_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_43_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: A box holds a blue triangle, a blue square, and a yellow circle.\nB: A box contains a blue circle, a yellow triangle, and a yellow square.\nC: There is a box with a blue triangle, a yellow square and a yellow circle.\nD: There is a box with a blue triangle, a yellow square"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box with no items inside.\nB: There is a box with items of three different shapes.\nC: There is a box with items of only one color.\nD: There is a box with items of various colors.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_44_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_44_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_44_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box with no items inside.\nB: There is a box with items of three different shapes.\nC: There is a box with items of only one color.\nD: There is a box with items of various colors."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 2 boxes with only red and yellow items.\nB: There are 3 boxes with only black and yellow items.\nC: There are 2 boxes with only black and blue items.\nD: There are 2 boxes with only black and yellow items.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_45_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_45_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_45_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 2 boxes with only red and yellow items.\nB: There are 3 boxes with only black and yellow items.\nC: There are 2 boxes with only black and blue items.\nD: There are 2 boxes with only black and yellow items."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a red block above a yellow block.\nB: There is a black block above a yellow block.\nC: There is a yellow block below a black block.\nD: There is a yellow block above a black block.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_46_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_46_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_46_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a red block above a yellow block.\nB: There is a black block above a yellow block.\nC: There is a yellow block below a black block.\nD: There is a yellow block above a black block."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a tower with a yellow block over a blue block\nB: There is a tower with a red block over a blue block\nC: There is a tower with a yellow block over a green block\nD: There is a tower with a yellow block next to a blue block", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_47_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_47_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_47_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a tower with a yellow block over a blue block\nB: There is a tower with a red block over a blue block\nC: There is a tower with a yellow block over a green block\nD: There is a tower with a yellow block next to a blue block"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box with only two black and blue items.\nB: There is a box with different colored items.\nC: There is a box with several black and blue items.\nD: There is a box with only black items.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_48_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_48_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_48_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box with only two black and blue items.\nB: There is a box with different colored items.\nC: There is a box with several black and blue items.\nD: There is a box with only black items."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box with 4 items and 2 yellow squares\nB: There is a box with 3 items and 2 yellow squares in the middle.\nC: There is a box with 4 items and 2 yellow squares in the middle.\nD: There is a box with 4 items and 2 red circles in the middle.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_49_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_49_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_49_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box with 4 items and 2 yellow squares\nB: There is a box with 3 items and 2 yellow squares in the middle.\nC: There is a box with 4 items and 2 yellow squares in the middle.\nD: There is a box with 4 items and 2 red circles in the middle."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are two black towers with multiple blocks.\nB: There is a black tower with several blocks.\nC: There is a white tower with only one block.\nD: There is a black tower with only one block.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_50_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_50_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_50_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are two black towers with multiple blocks.\nB: There is a black tower with several blocks.\nC: There is a white tower with only one block.\nD: There is a black tower with only one block."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 3 black circles\nB: There are 2 white triangles\nC: There are 2 black triangles\nD: There are 5 black triangles", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_51_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_51_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_51_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 3 black circles\nB: There are 2 white triangles\nC: There are 2 black triangles\nD: There are 5 black triangles"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a tower with four blocks.\nB: There is a row of candles.\nC: There is a stack of plates.\nD: There is a pile of books.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_52_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_52_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_52_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a tower with four blocks.\nB: There is a row of candles.\nC: There is a stack of plates.\nD: There is a pile of books."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are no blue blocks\nB: There are at least 3 blue blocks\nC: There are exactly two blue blocks\nD: There is only one blue block", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_53_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_53_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_53_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are no blue blocks\nB: There are at least 3 blue blocks\nC: There are exactly two blue blocks\nD: There is only one blue block"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 4 yellow items and one large circle touching the wall.\nB: There are 3 yellow items but none are touching the wall.\nC: There are 3 yellow items touching the wall and at least one small circle nearly touching the wall.\nD: There are 2 yellow items touching the wall and no small circles.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_54_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_54_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_54_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 4 yellow items and one large circle touching the wall.\nB: There are 3 yellow items but none are touching the wall.\nC: There are 3 yellow items touching the wall and at least one small circle nearly touching the wall.\nD: There are 2 yellow items touching the wall and no small circles."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box with three colors and no items on top.\nB: There is a box with two colors and a white item on top.\nC: There is a round container with all 3 colors and a black item beside it.\nD: There is a box with all 3 colors and a black item on top.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_55_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_55_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_55_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box with three colors and no items on top.\nB: There is a box with two colors and a white item on top.\nC: There is a round container with all 3 colors and a black item beside it.\nD: There is a box with all 3 colors and a black item on top."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is 1 tower with a yellow block at the top\nB: There is 1 tower with a yellow block at the base\nC: There is 1 tower with a red block at the base\nD: There are 2 towers with a yellow block at the base", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_56_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_56_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_56_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is 1 tower with a yellow block at the top\nB: There is 1 tower with a yellow block at the base\nC: There is 1 tower with a red block at the base\nD: There are 2 towers with a yellow block at the base"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there are two black triangles touching the base\nB: there is one black triangle touching the base\nC: there is one black triangle not touching the base\nD: there are no black triangles touching the base", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_57_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_57_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_57_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there are two black triangles touching the base\nB: there is one black triangle touching the base\nC: there is one black triangle not touching the base\nD: there are no black triangles touching the base"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a tower with exactly three blocks with a yellow block at the top\nB: There is a tower with three blocks with a blue block at the top\nC: There is a tower with four blocks and a red block at the top\nD: There is a tower with two blocks and a green block at the top", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_58_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_58_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_58_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a tower with exactly three blocks with a yellow block at the top\nB: There is a tower with three blocks with a blue block at the top\nC: There is a tower with four blocks and a red block at the top\nD: There is a tower with two blocks and a green block at the top"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 2 blue blocks\nB: There is 1 blue block\nC: There are 2 red blocks\nD: There are 3 green blocks", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_59_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_59_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_59_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 2 blue blocks\nB: There is 1 blue block\nC: There are 2 red blocks\nD: There are 3 green blocks"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box with 3 items and a black item on top.\nB: There is a box with 5 items and a red item on top.\nC: There is a box with 2 items and a blue item on top.\nD: There is a box with 3 items and a white item on top.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_60_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_60_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_60_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box with 3 items and a black item on top.\nB: There is a box with 5 items and a red item on top.\nC: There is a box with 2 items and a blue item on top.\nD: There is a box with 3 items and a white item on top."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: t least two of the towers ha yellow bases.\nB: None of the towers have yellow bases.\nC: At most two of the towers have yellow bases.\nD: All of the towers have yellow bases.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_61_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_61_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_61_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: t least two of the towers ha yellow bases.\nB: None of the towers have yellow bases.\nC: At most two of the towers have yellow bases.\nD: All of the towers have yellow bases."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: the tower with two blocks has a black block at the top\nB: the tower with four blocks has a black block at the bottom\nC: the tower with four blocks has a red block at the top\nD: the tower with four blocks has a black block at the top", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_62_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_62_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_62_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: the tower with two blocks has a black block at the top\nB: the tower with four blocks has a black block at the bottom\nC: the tower with four blocks has a red block at the top\nD: the tower with four blocks has a black block at the top"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box with items of 2 different colors and a black square.\nB: There is a box with items of 4 different colors and no square.\nC: There is a box with items of 2 different colors and a red square.\nD: There is a box with items of 3 different colors and a black square.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_63_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_63_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_63_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box with items of 2 different colors and a black square.\nB: There is a box with items of 4 different colors and no square.\nC: There is a box with items of 2 different colors and a red square.\nD: There is a box with items of 3 different colors and a black square."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a yellow square touching the wall.\nB: There is a blue rectangle on the floor.\nC: There is a green circle floating in the air.\nD: There is a red triangle near the door.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_64_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_64_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_64_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a yellow square touching the wall.\nB: There is a blue rectangle on the floor.\nC: There is a green circle floating in the air.\nD: There is a red triangle near the door."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box with 3 items of the same color.\nB: There is a box with 4 items of all different colors.\nC: There is a box with 2 items of different colors.\nD: There is a box with 3 items of all 3 different colors.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_65_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_65_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_65_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box with 3 items of the same color.\nB: There is a box with 4 items of all different colors.\nC: There is a box with 2 items of different colors.\nD: There is a box with 3 items of all 3 different colors."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: the tower has two blue blocks with a yellow block at the top\nB: there are three blocks in the tower with a red block at the top\nC: there is a tower with exactly two blocks having a blue block at the top.\nD: the tower has a single blue block at the top and bottom", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_66_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_66_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_66_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: the tower has two blue blocks with a yellow block at the top\nB: there are three blocks in the tower with a red block at the top\nC: there is a tower with exactly two blocks having a blue block at the top.\nD: the tower has a single blue block at the top and bottom"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a tower with a yellow block over a red block\nB: There is a tower with a green block over a yellow block\nC: There is a tower with a yellow block over a blue block\nD: There is a tower with a blue block over a yellow block", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_67_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_67_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_67_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a tower with a yellow block over a red block\nB: There is a tower with a green block over a yellow block\nC: There is a tower with a yellow block over a blue block\nD: There is a tower with a blue block over a yellow block"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: green block on the side\nB: blue block at the bottom\nC: yellow block at the top\nD: red block in the middle", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_68_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_68_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_68_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: green block on the side\nB: blue block at the bottom\nC: yellow block at the top\nD: red block in the middle"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a square closely touching the side of a box.\nB: There is a square closely touching the bottom of a box.\nC: There is no square closely touching the top of a box.\nD: There is no square closely touching the bottom of a box.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_69_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_69_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_69_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a square closely touching the side of a box.\nB: There is a square closely touching the bottom of a box.\nC: There is no square closely touching the top of a box.\nD: There is no square closely touching the bottom of a box."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a tower with a yellow block, a blue block and a black block.\nB: There is a tower with a yellow block, a green block and a black block.\nC: There is a tower with a yellow block, a blue block and\nD: There is a tower with a red block, a blue block and a black block.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_70_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_70_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_70_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a tower with a yellow block, a blue block and a black block.\nB: There is a tower with a yellow block, a green block and a black block.\nC: There is a tower with a yellow block, a blue block and\nD: There is a tower with a red block, a blue block and a black block."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a black tower with only one block.\nB: There is a black tower with multiple blocks.\nC: There is a black tower with no blocks.\nD: There is a white tower with only one block.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_71_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_71_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_71_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a black tower with only one block.\nB: There is a black tower with multiple blocks.\nC: There is a black tower with no blocks.\nD: There is a white tower with only one block."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 3 boxes each with black and yellow items.\nB: There is a box with only 3 items of black and yellow color.\nC: There is a black and yellow box with 3 items.\nD: There is a box with various items of different colors.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_72_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_72_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_72_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 3 boxes each with black and yellow items.\nB: There is a box with only 3 items of black and yellow color.\nC: There is a black and yellow box with 3 items.\nD: There is a box with various items of different colors."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there is a black square touching the base\nB: there is a black circle touching the base\nC: there is a white square touching the base\nD: the square is floating above the base", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_73_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_73_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_73_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there is a black square touching the base\nB: there is a black circle touching the base\nC: there is a white square touching the base\nD: the square is floating above the base"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are exactly two black squares touching an edge\nB: There are exactly three black squares not touching any edge\nC: There is exactly one black square not touching any edge\nD: There are exactly two black squares not touching any edge", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_74_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_74_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_74_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are exactly two black squares touching an edge\nB: There are exactly three black squares not touching any edge\nC: There is exactly one black square not touching any edge\nD: There are exactly two black squares not touching any edge"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there is at least one tower with exactly two blocks having a blue block at the top\nB: there is no tower with exactly two blocks having a blue block at the top\nC: there is at least one tower with exactly two blocks having a red\nD: there is at least one tower with exactly three blocks having a blue block at the top", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_75_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_75_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_75_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there is at least one tower with exactly two blocks having a blue block at the top\nB: there is no tower with exactly two blocks having a blue block at the top\nC: there is at least one tower with exactly two blocks having a red\nD: there is at least one tower with exactly three blocks having a blue block at the top"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 3 boxes with blue, yellow, and red items\nB: There is 1 box with only blue and yellow items\nC: There is 1 box with only red and green items\nD: There are 2 boxes with only blue and yellow items", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_76_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_76_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_76_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 3 boxes with blue, yellow, and red items\nB: There is 1 box with only blue and yellow items\nC: There is 1 box with only red and green items\nD: There are 2 boxes with only blue and yellow items"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is 1 tower with a blue block at the base\nB: There is 1 tower with a blue block at the top\nC: There is 1 tower with a red block at the base\nD: There are 2 towers with a blue block at the base", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_77_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_77_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_77_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is 1 tower with a blue block at the base\nB: There is 1 tower with a blue block at the top\nC: There is 1 tower with a red block at the base\nD: There are 2 towers with a blue block at the base"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 3 towers with a blue block at the base\nB: There are 2 towers with a red block at the base\nC: There is 1 tower with a green block at the top\nD: There is 1 tower with a blue block at the base", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_78_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_78_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_78_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 3 towers with a blue block at the base\nB: There are 2 towers with a red block at the base\nC: There is 1 tower with a green block at the top\nD: There is 1 tower with a blue block at the base"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a blue block on a single-block tower.\nB: There is a blue block as the top of a tower with at least two blocks.\nC: There is a blue block at the base of a tower with at least two blocks.\nD: There is a green block as the top of a tower with at least two blocks.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_79_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_79_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_79_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a blue block on a single-block tower.\nB: There is a blue block as the top of a tower with at least two blocks.\nC: There is a blue block at the base of a tower with at least two blocks.\nD: There is a green block as the top of a tower with at least two blocks."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box with a yellow triangle and three blue items.\nB: There is a box with a yellow square and three green items.\nC: There is a box with a yellow circle and two red items.\nD: There is a box with a yellow circle and three blue items.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_80_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_80_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_80_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box with a yellow triangle and three blue items.\nB: There is a box with a yellow square and three green items.\nC: There is a box with a yellow circle and two red items.\nD: There is a box with a yellow circle and three blue items."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: All 3 colors are not touching the wall.\nB: None of the colors are touching the wall.\nC: ll 3 different colors are touching the wall.\nD: Only 2 colors are touching the wall.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_81_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_81_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_81_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: All 3 colors are not touching the wall.\nB: None of the colors are touching the wall.\nC: ll 3 different colors are touching the wall.\nD: Only 2 colors are touching the wall."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is one yellow block at the top of a tower.\nB: There is one red block as the base of a tower.\nC: There are two yellow blocks as the base of a tower.\nD: There are two blue blocks as the base of a tower.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_82_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_82_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_82_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is one yellow block at the top of a tower.\nB: There is one red block as the base of a tower.\nC: There are two yellow blocks as the base of a tower.\nD: There are two blue blocks as the base of a tower."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is at least one black block on a blue block.\nB: There is at least one black block on a green block.\nC: There is at least one blue block on a black block.\nD: There are only black blocks.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_83_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_83_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_83_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is at least one black block on a blue block.\nB: There is at least one black block on a green block.\nC: There is at least one blue block on a black block.\nD: There are only black blocks."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there is a red object touching the edge\nB: there is a green object touching the edge\nC: there is a blue object touching the edge\nD: there is a blue object in the center", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_84_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_84_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_84_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there is a red object touching the edge\nB: there is a green object touching the edge\nC: there is a blue object touching the edge\nD: there is a blue object in the center"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 2 towers with only blue and black blocks\nB: There is 1 tower with only yellow and blue blocks\nC: There is 1 tower with only red and green blocks\nD: There is 1 tower with only blue and black blocks", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_85_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_85_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_85_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 2 towers with only blue and black blocks\nB: There is 1 tower with only yellow and blue blocks\nC: There is 1 tower with only red and green blocks\nD: There is 1 tower with only blue and black blocks"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is one yellow item touching the floor.\nB: There are three yellow items touching the wall.\nC: There are two yellow items touching the wall.\nD: There are two blue items touching the wall.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_86_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_86_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_86_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is one yellow item touching the floor.\nB: There are three yellow items touching the wall.\nC: There are two yellow items touching the wall.\nD: There are two blue items touching the wall."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: one of the grey square contains exactly four objects\nB: one of the grey square contains exactly five objects\nC: one of the grey square contains exactly three objects\nD: one of the grey squares contains exactly six objects", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_87_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_87_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_87_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: one of the grey square contains exactly four objects\nB: one of the grey square contains exactly five objects\nC: one of the grey square contains exactly three objects\nD: one of the grey squares contains exactly six objects"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there are two blue circles touching the base\nB: there are two yellow circles touching the base\nC: there are three yellow circles touching the base\nD: there is one yellow circle in the middle", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_88_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_88_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_88_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there are two blue circles touching the base\nB: there are two yellow circles touching the base\nC: there are three yellow circles touching the base\nD: there is one yellow circle in the middle"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 2 black triangles\nB: There are no black triangles\nC: There are 3 black triangles\nD: There are 2 white triangles", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_89_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_89_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_89_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 2 black triangles\nB: There are no black triangles\nC: There are 3 black triangles\nD: There are 2 white triangles"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a red block at the top of the tower with only one block.\nB: There is a black block as the base of a tower with at least two blocks.\nC: There is a black block at the base of a tower with only one block.\nD: There is a black block floating in the air beside the tower.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_90_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_90_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_90_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a red block at the top of the tower with only one block.\nB: There is a black block as the base of a tower with at least two blocks.\nC: There is a black block at the base of a tower with only one block.\nD: There is a black block floating in the air beside the tower."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a green circle in the center of a box.\nB: There is a blue square closely touching the bottom of a box.\nC: There is a yellow star floating above a box.\nD: There is a red triangle in the top right corner of a box.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_91_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_91_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_91_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a green circle in the center of a box.\nB: There is a blue square closely touching the bottom of a box.\nC: There is a yellow star floating above a box.\nD: There is a red triangle in the top right corner of a box."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is only one yellow block as the base of a tower.\nB: There is one yellow block at the top of a tower.\nC: There are three yellow blocks at the base of the tower.\nD: There are two yellow blocks as the base of a tower.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_92_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_92_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_92_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is only one yellow block as the base of a tower.\nB: There is one yellow block at the top of a tower.\nC: There are three yellow blocks at the base of the tower.\nD: There are two yellow blocks as the base of a tower."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there is one tower having a black block over a blue block\nB: there is one tower having a blue block over a black block\nC: there are two towers having black blocks over blue blocks\nD: there is one tower having a green block over a black block", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_93_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_93_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_93_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there is one tower having a black block over a blue block\nB: there is one tower having a blue block over a black block\nC: there are two towers having black blocks over blue blocks\nD: there is one tower having a green block over a black block"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are three towers that have two blue blocks.\nB: There is one tower that has two blue blocks.\nC: There are two towers that have one blue block.\nD: There are two towers that has two blue blocks.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_94_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_94_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_94_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are three towers that have two blue blocks.\nB: There is one tower that has two blue blocks.\nC: There are two towers that have one blue block.\nD: There are two towers that has two blue blocks."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 4 yellow squares\nB: There are 3 yellow circles\nC: There are 3 yellow squares\nD: There are 3 blue squares", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_95_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_95_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_95_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 4 yellow squares\nB: There are 3 yellow circles\nC: There are 3 yellow squares\nD: There are 3 blue squares"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box with 2 items and a yellow one touching the wall.\nB: There are no items in the box.\nC: A green item is touching the wall.\nD: The box contains 5 items.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_96_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_96_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_96_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box with 2 items and a yellow one touching the wall.\nB: There are no items in the box.\nC: A green item is touching the wall.\nD: The box contains 5 items."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there is a tree beside the tower\nB: there is a car near the tower\nC: there is a tower with exactly one block\nD: there is a tower with three blocks", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_97_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_97_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_97_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there is a tree beside the tower\nB: there is a car near the tower\nC: there is a tower with exactly one block\nD: there is a tower with three blocks"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there are two towers with black blocks at the base\nB: there is exactly one tower with a white block at the base\nC: there is no tower with a black block at the base\nD: there is exactly one tower with a black block at the base", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_98_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_98_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_98_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there are two towers with black blocks at the base\nB: there is exactly one tower with a white block at the base\nC: there is no tower with a black block at the base\nD: there is exactly one tower with a black block at the base"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 4 black blocks\nB: There are no black blocks\nC: There are 3 black blocks\nD: There are 2 black blocks", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_99_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_99_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_99_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 4 black blocks\nB: There are no black blocks\nC: There are 3 black blocks\nD: There are 2 black blocks"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is only one tower with at least two blue blocks.\nB: There are no towers with yellow blocks.\nC: There are two towers with at least two yellow blocks.\nD: There is only one tower with at least two yellow blocks.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_100_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_100_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_100_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is only one tower with at least two blue blocks.\nB: There are no towers with yellow blocks.\nC: There are two towers with at least two yellow blocks.\nD: There is only one tower with at least two yellow blocks."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there are at least three red triangles not touching any edge\nB: there are at least three yellow triangles touching one edge\nC: there are at least three yellow triangles not touching any edge\nD: there are exactly two yellow triangles not touching any edge", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_101_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_101_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_101_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there are at least three red triangles not touching any edge\nB: there are at least three yellow triangles touching one edge\nC: there are at least three yellow triangles not touching any edge\nD: there are exactly two yellow triangles not touching any edge"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box with a red circle and at least two black items.\nB: There is a box with a yellow triangle and at least two black items.\nC: There is a box with a yellow square and at least two black items.\nD: There is a box with a yellow square and no black items.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_102_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_102_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_102_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box with a red circle and at least two black items.\nB: There is a box with a yellow triangle and at least two black items.\nC: There is a box with a yellow square and at least two black items.\nD: There is a box with a yellow square and no black items."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a tower with no blocks.\nB: There is a tower with only one block.\nC: There is a tower with multiple blocks.\nD: There is no tower at all.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_103_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_103_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_103_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a tower with no blocks.\nB: There is a tower with only one block.\nC: There is a tower with multiple blocks.\nD: There is no tower at all."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: yellow block at the top\nB: yellow block at the bottom\nC: blue block at the top\nD: red block in the middle", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_104_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_104_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_104_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: yellow block at the top\nB: yellow block at the bottom\nC: blue block at the top\nD: red block in the middle"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there are multiple towers with blocks of different colors\nB: there are no towers with blocks of the same color\nC: there are two towers with more than one block where all the blocks are of same color\nD: there is only one tower with blocks of the same color", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_105_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_105_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_105_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there are multiple towers with blocks of different colors\nB: there are no towers with blocks of the same color\nC: there are two towers with more than one block where all the blocks are of same color\nD: there is only one tower with blocks of the same color"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: One tower has a yellow block on top of a red block\nB: One tower has a blue block on top of a yellow block\nC: One tower has a red block on top of a green block\nD: One tower has a yellow block on top of a blue block", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_106_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_106_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_106_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: One tower has a yellow block on top of a red block\nB: One tower has a blue block on top of a yellow block\nC: One tower has a red block on top of a green block\nD: One tower has a yellow block on top of a blue block"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are at least 3 blue blocks\nB: There are no blue blocks\nC: There are exactly 5 blue blocks\nD: There are at most 2 blue blocks", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_107_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_107_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_107_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are at least 3 blue blocks\nB: There are no blue blocks\nC: There are exactly 5 blue blocks\nD: There are at most 2 blue blocks"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: The tower with four blocks has a black block at the bottom\nB: The tower with four blocks has a black block at the top\nC: The tower with three blocks has a black block at the top\nD: The tower with four blocks has a blue block at the top", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_108_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_108_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_108_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: The tower with four blocks has a black block at the bottom\nB: The tower with four blocks has a black block at the top\nC: The tower with three blocks has a black block at the top\nD: The tower with four blocks has a blue block at the top"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: All towers contain 1 green block\nB: Some towers contain 1 blue block\nC: All towers contain 2 blue blocks\nD: ll towers contain 1 blue block", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_109_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_109_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_109_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: All towers contain 1 green block\nB: Some towers contain 1 blue block\nC: All towers contain 2 blue blocks\nD: ll towers contain 1 blue block"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there are two towers with blue blocks in the middle\nB: there are three towers having red blocks at the top\nC: there is one tower with a green block at the base\nD: there are two towers having a yellow block at the base", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_110_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_110_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_110_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there are two towers with blue blocks in the middle\nB: there are three towers having red blocks at the top\nC: there is one tower with a green block at the base\nD: there are two towers having a yellow block at the base"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: All yellow blocks are at the bottom of the towers.\nB: There are no towers with a yellow block on top.\nC: There is at least a yellow block as the top of a tower.\nD: There are no yellow blocks in the towers.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_111_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_111_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_111_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: All yellow blocks are at the bottom of the towers.\nB: There are no towers with a yellow block on top.\nC: There is at least a yellow block as the top of a tower.\nD: There are no yellow blocks in the towers."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a black block in the middle of a tower with three blocks.\nB: There is a black block at the bottom of a tower with three blocks.\nC: There is a black block as the top of a tower with three blocks.\nD: There is a red block at the top of a tower with three blocks.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_112_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_112_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_112_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a black block in the middle of a tower with three blocks.\nB: There is a black block at the bottom of a tower with three blocks.\nC: There is a black block as the top of a tower with three blocks.\nD: There is a red block at the top of a tower with three blocks."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a tower with exactly four blocks with a black block at the bottom\nB: There is a tower with exactly one block which is black\nC: There is a tower with exactly three blocks with a white block at the top\nD: There is a tower with exactly two blocks with a black block at the top", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_113_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_113_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_113_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a tower with exactly four blocks with a black block at the bottom\nB: There is a tower with exactly one block which is black\nC: There is a tower with exactly three blocks with a white block at the top\nD: There is a tower with exactly two blocks with a black block at the top"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are three towers with the same height and the base is red.\nB: There is one tower with different height and the base is yellow.\nC: There are two towers with the same height and the base is green.\nD: There are two tower with different height and the base is yellow.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_114_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_114_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_114_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are three towers with the same height and the base is red.\nB: There is one tower with different height and the base is yellow.\nC: There are two towers with the same height and the base is green.\nD: There are two tower with different height and the base is yellow."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is one blue block as the base of a tower.\nB: There are two blue blocks as the base of a tower.\nC: There are two red blocks as the base of a tower.\nD: There are three blue blocks as the base of a tower.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_115_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_115_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_115_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is one blue block as the base of a tower.\nB: There are two blue blocks as the base of a tower.\nC: There are two red blocks as the base of a tower.\nD: There are three blue blocks as the base of a tower."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are two yellow blocks in the middle of the tower.\nB: The base of the tower contains a red block.\nC: There is one blue block as the base of the tower.\nD: There is only one yellow block as the base of a tower.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_116_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_116_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_116_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are two yellow blocks in the middle of the tower.\nB: The base of the tower contains a red block.\nC: There is one blue block as the base of the tower.\nD: There is only one yellow block as the base of a tower."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a blue block next to a black block.\nB: There is a blue block below a black block.\nC: There is a blue block above a black block.\nD: There is a black block above a blue block.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_117_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_117_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_117_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a blue block next to a black block.\nB: There is a blue block below a black block.\nC: There is a blue block above a black block.\nD: There is a black block above a blue block."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box with exactly two black items and at least two blue items.\nB: There is a box with exactly two blue items and at most two black items.\nC: There is a box with exactly two blue items and at least two black items.\nD: There is a box with less than two blue items and exactly two black items", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_118_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_118_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_118_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box with exactly two black items and at least two blue items.\nB: There is a box with exactly two blue items and at most two black items.\nC: There is a box with exactly two blue items and at least two black items.\nD: There is a box with less than two blue items and exactly two black items"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a yellow item closely touching right wall of a box.\nB: There is a red item closely touching right wall of a box.\nC: There is no yellow item closely touching right wall of a box.\nD: No items are touching the right wall of the box.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_119_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_119_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_119_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a yellow item closely touching right wall of a box.\nB: There is a red item closely touching right wall of a box.\nC: There is no yellow item closely touching right wall of a box.\nD: No items are touching the right wall of the box."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: All towers have only red blocks\nB: Only one tower has a blue block\nC: No towers have blue blocks\nD: ll 3 towers have at least 1 blue block", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_120_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_120_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_120_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: All towers have only red blocks\nB: Only one tower has a blue block\nC: No towers have blue blocks\nD: ll 3 towers have at least 1 blue block"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a square touching the corner that is not yellow.\nB: There is a square touching the middle that is not yellow.\nC: There is a square in the center that is not yellow.\nD: There is a square touching the corner that is yellow.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_121_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_121_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_121_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a square touching the corner that is not yellow.\nB: There is a square touching the middle that is not yellow.\nC: There is a square in the center that is not yellow.\nD: There is a square touching the corner that is yellow."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: tleast one black triangle is not touching the edge\nB: No black triangles are present\nC: All black triangles are touching the edge\nD: All triangles are white and touching the edge", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_122_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_122_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_122_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: tleast one black triangle is not touching the edge\nB: No black triangles are present\nC: All black triangles are touching the edge\nD: All triangles are white and touching the edge"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a tower with only one block.\nB: There is a tower with two blocks.\nC: There is no tower.\nD: There is a tower with multiple blocks.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_123_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_123_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_123_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a tower with only one block.\nB: There is a tower with two blocks.\nC: There is no tower.\nD: There is a tower with multiple blocks."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box with 4 items of 3 different colors.\nB: There is a box with 3 items of all 3 different colors.\nC: There is a box with 2 items of all 3 different colors.\nD: There is a box with 3 items of all the same color.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_124_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_124_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_124_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box with 4 items of 3 different colors.\nB: There is a box with 3 items of all 3 different colors.\nC: There is a box with 2 items of all 3 different colors.\nD: There is a box with 3 items of all the same color."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a green block at the top of the tower.\nB: The base of the tower is red.\nC: There is a blue block as the base of a tower.\nD: The tower has a yellow base block.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_125_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_125_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_125_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a green block at the top of the tower.\nB: The base of the tower is red.\nC: There is a blue block as the base of a tower.\nD: The tower has a yellow base block."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a pyramid with four blocks.\nB: There is a tower with six blocks.\nC: There is a house with four blocks.\nD: There is a tower with four blocks.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_126_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_126_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_126_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a pyramid with four blocks.\nB: There is a tower with six blocks.\nC: There is a house with four blocks.\nD: There is a tower with four blocks."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is no yellow circle closely touching the bottom of a box.\nB: There is no yellow triangle closely touching the bottom of a box.\nC: There is a yellow circle closely touching the bottom of a box.\nD: There is no blue circle closely touching the bottom of a box.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_127_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_127_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_127_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is no yellow circle closely touching the bottom of a box.\nB: There is no yellow triangle closely touching the bottom of a box.\nC: There is a yellow circle closely touching the bottom of a box.\nD: There is no blue circle closely touching the bottom of a box."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is 1 tower with a red block at the base\nB: There is 1 tower with a yellow block at the base\nC: There is 1 tower with a blue block at the base\nD: There are 2 towers with a yellow block at the base", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_128_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_128_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_128_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is 1 tower with a red block at the base\nB: There is 1 tower with a yellow block at the base\nC: There is 1 tower with a blue block at the base\nD: There are 2 towers with a yellow block at the base"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 3 white circles\nB: There are 4 black circles\nC: There are 2 black circles\nD: There are 2 white squares", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_129_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_129_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_129_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 3 white circles\nB: There are 4 black circles\nC: There are 2 black circles\nD: There are 2 white squares"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a black tower.\nB: There is a black house.\nC: There is a white tower.\nD: There is a black tree.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_130_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_130_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_130_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a black tower.\nB: There is a black house.\nC: There is a white tower.\nD: There is a black tree."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: All towers have different heights.\nB: Most towers are of different heights.\nC: There is only one tower with a unique height.\nD: There are at least two towers with the same height.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_131_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_131_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_131_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: All towers have different heights.\nB: Most towers are of different heights.\nC: There is only one tower with a unique height.\nD: There are at least two towers with the same height."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a green hexagon on the table.\nB: There is a red circle on the floor.\nC: There is a yellow square touching the wall.\nD: There is a blue triangle near the door.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_132_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_132_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_132_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a green hexagon on the table.\nB: There is a red circle on the floor.\nC: There is a yellow square touching the wall.\nD: There is a blue triangle near the door."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there are exactly two squares not touching any edge\nB: there are exactly five squares not touching any edge\nC: there are exactly three squares not touching any edge\nD: there are exactly four squares not touching any edge", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_133_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_133_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_133_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there are exactly two squares not touching any edge\nB: there are exactly five squares not touching any edge\nC: there are exactly three squares not touching any edge\nD: there are exactly four squares not touching any edge"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is 1 tower with a red block and a blue block\nB: There is 1 tower with a yellow block and a blue block\nC: There are 2 towers with yellow blocks\nD: There is 1 tower with yellow and red blocks", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_134_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_134_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_134_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is 1 tower with a red block and a blue block\nB: There is 1 tower with a yellow block and a blue block\nC: There are 2 towers with yellow blocks\nD: There is 1 tower with yellow and red blocks"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a blue item in the center of a box.\nB: There is a blue item touching the left wall of a box.\nC: There is a blue item closely touching right wall of a box.\nD: There is a red item closely touching right wall of a box.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_135_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_135_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_135_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a blue item in the center of a box.\nB: There is a blue item touching the left wall of a box.\nC: There is a blue item closely touching right wall of a box.\nD: There is a red item closely touching right wall of a box."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: One of the grey boxes has exactly two objects both of which are circles\nB: One of the grey boxes has exactly three objects all of which are squares\nC: One of the grey box has exactly three objects one of which is a circle\nD: One of the grey boxes has exactly one object which is a triangle", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_136_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_136_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_136_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: One of the grey boxes has exactly two objects both of which are circles\nB: One of the grey boxes has exactly three objects all of which are squares\nC: One of the grey box has exactly three objects one of which is a circle\nD: One of the grey boxes has exactly one object which is a triangle"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are three blue squares touching the edge\nB: There are no blue squares in the picture\nC: There is only one blue square in the center\nD: There are exactly two blue squares not touching the edge", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_137_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_137_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_137_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are three blue squares touching the edge\nB: There are no blue squares in the picture\nC: There is only one blue square in the center\nD: There are exactly two blue squares not touching the edge"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: Only 2 yellow and one black item are touching the wall.\nB: Only 2 yellow and one red item are touching the wall.\nC: Only 3 yellow and one black item are touching the wall.\nD: Only 1 yellow and one black item are touching the wall.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_138_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_138_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_138_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: Only 2 yellow and one black item are touching the wall.\nB: Only 2 yellow and one red item are touching the wall.\nC: Only 3 yellow and one black item are touching the wall.\nD: Only 1 yellow and one black item are touching the wall."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: One box has 2 yellow squares\nB: One box has 3 yellow squares\nC: Two boxes have yellow squares\nD: One box has 2 red squares", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_139_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_139_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_139_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: One box has 2 yellow squares\nB: One box has 3 yellow squares\nC: Two boxes have yellow squares\nD: One box has 2 red squares"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are more than 5 blue blocks\nB: There are no blue blocks\nC: There are exactly 2 blue blocks\nD: There are at least 3 blue blocks", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_140_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_140_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_140_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are more than 5 blue blocks\nB: There are no blue blocks\nC: There are exactly 2 blue blocks\nD: There are at least 3 blue blocks"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: the tower with three blocks has a yellow block at the top\nB: the tower with two blocks has a yellow block at the top\nC: the tower with two blocks has a blue block at the top\nD: the tower with two blocks has a yellow block at the bottom", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_141_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_141_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_141_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: the tower with three blocks has a yellow block at the top\nB: the tower with two blocks has a yellow block at the top\nC: the tower with two blocks has a blue block at the top\nD: the tower with two blocks has a yellow block at the bottom"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box with 4 items of various colors.\nB: There is a box with 3 items of all 3 different colors.\nC: There is a box with 3 items all of the same color.\nD: There is a box with 2 items of all 3 different colors.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_142_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_142_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_142_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box with 4 items of various colors.\nB: There is a box with 3 items of all 3 different colors.\nC: There is a box with 3 items all of the same color.\nD: There is a box with 2 items of all 3 different colors."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there is one tower with a white block at the top\nB: there is one tower with a black block at the top\nC: there is a skyscraper with a blue block at the top\nD: there are two towers with a red block at the top", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_143_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_143_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_143_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there is one tower with a white block at the top\nB: there is one tower with a black block at the top\nC: there is a skyscraper with a blue block at the top\nD: there are two towers with a red block at the top"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there is a tower with a four block which has a red block over a blue block\nB: there is a tower with a four block which has a blue block over a blue block\nC: there is a tower with three blocks which has a blue block over a blue block\nD: there is a tower with a four block which has a yellow", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_144_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_144_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_144_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there is a tower with a four block which has a red block over a blue block\nB: there is a tower with a four block which has a blue block over a blue block\nC: there is a tower with three blocks which has a blue block over a blue block\nD: there is a tower with a four block which has a yellow"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are three blue squares touching the edge\nB: There are two red squares in the center\nC: There are exactly two blue squares not touching the edge\nD: All blue squares are touching the edge", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_145_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_145_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_145_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are three blue squares touching the edge\nB: There are two red squares in the center\nC: There are exactly two blue squares not touching the edge\nD: All blue squares are touching the edge"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: t least two of the towers ha yellow bases.\nB: None of the towers have yellow bases.\nC: All of the towers have blue bases.\nD: At least one of the towers has a red base.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_146_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_146_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_146_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: t least two of the towers ha yellow bases.\nB: None of the towers have yellow bases.\nC: All of the towers have blue bases.\nD: At least one of the towers has a red base."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box with a blue square and a blue triangle.\nB: There is a box with a blue circle and a blue triangle.\nC: There is a box with a green circle and a green triangle.\nD: There is a box with a red circle and a red triangle.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_147_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_147_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_147_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box with a blue square and a blue triangle.\nB: There is a box with a blue circle and a blue triangle.\nC: There is a box with a green circle and a green triangle.\nD: There is a box with a red circle and a red triangle."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: The top of the two four block towers are red.\nB: The top of the two four block towers  are yellow.\nC: The bottom of the two four block towers are yellow.\nD: The top of the single five block tower is yellow.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_148_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_148_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_148_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: The top of the two four block towers are red.\nB: The top of the two four block towers  are yellow.\nC: The bottom of the two four block towers are yellow.\nD: The top of the single five block tower is yellow."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there is a tower with a yellow block over a blue block\nB: there is a tower with a red block over a green block\nC: there is a tower with a black block over a red block\nD: there is a tower with a black block over a blue block", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_149_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_149_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_149_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there is a tower with a yellow block over a blue block\nB: there is a tower with a red block over a green block\nC: there is a tower with a black block over a red block\nD: there is a tower with a black block over a blue block"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is 1 tower with a blue block at the base\nB: There are 2 towers with yellow blocks at the base\nC: There are 3 towers with green blocks at the base\nD: There is 1 tower with a yellow block at the base", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_150_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_150_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_150_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is 1 tower with a blue block at the base\nB: There are 2 towers with yellow blocks at the base\nC: There are 3 towers with green blocks at the base\nD: There is 1 tower with a yellow block at the base"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a tower with a blue block above a blue block\nB: There is a tower with a blue block above a red block\nC: There is a tower with a red block above a blue block\nD: There is a tower with a blue block below a blue block", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_151_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_151_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_151_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a tower with a blue block above a blue block\nB: There is a tower with a blue block above a red block\nC: There is a tower with a red block above a blue block\nD: There is a tower with a blue block below a blue block"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there is a red circle in the center\nB: there are no circles touching the edge\nC: all circles are blue\nD: there is at least one yellow circle touching the edge", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_152_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_152_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_152_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there is a red circle in the center\nB: there are no circles touching the edge\nC: all circles are blue\nD: there is at least one yellow circle touching the edge"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is only 1 tower that contains white blocks\nB: There are 3 towers that contain black blocks\nC: There are two towers that contain black blocks\nD: There is only 1 tower than contains black blccks", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_153_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_153_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_153_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is only 1 tower that contains white blocks\nB: There are 3 towers that contain black blocks\nC: There are two towers that contain black blocks\nD: There is only 1 tower than contains black blccks"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box with items of only black color.\nB: There is a box with exactly 3 items of black and blue color.\nC: There is a box with more than 3 items of black and red color.\nD: There is a box with 3 items at most of black and blue color.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_154_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_154_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_154_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box with items of only black color.\nB: There is a box with exactly 3 items of black and blue color.\nC: There is a box with more than 3 items of black and red color.\nD: There is a box with 3 items at most of black and blue color."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a stack of 2 green blocks side by side\nB: There is a tower with 2 red blocks stacked together\nC: There is a tower with 3 blue blocks stacked together\nD: There is a tower with 2 blue blocks stacked together", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_155_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_155_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_155_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a stack of 2 green blocks side by side\nB: There is a tower with 2 red blocks stacked together\nC: There is a tower with 3 blue blocks stacked together\nD: There is a tower with 2 blue blocks stacked together"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: One box has 3 yellow squares\nB: One box has 2 blue squares\nC: One box has 2 red squares\nD: One box has 2 yellow squares", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_156_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_156_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_156_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: One box has 3 yellow squares\nB: One box has 2 blue squares\nC: One box has 2 red squares\nD: One box has 2 yellow squares"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a tower with 3 blue blocks stacked together\nB: There is a tower with 2 red blocks stacked together\nC: There is a tower with 2 blue blocks stacked together\nD: There is a single blue block in the tower", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_157_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_157_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_157_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a tower with 3 blue blocks stacked together\nB: There is a tower with 2 red blocks stacked together\nC: There is a tower with 2 blue blocks stacked together\nD: There is a single blue block in the tower"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is no blue block.\nB: There is at least one black block on a blue block.\nC: There is a blue block on a black block.\nD: There are only black blocks.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_158_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_158_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_158_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is no blue block.\nB: There is at least one black block on a blue block.\nC: There is a blue block on a black block.\nD: There are only black blocks."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: The top of the two three block towers are yellow.\nB: The top of the two four block towers  are yellow.\nC: The bottom of the two four block towers are yellow.\nD: The top of the two four block towers are red.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_159_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_159_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_159_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: The top of the two three block towers are yellow.\nB: The top of the two four block towers  are yellow.\nC: The bottom of the two four block towers are yellow.\nD: The top of the two four block towers are red."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are exactly two black squares touching every edge\nB: There are exactly two white squares not touching any edge\nC: There are exactly two black squares not touching any edge\nD: There are exactly three black squares not touching any edge", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_160_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_160_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_160_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are exactly two black squares touching every edge\nB: There are exactly two white squares not touching any edge\nC: There are exactly two black squares not touching any edge\nD: There are exactly three black squares not touching any edge"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there are two yellow circles touching the base\nB: there are two red circles touching the base\nC: there are three yellow circles touching the base\nD: there is one yellow circle touching the base", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_161_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_161_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_161_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there are two yellow circles touching the base\nB: there are two red circles touching the base\nC: there are three yellow circles touching the base\nD: there is one yellow circle touching the base"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a black block at the bottom of a tower with two blocks.\nB: There is a black block alone on a flat surface.\nC: There is a red block at the top of a tower with three blocks.\nD: There is a black block as the top of a tower with at least two blocks.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_162_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_162_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_162_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a black block at the bottom of a tower with two blocks.\nB: There is a black block alone on a flat surface.\nC: There is a red block at the top of a tower with three blocks.\nD: There is a black block as the top of a tower with at least two blocks."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: All blue items are in different boxes.\nB: ll blue items are in the same box.\nC: None of the blue items are in the same box.\nD: Only some blue items are in the same box.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_163_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_163_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_163_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: All blue items are in different boxes.\nB: ll blue items are in the same box.\nC: None of the blue items are in the same box.\nD: Only some blue items are in the same box."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 3 towers with 1 yellow block\nB: There are 2 towers with 3 yellow blocks\nC: There is 1 tower with 2 red blocks\nD: There is 1 tower with 3 yellow blocks", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_164_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_164_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_164_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 3 towers with 1 yellow block\nB: There are 2 towers with 3 yellow blocks\nC: There is 1 tower with 2 red blocks\nD: There is 1 tower with 3 yellow blocks"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is 1 red circle\nB: There is 1 black circle\nC: There is 1 black square\nD: There are 2 black circles", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_165_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_165_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_165_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is 1 red circle\nB: There is 1 black circle\nC: There is 1 black square\nD: There are 2 black circles"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is exactly one tower with a red block at base\nB: There is exactly one tower with a yellow block at base\nC: There are two towers with a yellow block at base\nD: There is no tower with a yellow block at base", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_166_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_166_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_166_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is exactly one tower with a red block at base\nB: There is exactly one tower with a yellow block at base\nC: There are two towers with a yellow block at base\nD: There is no tower with a yellow block at base"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there is at least one tower which has a yellow block above a black block\nB: there is at least one tower which has a black block above a yellow block\nC: all towers have a yellow block above a black block\nD: there is no tower which has a yellow block above a black block", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_167_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_167_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_167_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there is at least one tower which has a yellow block above a black block\nB: there is at least one tower which has a black block above a yellow block\nC: all towers have a yellow block above a black block\nD: there is no tower which has a yellow block above a black block"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a tower with a blue block at the top.\nB: There is a blue tower with all blocks the same color.\nC: There is a tower that the second block from the base is blue.\nD: There is a tower with the second block from the top blue.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_168_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_168_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_168_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a tower with a blue block at the top.\nB: There is a blue tower with all blocks the same color.\nC: There is a tower that the second block from the base is blue.\nD: There is a tower with the second block from the top blue."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: blue squares are touching the bottom edge\nB: blue squares are touching the top edge\nC: blue squares are not touching any edge\nD: blue squares are touching all edges", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_169_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_169_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_169_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: blue squares are touching the bottom edge\nB: blue squares are touching the top edge\nC: blue squares are not touching any edge\nD: blue squares are touching all edges"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box with a yellow circle and 2 black squares.\nB: There is a box with a yellow triangle and 2 black circles.\nC: There is a box with a yellow triangle and 2 black squares.\nD: There is a box with a yellow triangle and 3 black squares.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_170_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_170_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_170_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box with a yellow circle and 2 black squares.\nB: There is a box with a yellow triangle and 2 black circles.\nC: There is a box with a yellow triangle and 2 black squares.\nD: There is a box with a yellow triangle and 3 black squares."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a yellow block as the base of a tower.\nB: There is a yellow block at the top of the tower.\nC: There is no yellow block as the base of a tower.\nD: There are two yellow blocks in the middle of the tower.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_171_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_171_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_171_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a yellow block as the base of a tower.\nB: There is a yellow block at the top of the tower.\nC: There is no yellow block as the base of a tower.\nD: There are two yellow blocks in the middle of the tower."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are multiple towers with different colors.\nB: There is a single block tower with multiple colors.\nC: There is a two blocks tower with different colors.\nD: There is a two blocks tower that has only one color.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_172_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_172_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_172_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are multiple towers with different colors.\nB: There is a single block tower with multiple colors.\nC: There is a two blocks tower with different colors.\nD: There is a two blocks tower that has only one color."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: the single block is yellow\nB: the tower with two blocks has a yellow block at the top\nC: the tower with two blocks has a red block at the top\nD: the tower with three blocks has a yellow block at the top", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_173_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_173_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_173_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: the single block is yellow\nB: the tower with two blocks has a yellow block at the top\nC: the tower with two blocks has a red block at the top\nD: the tower with three blocks has a yellow block at the top"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a tower with a blue block over a yellow block\nB: There is a tower with two yellow blocks\nC: There is a tower with a yellow block over a blue block\nD: There is a tower with a green block over a yellow block", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_174_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_174_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_174_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a tower with a blue block over a yellow block\nB: There is a tower with two yellow blocks\nC: There is a tower with a yellow block over a blue block\nD: There is a tower with a green block over a yellow block"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there is one black triangle not touching any edge\nB: there are two black triangles touching the edges\nC: there are no black triangles visible\nD: there are two black triangles not touching any edge", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_175_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_175_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_175_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there is one black triangle not touching any edge\nB: there are two black triangles touching the edges\nC: there are no black triangles visible\nD: there are two black triangles not touching any edge"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are no black triangles touching any edge\nB: There is exactly one black triangle touching an edge\nC: There are two black triangles not touching any edges\nD: There is exactly one black triangle not touching any edge", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_176_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_176_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_176_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are no black triangles touching any edge\nB: There is exactly one black triangle touching an edge\nC: There are two black triangles not touching any edges\nD: There is exactly one black triangle not touching any edge"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are two towers that has black block at the top.\nB: There are no towers in the image.\nC: There is only one tower with a black block at the top.\nD: There are two towers, but they have red blocks at the top.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_177_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_177_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_177_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are two towers that has black block at the top.\nB: There are no towers in the image.\nC: There is only one tower with a black block at the top.\nD: There are two towers, but they have red blocks at the top."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 4 black circles\nB: There are 3 black circles\nC: There are 2 white circles\nD: There are 2 black circles", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_178_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_178_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_178_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 4 black circles\nB: There are 3 black circles\nC: There are 2 white circles\nD: There are 2 black circles"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a blocking tower made of three stones.\nB: There is a tower with four same colored blocks.\nC: There is a tower with three different colored blocks.\nD: There is a tower that has three the same blocks color.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_179_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_179_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_179_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a blocking tower made of three stones.\nB: There is a tower with four same colored blocks.\nC: There is a tower with three different colored blocks.\nD: There is a tower that has three the same blocks color."}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are five circles not touching any edge\nB: There are exactly four circles touching one edge\nC: There are exactly three circles not touching any edge\nD: There are exactly four circles not touching any edge", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_180_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_180_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_180_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are five circles not touching any edge\nB: There are exactly four circles touching one edge\nC: There are exactly three circles not touching any edge\nD: There are exactly four circles not touching any edge"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a red block as the top of a tower with at least two blocks.\nB: There is a blue block as the bottom of a tower with at least two blocks.\nC: There is a blue block as the top of a tower with at least two blocks.\nD: There is a blue block as the top of a single block tower", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_181_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_181_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_181_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a red block as the top of a tower with at least two blocks.\nB: There is a blue block as the bottom of a tower with at least two blocks.\nC: There is a blue block as the top of a tower with at least two blocks.\nD: There is a blue block as the top of a single block tower"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: one of the grey squares is empty\nB: one of the grey squares has exactly five objects\nC: one of the grey square has exactly four objects\nD: one of the grey squares has exactly three objects", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_182_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_182_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_182_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: one of the grey squares is empty\nB: one of the grey squares has exactly five objects\nC: one of the grey square has exactly four objects\nD: one of the grey squares has exactly three objects"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is at least 1 circle closely touching a box corner\nB: There is at least 1 square closely tocuhing a box corner\nC: There is at least 1 square touching the center of a box\nD: There is at least 1 triangle closely touching a box corner", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_183_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_183_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_183_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is at least 1 circle closely touching a box corner\nB: There is at least 1 square closely tocuhing a box corner\nC: There is at least 1 square touching the center of a box\nD: There is at least 1 triangle closely touching a box corner"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: Each grey box contains atleast one yellow object touching the edge\nB: Each grey box has no object touching the edge\nC: Each grey box is empty\nD: Each grey box contains a green object", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_184_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_184_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_184_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: Each grey box contains atleast one yellow object touching the edge\nB: Each grey box has no object touching the edge\nC: Each grey box is empty\nD: Each grey box contains a green object"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is at least 1 tower with a blue block at the top\nB: There are exactly 2 towers with a blue block at the top\nC: There are no towers with a blue block at the top\nD: There is at least 1 tower with a green block at the top", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_185_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_185_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_185_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is at least 1 tower with a blue block at the top\nB: There are exactly 2 towers with a blue block at the top\nC: There are no towers with a blue block at the top\nD: There is at least 1 tower with a green block at the top"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: No towers have any height.\nB: All towers have different heights.\nC: There are at least two towers with the same height.\nD: There is only one tower with the same height.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_186_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_186_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_186_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: No towers have any height.\nB: All towers have different heights.\nC: There are at least two towers with the same height.\nD: There is only one tower with the same height."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a tower with three blue blocks.\nB: There is a tower with a black block and two blue blocks.\nC: There is a tower with two black blocks and a blue block.\nD: There is a tower with a black block and a red block.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_187_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_187_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_187_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a tower with three blue blocks.\nB: There is a tower with a black block and two blue blocks.\nC: There is a tower with two black blocks and a blue block.\nD: There is a tower with a black block and a red block."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there is a tower with a yellow block below a red block at the top\nB: there is a tower with a red block below a yellow block at the top\nC: there is a tower with a blue block below a green block at the top\nD: there is a tower with a yellow block below a yellow block at the top", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_188_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_188_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_188_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there is a tower with a yellow block below a red block at the top\nB: there is a tower with a red block below a yellow block at the top\nC: there is a tower with a blue block below a green block at the top\nD: there is a tower with a yellow block below a yellow block at the top"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 2 blue blocks\nB: There are 4 blue blocks\nC: There are 3 blue blocks\nD: There are 2 red blocks", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_189_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_189_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_189_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 2 blue blocks\nB: There are 4 blue blocks\nC: There are 3 blue blocks\nD: There are 2 red blocks"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is 1 tower with 2 yellow blocks at the base\nB: There are 2 towers with 1 yellow block at the base\nC: There is 1 tower with 1 red block at the base\nD: There is 1 tower with 1 yellow block at the base", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_190_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_190_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_190_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is 1 tower with 2 yellow blocks at the base\nB: There are 2 towers with 1 yellow block at the base\nC: There is 1 tower with 1 red block at the base\nD: There is 1 tower with 1 yellow block at the base"}, "output": {"output_text": "D"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are two red blocks as the base of a tower.\nB: There is one yellow block as the base of a tower.\nC: There are two yellow blocks as the base of a tower.\nD: There are three yellow blocks as the base of a tower.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_191_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_191_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_191_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are two red blocks as the base of a tower.\nB: There is one yellow block as the base of a tower.\nC: There are two yellow blocks as the base of a tower.\nD: There are three yellow blocks as the base of a tower."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: there is no tower with a yellow block above a black block\nB: there is at least one tower which has a yellow block above a black block\nC: every tower has a yellow block above a black block\nD: there is a yellow block below every black block", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_192_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_192_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_192_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: there is no tower with a yellow block above a black block\nB: there is at least one tower which has a yellow block above a black block\nC: every tower has a yellow block above a black block\nD: there is a yellow block below every black block"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 3 yellow squares\nB: There are 4 yellow squares\nC: There are 3 yellow circles\nD: There are 2 yellow squares", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_193_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_193_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_193_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 3 yellow squares\nB: There are 4 yellow squares\nC: There are 3 yellow circles\nD: There are 2 yellow squares"}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are exactly two black blocks as the top of a tower.\nB: There are exactly two black blocks at the bottom of a tower.\nC: There is one black block at the top of a tower.\nD: There are exactly three black blocks as the top of a tower.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_194_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_194_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_194_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are exactly two black blocks as the top of a tower.\nB: There are exactly two black blocks at the bottom of a tower.\nC: There is one black block at the top of a tower.\nD: There are exactly three black blocks as the top of a tower."}, "output": {"output_text": "A"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a box with items of various colors.\nB: There is a box with items of only one color.\nC: There is no box with items in it.\nD: There are multiple boxes with items of one color each.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_195_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_195_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_195_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a box with items of various colors.\nB: There is a box with items of only one color.\nC: There is no box with items in it.\nD: There are multiple boxes with items of one color each."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There is a blue item floating in the middle of the box.\nB: There is a blue item closely touching right wall of a box.\nC: There is a green item touching the ceiling of a box.\nD: There is a red item closely touching the left wall of a box.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_196_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_196_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_196_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There is a blue item floating in the middle of the box.\nB: There is a blue item closely touching right wall of a box.\nC: There is a green item touching the ceiling of a box.\nD: There is a red item closely touching the left wall of a box."}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 3 boxes with a black item on top.\nB: There are 2 boxes with a white item on top.\nC: There are 2 boxes with a black item on top.\nD: There are 2 boxes with nothing on top.", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_197_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_197_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_197_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 3 boxes with a black item on top.\nB: There are 2 boxes with a white item on top.\nC: There are 2 boxes with a black item on top.\nD: There are 2 boxes with nothing on top."}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 2 white circles\nB: There are 2 black circles\nC: There are 3 black circles\nD: There are 4 black circles", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_198_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_198_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_198_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 2 white circles\nB: There are 2 black circles\nC: There are 3 black circles\nD: There are 4 black circles"}, "output": {"output_text": "B"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "nlvr", "options": "A: There are 3 white blocks\nB: There are 2 black blocks\nC: There are 3 black blocks\nD: There are 4 black blocks", "visual_input_component": "synthetic image", "input": {"input_image_path": ["2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_199_0.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_199_1.png", "2D-spatial/Image_Captioning_with_Spatial_Context/Image_Captioning_with_Spatial_Context_199_2.png"], "question": "Please correctly describe this set of images from the perspective of the spatial context.", "context": "Please correctly describe this set of images from the perspective of the spatial context.\nSelect from the following choices.\nA: There are 3 white blocks\nB: There are 2 black blocks\nC: There are 3 black blocks\nD: There are 4 black blocks"}, "output": {"output_text": "C"}, "task": "Image_Captioning_with_Spatial_Context"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[755.199, 1687.366, 0.912], [762.788, 1426.72, 1.06], [630.862, 1571.41, 1.003], [798.666, 1466.0, 0.68]]\nB: [[752.983, 1266.122, 0.837], [675.965, 1325.79, 0.95], [756.034, 1628.64, 0.801], [696.028, 1386.4, 0.67]]\nC: [[753.288, 1465.266, 0.978], [728.298, 1787.05, 0.81], [812.921, 1600.32, 0.911], [834.531, 1762.1, 0.91]]\nD: [[705.473, 1565.779, 0.995], [702.703, 1568.02, 0.92], [699.933, 1570.26, 0.845], [697.471, 1572.4, 0.77]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_0_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_0_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_0_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_0_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_0_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_0_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_0_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_0_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[755.199, 1687.366, 0.912], [762.788, 1426.72, 1.06], [630.862, 1571.41, 1.003], [798.666, 1466.0, 0.68]]\nB: [[752.983, 1266.122, 0.837], [675.965, 1325.79, 0.95], [756.034, 1628.64, 0.801], [696.028, 1386.4, 0.67]]\nC: [[753.288, 1465.266, 0.978], [728.298, 1787.05, 0.81], [812.921, 1600.32, 0.911], [834.531, 1762.1, 0.91]]\nD: [[705.473, 1565.779, 0.995], [702.703, 1568.02, 0.92], [699.933, 1570.26, 0.845], [697.471, 1572.4, 0.77]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1779.824, 2603.51, 0.357], [1779.617, 2603.65, 0.307], [1779.419, 2603.795, 0.441], [1779.221, 2603.94, 0.574]]\nB: [[1820.656, 2604.08, 0.355], [1608.069, 2300.22, 0.346], [1590.874, 2776.0, 0.366], [1586.173, 2790.75, 0.602]]\nC: [[2053.203, 2562.85, 0.348], [1922.673, 2150.26, 0.297], [1762.465, 2275.213, 0.516], [1794.318, 2966.29, 0.652]]\nD: [[1676.53, 2378.45, 0.304], [1630.8, 2506.41, 0.34], [1460.959, 2537.73, 0.431], [1807.291, 2750.98, 0.686]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_1_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_1_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_1_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_1_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_1_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_1_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_1_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_1_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1779.824, 2603.51, 0.357], [1779.617, 2603.65, 0.307], [1779.419, 2603.795, 0.441], [1779.221, 2603.94, 0.574]]\nB: [[1820.656, 2604.08, 0.355], [1608.069, 2300.22, 0.346], [1590.874, 2776.0, 0.366], [1586.173, 2790.75, 0.602]]\nC: [[2053.203, 2562.85, 0.348], [1922.673, 2150.26, 0.297], [1762.465, 2275.213, 0.516], [1794.318, 2966.29, 0.652]]\nD: [[1676.53, 2378.45, 0.304], [1630.8, 2506.41, 0.34], [1460.959, 2537.73, 0.431], [1807.291, 2750.98, 0.686]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[648.721, 1650.064, 0.332], [648.899, 1649.775, 0.623], [649.829, 1649.485, 1.045], [649.829, 1649.485, 1.07]]\nB: [[652.771, 1330.238, 0.27], [755.559, 1907.786, 0.731], [646.182, 1892.589, 1.216], [597.495, 1779.123, 0.96]]\nC: [[699.141, 1374.83, 0.288], [751.036, 1823.862, 0.739], [640.56, 1789.673, 1.201], [595.069, 1390.425, 1.03]]\nD: [[747.646, 1793.494, 0.307], [651.728, 1395.546, 0.51], [557.034, 1729.201, 1.22], [743.254, 1745.25, 1.28]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_2_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_2_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_2_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_2_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_2_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_2_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_2_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_2_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[648.721, 1650.064, 0.332], [648.899, 1649.775, 0.623], [649.829, 1649.485, 1.045], [649.829, 1649.485, 1.07]]\nB: [[652.771, 1330.238, 0.27], [755.559, 1907.786, 0.731], [646.182, 1892.589, 1.216], [597.495, 1779.123, 0.96]]\nC: [[699.141, 1374.83, 0.288], [751.036, 1823.862, 0.739], [640.56, 1789.673, 1.201], [595.069, 1390.425, 1.03]]\nD: [[747.646, 1793.494, 0.307], [651.728, 1395.546, 0.51], [557.034, 1729.201, 1.22], [743.254, 1745.25, 1.28]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[372.341, 646.643, 0.41], [323.457, 728.14, 0.355], [328.402, 680.116, 0.356], [304.89, 638.729, 0.37]]\nB: [[374.71, 547.041, 0.452], [266.865, 747.941, 0.359], [360.504, 710.201, 0.414], [289.281, 637.508, 0.34]]\nC: [[324.105, 664.423, 0.389], [324.125, 664.423, 0.395], [324.145, 664.423, 0.402], [324.165, 664.423, 0.409]]\nD: [[382.975, 542.454, 0.448], [273.435, 575.926, 0.36], [306.415, 582.477, 0.37], [367.698, 624.849, 0.412]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_3_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_3_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_3_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_3_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_3_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_3_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_3_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_3_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[372.341, 646.643, 0.41], [323.457, 728.14, 0.355], [328.402, 680.116, 0.356], [304.89, 638.729, 0.37]]\nB: [[374.71, 547.041, 0.452], [266.865, 747.941, 0.359], [360.504, 710.201, 0.414], [289.281, 637.508, 0.34]]\nC: [[324.105, 664.423, 0.389], [324.125, 664.423, 0.395], [324.145, 664.423, 0.402], [324.165, 664.423, 0.409]]\nD: [[382.975, 542.454, 0.448], [273.435, 575.926, 0.36], [306.415, 582.477, 0.37], [367.698, 624.849, 0.412]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[319.582, 1213.1, 0.433], [414.088, 1032.0, 0.628], [421.328, 1137.51, 0.496], [344.955, 1253.44, 0.638]]\nB: [[363.433, 1098.33, 0.529], [363.433, 1098.33, 0.564], [363.433, 1098.33, 0.599], [363.433, 1098.33, 0.634]]\nC: [[310.015, 1243.97, 0.462], [343.153, 1122.0, 0.606], [333.209, 1019.58, 0.517], [431.855, 1307.51, 0.556]]\nD: [[300.468, 996.48, 0.537], [331.062, 1300.52, 0.537], [400.879, 1176.8, 0.602], [389.732, 1170.04, 0.637]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_4_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_4_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_4_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_4_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_4_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_4_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_4_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_4_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[319.582, 1213.1, 0.433], [414.088, 1032.0, 0.628], [421.328, 1137.51, 0.496], [344.955, 1253.44, 0.638]]\nB: [[363.433, 1098.33, 0.529], [363.433, 1098.33, 0.564], [363.433, 1098.33, 0.599], [363.433, 1098.33, 0.634]]\nC: [[310.015, 1243.97, 0.462], [343.153, 1122.0, 0.606], [333.209, 1019.58, 0.517], [431.855, 1307.51, 0.556]]\nD: [[300.468, 996.48, 0.537], [331.062, 1300.52, 0.537], [400.879, 1176.8, 0.602], [389.732, 1170.04, 0.637]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[393.191, 899.659, 0.591], [332.44, 1277.512, 0.54], [378.779, 1199.743, 0.483], [388.415, 1186.22, 0.761]]\nB: [[373.967, 1296.428, 0.56], [468.08, 1301.812, 0.52], [423.341, 1242.289, 0.478], [463.453, 1026.04, 0.769]]\nC: [[396.335, 1122.142, 0.513], [395.62, 1122.119, 0.55], [394.907, 1122.104, 0.586], [392.701, 1122.16, 0.734]]\nD: [[366.604, 1119.109, 0.592], [355.44, 1130.172, 0.57], [469.284, 957.093, 0.569], [384.2, 1040.44, 0.813]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_5_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_5_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_5_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_5_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_5_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_5_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_5_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_5_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[393.191, 899.659, 0.591], [332.44, 1277.512, 0.54], [378.779, 1199.743, 0.483], [388.415, 1186.22, 0.761]]\nB: [[373.967, 1296.428, 0.56], [468.08, 1301.812, 0.52], [423.341, 1242.289, 0.478], [463.453, 1026.04, 0.769]]\nC: [[396.335, 1122.142, 0.513], [395.62, 1122.119, 0.55], [394.907, 1122.104, 0.586], [392.701, 1122.16, 0.734]]\nD: [[366.604, 1119.109, 0.592], [355.44, 1130.172, 0.57], [469.284, 957.093, 0.569], [384.2, 1040.44, 0.813]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1912.796, 2415.138, 0.226], [1612.76, 2000.136, 0.469], [1650.05, 2082.715, 0.705], [1870.661, 2666.852, 0.889]]\nB: [[2044.921, 2427.821, 0.251], [2197.918, 2811.408, 0.435], [1594.209, 2091.568, 0.541], [1595.884, 2911.557, 0.739]]\nC: [[1855.648, 2492.891, 0.267], [1855.098, 2493.555, 0.467], [1854.597, 2494.197, 0.634], [1854.096, 2494.841, 0.801]]\nD: [[1651.93, 2405.938, 0.246], [2153.625, 2215.89, 0.442], [1530.771, 2046.654, 0.746], [2201.19, 2084.755, 0.722]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_6_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_6_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_6_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_6_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_6_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_6_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_6_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_6_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1912.796, 2415.138, 0.226], [1612.76, 2000.136, 0.469], [1650.05, 2082.715, 0.705], [1870.661, 2666.852, 0.889]]\nB: [[2044.921, 2427.821, 0.251], [2197.918, 2811.408, 0.435], [1594.209, 2091.568, 0.541], [1595.884, 2911.557, 0.739]]\nC: [[1855.648, 2492.891, 0.267], [1855.098, 2493.555, 0.467], [1854.597, 2494.197, 0.634], [1854.096, 2494.841, 0.801]]\nD: [[1651.93, 2405.938, 0.246], [2153.625, 2215.89, 0.442], [1530.771, 2046.654, 0.746], [2201.19, 2084.755, 0.722]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1835.457, 2530.979, -0.6], [1831.738, 2535.381, -0.475], [1828.016, 2539.789, -0.35], [1823.826, 2544.548, -0.226]]\nB: [[1728.159, 2657.767, -0.6], [1671.146, 2191.293, -0.456], [1889.85, 2711.258, -0.39], [1500.543, 2142.17, -0.266]]\nC: [[1868.34, 2656.949, -0.6], [1847.319, 3027.849, -0.442], [1621.372, 2206.666, -0.29], [1944.205, 2824.5, -0.259]]\nD: [[1798.206, 2853.486, -0.5], [1737.945, 2982.299, -0.415], [1782.37, 2464.903, -0.33], [2009.484, 2271.222, -0.188]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_7_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_7_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_7_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_7_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_7_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_7_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_7_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_7_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1835.457, 2530.979, -0.6], [1831.738, 2535.381, -0.475], [1828.016, 2539.789, -0.35], [1823.826, 2544.548, -0.226]]\nB: [[1728.159, 2657.767, -0.6], [1671.146, 2191.293, -0.456], [1889.85, 2711.258, -0.39], [1500.543, 2142.17, -0.266]]\nC: [[1868.34, 2656.949, -0.6], [1847.319, 3027.849, -0.442], [1621.372, 2206.666, -0.29], [1944.205, 2824.5, -0.259]]\nD: [[1798.206, 2853.486, -0.5], [1737.945, 2982.299, -0.415], [1782.37, 2464.903, -0.33], [2009.484, 2271.222, -0.188]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[2091.918, 2820.157, -0.699], [2085.742, 2471.429, -0.7], [1560.979, 2272.985, -0.534], [1615.9, 2272.87, -0.391]]\nB: [[1807.911, 2559.964, -0.854], [1804.558, 2563.859, -0.725], [1801.201, 2567.758, -0.596], [1797.7, 2572.03, -0.433]]\nC: [[2128.41, 2627.282, -0.79], [1547.739, 2837.704, -0.791], [1686.195, 2104.816, -0.492], [1645.0, 2561.72, -0.364]]\nD: [[1649.251, 2758.133, -0.686], [1533.206, 2890.142, -0.825], [2007.154, 2531.762, -0.478], [2127.3, 2070.45, -0.347]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_8_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_8_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_8_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_8_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_8_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_8_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_8_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_8_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[2091.918, 2820.157, -0.699], [2085.742, 2471.429, -0.7], [1560.979, 2272.985, -0.534], [1615.9, 2272.87, -0.391]]\nB: [[1807.911, 2559.964, -0.854], [1804.558, 2563.859, -0.725], [1801.201, 2567.758, -0.596], [1797.7, 2572.03, -0.433]]\nC: [[2128.41, 2627.282, -0.79], [1547.739, 2837.704, -0.791], [1686.195, 2104.816, -0.492], [1645.0, 2561.72, -0.364]]\nD: [[1649.251, 2758.133, -0.686], [1533.206, 2890.142, -0.825], [2007.154, 2531.762, -0.478], [2127.3, 2070.45, -0.347]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[437.202, 1086.964, 0.692], [437.221, 1087.01, 0.817], [437.244, 1087.066, 0.842], [437.244, 1087.066, 0.842]]\nB: [[357.432, 1159.623, 0.607], [351.412, 1296.28, 0.836], [516.977, 1219.588, 0.769], [425.277, 1005.318, 0.772]]\nC: [[520.991, 1274.564, 0.812], [478.068, 1065.93, 0.705], [398.533, 912.914, 0.73], [470.356, 1123.201, 0.712]]\nD: [[377.562, 951.154, 0.715], [472.017, 932.55, 0.727], [361.039, 1097.241, 0.701], [508.246, 1284.882, 0.804]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_9_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_9_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_9_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_9_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_9_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_9_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_9_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_9_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[437.202, 1086.964, 0.692], [437.221, 1087.01, 0.817], [437.244, 1087.066, 0.842], [437.244, 1087.066, 0.842]]\nB: [[357.432, 1159.623, 0.607], [351.412, 1296.28, 0.836], [516.977, 1219.588, 0.769], [425.277, 1005.318, 0.772]]\nC: [[520.991, 1274.564, 0.812], [478.068, 1065.93, 0.705], [398.533, 912.914, 0.73], [470.356, 1123.201, 0.712]]\nD: [[377.562, 951.154, 0.715], [472.017, 932.55, 0.727], [361.039, 1097.241, 0.701], [508.246, 1284.882, 0.804]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[506.527, 1099.076, 0.589], [420.185, 1298.755, 0.489], [362.914, 1033.947, 0.414], [396.859, 1002.99, 0.306]]\nB: [[424.014, 1100.606, 0.706], [424.133, 1100.728, 0.496], [424.173, 1100.769, 0.426], [424.212, 1100.81, 0.306]]\nC: [[456.889, 932.553, 0.793], [391.51, 1069.937, 0.527], [431.845, 933.545, 0.5], [394.898, 1320.05, 0.264]]\nD: [[378.115, 1221.413, 0.672], [347.816, 1131.373, 0.529], [364.847, 1229.038, 0.466], [397.183, 1091.0, 0.25]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_10_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_10_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_10_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_10_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_10_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_10_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_10_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_10_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[506.527, 1099.076, 0.589], [420.185, 1298.755, 0.489], [362.914, 1033.947, 0.414], [396.859, 1002.99, 0.306]]\nB: [[424.014, 1100.606, 0.706], [424.133, 1100.728, 0.496], [424.173, 1100.769, 0.426], [424.212, 1100.81, 0.306]]\nC: [[456.889, 932.553, 0.793], [391.51, 1069.937, 0.527], [431.845, 933.545, 0.5], [394.898, 1320.05, 0.264]]\nD: [[378.115, 1221.413, 0.672], [347.816, 1131.373, 0.529], [364.847, 1229.038, 0.466], [397.183, 1091.0, 0.25]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[420.731, 1013.531, 0.8], [361.227, 1037.43, 0.587], [485.796, 1006.664, 0.647], [418.217, 1072.225, 0.587]]\nB: [[374.363, 1267.963, 0.71], [402.578, 1232.818, 0.668], [434.034, 921.569, 0.52], [421.208, 1297.52, 0.506]]\nC: [[425.982, 1091.597, 0.73], [425.994, 1091.597, 0.733], [426.028, 1091.597, 0.541], [426.039, 1091.597, 0.619]]\nD: [[468.986, 997.688, 0.61], [441.053, 1239.106, 0.742], [435.348, 1170.376, 0.513], [358.562, 1151.219, 0.672]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_11_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_11_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_11_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_11_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_11_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_11_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_11_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_11_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[420.731, 1013.531, 0.8], [361.227, 1037.43, 0.587], [485.796, 1006.664, 0.647], [418.217, 1072.225, 0.587]]\nB: [[374.363, 1267.963, 0.71], [402.578, 1232.818, 0.668], [434.034, 921.569, 0.52], [421.208, 1297.52, 0.506]]\nC: [[425.982, 1091.597, 0.73], [425.994, 1091.597, 0.733], [426.028, 1091.597, 0.541], [426.039, 1091.597, 0.619]]\nD: [[468.986, 997.688, 0.61], [441.053, 1239.106, 0.742], [435.348, 1170.376, 0.513], [358.562, 1151.219, 0.672]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[2016.542, 845.631, 1.13], [2028.77, 874.497, 1.083], [1971.835, 957.221, 1.15], [1681.888, 953.919, 1.139]]\nB: [[1978.335, 863.179, 0.943], [1978.33, 863.187, 1.065], [1978.325, 863.194, 1.015], [1978.319, 863.201, 0.965]]\nC: [[1640.806, 1002.654, 1.092], [2125.94, 982.727, 1.09], [1765.046, 957.217, 1.116], [2264.988, 900.054, 0.911]]\nD: [[1688.119, 734.16, 0.877], [1887.56, 864.137, 1.092], [2139.033, 980.382, 1.191], [1969.445, 813.79, 0.775]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_12_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_12_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_12_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_12_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_12_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_12_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_12_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_12_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[2016.542, 845.631, 1.13], [2028.77, 874.497, 1.083], [1971.835, 957.221, 1.15], [1681.888, 953.919, 1.139]]\nB: [[1978.335, 863.179, 0.943], [1978.33, 863.187, 1.065], [1978.325, 863.194, 1.015], [1978.319, 863.201, 0.965]]\nC: [[1640.806, 1002.654, 1.092], [2125.94, 982.727, 1.09], [1765.046, 957.217, 1.116], [2264.988, 900.054, 0.911]]\nD: [[1688.119, 734.16, 0.877], [1887.56, 864.137, 1.092], [2139.033, 980.382, 1.191], [1969.445, 813.79, 0.775]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[639.138, 1624.989, -0.086], [636.359, 1627.431, -0.053], [632.807, 1630.318, 0.08], [629.158, 1633.096, 0.314]]\nB: [[543.626, 1367.896, -0.075], [653.208, 1574.861, -0.054], [757.25, 1346.07, 0.08], [540.23, 1650.674, 0.362]]\nC: [[537.409, 1426.609, -0.082], [626.472, 1686.779, -0.051], [691.803, 1387.102, 0.07], [744.081, 1369.746, 0.365]]\nD: [[557.32, 1516.073, -0.08], [526.841, 1596.276, -0.06], [611.464, 1793.408, 0.1], [674.543, 1593.857, 0.364]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_13_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_13_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_13_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_13_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_13_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_13_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_13_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_13_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[639.138, 1624.989, -0.086], [636.359, 1627.431, -0.053], [632.807, 1630.318, 0.08], [629.158, 1633.096, 0.314]]\nB: [[543.626, 1367.896, -0.075], [653.208, 1574.861, -0.054], [757.25, 1346.07, 0.08], [540.23, 1650.674, 0.362]]\nC: [[537.409, 1426.609, -0.082], [626.472, 1686.779, -0.051], [691.803, 1387.102, 0.07], [744.081, 1369.746, 0.365]]\nD: [[557.32, 1516.073, -0.08], [526.841, 1596.276, -0.06], [611.464, 1793.408, 0.1], [674.543, 1593.857, 0.364]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[407.887, 1163.323, 0.511], [407.929, 1163.41, 0.511], [407.934, 1163.409, 0.524], [407.951, 1163.403, 0.537]]\nB: [[388.853, 1125.736, 0.56], [434.747, 1231.09, 0.419], [348.138, 1361.198, 0.597], [328.283, 1154.348, 0.58]]\nC: [[374.741, 1227.419, 0.46], [461.986, 1151.55, 0.428], [486.887, 1127.556, 0.491], [354.147, 1359.889, 0.505]]\nD: [[471.139, 1113.037, 0.544], [333.263, 956.23, 0.501], [355.318, 1217.053, 0.538], [456.915, 1087.324, 0.512]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_14_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_14_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_14_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_14_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_14_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_14_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_14_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_14_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[407.887, 1163.323, 0.511], [407.929, 1163.41, 0.511], [407.934, 1163.409, 0.524], [407.951, 1163.403, 0.537]]\nB: [[388.853, 1125.736, 0.56], [434.747, 1231.09, 0.419], [348.138, 1361.198, 0.597], [328.283, 1154.348, 0.58]]\nC: [[374.741, 1227.419, 0.46], [461.986, 1151.55, 0.428], [486.887, 1127.556, 0.491], [354.147, 1359.889, 0.505]]\nD: [[471.139, 1113.037, 0.544], [333.263, 956.23, 0.501], [355.318, 1217.053, 0.538], [456.915, 1087.324, 0.512]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1269.546, 1024.852, 1.042], [1269.744, 1025.178, 1.042], [1270.216, 1025.754, 0.992], [1270.837, 1026.506, 1.042]]\nB: [[1423.653, 1173.455, 1.097], [1300.351, 866.909, 0.934], [1179.097, 946.025, 1.104], [1411.454, 1138.532, 1.187]]\nC: [[1145.602, 896.06, 1.073], [1144.171, 966.324, 1.002], [1499.487, 1042.061, 0.91], [1482.233, 956.251, 1.138]]\nD: [[1137.684, 944.23, 0.905], [1316.46, 1218.835, 0.861], [1509.763, 1193.692, 1.048], [1361.774, 1108.409, 0.891]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_15_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_15_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_15_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_15_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_15_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_15_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_15_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_15_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1269.546, 1024.852, 1.042], [1269.744, 1025.178, 1.042], [1270.216, 1025.754, 0.992], [1270.837, 1026.506, 1.042]]\nB: [[1423.653, 1173.455, 1.097], [1300.351, 866.909, 0.934], [1179.097, 946.025, 1.104], [1411.454, 1138.532, 1.187]]\nC: [[1145.602, 896.06, 1.073], [1144.171, 966.324, 1.002], [1499.487, 1042.061, 0.91], [1482.233, 956.251, 1.138]]\nD: [[1137.684, 944.23, 0.905], [1316.46, 1218.835, 0.861], [1509.763, 1193.692, 1.048], [1361.774, 1108.409, 0.891]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1251.433, 1108.948, 0.433], [1176.759, 1115.714, 0.456], [1227.53, 991.616, 0.633], [1095.585, 1183.286, 0.618]]\nB: [[1509.989, 949.628, 0.539], [1350.384, 1212.22, 0.56], [1071.64, 893.308, 0.484], [1153.706, 1063.833, 0.645]]\nC: [[1298.993, 1034.258, 0.529], [1299.542, 1034.749, 0.554], [1300.09, 1035.239, 0.579], [1300.639, 1035.729, 0.604]]\nD: [[1378.947, 975.996, 0.598], [1493.813, 900.58, 0.493], [1370.14, 1033.836, 0.656], [1047.788, 1106.271, 0.659]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_16_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_16_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_16_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_16_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_16_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_16_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_16_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_16_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1251.433, 1108.948, 0.433], [1176.759, 1115.714, 0.456], [1227.53, 991.616, 0.633], [1095.585, 1183.286, 0.618]]\nB: [[1509.989, 949.628, 0.539], [1350.384, 1212.22, 0.56], [1071.64, 893.308, 0.484], [1153.706, 1063.833, 0.645]]\nC: [[1298.993, 1034.258, 0.529], [1299.542, 1034.749, 0.554], [1300.09, 1035.239, 0.579], [1300.639, 1035.729, 0.604]]\nD: [[1378.947, 975.996, 0.598], [1493.813, 900.58, 0.493], [1370.14, 1033.836, 0.656], [1047.788, 1106.271, 0.659]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[306.186, 763.667, 1.488], [378.546, 697.6, 1.528], [320.79, 550.53, 1.74], [377.634, 523.623, 1.596]]\nB: [[387.559, 726.167, 1.211], [356.987, 561.8, 1.228], [377.54, 655.25, 1.8], [372.07, 602.526, 1.352]]\nC: [[392.768, 743.908, 1.542], [292.481, 723.4, 1.31], [330.74, 682.85, 1.79], [283.31, 638.538, 1.433]]\nD: [[348.147, 646.209, 1.444], [348.144, 646.2, 1.482], [348.14, 646.19, 1.52], [348.137, 646.181, 1.559]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_17_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_17_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_17_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_17_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_17_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_17_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_17_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_17_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[306.186, 763.667, 1.488], [378.546, 697.6, 1.528], [320.79, 550.53, 1.74], [377.634, 523.623, 1.596]]\nB: [[387.559, 726.167, 1.211], [356.987, 561.8, 1.228], [377.54, 655.25, 1.8], [372.07, 602.526, 1.352]]\nC: [[392.768, 743.908, 1.542], [292.481, 723.4, 1.31], [330.74, 682.85, 1.79], [283.31, 638.538, 1.433]]\nD: [[348.147, 646.209, 1.444], [348.144, 646.2, 1.482], [348.14, 646.19, 1.52], [348.137, 646.181, 1.559]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1706.39, 1019.22, 0.455], [2191.986, 926.298, 0.316], [1675.02, 886.17, 0.299], [1941.62, 757.75, 0.341]]\nB: [[2247.24, 737.46, 0.384], [1527.442, 724.25, 0.347], [1575.02, 976.52, 0.327], [1630.08, 842.33, 0.316]]\nC: [[2075.96, 1012.24, 0.409], [1869.437, 795.581, 0.371], [2223.74, 1044.39, 0.397], [1567.73, 972.01, 0.379]]\nD: [[1895.77, 878.51, 0.433], [1895.672, 878.506, 0.338], [1895.77, 878.51, 0.343], [1895.77, 878.51, 0.393]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_18_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_18_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_18_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_18_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_18_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_18_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_18_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_18_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1706.39, 1019.22, 0.455], [2191.986, 926.298, 0.316], [1675.02, 886.17, 0.299], [1941.62, 757.75, 0.341]]\nB: [[2247.24, 737.46, 0.384], [1527.442, 724.25, 0.347], [1575.02, 976.52, 0.327], [1630.08, 842.33, 0.316]]\nC: [[2075.96, 1012.24, 0.409], [1869.437, 795.581, 0.371], [2223.74, 1044.39, 0.397], [1567.73, 972.01, 0.379]]\nD: [[1895.77, 878.51, 0.433], [1895.672, 878.506, 0.338], [1895.77, 878.51, 0.343], [1895.77, 878.51, 0.393]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[2234.916, 722.86, 0.39], [1901.638, 1017.1, 0.487], [1734.516, 780.849, 0.344], [1885.643, 867.521, 0.263]]\nB: [[1568.94, 897.301, 0.449], [2000.828, 702.741, 0.446], [1573.358, 1014.024, 0.477], [1578.275, 964.592, 0.265]]\nC: [[2141.663, 908.252, 0.394], [1802.749, 988.498, 0.349], [1873.147, 986.016, 0.413], [2189.02, 894.117, 0.265]]\nD: [[1895.727, 877.737, 0.418], [1895.727, 877.737, 0.418], [1895.727, 877.737, 0.418], [1895.716, 877.802, 0.292]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_19_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_19_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_19_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_19_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_19_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_19_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_19_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_19_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[2234.916, 722.86, 0.39], [1901.638, 1017.1, 0.487], [1734.516, 780.849, 0.344], [1885.643, 867.521, 0.263]]\nB: [[1568.94, 897.301, 0.449], [2000.828, 702.741, 0.446], [1573.358, 1014.024, 0.477], [1578.275, 964.592, 0.265]]\nC: [[2141.663, 908.252, 0.394], [1802.749, 988.498, 0.349], [1873.147, 986.016, 0.413], [2189.02, 894.117, 0.265]]\nD: [[1895.727, 877.737, 0.418], [1895.727, 877.737, 0.418], [1895.727, 877.737, 0.418], [1895.716, 877.802, 0.292]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[336.27, 647.992, 0.436], [346.74, 708.566, 0.649], [354.42, 746.112, 0.69], [376.74, 611.59, 0.61]]\nB: [[340.58, 661.842, 0.526], [340.58, 661.842, 0.576], [340.58, 661.842, 0.626], [340.58, 661.842, 0.676]]\nC: [[387.54, 767.29, 0.509], [330.38, 600.327, 0.526], [387.34, 562.731, 0.738], [287.65, 743.046, 0.73]]\nD: [[347.27, 591.306, 0.458], [329.15, 678.06, 0.571], [380.55, 710.329, 0.52], [408.38, 545.098, 0.802]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_20_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_20_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_20_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_20_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_20_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_20_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_20_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_20_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[336.27, 647.992, 0.436], [346.74, 708.566, 0.649], [354.42, 746.112, 0.69], [376.74, 611.59, 0.61]]\nB: [[340.58, 661.842, 0.526], [340.58, 661.842, 0.576], [340.58, 661.842, 0.626], [340.58, 661.842, 0.676]]\nC: [[387.54, 767.29, 0.509], [330.38, 600.327, 0.526], [387.34, 562.731, 0.738], [287.65, 743.046, 0.73]]\nD: [[347.27, 591.306, 0.458], [329.15, 678.06, 0.571], [380.55, 710.329, 0.52], [408.38, 545.098, 0.802]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[641.894, 1481.081, -0.116], [755.139, 1696.093, 0.085], [744.337, 1645.874, -0.021], [549.883, 1475.291, 0.091]]\nB: [[609.159, 1822.97, -0.114], [725.77, 1759.652, 0.076], [541.265, 1644.526, -0.022], [634.034, 1389.951, 0.08]]\nC: [[639.585, 1606.675, -0.122], [640.106, 1606.245, 0.078], [640.626, 1605.815, -0.022], [641.147, 1605.384, 0.078]]\nD: [[553.206, 1422.477, -0.138], [630.222, 1490.963, 0.087], [720.491, 1414.036, -0.022], [698.708, 1478.6, 0.08]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_21_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_21_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_21_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_21_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_21_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_21_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_21_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_21_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[641.894, 1481.081, -0.116], [755.139, 1696.093, 0.085], [744.337, 1645.874, -0.021], [549.883, 1475.291, 0.091]]\nB: [[609.159, 1822.97, -0.114], [725.77, 1759.652, 0.076], [541.265, 1644.526, -0.022], [634.034, 1389.951, 0.08]]\nC: [[639.585, 1606.675, -0.122], [640.106, 1606.245, 0.078], [640.626, 1605.815, -0.022], [641.147, 1605.384, 0.078]]\nD: [[553.206, 1422.477, -0.138], [630.222, 1490.963, 0.087], [720.491, 1414.036, -0.022], [698.708, 1478.6, 0.08]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1654.688, 731.801, 1.203], [1825.149, 800.76, 1.006], [1536.825, 955.686, 1.262], [2011.454, 920.864, 1.228]]\nB: [[1716.132, 870.368, 1.137], [1714.324, 869.208, 1.137], [1712.096, 868.352, 1.187], [1709.574, 867.934, 1.232]]\nC: [[1523.418, 951.06, 0.924], [1452.823, 761.345, 1.206], [2023.787, 900.571, 0.99], [1938.184, 774.207, 1.182]]\nD: [[1653.54, 790.02, 1.21], [1790.64, 885.935, 1.33], [1634.81, 909.54, 1.184], [1807.277, 934.183, 1.469]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_22_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_22_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_22_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_22_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_22_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_22_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_22_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_22_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1654.688, 731.801, 1.203], [1825.149, 800.76, 1.006], [1536.825, 955.686, 1.262], [2011.454, 920.864, 1.228]]\nB: [[1716.132, 870.368, 1.137], [1714.324, 869.208, 1.137], [1712.096, 868.352, 1.187], [1709.574, 867.934, 1.232]]\nC: [[1523.418, 951.06, 0.924], [1452.823, 761.345, 1.206], [2023.787, 900.571, 0.99], [1938.184, 774.207, 1.182]]\nD: [[1653.54, 790.02, 1.21], [1790.64, 885.935, 1.33], [1634.81, 909.54, 1.184], [1807.277, 934.183, 1.469]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1943.293, 1014.905, 2.05], [1962.947, 881.292, 1.464], [1771.641, 818.432, 1.783], [2024.383, 893.384, 1.855]]\nB: [[1842.723, 879.95, 1.901], [2117.17, 1006.474, 1.903], [1573.854, 942.118, 1.735], [2097.928, 1012.432, 1.953]]\nC: [[1897.834, 865.209, 1.738], [1897.834, 865.195, 1.688], [1897.833, 865.116, 1.688], [1897.831, 865.001, 1.688]]\nD: [[1801.762, 704.249, 1.493], [1762.225, 848.144, 1.446], [1867.693, 770.539, 1.836], [2098.827, 762.104, 1.81]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_23_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_23_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_23_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_23_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_23_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_23_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_23_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_23_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1943.293, 1014.905, 2.05], [1962.947, 881.292, 1.464], [1771.641, 818.432, 1.783], [2024.383, 893.384, 1.855]]\nB: [[1842.723, 879.95, 1.901], [2117.17, 1006.474, 1.903], [1573.854, 942.118, 1.735], [2097.928, 1012.432, 1.953]]\nC: [[1897.834, 865.209, 1.738], [1897.834, 865.195, 1.688], [1897.833, 865.116, 1.688], [1897.831, 865.001, 1.688]]\nD: [[1801.762, 704.249, 1.493], [1762.225, 848.144, 1.446], [1867.693, 770.539, 1.836], [2098.827, 762.104, 1.81]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[251.423, 613.532, -0.224], [353.651, 580.245, -0.187], [307.419, 820.39, -0.19], [319.555, 661.929, -0.115]]\nB: [[288.517, 703.944, -0.206], [287.575, 632.764, -0.222], [372.62, 616.315, -0.154], [261.943, 809.962, -0.108]]\nC: [[279.61, 776.103, -0.238], [372.908, 643.544, -0.172], [347.733, 585.413, -0.159], [339.729, 666.886, -0.117]]\nD: [[311.976, 694.922, -0.216], [311.533, 694.408, -0.203], [311.103, 693.883, -0.191], [309.589, 691.756, -0.099]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_24_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_24_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_24_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_24_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_24_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_24_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_24_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_24_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[251.423, 613.532, -0.224], [353.651, 580.245, -0.187], [307.419, 820.39, -0.19], [319.555, 661.929, -0.115]]\nB: [[288.517, 703.944, -0.206], [287.575, 632.764, -0.222], [372.62, 616.315, -0.154], [261.943, 809.962, -0.108]]\nC: [[279.61, 776.103, -0.238], [372.908, 643.544, -0.172], [347.733, 585.413, -0.159], [339.729, 666.886, -0.117]]\nD: [[311.976, 694.922, -0.216], [311.533, 694.408, -0.203], [311.103, 693.883, -0.191], [309.589, 691.756, -0.099]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[428.593, 999.538, 0.927], [376.399, 1068.754, 0.828], [470.584, 1252.944, 0.961], [513.123, 1108.855, 0.935]]\nB: [[449.491, 963.875, 0.968], [378.432, 1021.223, 1.012], [349.93, 1322.277, 1.125], [411.187, 1019.406, 0.996]]\nC: [[447.511, 981.997, 0.973], [404.158, 1082.968, 0.919], [454.929, 1283.771, 0.917], [471.926, 1109.792, 0.83]]\nD: [[435.351, 1103.132, 0.814], [435.351, 1103.132, 0.964], [435.351, 1103.132, 1.014], [435.351, 1103.132, 0.989]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_25_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_25_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_25_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_25_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_25_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_25_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_25_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_25_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[428.593, 999.538, 0.927], [376.399, 1068.754, 0.828], [470.584, 1252.944, 0.961], [513.123, 1108.855, 0.935]]\nB: [[449.491, 963.875, 0.968], [378.432, 1021.223, 1.012], [349.93, 1322.277, 1.125], [411.187, 1019.406, 0.996]]\nC: [[447.511, 981.997, 0.973], [404.158, 1082.968, 0.919], [454.929, 1283.771, 0.917], [471.926, 1109.792, 0.83]]\nD: [[435.351, 1103.132, 0.814], [435.351, 1103.132, 0.964], [435.351, 1103.132, 1.014], [435.351, 1103.132, 0.989]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1289.156, 997.931, 0.17], [1528.988, 1149.542, 0.135], [1524.67, 1103.565, 0.144], [1254.51, 1059.655, 0.132]]\nB: [[1576.762, 1083.802, 0.16], [1394.53, 1020.578, 0.13], [1145.932, 1107.624, 0.169], [1436.14, 1231.523, 0.156]]\nC: [[1340.124, 1032.575, 0.154], [1340.123, 1032.575, 0.154], [1340.121, 1032.574, 0.154], [1340.12, 1032.574, 0.154]]\nD: [[1216.577, 1183.272, 0.123], [1258.5, 1034.393, 0.163], [1273.558, 1228.419, 0.14], [1288.46, 870.176, 0.174]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_26_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_26_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_26_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_26_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_26_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_26_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_26_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_26_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1289.156, 997.931, 0.17], [1528.988, 1149.542, 0.135], [1524.67, 1103.565, 0.144], [1254.51, 1059.655, 0.132]]\nB: [[1576.762, 1083.802, 0.16], [1394.53, 1020.578, 0.13], [1145.932, 1107.624, 0.169], [1436.14, 1231.523, 0.156]]\nC: [[1340.124, 1032.575, 0.154], [1340.123, 1032.575, 0.154], [1340.121, 1032.574, 0.154], [1340.12, 1032.574, 0.154]]\nD: [[1216.577, 1183.272, 0.123], [1258.5, 1034.393, 0.163], [1273.558, 1228.419, 0.14], [1288.46, 870.176, 0.174]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1255.784, 1121.555, 1.33], [1075.123, 1055.841, 1.22], [1441.444, 1208.639, 1.1], [1537.429, 1076.298, 1.45]]\nB: [[1100.277, 1164.491, 1.56], [1180.448, 1259.127, 1.17], [1475.037, 1060.06, 1.36], [1311.756, 864.536, 1.05]]\nC: [[1328.793, 876.335, 1.12], [1429.236, 996.25, 1.26], [1195.871, 932.001, 1.51], [1480.133, 1028.558, 1.25]]\nD: [[1328.425, 1052.566, 1.31], [1328.425, 1052.566, 1.31], [1328.425, 1052.566, 1.31], [1328.425, 1052.566, 1.31]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_27_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_27_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_27_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_27_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_27_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_27_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_27_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_27_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1255.784, 1121.555, 1.33], [1075.123, 1055.841, 1.22], [1441.444, 1208.639, 1.1], [1537.429, 1076.298, 1.45]]\nB: [[1100.277, 1164.491, 1.56], [1180.448, 1259.127, 1.17], [1475.037, 1060.06, 1.36], [1311.756, 864.536, 1.05]]\nC: [[1328.793, 876.335, 1.12], [1429.236, 996.25, 1.26], [1195.871, 932.001, 1.51], [1480.133, 1028.558, 1.25]]\nD: [[1328.425, 1052.566, 1.31], [1328.425, 1052.566, 1.31], [1328.425, 1052.566, 1.31], [1328.425, 1052.566, 1.31]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1273.894, 1072.524, 0.908], [1273.894, 1072.524, 0.909], [1273.894, 1072.524, 0.911], [1273.893, 1072.523, 0.912]]\nB: [[1252.346, 1105.514, 0.902], [1209.789, 1085.191, 0.984], [1114.268, 935.639, 0.74], [1170.16, 987.263, 0.918]]\nC: [[1108.639, 1162.182, 1.069], [1297.456, 1226.014, 0.862], [1466.955, 1006.358, 0.987], [1135.299, 1250.877, 0.943]]\nD: [[1221.891, 927.735, 0.939], [1126.972, 1155.177, 0.838], [1313.844, 1145.354, 1.042], [1328.412, 1083.367, 0.762]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_28_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_28_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_28_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_28_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_28_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_28_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_28_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_28_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1273.894, 1072.524, 0.908], [1273.894, 1072.524, 0.909], [1273.894, 1072.524, 0.911], [1273.893, 1072.523, 0.912]]\nB: [[1252.346, 1105.514, 0.902], [1209.789, 1085.191, 0.984], [1114.268, 935.639, 0.74], [1170.16, 987.263, 0.918]]\nC: [[1108.639, 1162.182, 1.069], [1297.456, 1226.014, 0.862], [1466.955, 1006.358, 0.987], [1135.299, 1250.877, 0.943]]\nD: [[1221.891, 927.735, 0.939], [1126.972, 1155.177, 0.838], [1313.844, 1145.354, 1.042], [1328.412, 1083.367, 0.762]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[522.342, 1943.251, 0.31], [505.853, 1457.715, 0.375], [513.011, 1502.032, 0.633], [529.48, 1609.413, 0.729]]\nB: [[626.523, 1972.698, 0.374], [529.275, 1724.592, 0.459], [517.251, 1365.431, 0.651], [714.07, 1806.899, 0.579]]\nC: [[576.087, 1806.167, 0.315], [734.652, 1339.382, 0.394], [725.143, 1697.177, 0.608], [592.16, 1326.812, 0.692]]\nD: [[622.249, 1646.081, 0.321], [621.683, 1646.405, 0.446], [621.109, 1646.715, 0.571], [620.64, 1647.021, 0.721]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_29_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_29_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_29_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_29_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_29_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_29_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_29_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_29_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[522.342, 1943.251, 0.31], [505.853, 1457.715, 0.375], [513.011, 1502.032, 0.633], [529.48, 1609.413, 0.729]]\nB: [[626.523, 1972.698, 0.374], [529.275, 1724.592, 0.459], [517.251, 1365.431, 0.651], [714.07, 1806.899, 0.579]]\nC: [[576.087, 1806.167, 0.315], [734.652, 1339.382, 0.394], [725.143, 1697.177, 0.608], [592.16, 1326.812, 0.692]]\nD: [[622.249, 1646.081, 0.321], [621.683, 1646.405, 0.446], [621.109, 1646.715, 0.571], [620.64, 1647.021, 0.721]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1796.561, 874.996, 1.254], [1796.561, 874.982, 1.216], [1796.561, 874.969, 1.182], [1796.561, 874.957, 1.151]]\nB: [[1829.822, 1005.261, 1.194], [2129.106, 967.913, 1.335], [1439.644, 885.763, 1.155], [2034.051, 719.497, 0.987]]\nC: [[2134.229, 737.814, 1.149], [1953.993, 1047.896, 1.349], [1612.579, 940.305, 1.146], [1599.447, 982.485, 1.365]]\nD: [[1699.287, 941.961, 1.224], [1590.817, 729.191, 1.195], [1711.432, 908.722, 0.971], [1659.459, 924.897, 1.335]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_30_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_30_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_30_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_30_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_30_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_30_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_30_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_30_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1796.561, 874.996, 1.254], [1796.561, 874.982, 1.216], [1796.561, 874.969, 1.182], [1796.561, 874.957, 1.151]]\nB: [[1829.822, 1005.261, 1.194], [2129.106, 967.913, 1.335], [1439.644, 885.763, 1.155], [2034.051, 719.497, 0.987]]\nC: [[2134.229, 737.814, 1.149], [1953.993, 1047.896, 1.349], [1612.579, 940.305, 1.146], [1599.447, 982.485, 1.365]]\nD: [[1699.287, 941.961, 1.224], [1590.817, 729.191, 1.195], [1711.432, 908.722, 0.971], [1659.459, 924.897, 1.335]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[406.663, 1099.631, 0.814], [406.711, 1099.639, 0.923], [406.735, 1099.643, 0.978], [406.717, 1099.695, 0.749]]\nB: [[427.835, 1064.967, 0.714], [484.647, 916.921, 0.994], [411.142, 919.994, 1.029], [362.349, 1103.394, 0.701]]\nC: [[396.877, 1112.011, 0.828], [415.047, 1175.011, 0.772], [440.647, 980.302, 0.825], [395.393, 899.719, 0.603]]\nD: [[473.72, 956.4, 0.8], [485.155, 1094.253, 0.884], [398.711, 1081.924, 0.932], [430.802, 1000.92, 0.78]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_31_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_31_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_31_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_31_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_31_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_31_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_31_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_31_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[406.663, 1099.631, 0.814], [406.711, 1099.639, 0.923], [406.735, 1099.643, 0.978], [406.717, 1099.695, 0.749]]\nB: [[427.835, 1064.967, 0.714], [484.647, 916.921, 0.994], [411.142, 919.994, 1.029], [362.349, 1103.394, 0.701]]\nC: [[396.877, 1112.011, 0.828], [415.047, 1175.011, 0.772], [440.647, 980.302, 0.825], [395.393, 899.719, 0.603]]\nD: [[473.72, 956.4, 0.8], [485.155, 1094.253, 0.884], [398.711, 1081.924, 0.932], [430.802, 1000.92, 0.78]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1313.621, 933.434, 0.218], [1514.36, 1049.794, 0.194], [1263.349, 1108.661, 0.157], [1490.47, 980.609, 0.195]]\nB: [[1232.867, 1016.208, 0.213], [1250.875, 1010.148, 0.221], [1205.37, 1035.121, 0.184], [1092.698, 953.727, 0.188]]\nC: [[1472.729, 957.241, 0.173], [1510.795, 1241.776, 0.219], [1118.45, 1223.791, 0.168], [1218.898, 1085.684, 0.171]]\nD: [[1337.482, 1035.208, 0.186], [1337.482, 1035.208, 0.186], [1337.482, 1035.208, 0.186], [1337.482, 1035.208, 0.186]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_32_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_32_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_32_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_32_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_32_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_32_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_32_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_32_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1313.621, 933.434, 0.218], [1514.36, 1049.794, 0.194], [1263.349, 1108.661, 0.157], [1490.47, 980.609, 0.195]]\nB: [[1232.867, 1016.208, 0.213], [1250.875, 1010.148, 0.221], [1205.37, 1035.121, 0.184], [1092.698, 953.727, 0.188]]\nC: [[1472.729, 957.241, 0.173], [1510.795, 1241.776, 0.219], [1118.45, 1223.791, 0.168], [1218.898, 1085.684, 0.171]]\nD: [[1337.482, 1035.208, 0.186], [1337.482, 1035.208, 0.186], [1337.482, 1035.208, 0.186], [1337.482, 1035.208, 0.186]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1992.775, 875.132, 0.942], [1985.564, 874.76, 0.95], [1978.377, 874.483, 0.958], [1971.974, 874.315, 0.986]]\nB: [[1755.791, 1044.883, 0.825], [1877.163, 968.52, 1.04], [2106.974, 814.325, 0.994], [1945.338, 748.73, 1.14]]\nC: [[1656.177, 762.998, 0.871], [2009.557, 758.93, 0.8], [1914.45, 722.289, 1.067], [1703.798, 972.938, 1.065]]\nD: [[1816.649, 760.428, 1.116], [1730.801, 1023.39, 1.04], [2342.252, 816.69, 1.126], [2334.939, 947.14, 0.896]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_33_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_33_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_33_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_33_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_33_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_33_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_33_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_33_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1992.775, 875.132, 0.942], [1985.564, 874.76, 0.95], [1978.377, 874.483, 0.958], [1971.974, 874.315, 0.986]]\nB: [[1755.791, 1044.883, 0.825], [1877.163, 968.52, 1.04], [2106.974, 814.325, 0.994], [1945.338, 748.73, 1.14]]\nC: [[1656.177, 762.998, 0.871], [2009.557, 758.93, 0.8], [1914.45, 722.289, 1.067], [1703.798, 972.938, 1.065]]\nD: [[1816.649, 760.428, 1.116], [1730.801, 1023.39, 1.04], [2342.252, 816.69, 1.126], [2334.939, 947.14, 0.896]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[331.098, 1052.547, 0.565], [408.797, 1100.389, 0.637], [418.765, 1332.696, 0.625], [352.119, 1242.135, 0.631]]\nB: [[421.121, 1227.662, 0.557], [446.642, 1087.379, 0.513], [450.924, 1107.261, 0.47], [392.549, 1175.812, 0.691]]\nC: [[396.535, 1162.355, 0.498], [396.535, 1162.355, 0.534], [396.535, 1162.355, 0.571], [396.535, 1162.355, 0.608]]\nD: [[463.951, 972.839, 0.532], [365.417, 1075.626, 0.44], [381.022, 1300.867, 0.549], [368.078, 1350.532, 0.537]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_34_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_34_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_34_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_34_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_34_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_34_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_34_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_34_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[331.098, 1052.547, 0.565], [408.797, 1100.389, 0.637], [418.765, 1332.696, 0.625], [352.119, 1242.135, 0.631]]\nB: [[421.121, 1227.662, 0.557], [446.642, 1087.379, 0.513], [450.924, 1107.261, 0.47], [392.549, 1175.812, 0.691]]\nC: [[396.535, 1162.355, 0.498], [396.535, 1162.355, 0.534], [396.535, 1162.355, 0.571], [396.535, 1162.355, 0.608]]\nD: [[463.951, 972.839, 0.532], [365.417, 1075.626, 0.44], [381.022, 1300.867, 0.549], [368.078, 1350.532, 0.537]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[321.096, 668.091, 0.879], [321.112, 668.116, 0.885], [321.128, 668.141, 0.891], [321.143, 668.166, 0.897]]\nB: [[268.388, 688.723, 0.734], [302.215, 796.657, 0.989], [302.241, 565.326, 1.022], [265.213, 770.117, 0.814]]\nC: [[314.729, 566.271, 0.999], [287.802, 590.987, 1.045], [272.417, 724.544, 0.717], [323.87, 780.287, 0.926]]\nD: [[376.158, 594.596, 0.841], [277.747, 714.363, 0.978], [382.966, 588.719, 0.996], [345.414, 561.146, 0.948]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_35_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_35_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_35_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_35_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_35_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_35_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_35_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_35_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[321.096, 668.091, 0.879], [321.112, 668.116, 0.885], [321.128, 668.141, 0.891], [321.143, 668.166, 0.897]]\nB: [[268.388, 688.723, 0.734], [302.215, 796.657, 0.989], [302.241, 565.326, 1.022], [265.213, 770.117, 0.814]]\nC: [[314.729, 566.271, 0.999], [287.802, 590.987, 1.045], [272.417, 724.544, 0.717], [323.87, 780.287, 0.926]]\nD: [[376.158, 594.596, 0.841], [277.747, 714.363, 0.978], [382.966, 588.719, 0.996], [345.414, 561.146, 0.948]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[754.263, 1891.382, 0.199], [593.138, 1372.169, 0.319], [709.86, 1582.863, 0.554], [634.519, 1531.646, 0.56]]\nB: [[729.655, 1603.012, 0.212], [526.812, 1703.833, 0.343], [552.52, 1297.518, 0.437], [592.969, 1803.518, 0.61]]\nC: [[632.049, 1352.661, 0.204], [726.247, 1377.851, 0.377], [577.44, 1302.511, 0.523], [636.437, 1877.196, 0.48]]\nD: [[655.912, 1592.667, 0.218], [655.637, 1593.173, 0.377], [655.34, 1593.667, 0.535], [654.899, 1594.227, 0.56]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_36_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_36_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_36_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_36_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_36_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_36_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_36_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_36_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[754.263, 1891.382, 0.199], [593.138, 1372.169, 0.319], [709.86, 1582.863, 0.554], [634.519, 1531.646, 0.56]]\nB: [[729.655, 1603.012, 0.212], [526.812, 1703.833, 0.343], [552.52, 1297.518, 0.437], [592.969, 1803.518, 0.61]]\nC: [[632.049, 1352.661, 0.204], [726.247, 1377.851, 0.377], [577.44, 1302.511, 0.523], [636.437, 1877.196, 0.48]]\nD: [[655.912, 1592.667, 0.218], [655.637, 1593.173, 0.377], [655.34, 1593.667, 0.535], [654.899, 1594.227, 0.56]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1863.967, 857.871, 0.65], [1863.962, 857.872, 0.65], [1863.962, 857.872, 0.65], [1863.962, 857.872, 0.65]]\nB: [[2064.908, 1013.124, 0.75], [2122.552, 822.014, 0.59], [2177.833, 1012.188, 0.75], [1595.769, 822.35, 0.73]]\nC: [[1731.702, 852.264, 0.72], [2128.868, 793.194, 0.77], [1755.246, 973.676, 0.67], [1568.102, 944.114, 0.53]]\nD: [[1764.474, 940.448, 0.74], [2091.49, 945.26, 0.67], [2118.947, 923.168, 0.72], [1633.719, 960.882, 0.7]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_37_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_37_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_37_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_37_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_37_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_37_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_37_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_37_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1863.967, 857.871, 0.65], [1863.962, 857.872, 0.65], [1863.962, 857.872, 0.65], [1863.962, 857.872, 0.65]]\nB: [[2064.908, 1013.124, 0.75], [2122.552, 822.014, 0.59], [2177.833, 1012.188, 0.75], [1595.769, 822.35, 0.73]]\nC: [[1731.702, 852.264, 0.72], [2128.868, 793.194, 0.77], [1755.246, 973.676, 0.67], [1568.102, 944.114, 0.53]]\nD: [[1764.474, 940.448, 0.74], [2091.49, 945.26, 0.67], [2118.947, 923.168, 0.72], [1633.719, 960.882, 0.7]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1780.13, 3028.6, -0.525], [1674.509, 2149.928, -0.337], [1576.236, 2276.286, -0.134], [1537.853, 2314.916, 0.007]]\nB: [[1601.026, 2969.24, -0.541], [2094.18, 2097.632, -0.298], [2014.168, 2653.318, -0.14], [1803.211, 2667.419, 0.009]]\nC: [[1811.441, 2574.96, -0.473], [1814.647, 2570.443, -0.296], [1818.149, 2566.591, -0.119], [1820.651, 2564.035, 0.009]]\nD: [[1791.545, 2532.09, -0.471], [1731.966, 2573.436, -0.251], [1598.687, 2327.018, -0.116], [1468.52, 2562.672, 0.009]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_38_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_38_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_38_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_38_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_38_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_38_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_38_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_38_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1780.13, 3028.6, -0.525], [1674.509, 2149.928, -0.337], [1576.236, 2276.286, -0.134], [1537.853, 2314.916, 0.007]]\nB: [[1601.026, 2969.24, -0.541], [2094.18, 2097.632, -0.298], [2014.168, 2653.318, -0.14], [1803.211, 2667.419, 0.009]]\nC: [[1811.441, 2574.96, -0.473], [1814.647, 2570.443, -0.296], [1818.149, 2566.591, -0.119], [1820.651, 2564.035, 0.009]]\nD: [[1791.545, 2532.09, -0.471], [1731.966, 2573.436, -0.251], [1598.687, 2327.018, -0.116], [1468.52, 2562.672, 0.009]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[418.17, 1093.457, 0.829], [405.894, 1044.702, 0.431], [420.968, 1127.645, 0.604], [406.025, 1265.181, 0.687]]\nB: [[422.18, 1093.142, 0.749], [422.146, 1093.149, 0.523], [422.164, 1093.151, 0.575], [422.182, 1093.152, 0.627]]\nC: [[424.56, 1104.052, 0.696], [456.777, 1163.284, 0.489], [355.959, 1084.822, 0.587], [353.668, 881.288, 0.749]]\nD: [[472.5, 1170.954, 0.897], [500.203, 1162.062, 0.492], [472.1, 1132.062, 0.684], [450.284, 916.311, 0.647]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_39_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_39_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_39_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_39_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_39_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_39_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_39_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_39_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[418.17, 1093.457, 0.829], [405.894, 1044.702, 0.431], [420.968, 1127.645, 0.604], [406.025, 1265.181, 0.687]]\nB: [[422.18, 1093.142, 0.749], [422.146, 1093.149, 0.523], [422.164, 1093.151, 0.575], [422.182, 1093.152, 0.627]]\nC: [[424.56, 1104.052, 0.696], [456.777, 1163.284, 0.489], [355.959, 1084.822, 0.587], [353.668, 881.288, 0.749]]\nD: [[472.5, 1170.954, 0.897], [500.203, 1162.062, 0.492], [472.1, 1132.062, 0.684], [450.284, 916.311, 0.647]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[390.675, 1148.918, 0.446], [390.675, 1148.918, 0.486], [390.675, 1148.918, 0.526], [390.675, 1148.918, 0.566]]\nB: [[325.378, 1080.282, 0.378], [401.054, 1111.492, 0.413], [443.699, 1336.224, 0.541], [437.757, 1205.106, 0.494]]\nC: [[376.096, 1180.944, 0.535], [365.879, 1297.989, 0.536], [347.139, 1107.499, 0.489], [390.705, 1129.597, 0.653]]\nD: [[319.548, 938.981, 0.435], [320.089, 1375.531, 0.568], [447.751, 1028.646, 0.524], [462.869, 953.708, 0.657]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_40_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_40_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_40_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_40_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_40_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_40_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_40_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_40_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[390.675, 1148.918, 0.446], [390.675, 1148.918, 0.486], [390.675, 1148.918, 0.526], [390.675, 1148.918, 0.566]]\nB: [[325.378, 1080.282, 0.378], [401.054, 1111.492, 0.413], [443.699, 1336.224, 0.541], [437.757, 1205.106, 0.494]]\nC: [[376.096, 1180.944, 0.535], [365.879, 1297.989, 0.536], [347.139, 1107.499, 0.489], [390.705, 1129.597, 0.653]]\nD: [[319.548, 938.981, 0.435], [320.089, 1375.531, 0.568], [447.751, 1028.646, 0.524], [462.869, 953.708, 0.657]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1843.257, 2538.618, -0.551], [1847.727, 2533.368, -0.252], [1851.69, 2528.728, 0.148], [1855.661, 2524.133, 0.447]]\nB: [[2149.832, 2452.89, -0.472], [2084.541, 3035.493, -0.262], [2202.07, 2375.125, 0.153], [1741.345, 2112.152, 0.38]]\nC: [[1481.384, 2461.292, -0.523], [1555.975, 2186.05, -0.244], [1900.07, 2064.722, 0.165], [2087.255, 2686.41, 0.442]]\nD: [[1970.321, 2572.246, -0.542], [1648.575, 2617.927, -0.295], [1998.79, 2542.913, 0.12], [2210.323, 2215.488, 0.469]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_41_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_41_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_41_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_41_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_41_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_41_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_41_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_41_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1843.257, 2538.618, -0.551], [1847.727, 2533.368, -0.252], [1851.69, 2528.728, 0.148], [1855.661, 2524.133, 0.447]]\nB: [[2149.832, 2452.89, -0.472], [2084.541, 3035.493, -0.262], [2202.07, 2375.125, 0.153], [1741.345, 2112.152, 0.38]]\nC: [[1481.384, 2461.292, -0.523], [1555.975, 2186.05, -0.244], [1900.07, 2064.722, 0.165], [2087.255, 2686.41, 0.442]]\nD: [[1970.321, 2572.246, -0.542], [1648.575, 2617.927, -0.295], [1998.79, 2542.913, 0.12], [2210.323, 2215.488, 0.469]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[405.649, 1108.528, 0.594], [405.644, 1108.505, 0.674], [405.626, 1108.416, 0.494], [405.656, 1108.482, 0.494]]\nB: [[334.296, 1327.717, 0.679], [384.849, 1314.532, 0.74], [423.319, 950.2, 0.426], [331.031, 1040.91, 0.551]]\nC: [[347.771, 1314.846, 0.498], [446.389, 1307.841, 0.727], [399.575, 1219.724, 0.443], [426.17, 1311.828, 0.436]]\nD: [[400.335, 1102.261, 0.598], [348.445, 1284.149, 0.65], [478.752, 1133.775, 0.474], [355.374, 1236.721, 0.511]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_42_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_42_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_42_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_42_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_42_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_42_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_42_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_42_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[405.649, 1108.528, 0.594], [405.644, 1108.505, 0.674], [405.626, 1108.416, 0.494], [405.656, 1108.482, 0.494]]\nB: [[334.296, 1327.717, 0.679], [384.849, 1314.532, 0.74], [423.319, 950.2, 0.426], [331.031, 1040.91, 0.551]]\nC: [[347.771, 1314.846, 0.498], [446.389, 1307.841, 0.727], [399.575, 1219.724, 0.443], [426.17, 1311.828, 0.436]]\nD: [[400.335, 1102.261, 0.598], [348.445, 1284.149, 0.65], [478.752, 1133.775, 0.474], [355.374, 1236.721, 0.511]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1428.27, 974.381, 1.985], [1433.79, 878.793, 1.553], [1487.91, 991.551, 2.084], [1094.85, 1099.062, 1.834]]\nB: [[1126.35, 864.162, 1.48], [1369.77, 1079.18, 2.095], [1104.67, 888.249, 1.995], [1467.5, 1079.513, 1.593]]\nC: [[1319.41, 1031.387, 1.821], [1319.41, 1031.387, 1.821], [1319.41, 1031.387, 1.821], [1319.41, 1031.387, 1.821]]\nD: [[1325.9, 922.588, 2.092], [1241.85, 1191.619, 1.687], [1156.96, 1063.21, 1.942], [1396.09, 908.012, 1.846]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_43_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_43_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_43_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_43_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_43_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_43_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_43_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_43_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1428.27, 974.381, 1.985], [1433.79, 878.793, 1.553], [1487.91, 991.551, 2.084], [1094.85, 1099.062, 1.834]]\nB: [[1126.35, 864.162, 1.48], [1369.77, 1079.18, 2.095], [1104.67, 888.249, 1.995], [1467.5, 1079.513, 1.593]]\nC: [[1319.41, 1031.387, 1.821], [1319.41, 1031.387, 1.821], [1319.41, 1031.387, 1.821], [1319.41, 1031.387, 1.821]]\nD: [[1325.9, 922.588, 2.092], [1241.85, 1191.619, 1.687], [1156.96, 1063.21, 1.942], [1396.09, 908.012, 1.846]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[409.465, 1216.476, 0.476], [318.714, 1226.609, 0.544], [365.342, 995.006, 0.666], [409.876, 1110.956, 0.592]]\nB: [[394.755, 1113.151, 0.528], [394.774, 1113.143, 0.578], [394.793, 1113.134, 0.628], [394.793, 1113.134, 0.703]]\nC: [[420.334, 1155.862, 0.481], [398.422, 922.217, 0.485], [347.385, 1076.56, 0.624], [333.837, 1269.244, 0.608]]\nD: [[335.019, 1099.773, 0.481], [389.242, 976.46, 0.466], [401.879, 992.855, 0.713], [331.612, 1204.414, 0.622]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_44_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_44_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_44_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_44_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_44_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_44_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_44_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_44_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[409.465, 1216.476, 0.476], [318.714, 1226.609, 0.544], [365.342, 995.006, 0.666], [409.876, 1110.956, 0.592]]\nB: [[394.755, 1113.151, 0.528], [394.774, 1113.143, 0.578], [394.793, 1113.134, 0.628], [394.793, 1113.134, 0.703]]\nC: [[420.334, 1155.862, 0.481], [398.422, 922.217, 0.485], [347.385, 1076.56, 0.624], [333.837, 1269.244, 0.608]]\nD: [[335.019, 1099.773, 0.481], [389.242, 976.46, 0.466], [401.879, 992.855, 0.713], [331.612, 1204.414, 0.622]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[361.726, 683.196, 1.397], [329.217, 690.805, 1.946], [283.896, 621.516, 1.958], [356.569, 620.728, 2.064]]\nB: [[418.211, 729.764, 1.616], [294.113, 717.923, 1.419], [354.161, 578.812, 1.657], [290.406, 708.411, 2.08]]\nC: [[294.448, 559.154, 1.483], [317.072, 572.818, 2.094], [333.21, 533.806, 2.046], [288.729, 702.966, 1.84]]\nD: [[349.242, 634.568, 1.725], [349.228, 634.584, 1.748], [349.213, 634.601, 1.771], [349.198, 634.618, 1.794]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_45_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_45_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_45_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_45_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_45_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_45_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_45_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_45_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[361.726, 683.196, 1.397], [329.217, 690.805, 1.946], [283.896, 621.516, 1.958], [356.569, 620.728, 2.064]]\nB: [[418.211, 729.764, 1.616], [294.113, 717.923, 1.419], [354.161, 578.812, 1.657], [290.406, 708.411, 2.08]]\nC: [[294.448, 559.154, 1.483], [317.072, 572.818, 2.094], [333.21, 533.806, 2.046], [288.729, 702.966, 1.84]]\nD: [[349.242, 634.568, 1.725], [349.228, 634.584, 1.748], [349.213, 634.601, 1.771], [349.198, 634.618, 1.794]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1342.828, 1030.123, -0.019], [1342.828, 1030.123, -0.019], [1342.828, 1030.123, -0.019], [1342.828, 1030.123, -0.019]]\nB: [[1097.533, 870.18, -0.018], [1280.182, 1133.641, -0.019], [1489.479, 998.305, -0.016], [1148.803, 1033.836, -0.018]]\nC: [[1127.233, 1005.075, -0.016], [1511.451, 847.909, -0.022], [1150.864, 1055.903, -0.02], [1443.444, 1006.94, -0.017]]\nD: [[1513.245, 1007.752, -0.022], [1331.585, 1065.932, -0.016], [1532.891, 854.441, -0.017], [1526.175, 951.171, -0.022]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_46_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_46_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_46_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_46_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_46_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_46_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_46_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_46_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1342.828, 1030.123, -0.019], [1342.828, 1030.123, -0.019], [1342.828, 1030.123, -0.019], [1342.828, 1030.123, -0.019]]\nB: [[1097.533, 870.18, -0.018], [1280.182, 1133.641, -0.019], [1489.479, 998.305, -0.016], [1148.803, 1033.836, -0.018]]\nC: [[1127.233, 1005.075, -0.016], [1511.451, 847.909, -0.022], [1150.864, 1055.903, -0.02], [1443.444, 1006.94, -0.017]]\nD: [[1513.245, 1007.752, -0.022], [1331.585, 1065.932, -0.016], [1532.891, 854.441, -0.017], [1526.175, 951.171, -0.022]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[368.243, 1147.276, 0.495], [320.188, 1220.441, 0.564], [378.673, 985.999, 0.66], [415.817, 1250.586, 0.729]]\nB: [[471.077, 1316.726, 0.65], [388.888, 998.99, 0.705], [397.125, 1213.868, 0.57], [326.301, 938.598, 0.746]]\nC: [[394.039, 1143.246, 0.615], [391.841, 1138.065, 0.615], [389.353, 1132.372, 0.64], [387.343, 1127.335, 0.765]]\nD: [[380.686, 1104.044, 0.666], [420.094, 1131.831, 0.503], [335.098, 1016.255, 0.76], [342.797, 1164.927, 0.672]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_47_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_47_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_47_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_47_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_47_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_47_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_47_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_47_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[368.243, 1147.276, 0.495], [320.188, 1220.441, 0.564], [378.673, 985.999, 0.66], [415.817, 1250.586, 0.729]]\nB: [[471.077, 1316.726, 0.65], [388.888, 998.99, 0.705], [397.125, 1213.868, 0.57], [326.301, 938.598, 0.746]]\nC: [[394.039, 1143.246, 0.615], [391.841, 1138.065, 0.615], [389.353, 1132.372, 0.64], [387.343, 1127.335, 0.765]]\nD: [[380.686, 1104.044, 0.666], [420.094, 1131.831, 0.503], [335.098, 1016.255, 0.76], [342.797, 1164.927, 0.672]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[529.721, 1110.52, 1.789], [418.305, 959.31, 1.737], [400.029, 1228.06, 2.221], [451.205, 1117.422, 2.204]]\nB: [[411.023, 1090.6, 1.799], [524.659, 1002.9, 1.558], [459.22, 1085.139, 1.901], [427.15, 911.884, 1.822]]\nC: [[503.852, 1131.29, 2.197], [402.563, 1323.31, 1.648], [532.361, 1202.739, 1.985], [480.913, 1034.846, 2.094]]\nD: [[456.587, 1114.23, 2.052], [448.914, 1116.73, 1.885], [448.331, 1116.811, 1.887], [446.322, 1116.881, 2.007]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_48_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_48_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_48_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_48_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_48_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_48_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_48_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_48_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[529.721, 1110.52, 1.789], [418.305, 959.31, 1.737], [400.029, 1228.06, 2.221], [451.205, 1117.422, 2.204]]\nB: [[411.023, 1090.6, 1.799], [524.659, 1002.9, 1.558], [459.22, 1085.139, 1.901], [427.15, 911.884, 1.822]]\nC: [[503.852, 1131.29, 2.197], [402.563, 1323.31, 1.648], [532.361, 1202.739, 1.985], [480.913, 1034.846, 2.094]]\nD: [[456.587, 1114.23, 2.052], [448.914, 1116.73, 1.885], [448.331, 1116.811, 1.887], [446.322, 1116.881, 2.007]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[410.862, 1106.326, 0.665], [410.862, 1106.326, 0.59], [410.862, 1106.326, 0.553], [410.862, 1106.326, 0.415]]\nB: [[404.294, 1051.995, 0.561], [398.816, 1084.635, 0.64], [356.338, 1249.05, 0.503], [446.466, 1282.71, 0.342]]\nC: [[336.012, 1230.001, 0.749], [456.309, 1162.403, 0.66], [488.514, 919.924, 0.477], [360.602, 1191.978, 0.369]]\nD: [[407.759, 1016.766, 0.63], [366.992, 935.62, 0.5], [484.755, 1037.534, 0.603], [490.174, 1145.425, 0.38]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_49_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_49_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_49_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_49_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_49_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_49_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_49_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_49_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[410.862, 1106.326, 0.665], [410.862, 1106.326, 0.59], [410.862, 1106.326, 0.553], [410.862, 1106.326, 0.415]]\nB: [[404.294, 1051.995, 0.561], [398.816, 1084.635, 0.64], [356.338, 1249.05, 0.503], [446.466, 1282.71, 0.342]]\nC: [[336.012, 1230.001, 0.749], [456.309, 1162.403, 0.66], [488.514, 919.924, 0.477], [360.602, 1191.978, 0.369]]\nD: [[407.759, 1016.766, 0.63], [366.992, 935.62, 0.5], [484.755, 1037.534, 0.603], [490.174, 1145.425, 0.38]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[674.817, 1495.218, -0.033], [637.599, 1735.138, 0.04], [753.378, 1282.425, 0.266], [579.881, 1534.752, 0.639]]\nB: [[709.455, 1518.871, -0.042], [743.219, 1536.668, 0.05], [546.398, 1312.775, 0.212], [543.916, 1348.998, 0.477]]\nC: [[646.543, 1481.061, -0.039], [690.227, 1278.475, 0.06], [658.101, 1765.87, 0.225], [673.992, 1863.036, 0.546]]\nD: [[654.306, 1593.839, -0.039], [654.897, 1593.314, 0.05], [655.544, 1592.867, 0.238], [656.181, 1592.404, 0.554]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_50_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_50_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_50_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_50_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_50_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_50_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_50_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_50_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[674.817, 1495.218, -0.033], [637.599, 1735.138, 0.04], [753.378, 1282.425, 0.266], [579.881, 1534.752, 0.639]]\nB: [[709.455, 1518.871, -0.042], [743.219, 1536.668, 0.05], [546.398, 1312.775, 0.212], [543.916, 1348.998, 0.477]]\nC: [[646.543, 1481.061, -0.039], [690.227, 1278.475, 0.06], [658.101, 1765.87, 0.225], [673.992, 1863.036, 0.546]]\nD: [[654.306, 1593.839, -0.039], [654.897, 1593.314, 0.05], [655.544, 1592.867, 0.238], [656.181, 1592.404, 0.554]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[318.904, 699.89, -0.305], [356.863, 749.45, -0.295], [342.145, 817.48, -0.165], [362.888, 813.169, -0.152]]\nB: [[311.846, 696.05, -0.326], [311.404, 695.55, -0.298], [309.653, 693.549, -0.188], [309.251, 693.028, -0.161]]\nC: [[270.331, 808.82, -0.365], [259.897, 752.35, -0.352], [311.667, 620.881, -0.218], [273.84, 705.279, -0.182]]\nD: [[285.234, 746.79, -0.327], [276.961, 728.57, -0.341], [274.698, 714.537, -0.21], [341.495, 714.928, -0.131]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_51_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_51_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_51_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_51_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_51_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_51_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_51_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_51_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[318.904, 699.89, -0.305], [356.863, 749.45, -0.295], [342.145, 817.48, -0.165], [362.888, 813.169, -0.152]]\nB: [[311.846, 696.05, -0.326], [311.404, 695.55, -0.298], [309.653, 693.549, -0.188], [309.251, 693.028, -0.161]]\nC: [[270.331, 808.82, -0.365], [259.897, 752.35, -0.352], [311.667, 620.881, -0.218], [273.84, 705.279, -0.182]]\nD: [[285.234, 746.79, -0.327], [276.961, 728.57, -0.341], [274.698, 714.537, -0.21], [341.495, 714.928, -0.131]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[432.564, 1385.721, 0.86], [382.527, 1126.126, 0.819], [443.57, 1262.347, 0.849], [446.802, 1286.824, 0.805]]\nB: [[370.754, 1092.547, 0.872], [331.67, 1167.043, 0.761], [399.201, 1018.42, 0.801], [365.027, 1292.343, 0.758]]\nC: [[408.524, 1190.723, 0.733], [408.524, 1190.723, 0.773], [408.524, 1190.723, 0.814], [408.524, 1190.723, 0.854]]\nD: [[402.914, 1215.467, 0.85], [450.76, 1135.126, 0.766], [461.237, 971.14, 0.851], [437.03, 1104.878, 0.788]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_52_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_52_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_52_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_52_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_52_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_52_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_52_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_52_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[432.564, 1385.721, 0.86], [382.527, 1126.126, 0.819], [443.57, 1262.347, 0.849], [446.802, 1286.824, 0.805]]\nB: [[370.754, 1092.547, 0.872], [331.67, 1167.043, 0.761], [399.201, 1018.42, 0.801], [365.027, 1292.343, 0.758]]\nC: [[408.524, 1190.723, 0.733], [408.524, 1190.723, 0.773], [408.524, 1190.723, 0.814], [408.524, 1190.723, 0.854]]\nD: [[402.914, 1215.467, 0.85], [450.76, 1135.126, 0.766], [461.237, 971.14, 0.851], [437.03, 1104.878, 0.788]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[509.54, 973.159, 0.18], [380.671, 1268.603, 0.2], [479.07, 1050.521, 0.236], [494.912, 1129.693, 0.227]]\nB: [[439.95, 1094.017, 0.17], [439.878, 1094.005, 0.2], [439.87, 1094.004, 0.204], [439.863, 1094.003, 0.207]]\nC: [[469.34, 1051.411, 0.16], [354.833, 915.321, 0.2], [409.43, 978.881, 0.18], [455.437, 1174.679, 0.197]]\nD: [[450.6, 1030.444, 0.18], [376.497, 1114.358, 0.2], [397.1, 1100.748, 0.221], [400.171, 883.327, 0.198]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_53_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_53_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_53_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_53_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_53_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_53_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_53_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_53_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[509.54, 973.159, 0.18], [380.671, 1268.603, 0.2], [479.07, 1050.521, 0.236], [494.912, 1129.693, 0.227]]\nB: [[439.95, 1094.017, 0.17], [439.878, 1094.005, 0.2], [439.87, 1094.004, 0.204], [439.863, 1094.003, 0.207]]\nC: [[469.34, 1051.411, 0.16], [354.833, 915.321, 0.2], [409.43, 978.881, 0.18], [455.437, 1174.679, 0.197]]\nD: [[450.6, 1030.444, 0.18], [376.497, 1114.358, 0.2], [397.1, 1100.748, 0.221], [400.171, 883.327, 0.198]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[745.24, 1895.181, 1.097], [763.549, 1536.044, 0.845], [570.809, 1601.968, 0.989], [652.246, 1423.25, 1.127]]\nB: [[532.12, 1872.39, 0.899], [664.607, 1965.812, 0.921], [689.926, 1479.159, 0.981], [613.897, 1574.3, 1.137]]\nC: [[548.35, 1392.059, 1.158], [726.228, 1698.055, 1.001], [546.517, 1691.289, 0.982], [644.748, 1773.44, 1.004]]\nD: [[638.38, 1644.304, 0.969], [638.651, 1644.538, 0.969], [639.028, 1644.741, 0.969], [639.302, 1644.98, 0.969]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_54_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_54_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_54_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_54_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_54_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_54_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_54_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_54_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[745.24, 1895.181, 1.097], [763.549, 1536.044, 0.845], [570.809, 1601.968, 0.989], [652.246, 1423.25, 1.127]]\nB: [[532.12, 1872.39, 0.899], [664.607, 1965.812, 0.921], [689.926, 1479.159, 0.981], [613.897, 1574.3, 1.137]]\nC: [[548.35, 1392.059, 1.158], [726.228, 1698.055, 1.001], [546.517, 1691.289, 0.982], [644.748, 1773.44, 1.004]]\nD: [[638.38, 1644.304, 0.969], [638.651, 1644.538, 0.969], [639.028, 1644.741, 0.969], [639.302, 1644.98, 0.969]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[498.649, 946.58, 0.483], [429.418, 1259.918, 0.62], [364.692, 1168.776, 0.667], [459.431, 959.241, 0.827]]\nB: [[455.692, 1030.221, 0.542], [455.48, 1267.707, 0.483], [500.554, 1295.934, 0.772], [397.8, 1198.962, 0.903]]\nC: [[424.598, 1092.173, 0.591], [424.547, 1092.198, 0.561], [424.495, 1092.222, 0.732], [424.504, 1092.223, 0.809]]\nD: [[442.794, 1098.547, 0.607], [348.384, 1268.237, 0.46], [435.072, 1179.416, 0.685], [349.227, 1283.876, 0.743]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_55_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_55_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_55_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_55_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_55_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_55_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_55_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_55_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[498.649, 946.58, 0.483], [429.418, 1259.918, 0.62], [364.692, 1168.776, 0.667], [459.431, 959.241, 0.827]]\nB: [[455.692, 1030.221, 0.542], [455.48, 1267.707, 0.483], [500.554, 1295.934, 0.772], [397.8, 1198.962, 0.903]]\nC: [[424.598, 1092.173, 0.591], [424.547, 1092.198, 0.561], [424.495, 1092.222, 0.732], [424.504, 1092.223, 0.809]]\nD: [[442.794, 1098.547, 0.607], [348.384, 1268.237, 0.46], [435.072, 1179.416, 0.685], [349.227, 1283.876, 0.743]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1592.863, 1046.051, 0.228], [1890.036, 733.66, 0.198], [2193.82, 880.022, 0.24], [2269.051, 988.07, 0.246]]\nB: [[1799.697, 977.341, 0.188], [2255.207, 938.924, 0.229], [2189.995, 1042.344, 0.204], [1954.403, 990.03, 0.25]]\nC: [[1920.044, 873.356, 0.213], [1920.067, 873.333, 0.213], [1920.067, 873.333, 0.213], [1920.021, 873.38, 0.263]]\nD: [[2188.053, 984.479, 0.185], [1789.35, 823.078, 0.223], [2262.284, 775.407, 0.196], [2232.543, 929.3, 0.291]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_56_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_56_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_56_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_56_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_56_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_56_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_56_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_56_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1592.863, 1046.051, 0.228], [1890.036, 733.66, 0.198], [2193.82, 880.022, 0.24], [2269.051, 988.07, 0.246]]\nB: [[1799.697, 977.341, 0.188], [2255.207, 938.924, 0.229], [2189.995, 1042.344, 0.204], [1954.403, 990.03, 0.25]]\nC: [[1920.044, 873.356, 0.213], [1920.067, 873.333, 0.213], [1920.067, 873.333, 0.213], [1920.021, 873.38, 0.263]]\nD: [[2188.053, 984.479, 0.185], [1789.35, 823.078, 0.223], [2262.284, 775.407, 0.196], [2232.543, 929.3, 0.291]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1812.249, 2571.668, -0.038], [1816.741, 2566.203, 0.124], [1820.586, 2560.847, 0.325], [1825.127, 2555.039, 0.499]]\nB: [[1810.749, 2477.016, -0.044], [1526.117, 2495.829, 0.129], [2120.606, 2682.221, 0.369], [1940.674, 2177.131, 0.513]]\nC: [[1882.741, 2318.424, -0.045], [1487.68, 2321.211, 0.127], [2151.691, 2137.892, 0.264], [1751.426, 2963.026, 0.451]]\nD: [[1614.268, 2747.937, -0.04], [1694.976, 3075.224, 0.115], [1495.647, 3054.549, 0.349], [2186.702, 2819.745, 0.446]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_57_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_57_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_57_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_57_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_57_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_57_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_57_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_57_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1812.249, 2571.668, -0.038], [1816.741, 2566.203, 0.124], [1820.586, 2560.847, 0.325], [1825.127, 2555.039, 0.499]]\nB: [[1810.749, 2477.016, -0.044], [1526.117, 2495.829, 0.129], [2120.606, 2682.221, 0.369], [1940.674, 2177.131, 0.513]]\nC: [[1882.741, 2318.424, -0.045], [1487.68, 2321.211, 0.127], [2151.691, 2137.892, 0.264], [1751.426, 2963.026, 0.451]]\nD: [[1614.268, 2747.937, -0.04], [1694.976, 3075.224, 0.115], [1495.647, 3054.549, 0.349], [2186.702, 2819.745, 0.446]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1774.223, 2610.364, 0.996], [1774.053, 2610.352, 1.02], [1773.502, 2611.229, 1.045], [1773.029, 2612.151, 1.07]]\nB: [[1776.641, 2350.607, 1.067], [1644.964, 2423.862, 0.9], [1725.868, 3040.601, 1.103], [2124.437, 2193.747, 0.89]]\nC: [[1671.897, 2705.242, 1.029], [1872.101, 2819.316, 0.97], [1650.995, 2602.6, 1.046], [1436.928, 2842.091, 1.11]]\nD: [[1953.59, 2775.546, 0.952], [1810.746, 2706.189, 0.97], [1565.979, 2177.88, 1.084], [1805.0, 2120.155, 0.92]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_58_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_58_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_58_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_58_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_58_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_58_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_58_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_58_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1774.223, 2610.364, 0.996], [1774.053, 2610.352, 1.02], [1773.502, 2611.229, 1.045], [1773.029, 2612.151, 1.07]]\nB: [[1776.641, 2350.607, 1.067], [1644.964, 2423.862, 0.9], [1725.868, 3040.601, 1.103], [2124.437, 2193.747, 0.89]]\nC: [[1671.897, 2705.242, 1.029], [1872.101, 2819.316, 0.97], [1650.995, 2602.6, 1.046], [1436.928, 2842.091, 1.11]]\nD: [[1953.59, 2775.546, 0.952], [1810.746, 2706.189, 0.97], [1565.979, 2177.88, 1.084], [1805.0, 2120.155, 0.92]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1736.392, 873.361, 1.079], [1734.892, 874.826, 1.069], [1733.79, 876.382, 1.059], [1732.878, 880.029, 1.041]]\nB: [[1927.606, 821.613, 1.179], [1635.106, 838.612, 1.118], [1798.04, 779.408, 1.262], [1906.044, 824.489, 1.153]]\nC: [[1655.684, 967.021, 1.001], [2054.919, 792.455, 1.056], [1489.06, 752.973, 1.09], [1601.794, 1000.219, 1.236]]\nD: [[2074.836, 711.213, 0.881], [1659.637, 744.201, 1.258], [2073.69, 988.772, 1.118], [1777.227, 826.859, 1.096]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_59_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_59_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_59_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_59_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_59_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_59_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_59_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_59_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1736.392, 873.361, 1.079], [1734.892, 874.826, 1.069], [1733.79, 876.382, 1.059], [1732.878, 880.029, 1.041]]\nB: [[1927.606, 821.613, 1.179], [1635.106, 838.612, 1.118], [1798.04, 779.408, 1.262], [1906.044, 824.489, 1.153]]\nC: [[1655.684, 967.021, 1.001], [2054.919, 792.455, 1.056], [1489.06, 752.973, 1.09], [1601.794, 1000.219, 1.236]]\nD: [[2074.836, 711.213, 0.881], [1659.637, 744.201, 1.258], [2073.69, 988.772, 1.118], [1777.227, 826.859, 1.096]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[283.606, 696.753, 1.329], [383.644, 532.364, 1.363], [332.149, 525.401, 1.473], [385.71, 734.583, 1.097]]\nB: [[383.086, 639.489, 1.063], [279.173, 585.298, 1.388], [361.433, 701.65, 1.375], [295.925, 719.625, 1.188]]\nC: [[330.789, 641.074, 1.158], [330.789, 641.074, 1.212], [330.789, 641.074, 1.267], [330.789, 641.074, 1.322]]\nD: [[306.13, 719.717, 1.368], [345.491, 726.192, 0.98], [345.908, 519.046, 1.407], [318.14, 654.942, 1.306]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_60_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_60_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_60_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_60_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_60_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_60_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_60_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_60_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[283.606, 696.753, 1.329], [383.644, 532.364, 1.363], [332.149, 525.401, 1.473], [385.71, 734.583, 1.097]]\nB: [[383.086, 639.489, 1.063], [279.173, 585.298, 1.388], [361.433, 701.65, 1.375], [295.925, 719.625, 1.188]]\nC: [[330.789, 641.074, 1.158], [330.789, 641.074, 1.212], [330.789, 641.074, 1.267], [330.789, 641.074, 1.322]]\nD: [[306.13, 719.717, 1.368], [345.491, 726.192, 0.98], [345.908, 519.046, 1.407], [318.14, 654.942, 1.306]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[661.561, 1356.246, 0.07], [523.515, 1451.812, 0.242], [629.357, 1441.913, 0.46], [693.951, 1658.121, 0.495]]\nB: [[596.26, 1440.992, 0.068], [660.286, 1441.26, 0.267], [710.568, 1651.675, 0.41], [567.432, 1395.938, 0.5]]\nC: [[628.289, 1618.572, 0.075], [628.026, 1618.937, 0.252], [627.783, 1619.317, 0.43], [627.525, 1619.686, 0.607]]\nD: [[603.153, 1669.791, 0.074], [606.05, 1635.908, 0.212], [518.765, 1574.758, 0.36], [706.901, 1431.785, 0.612]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_61_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_61_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_61_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_61_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_61_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_61_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_61_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_61_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[661.561, 1356.246, 0.07], [523.515, 1451.812, 0.242], [629.357, 1441.913, 0.46], [693.951, 1658.121, 0.495]]\nB: [[596.26, 1440.992, 0.068], [660.286, 1441.26, 0.267], [710.568, 1651.675, 0.41], [567.432, 1395.938, 0.5]]\nC: [[628.289, 1618.572, 0.075], [628.026, 1618.937, 0.252], [627.783, 1619.317, 0.43], [627.525, 1619.686, 0.607]]\nD: [[603.153, 1669.791, 0.074], [606.05, 1635.908, 0.212], [518.765, 1574.758, 0.36], [706.901, 1431.785, 0.612]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[330.056, 1212.866, 0.652], [437.866, 986.828, 0.616], [373.47, 964.81, 0.657], [399.422, 1352.779, 0.635]]\nB: [[376.04, 1070.497, 0.645], [362.804, 1103.987, 0.583], [385.25, 1290.416, 0.524], [372.683, 1131.605, 0.686]]\nC: [[399.012, 1167.878, 0.547], [399.016, 1167.877, 0.567], [399.02, 1167.875, 0.588], [399.024, 1167.873, 0.609]]\nD: [[341.259, 1087.552, 0.588], [364.207, 1061.407, 0.495], [465.16, 1225.627, 0.505], [436.212, 1297.403, 0.597]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_62_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_62_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_62_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_62_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_62_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_62_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_62_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_62_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[330.056, 1212.866, 0.652], [437.866, 986.828, 0.616], [373.47, 964.81, 0.657], [399.422, 1352.779, 0.635]]\nB: [[376.04, 1070.497, 0.645], [362.804, 1103.987, 0.583], [385.25, 1290.416, 0.524], [372.683, 1131.605, 0.686]]\nC: [[399.012, 1167.878, 0.547], [399.016, 1167.877, 0.567], [399.02, 1167.875, 0.588], [399.024, 1167.873, 0.609]]\nD: [[341.259, 1087.552, 0.588], [364.207, 1061.407, 0.495], [465.16, 1225.627, 0.505], [436.212, 1297.403, 0.597]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1274.538, 1123.672, 0.2], [1346.842, 824.302, 0.2], [1292.774, 973.997, 0.26], [1054.281, 825.781, 0.247]]\nB: [[1328.749, 1065.512, 0.2], [1175.959, 833.053, 0.21], [1184.952, 824.911, 0.22], [1071.949, 1039.546, 0.188]]\nC: [[1098.549, 1020.422, 0.2], [1497.254, 1019.016, 0.22], [1382.864, 830.543, 0.21], [1100.12, 1050.184, 0.22]]\nD: [[1253.322, 1015.243, 0.2], [1253.424, 1015.978, 0.21], [1253.526, 1016.713, 0.22], [1253.637, 1017.522, 0.231]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_63_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_63_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_63_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_63_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_63_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_63_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_63_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_63_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1274.538, 1123.672, 0.2], [1346.842, 824.302, 0.2], [1292.774, 973.997, 0.26], [1054.281, 825.781, 0.247]]\nB: [[1328.749, 1065.512, 0.2], [1175.959, 833.053, 0.21], [1184.952, 824.911, 0.22], [1071.949, 1039.546, 0.188]]\nC: [[1098.549, 1020.422, 0.2], [1497.254, 1019.016, 0.22], [1382.864, 830.543, 0.21], [1100.12, 1050.184, 0.22]]\nD: [[1253.322, 1015.243, 0.2], [1253.424, 1015.978, 0.21], [1253.526, 1016.713, 0.22], [1253.637, 1017.522, 0.231]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1875.125, 875.415, 0.935], [1875.191, 875.416, 0.935], [1875.193, 875.318, 0.985], [1875.195, 875.264, 0.952]]\nB: [[2028.088, 883.086, 0.815], [1648.373, 903.844, 1.102], [1520.401, 917.022, 1.065], [1867.355, 949.61, 0.806]]\nC: [[1847.629, 795.419, 1.055], [2059.556, 721.579, 0.94], [1862.226, 915.16, 1.105], [1795.239, 771.992, 0.777]]\nD: [[1908.891, 972.995, 0.987], [1782.46, 894.481, 0.828], [1850.807, 745.233, 1.094], [1559.966, 967.549, 0.89]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_64_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_64_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_64_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_64_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_64_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_64_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_64_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_64_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1875.125, 875.415, 0.935], [1875.191, 875.416, 0.935], [1875.193, 875.318, 0.985], [1875.195, 875.264, 0.952]]\nB: [[2028.088, 883.086, 0.815], [1648.373, 903.844, 1.102], [1520.401, 917.022, 1.065], [1867.355, 949.61, 0.806]]\nC: [[1847.629, 795.419, 1.055], [2059.556, 721.579, 0.94], [1862.226, 915.16, 1.105], [1795.239, 771.992, 0.777]]\nD: [[1908.891, 972.995, 0.987], [1782.46, 894.481, 0.828], [1850.807, 745.233, 1.094], [1559.966, 967.549, 0.89]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[582.71, 1411.821, -0.354], [557.0, 1488.19, -0.247], [651.447, 1741.537, -0.237], [520.268, 1329.718, -0.188]]\nB: [[635.447, 1620.546, -0.326], [637.445, 1618.566, -0.238], [639.933, 1616.457, -0.267], [642.736, 1614.065, -0.196]]\nC: [[522.996, 1413.245, -0.379], [659.983, 1928.523, -0.204], [766.979, 1315.798, -0.304], [599.616, 1825.248, -0.224]]\nD: [[534.996, 1707.261, -0.292], [614.808, 1704.145, -0.211], [523.563, 1883.81, -0.302], [672.146, 1371.116, -0.218]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_65_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_65_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_65_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_65_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_65_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_65_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_65_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_65_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[582.71, 1411.821, -0.354], [557.0, 1488.19, -0.247], [651.447, 1741.537, -0.237], [520.268, 1329.718, -0.188]]\nB: [[635.447, 1620.546, -0.326], [637.445, 1618.566, -0.238], [639.933, 1616.457, -0.267], [642.736, 1614.065, -0.196]]\nC: [[522.996, 1413.245, -0.379], [659.983, 1928.523, -0.204], [766.979, 1315.798, -0.304], [599.616, 1825.248, -0.224]]\nD: [[534.996, 1707.261, -0.292], [614.808, 1704.145, -0.211], [523.563, 1883.81, -0.302], [672.146, 1371.116, -0.218]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1680.561, 2863.302, 2.542], [2169.563, 2794.924, 2.265], [1707.842, 2939.301, 2.152], [1632.945, 2507.032, 1.945]]\nB: [[1547.261, 2391.341, 2.475], [1833.795, 2236.842, 2.065], [1997.767, 2445.687, 1.715], [2056.371, 2356.627, 2.0]]\nC: [[1904.106, 2453.654, 2.215], [1897.838, 2460.219, 2.156], [1892.616, 2465.688, 2.107], [1887.387, 2471.164, 2.057]]\nD: [[2182.661, 2279.405, 1.852], [1930.577, 2763.231, 2.146], [1909.158, 2677.265, 2.297], [1596.829, 2331.093, 2.251]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_66_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_66_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_66_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_66_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_66_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_66_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_66_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_66_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1680.561, 2863.302, 2.542], [2169.563, 2794.924, 2.265], [1707.842, 2939.301, 2.152], [1632.945, 2507.032, 1.945]]\nB: [[1547.261, 2391.341, 2.475], [1833.795, 2236.842, 2.065], [1997.767, 2445.687, 1.715], [2056.371, 2356.627, 2.0]]\nC: [[1904.106, 2453.654, 2.215], [1897.838, 2460.219, 2.156], [1892.616, 2465.688, 2.107], [1887.387, 2471.164, 2.057]]\nD: [[2182.661, 2279.405, 1.852], [1930.577, 2763.231, 2.146], [1909.158, 2677.265, 2.297], [1596.829, 2331.093, 2.251]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[325.896, 989.839, 0.854], [326.517, 1140.353, 0.792], [331.478, 1339.384, 0.825], [382.05, 1348.154, 0.905]]\nB: [[393.357, 1149.173, 0.741], [392.945, 1148.426, 0.766], [392.836, 1148.208, 0.791], [392.641, 1147.242, 0.816]]\nC: [[349.533, 1155.715, 0.667], [378.661, 1084.815, 0.825], [431.355, 1125.036, 0.69], [366.861, 940.522, 0.728]]\nD: [[370.793, 1354.659, 0.611], [315.047, 1147.297, 0.791], [387.351, 947.719, 0.922], [465.223, 1022.515, 0.919]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_67_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_67_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_67_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_67_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_67_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_67_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_67_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_67_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[325.896, 989.839, 0.854], [326.517, 1140.353, 0.792], [331.478, 1339.384, 0.825], [382.05, 1348.154, 0.905]]\nB: [[393.357, 1149.173, 0.741], [392.945, 1148.426, 0.766], [392.836, 1148.208, 0.791], [392.641, 1147.242, 0.816]]\nC: [[349.533, 1155.715, 0.667], [378.661, 1084.815, 0.825], [431.355, 1125.036, 0.69], [366.861, 940.522, 0.728]]\nD: [[370.793, 1354.659, 0.611], [315.047, 1147.297, 0.791], [387.351, 947.719, 0.922], [465.223, 1022.515, 0.919]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[2150.649, 802.858, 0.294], [2285.669, 868.672, 0.285], [1699.227, 714.027, 0.212], [1879.379, 823.249, 0.262]]\nB: [[2057.083, 982.769, 0.286], [2194.778, 989.034, 0.224], [1802.969, 943.191, 0.277], [2004.998, 886.268, 0.304]]\nC: [[1585.591, 914.605, 0.27], [1552.179, 1019.735, 0.316], [1997.522, 917.351, 0.271], [2167.86, 906.565, 0.376]]\nD: [[1926.398, 878.499, 0.267], [1926.397, 878.517, 0.277], [1926.355, 878.551, 0.259], [1926.373, 878.505, 0.317]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_68_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_68_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_68_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_68_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_68_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_68_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_68_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_68_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[2150.649, 802.858, 0.294], [2285.669, 868.672, 0.285], [1699.227, 714.027, 0.212], [1879.379, 823.249, 0.262]]\nB: [[2057.083, 982.769, 0.286], [2194.778, 989.034, 0.224], [1802.969, 943.191, 0.277], [2004.998, 886.268, 0.304]]\nC: [[1585.591, 914.605, 0.27], [1552.179, 1019.735, 0.316], [1997.522, 917.351, 0.271], [2167.86, 906.565, 0.376]]\nD: [[1926.398, 878.499, 0.267], [1926.397, 878.517, 0.277], [1926.355, 878.551, 0.259], [1926.373, 878.505, 0.317]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[510.539, 1910.445, 0.57], [644.708, 1390.766, 0.487], [528.12, 1465.53, 0.743], [684.489, 1755.997, 0.708]]\nB: [[618.712, 1315.402, 0.58], [707.938, 1490.825, 0.655], [678.962, 1715.92, 0.704], [561.864, 1423.394, 0.869]]\nC: [[644.567, 1930.873, 0.501], [662.364, 1327.012, 0.538], [649.501, 1573.33, 0.633], [563.587, 1732.779, 0.975]]\nD: [[612.719, 1632.142, 0.491], [612.166, 1632.636, 0.566], [611.613, 1633.13, 0.641], [611.127, 1633.567, 0.816]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_69_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_69_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_69_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_69_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_69_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_69_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_69_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_69_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[510.539, 1910.445, 0.57], [644.708, 1390.766, 0.487], [528.12, 1465.53, 0.743], [684.489, 1755.997, 0.708]]\nB: [[618.712, 1315.402, 0.58], [707.938, 1490.825, 0.655], [678.962, 1715.92, 0.704], [561.864, 1423.394, 0.869]]\nC: [[644.567, 1930.873, 0.501], [662.364, 1327.012, 0.538], [649.501, 1573.33, 0.633], [563.587, 1732.779, 0.975]]\nD: [[612.719, 1632.142, 0.491], [612.166, 1632.636, 0.566], [611.613, 1633.13, 0.641], [611.127, 1633.567, 0.816]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[439.78, 1227.349, 1.05], [426.44, 1268.51, 1.02], [325.982, 1240.255, 1.035], [445.556, 1380.946, 1.053]]\nB: [[383.14, 979.995, 1.108], [307.405, 1164.897, 0.89], [394.307, 1087.049, 1.131], [410.908, 1074.81, 0.998]]\nC: [[310.31, 1005.482, 1.062], [353.18, 1020.342, 0.94], [407.431, 1247.448, 1.209], [366.856, 956.543, 1.01]]\nD: [[376.13, 1158.507, 0.938], [376.399, 1159.165, 0.98], [376.667, 1159.822, 1.022], [376.878, 1160.357, 1.013]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_70_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_70_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_70_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_70_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_70_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_70_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_70_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_70_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[439.78, 1227.349, 1.05], [426.44, 1268.51, 1.02], [325.982, 1240.255, 1.035], [445.556, 1380.946, 1.053]]\nB: [[383.14, 979.995, 1.108], [307.405, 1164.897, 0.89], [394.307, 1087.049, 1.131], [410.908, 1074.81, 0.998]]\nC: [[310.31, 1005.482, 1.062], [353.18, 1020.342, 0.94], [407.431, 1247.448, 1.209], [366.856, 956.543, 1.01]]\nD: [[376.13, 1158.507, 0.938], [376.399, 1159.165, 0.98], [376.667, 1159.822, 1.022], [376.878, 1160.357, 1.013]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1700.614, 979.18, 0.431], [1688.381, 1025.064, 0.508], [2269.256, 744.117, 0.545], [2084.454, 772.655, 0.492]]\nB: [[2210.59, 1003.05, 0.548], [1727.203, 861.604, 0.538], [1904.192, 830.147, 0.392], [1890.542, 842.708, 0.427]]\nC: [[1895.763, 879.04, 0.501], [1895.752, 879.076, 0.488], [1895.741, 879.112, 0.476], [1895.739, 879.116, 0.464]]\nD: [[1616.91, 819.62, 0.433], [2209.262, 739.792, 0.446], [2172.452, 852.21, 0.474], [2247.291, 966.129, 0.485]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_71_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_71_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_71_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_71_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_71_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_71_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_71_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_71_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1700.614, 979.18, 0.431], [1688.381, 1025.064, 0.508], [2269.256, 744.117, 0.545], [2084.454, 772.655, 0.492]]\nB: [[2210.59, 1003.05, 0.548], [1727.203, 861.604, 0.538], [1904.192, 830.147, 0.392], [1890.542, 842.708, 0.427]]\nC: [[1895.763, 879.04, 0.501], [1895.752, 879.076, 0.488], [1895.741, 879.112, 0.476], [1895.739, 879.116, 0.464]]\nD: [[1616.91, 819.62, 0.433], [2209.262, 739.792, 0.446], [2172.452, 852.21, 0.474], [2247.291, 966.129, 0.485]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[492.434, 1780.838, 1.16], [577.631, 1809.358, 1.725], [545.194, 1817.556, 1.603], [496.388, 1841.178, 2.172]]\nB: [[528.48, 1765.528, 1.61], [545.13, 1628.646, 1.326], [540.257, 1713.355, 1.75], [658.49, 1577.115, 2.147]]\nC: [[560.672, 1608.19, 1.54], [649.701, 1442.289, 1.318], [663.362, 1707.871, 2.131], [530.811, 1383.352, 2.114]]\nD: [[582.374, 1660.997, 1.38], [577.424, 1663.687, 1.585], [572.406, 1666.247, 1.789], [567.347, 1668.872, 2.039]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_72_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_72_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_72_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_72_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_72_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_72_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_72_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_72_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[492.434, 1780.838, 1.16], [577.631, 1809.358, 1.725], [545.194, 1817.556, 1.603], [496.388, 1841.178, 2.172]]\nB: [[528.48, 1765.528, 1.61], [545.13, 1628.646, 1.326], [540.257, 1713.355, 1.75], [658.49, 1577.115, 2.147]]\nC: [[560.672, 1608.19, 1.54], [649.701, 1442.289, 1.318], [663.362, 1707.871, 2.131], [530.811, 1383.352, 2.114]]\nD: [[582.374, 1660.997, 1.38], [577.424, 1663.687, 1.585], [572.406, 1666.247, 1.789], [567.347, 1668.872, 2.039]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[752.506, 1329.917, 0.448], [704.23, 1387.5, 0.595], [747.496, 1349.796, 0.742], [584.265, 1616.56, 0.8]]\nB: [[803.078, 1389.349, 0.388], [620.34, 1764.02, 0.522], [772.362, 1430.724, 0.537], [790.895, 1648.104, 0.8]]\nC: [[607.176, 1721.605, 0.459], [602.85, 1587.2, 0.548], [708.169, 1620.023, 0.647], [790.325, 1466.233, 0.7]]\nD: [[672.574, 1595.791, 0.388], [670.89, 1597.24, 0.625], [669.207, 1598.689, 0.663], [667.523, 1600.138, 0.7]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_73_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_73_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_73_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_73_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_73_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_73_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_73_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_73_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[752.506, 1329.917, 0.448], [704.23, 1387.5, 0.595], [747.496, 1349.796, 0.742], [584.265, 1616.56, 0.8]]\nB: [[803.078, 1389.349, 0.388], [620.34, 1764.02, 0.522], [772.362, 1430.724, 0.537], [790.895, 1648.104, 0.8]]\nC: [[607.176, 1721.605, 0.459], [602.85, 1587.2, 0.548], [708.169, 1620.023, 0.647], [790.325, 1466.233, 0.7]]\nD: [[672.574, 1595.791, 0.388], [670.89, 1597.24, 0.625], [669.207, 1598.689, 0.663], [667.523, 1600.138, 0.7]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[430.291, 1175.505, 0.588], [429.167, 1272.84, 0.836], [415.87, 1257.143, 0.882], [372.618, 1001.865, 0.689]]\nB: [[410.066, 1196.767, 0.656], [410.072, 1196.78, 0.706], [410.08, 1196.795, 0.756], [410.101, 1196.811, 0.756]]\nC: [[386.139, 1116.452, 0.72], [464.376, 1221.72, 0.778], [364.35, 1233.741, 0.755], [330.159, 1270.327, 0.687]]\nD: [[409.837, 984.781, 0.668], [440.225, 1048.51, 0.572], [446.2, 1257.02, 0.834], [482.338, 985.937, 0.624]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_74_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_74_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_74_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_74_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_74_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_74_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_74_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_74_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[430.291, 1175.505, 0.588], [429.167, 1272.84, 0.836], [415.87, 1257.143, 0.882], [372.618, 1001.865, 0.689]]\nB: [[410.066, 1196.767, 0.656], [410.072, 1196.78, 0.706], [410.08, 1196.795, 0.756], [410.101, 1196.811, 0.756]]\nC: [[386.139, 1116.452, 0.72], [464.376, 1221.72, 0.778], [364.35, 1233.741, 0.755], [330.159, 1270.327, 0.687]]\nD: [[409.837, 984.781, 0.668], [440.225, 1048.51, 0.572], [446.2, 1257.02, 0.834], [482.338, 985.937, 0.624]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[392.514, 1072.298, 0.999], [329.808, 1223.789, 1.084], [463.813, 1302.961, 0.914], [451.609, 1167.4, 1.154]]\nB: [[401.879, 1242.697, 0.728], [341.309, 990.577, 1.02], [450.947, 906.714, 1.117], [328.165, 960.327, 1.095]]\nC: [[342.127, 1107.321, 0.98], [447.285, 926.593, 0.964], [394.127, 898.801, 1.186], [403.682, 1324.015, 1.131]]\nD: [[391.204, 1112.576, 0.863], [391.204, 1112.576, 0.913], [391.208, 1112.586, 1.013], [391.212, 1112.595, 0.993]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_75_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_75_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_75_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_75_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_75_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_75_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_75_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_75_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[392.514, 1072.298, 0.999], [329.808, 1223.789, 1.084], [463.813, 1302.961, 0.914], [451.609, 1167.4, 1.154]]\nB: [[401.879, 1242.697, 0.728], [341.309, 990.577, 1.02], [450.947, 906.714, 1.117], [328.165, 960.327, 1.095]]\nC: [[342.127, 1107.321, 0.98], [447.285, 926.593, 0.964], [394.127, 898.801, 1.186], [403.682, 1324.015, 1.131]]\nD: [[391.204, 1112.576, 0.863], [391.204, 1112.576, 0.913], [391.208, 1112.586, 1.013], [391.212, 1112.595, 0.993]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1321.516, 1033.801, 1.008], [1321.517, 1033.801, 1.008], [1321.517, 1033.8, 1.008], [1321.518, 1033.8, 1.008]]\nB: [[1066.616, 1131.355, 0.921], [1219.6, 1098.492, 0.864], [1282.161, 961.0, 1.081], [1197.931, 1177.0, 1.016]]\nC: [[1190.352, 917.033, 1.028], [1155.143, 1161.133, 1.153], [1394.211, 959.1, 0.834], [1188.323, 1016.1, 1.08]]\nD: [[1067.426, 888.354, 0.843], [1441.448, 1176.105, 0.843], [1087.955, 967.6, 0.966], [1191.947, 906.7, 0.967]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_76_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_76_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_76_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_76_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_76_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_76_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_76_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_76_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1321.516, 1033.801, 1.008], [1321.517, 1033.801, 1.008], [1321.517, 1033.8, 1.008], [1321.518, 1033.8, 1.008]]\nB: [[1066.616, 1131.355, 0.921], [1219.6, 1098.492, 0.864], [1282.161, 961.0, 1.081], [1197.931, 1177.0, 1.016]]\nC: [[1190.352, 917.033, 1.028], [1155.143, 1161.133, 1.153], [1394.211, 959.1, 0.834], [1188.323, 1016.1, 1.08]]\nD: [[1067.426, 888.354, 0.843], [1441.448, 1176.105, 0.843], [1087.955, 967.6, 0.966], [1191.947, 906.7, 0.967]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[438.849, 951.711, 0.795], [314.542, 1143.97, 0.648], [362.865, 1209.907, 0.806], [438.018, 933.567, 0.84]]\nB: [[388.688, 1111.433, 0.677], [388.691, 1111.43, 0.695], [388.695, 1111.428, 0.713], [388.698, 1111.426, 0.716]]\nC: [[316.274, 909.79, 0.674], [451.235, 958.84, 0.605], [365.204, 1239.893, 0.608], [426.654, 1268.736, 0.816]]\nD: [[452.526, 1172.998, 0.585], [454.014, 1000.44, 0.724], [336.213, 1132.703, 0.811], [313.791, 1218.829, 0.612]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_77_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_77_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_77_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_77_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_77_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_77_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_77_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_77_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[438.849, 951.711, 0.795], [314.542, 1143.97, 0.648], [362.865, 1209.907, 0.806], [438.018, 933.567, 0.84]]\nB: [[388.688, 1111.433, 0.677], [388.691, 1111.43, 0.695], [388.695, 1111.428, 0.713], [388.698, 1111.426, 0.716]]\nC: [[316.274, 909.79, 0.674], [451.235, 958.84, 0.605], [365.204, 1239.893, 0.608], [426.654, 1268.736, 0.816]]\nD: [[452.526, 1172.998, 0.585], [454.014, 1000.44, 0.724], [336.213, 1132.703, 0.811], [313.791, 1218.829, 0.612]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[625.166, 1621.071, -0.136], [624.733, 1621.463, -0.074], [624.328, 1621.884, -0.011], [624.034, 1622.205, 0.176]]\nB: [[673.606, 1641.602, -0.151], [650.83, 1385.101, -0.066], [545.785, 1758.678, -0.013], [623.635, 1668.753, 0.151]]\nC: [[612.227, 1304.459, -0.119], [594.602, 1728.678, -0.08], [714.884, 1584.229, -0.012], [716.369, 1325.064, 0.2]]\nD: [[677.007, 1319.892, -0.145], [590.033, 1617.266, -0.079], [508.485, 1809.42, -0.012], [584.009, 1851.902, 0.196]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_78_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_78_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_78_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_78_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_78_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_78_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_78_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_78_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[625.166, 1621.071, -0.136], [624.733, 1621.463, -0.074], [624.328, 1621.884, -0.011], [624.034, 1622.205, 0.176]]\nB: [[673.606, 1641.602, -0.151], [650.83, 1385.101, -0.066], [545.785, 1758.678, -0.013], [623.635, 1668.753, 0.151]]\nC: [[612.227, 1304.459, -0.119], [594.602, 1728.678, -0.08], [714.884, 1584.229, -0.012], [716.369, 1325.064, 0.2]]\nD: [[677.007, 1319.892, -0.145], [590.033, 1617.266, -0.079], [508.485, 1809.42, -0.012], [584.009, 1851.902, 0.196]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[500.254, 1116.383, 0.109], [528.871, 1208.17, 0.09], [370.111, 1189.599, 0.128], [490.724, 1065.954, 0.15]]\nB: [[424.937, 1288.953, 0.124], [494.735, 1135.49, 0.095], [377.247, 1056.094, 0.129], [454.303, 1168.649, 0.16]]\nC: [[445.198, 1091.608, 0.107], [445.269, 1091.74, 0.084], [445.269, 1091.738, 0.117], [445.269, 1091.735, 0.15]]\nD: [[518.8, 1113.376, 0.123], [424.179, 929.73, 0.097], [415.562, 1089.363, 0.113], [387.889, 1032.784, 0.17]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_79_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_79_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_79_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_79_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_79_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_79_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_79_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_79_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[500.254, 1116.383, 0.109], [528.871, 1208.17, 0.09], [370.111, 1189.599, 0.128], [490.724, 1065.954, 0.15]]\nB: [[424.937, 1288.953, 0.124], [494.735, 1135.49, 0.095], [377.247, 1056.094, 0.129], [454.303, 1168.649, 0.16]]\nC: [[445.198, 1091.608, 0.107], [445.269, 1091.74, 0.084], [445.269, 1091.738, 0.117], [445.269, 1091.735, 0.15]]\nD: [[518.8, 1113.376, 0.123], [424.179, 929.73, 0.097], [415.562, 1089.363, 0.113], [387.889, 1032.784, 0.17]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1484.746, 911.994, 1.171], [1137.15, 1003.822, 1.118], [1492.05, 930.243, 1.121], [1124.198, 1141.212, 1.261]]\nB: [[1219.797, 981.822, 1.234], [1419.86, 1093.926, 0.969], [1395.832, 917.571, 1.104], [1330.08, 1062.03, 1.216]]\nC: [[1453.95, 988.704, 0.898], [1551.29, 1210.843, 1.28], [1428.034, 1104.909, 1.233], [1371.047, 908.624, 1.137]]\nD: [[1328.982, 1049.561, 1.089], [1328.99, 1049.562, 1.089], [1328.997, 1049.563, 1.089], [1329.005, 1049.565, 1.089]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_80_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_80_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_80_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_80_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_80_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_80_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_80_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_80_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1484.746, 911.994, 1.171], [1137.15, 1003.822, 1.118], [1492.05, 930.243, 1.121], [1124.198, 1141.212, 1.261]]\nB: [[1219.797, 981.822, 1.234], [1419.86, 1093.926, 0.969], [1395.832, 917.571, 1.104], [1330.08, 1062.03, 1.216]]\nC: [[1453.95, 988.704, 0.898], [1551.29, 1210.843, 1.28], [1428.034, 1104.909, 1.233], [1371.047, 908.624, 1.137]]\nD: [[1328.982, 1049.561, 1.089], [1328.99, 1049.562, 1.089], [1328.997, 1049.563, 1.089], [1329.005, 1049.565, 1.089]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[456.432, 1282.157, 0.891], [479.945, 1042.78, 0.822], [407.218, 1084.054, 0.7], [446.375, 997.916, 0.683]]\nB: [[462.967, 894.315, 0.986], [392.745, 966.59, 0.805], [391.102, 1018.399, 0.622], [493.885, 1286.081, 0.965]]\nC: [[466.287, 926.158, 0.882], [352.099, 1212.35, 0.658], [429.631, 1077.672, 0.822], [411.455, 1150.981, 0.801]]\nD: [[430.242, 1089.779, 1.026], [430.279, 1089.87, 0.776], [430.299, 1089.898, 0.776], [430.321, 1089.952, 0.817]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_81_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_81_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_81_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_81_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_81_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_81_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_81_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_81_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[456.432, 1282.157, 0.891], [479.945, 1042.78, 0.822], [407.218, 1084.054, 0.7], [446.375, 997.916, 0.683]]\nB: [[462.967, 894.315, 0.986], [392.745, 966.59, 0.805], [391.102, 1018.399, 0.622], [493.885, 1286.081, 0.965]]\nC: [[466.287, 926.158, 0.882], [352.099, 1212.35, 0.658], [429.631, 1077.672, 0.822], [411.455, 1150.981, 0.801]]\nD: [[430.242, 1089.779, 1.026], [430.279, 1089.87, 0.776], [430.299, 1089.898, 0.776], [430.321, 1089.952, 0.817]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1945.526, 876.296, 0.419], [1945.526, 876.242, 0.469], [1945.526, 876.177, 0.469], [1945.526, 876.26, 0.519]]\nB: [[2158.266, 800.911, 0.453], [2106.839, 1043.586, 0.501], [2049.112, 832.682, 0.434], [2030.483, 957.49, 0.61]]\nC: [[2028.562, 929.081, 0.457], [1728.295, 771.666, 0.406], [2125.198, 983.306, 0.535], [2151.856, 925.1, 0.483]]\nD: [[2333.669, 1007.109, 0.449], [1683.52, 730.695, 0.511], [2240.73, 776.757, 0.511], [1717.598, 731.99, 0.548]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_82_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_82_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_82_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_82_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_82_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_82_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_82_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_82_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1945.526, 876.296, 0.419], [1945.526, 876.242, 0.469], [1945.526, 876.177, 0.469], [1945.526, 876.26, 0.519]]\nB: [[2158.266, 800.911, 0.453], [2106.839, 1043.586, 0.501], [2049.112, 832.682, 0.434], [2030.483, 957.49, 0.61]]\nC: [[2028.562, 929.081, 0.457], [1728.295, 771.666, 0.406], [2125.198, 983.306, 0.535], [2151.856, 925.1, 0.483]]\nD: [[2333.669, 1007.109, 0.449], [1683.52, 730.695, 0.511], [2240.73, 776.757, 0.511], [1717.598, 731.99, 0.548]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1937.491, 914.639, 0.22], [1901.969, 968.51, 0.273], [1716.987, 958.003, 0.262], [1808.463, 962.345, 0.288]]\nB: [[2007.196, 817.175, 0.254], [1773.432, 871.003, 0.284], [1939.918, 1002.574, 0.304], [2252.629, 811.34, 0.262]]\nC: [[2285.927, 936.67, 0.263], [1604.253, 825.974, 0.25], [2118.153, 905.274, 0.26], [1884.079, 918.838, 0.296]]\nD: [[1926.631, 877.571, 0.228], [1926.631, 877.571, 0.252], [1926.626, 877.593, 0.255], [1926.638, 877.538, 0.303]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_83_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_83_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_83_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_83_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_83_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_83_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_83_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_83_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1937.491, 914.639, 0.22], [1901.969, 968.51, 0.273], [1716.987, 958.003, 0.262], [1808.463, 962.345, 0.288]]\nB: [[2007.196, 817.175, 0.254], [1773.432, 871.003, 0.284], [1939.918, 1002.574, 0.304], [2252.629, 811.34, 0.262]]\nC: [[2285.927, 936.67, 0.263], [1604.253, 825.974, 0.25], [2118.153, 905.274, 0.26], [1884.079, 918.838, 0.296]]\nD: [[1926.631, 877.571, 0.228], [1926.631, 877.571, 0.252], [1926.626, 877.593, 0.255], [1926.638, 877.538, 0.303]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[680.728, 1749.077, -0.375], [745.701, 1474.694, -0.299], [610.56, 1380.492, -0.27], [635.92, 1915.689, -0.136]]\nB: [[660.851, 1604.404, -0.423], [657.771, 1607.079, -0.332], [654.69, 1609.754, -0.24], [651.61, 1612.428, -0.148]]\nC: [[647.562, 1445.984, -0.429], [659.321, 1909.729, -0.283], [754.69, 1382.093, -0.26], [549.55, 1888.817, -0.122]]\nD: [[751.514, 1476.27, -0.49], [654.016, 1488.662, -0.332], [753.33, 1931.072, -0.2], [574.93, 1792.093, -0.171]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_84_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_84_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_84_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_84_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_84_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_84_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_84_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_84_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[680.728, 1749.077, -0.375], [745.701, 1474.694, -0.299], [610.56, 1380.492, -0.27], [635.92, 1915.689, -0.136]]\nB: [[660.851, 1604.404, -0.423], [657.771, 1607.079, -0.332], [654.69, 1609.754, -0.24], [651.61, 1612.428, -0.148]]\nC: [[647.562, 1445.984, -0.429], [659.321, 1909.729, -0.283], [754.69, 1382.093, -0.26], [549.55, 1888.817, -0.122]]\nD: [[751.514, 1476.27, -0.49], [654.016, 1488.662, -0.332], [753.33, 1931.072, -0.2], [574.93, 1792.093, -0.171]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[356.068, 1144.504, 0.82], [356.64, 1144.191, 0.795], [358.929, 1142.941, 0.822], [359.501, 1142.629, 0.839]]\nB: [[401.199, 1094.551, 0.83], [308.99, 1334.228, 0.943], [415.452, 921.574, 0.753], [392.805, 1225.338, 0.965]]\nC: [[395.4, 1321.544, 0.95], [322.87, 1045.667, 0.91], [342.828, 1295.35, 0.695], [397.067, 940.796, 0.768]]\nD: [[418.406, 1138.796, 0.82], [416.34, 1311.233, 0.684], [355.451, 1305.707, 0.882], [410.239, 1120.033, 0.971]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_85_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_85_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_85_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_85_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_85_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_85_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_85_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_85_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[356.068, 1144.504, 0.82], [356.64, 1144.191, 0.795], [358.929, 1142.941, 0.822], [359.501, 1142.629, 0.839]]\nB: [[401.199, 1094.551, 0.83], [308.99, 1334.228, 0.943], [415.452, 921.574, 0.753], [392.805, 1225.338, 0.965]]\nC: [[395.4, 1321.544, 0.95], [322.87, 1045.667, 0.91], [342.828, 1295.35, 0.695], [397.067, 940.796, 0.768]]\nD: [[418.406, 1138.796, 0.82], [416.34, 1311.233, 0.684], [355.451, 1305.707, 0.882], [410.239, 1120.033, 0.971]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1753.666, 1018.404, 0.365], [1524.0, 883.794, 0.327], [2021.935, 879.24, 0.307], [1882.989, 791.594, 0.35]]\nB: [[2170.362, 809.726, 0.373], [2168.605, 703.253, 0.314], [1918.642, 995.58, 0.329], [1602.549, 910.935, 0.29]]\nC: [[2178.785, 988.248, 0.285], [2227.998, 705.37, 0.287], [1566.17, 877.23, 0.318], [1931.258, 826.324, 0.31]]\nD: [[1902.434, 878.055, 0.343], [1902.434, 878.055, 0.293], [1902.429, 878.07, 0.302], [1902.423, 878.086, 0.31]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_86_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_86_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_86_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_86_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_86_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_86_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_86_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_86_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1753.666, 1018.404, 0.365], [1524.0, 883.794, 0.327], [2021.935, 879.24, 0.307], [1882.989, 791.594, 0.35]]\nB: [[2170.362, 809.726, 0.373], [2168.605, 703.253, 0.314], [1918.642, 995.58, 0.329], [1602.549, 910.935, 0.29]]\nC: [[2178.785, 988.248, 0.285], [2227.998, 705.37, 0.287], [1566.17, 877.23, 0.318], [1931.258, 826.324, 0.31]]\nD: [[1902.434, 878.055, 0.343], [1902.434, 878.055, 0.293], [1902.429, 878.07, 0.302], [1902.423, 878.086, 0.31]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[378.922, 1013.673, 0.734], [494.488, 1078.797, 0.456], [393.735, 912.986, 0.581], [419.965, 958.358, 0.767]]\nB: [[433.059, 1088.732, 0.713], [433.043, 1088.668, 0.553], [433.039, 1088.652, 0.513], [433.055, 1088.681, 0.703]]\nC: [[426.779, 1210.184, 0.683], [374.724, 1199.914, 0.579], [356.893, 998.508, 0.494], [512.758, 1067.304, 0.691]]\nD: [[351.961, 935.844, 0.571], [386.254, 1200.68, 0.61], [480.449, 1191.815, 0.483], [412.037, 930.978, 0.833]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_87_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_87_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_87_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_87_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_87_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_87_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_87_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_87_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[378.922, 1013.673, 0.734], [494.488, 1078.797, 0.456], [393.735, 912.986, 0.581], [419.965, 958.358, 0.767]]\nB: [[433.059, 1088.732, 0.713], [433.043, 1088.668, 0.553], [433.039, 1088.652, 0.513], [433.055, 1088.681, 0.703]]\nC: [[426.779, 1210.184, 0.683], [374.724, 1199.914, 0.579], [356.893, 998.508, 0.494], [512.758, 1067.304, 0.691]]\nD: [[351.961, 935.844, 0.571], [386.254, 1200.68, 0.61], [480.449, 1191.815, 0.483], [412.037, 930.978, 0.833]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[2045.551, 727.654, 1.102], [1833.302, 769.345, 1.055], [1827.43, 963.776, 1.306], [1702.867, 738.416, 0.98]]\nB: [[1661.503, 737.862, 0.962], [1861.333, 965.185, 0.908], [1821.87, 992.03, 0.919], [2075.341, 874.239, 1.077]]\nC: [[1741.077, 864.895, 1.109], [1745.181, 865.139, 1.105], [1748.91, 865.361, 1.102], [1752.336, 865.549, 1.096]]\nD: [[1791.757, 846.823, 0.925], [1982.741, 721.703, 1.059], [1406.89, 829.542, 1.078], [1577.41, 813.096, 1.053]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_88_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_88_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_88_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_88_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_88_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_88_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_88_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_88_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[2045.551, 727.654, 1.102], [1833.302, 769.345, 1.055], [1827.43, 963.776, 1.306], [1702.867, 738.416, 0.98]]\nB: [[1661.503, 737.862, 0.962], [1861.333, 965.185, 0.908], [1821.87, 992.03, 0.919], [2075.341, 874.239, 1.077]]\nC: [[1741.077, 864.895, 1.109], [1745.181, 865.139, 1.105], [1748.91, 865.361, 1.102], [1752.336, 865.549, 1.096]]\nD: [[1791.757, 846.823, 0.925], [1982.741, 721.703, 1.059], [1406.89, 829.542, 1.078], [1577.41, 813.096, 1.053]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[505.05, 877.226, 0.203], [445.953, 1244.021, 0.202], [392.706, 1145.406, 0.277], [366.753, 1183.669, 0.29]]\nB: [[457.03, 1257.26, 0.228], [463.22, 1274.147, 0.225], [370.296, 997.948, 0.259], [365.28, 1022.072, 0.29]]\nC: [[434.02, 1096.492, 0.241], [434.019, 1096.492, 0.222], [434.019, 1096.492, 0.236], [434.018, 1096.493, 0.25]]\nD: [[422.09, 929.091, 0.197], [407.921, 1195.795, 0.198], [469.259, 1267.695, 0.23], [354.798, 1155.602, 0.26]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_89_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_89_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_89_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_89_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_89_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_89_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_89_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_89_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[505.05, 877.226, 0.203], [445.953, 1244.021, 0.202], [392.706, 1145.406, 0.277], [366.753, 1183.669, 0.29]]\nB: [[457.03, 1257.26, 0.228], [463.22, 1274.147, 0.225], [370.296, 997.948, 0.259], [365.28, 1022.072, 0.29]]\nC: [[434.02, 1096.492, 0.241], [434.019, 1096.492, 0.222], [434.019, 1096.492, 0.236], [434.018, 1096.493, 0.25]]\nD: [[422.09, 929.091, 0.197], [407.921, 1195.795, 0.198], [469.259, 1267.695, 0.23], [354.798, 1155.602, 0.26]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[382.439, 944.308, 1.097], [282.072, 1346.475, 1.314], [317.768, 1056.456, 0.981], [328.142, 1067.671, 0.969]]\nB: [[348.689, 1130.152, 1.122], [348.689, 1130.152, 1.122], [348.689, 1130.152, 1.122], [348.689, 1130.152, 1.122]]\nC: [[290.351, 1111.854, 1.019], [383.245, 975.676, 1.11], [292.501, 1319.267, 0.953], [293.662, 1130.698, 0.975]]\nD: [[344.597, 1317.41, 1.004], [391.599, 1063.24, 1.128], [415.864, 1014.121, 0.9], [383.217, 1223.267, 1.321]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_90_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_90_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_90_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_90_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_90_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_90_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_90_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_90_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[382.439, 944.308, 1.097], [282.072, 1346.475, 1.314], [317.768, 1056.456, 0.981], [328.142, 1067.671, 0.969]]\nB: [[348.689, 1130.152, 1.122], [348.689, 1130.152, 1.122], [348.689, 1130.152, 1.122], [348.689, 1130.152, 1.122]]\nC: [[290.351, 1111.854, 1.019], [383.245, 975.676, 1.11], [292.501, 1319.267, 0.953], [293.662, 1130.698, 0.975]]\nD: [[344.597, 1317.41, 1.004], [391.599, 1063.24, 1.128], [415.864, 1014.121, 0.9], [383.217, 1223.267, 1.321]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[445.635, 1070.359, 0.563], [380.207, 1209.252, 0.55], [503.803, 1202.552, 0.618], [402.841, 878.242, 0.916]]\nB: [[355.09, 926.566, 0.532], [425.031, 931.852, 0.428], [396.378, 1283.26, 0.637], [419.782, 1021.681, 0.797]]\nC: [[353.198, 1052.673, 0.552], [387.581, 1075.215, 0.55], [453.134, 889.143, 0.766], [432.989, 976.738, 0.712]]\nD: [[435.434, 1087.782, 0.612], [435.403, 1087.706, 0.533], [435.405, 1087.711, 0.695], [435.407, 1087.716, 0.846]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_91_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_91_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_91_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_91_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_91_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_91_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_91_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_91_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[445.635, 1070.359, 0.563], [380.207, 1209.252, 0.55], [503.803, 1202.552, 0.618], [402.841, 878.242, 0.916]]\nB: [[355.09, 926.566, 0.532], [425.031, 931.852, 0.428], [396.378, 1283.26, 0.637], [419.782, 1021.681, 0.797]]\nC: [[353.198, 1052.673, 0.552], [387.581, 1075.215, 0.55], [453.134, 889.143, 0.766], [432.989, 976.738, 0.712]]\nD: [[435.434, 1087.782, 0.612], [435.403, 1087.706, 0.533], [435.405, 1087.711, 0.695], [435.407, 1087.716, 0.846]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1858.977, 3005.32, 0.085], [1613.167, 2545.921, 0.166], [1534.084, 2595.697, 0.482], [1872.638, 2228.595, 0.519]]\nB: [[1516.054, 2338.945, 0.097], [1891.297, 2428.151, 0.236], [1796.827, 2149.677, 0.559], [1658.932, 2766.556, 0.382]]\nC: [[2005.599, 2965.349, 0.12], [1626.186, 2645.937, 0.181], [1937.717, 2253.069, 0.541], [1779.108, 2893.005, 0.435]]\nD: [[1824.199, 2571.318, 0.101], [1824.516, 2570.899, 0.205], [1825.469, 2569.639, 0.518], [1825.787, 2569.219, 0.434]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_92_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_92_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_92_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_92_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_92_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_92_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_92_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_92_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1858.977, 3005.32, 0.085], [1613.167, 2545.921, 0.166], [1534.084, 2595.697, 0.482], [1872.638, 2228.595, 0.519]]\nB: [[1516.054, 2338.945, 0.097], [1891.297, 2428.151, 0.236], [1796.827, 2149.677, 0.559], [1658.932, 2766.556, 0.382]]\nC: [[2005.599, 2965.349, 0.12], [1626.186, 2645.937, 0.181], [1937.717, 2253.069, 0.541], [1779.108, 2893.005, 0.435]]\nD: [[1824.199, 2571.318, 0.101], [1824.516, 2570.899, 0.205], [1825.469, 2569.639, 0.518], [1825.787, 2569.219, 0.434]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[598.103, 1642.075, 1.029], [598.744, 1641.829, 1.029], [599.384, 1641.583, 1.029], [600.026, 1641.338, 1.179]]\nB: [[701.368, 1416.38, 0.896], [530.801, 1778.726, 1.056], [579.309, 1558.364, 0.977], [683.542, 1838.774, 1.325]]\nC: [[715.233, 1896.029, 0.968], [530.58, 1520.538, 0.944], [596.209, 1472.502, 0.856], [536.626, 1453.346, 1.289]]\nD: [[626.221, 1751.17, 1.049], [568.701, 1547.296, 1.076], [640.532, 1458.354, 1.122], [626.284, 1959.943, 1.094]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_93_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_93_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_93_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_93_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_93_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_93_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_93_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_93_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[598.103, 1642.075, 1.029], [598.744, 1641.829, 1.029], [599.384, 1641.583, 1.029], [600.026, 1641.338, 1.179]]\nB: [[701.368, 1416.38, 0.896], [530.801, 1778.726, 1.056], [579.309, 1558.364, 0.977], [683.542, 1838.774, 1.325]]\nC: [[715.233, 1896.029, 0.968], [530.58, 1520.538, 0.944], [596.209, 1472.502, 0.856], [536.626, 1453.346, 1.289]]\nD: [[626.221, 1751.17, 1.049], [568.701, 1547.296, 1.076], [640.532, 1458.354, 1.122], [626.284, 1959.943, 1.094]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[413.954, 1081.236, 0.717], [451.481, 1023.032, 0.495], [397.92, 951.148, 0.604], [328.441, 1181.445, 0.598]]\nB: [[457.154, 1119.531, 0.668], [402.874, 923.594, 0.435], [447.684, 1012.752, 0.547], [341.799, 1237.225, 0.728]]\nC: [[354.36, 1174.911, 0.52], [371.321, 1042.76, 0.471], [448.856, 1142.068, 0.628], [427.925, 1261.83, 0.519]]\nD: [[389.399, 1112.311, 0.629], [389.356, 1112.334, 0.529], [389.379, 1112.321, 0.579], [389.403, 1112.309, 0.629]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_94_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_94_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_94_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_94_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_94_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_94_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_94_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_94_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[413.954, 1081.236, 0.717], [451.481, 1023.032, 0.495], [397.92, 951.148, 0.604], [328.441, 1181.445, 0.598]]\nB: [[457.154, 1119.531, 0.668], [402.874, 923.594, 0.435], [447.684, 1012.752, 0.547], [341.799, 1237.225, 0.728]]\nC: [[354.36, 1174.911, 0.52], [371.321, 1042.76, 0.471], [448.856, 1142.068, 0.628], [427.925, 1261.83, 0.519]]\nD: [[389.399, 1112.311, 0.629], [389.356, 1112.334, 0.529], [389.379, 1112.321, 0.579], [389.403, 1112.309, 0.629]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[611.892, 1806.578, 0.268], [743.567, 1822.952, 0.264], [555.945, 1619.632, 0.282], [736.456, 1610.791, 0.275]]\nB: [[647.522, 1603.835, 0.243], [647.522, 1603.835, 0.293], [647.522, 1603.835, 0.318], [647.522, 1603.835, 0.343]]\nC: [[613.269, 1753.144, 0.259], [701.513, 1670.735, 0.335], [698.245, 1622.138, 0.321], [547.954, 1706.296, 0.366]]\nD: [[518.452, 1481.659, 0.23], [579.958, 1410.188, 0.243], [523.377, 1912.789, 0.276], [661.654, 1701.9, 0.34]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_95_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_95_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_95_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_95_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_95_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_95_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_95_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_95_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[611.892, 1806.578, 0.268], [743.567, 1822.952, 0.264], [555.945, 1619.632, 0.282], [736.456, 1610.791, 0.275]]\nB: [[647.522, 1603.835, 0.243], [647.522, 1603.835, 0.293], [647.522, 1603.835, 0.318], [647.522, 1603.835, 0.343]]\nC: [[613.269, 1753.144, 0.259], [701.513, 1670.735, 0.335], [698.245, 1622.138, 0.321], [547.954, 1706.296, 0.366]]\nD: [[518.452, 1481.659, 0.23], [579.958, 1410.188, 0.243], [523.377, 1912.789, 0.276], [661.654, 1701.9, 0.34]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[631.815, 1636.973, 0.074], [631.58, 1636.905, 0.174], [631.313, 1636.901, 0.224], [631.183, 1636.842, 0.29]]\nB: [[559.113, 1943.842, 0.076], [518.03, 1864.19, 0.151], [546.229, 1683.354, 0.205], [539.475, 1389.243, 0.24]]\nC: [[689.175, 1624.485, 0.066], [688.09, 1571.158, 0.178], [563.905, 1790.085, 0.19], [581.151, 1421.06, 0.29]]\nD: [[705.525, 1667.251, 0.065], [604.36, 1921.35, 0.181], [722.147, 1476.341, 0.225], [572.745, 1584.256, 0.3]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_96_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_96_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_96_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_96_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_96_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_96_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_96_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_96_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[631.815, 1636.973, 0.074], [631.58, 1636.905, 0.174], [631.313, 1636.901, 0.224], [631.183, 1636.842, 0.29]]\nB: [[559.113, 1943.842, 0.076], [518.03, 1864.19, 0.151], [546.229, 1683.354, 0.205], [539.475, 1389.243, 0.24]]\nC: [[689.175, 1624.485, 0.066], [688.09, 1571.158, 0.178], [563.905, 1790.085, 0.19], [581.151, 1421.06, 0.29]]\nD: [[705.525, 1667.251, 0.065], [604.36, 1921.35, 0.181], [722.147, 1476.341, 0.225], [572.745, 1584.256, 0.3]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1782.298, 752.391, 0.81], [2097.954, 882.859, 0.769], [1957.145, 911.959, 1.057], [1675.514, 745.849, 0.876]]\nB: [[1869.593, 872.653, 0.94], [1517.943, 982.023, 0.755], [2107.729, 753.584, 0.782], [1585.194, 934.333, 0.784]]\nC: [[1792.225, 846.971, 0.887], [1792.225, 846.971, 0.887], [1792.225, 846.971, 0.887], [1792.225, 846.971, 0.887]]\nD: [[1767.979, 682.569, 0.962], [2081.075, 907.416, 0.768], [2002.738, 790.434, 0.955], [1720.834, 852.507, 1.032]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_97_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_97_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_97_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_97_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_97_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_97_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_97_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_97_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1782.298, 752.391, 0.81], [2097.954, 882.859, 0.769], [1957.145, 911.959, 1.057], [1675.514, 745.849, 0.876]]\nB: [[1869.593, 872.653, 0.94], [1517.943, 982.023, 0.755], [2107.729, 753.584, 0.782], [1585.194, 934.333, 0.784]]\nC: [[1792.225, 846.971, 0.887], [1792.225, 846.971, 0.887], [1792.225, 846.971, 0.887], [1792.225, 846.971, 0.887]]\nD: [[1767.979, 682.569, 0.962], [2081.075, 907.416, 0.768], [2002.738, 790.434, 0.955], [1720.834, 852.507, 1.032]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[724.326, 1495.604, -0.327], [676.702, 1884.979, 0.087], [764.302, 1335.092, 0.381], [548.436, 1731.853, 0.371]]\nB: [[651.934, 1624.096, -0.297], [652.686, 1623.474, 0.103], [653.181, 1623.053, 0.328], [653.687, 1622.622, 0.353]]\nC: [[607.922, 1820.17, -0.295], [753.684, 1433.034, 0.106], [678.243, 1447.392, 0.296], [570.652, 1420.87, 0.385]]\nD: [[751.414, 1685.804, -0.244], [578.476, 1684.213, 0.096], [590.679, 1441.453, 0.28], [536.506, 1378.646, 0.32]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_98_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_98_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_98_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_98_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_98_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_98_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_98_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_98_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[724.326, 1495.604, -0.327], [676.702, 1884.979, 0.087], [764.302, 1335.092, 0.381], [548.436, 1731.853, 0.371]]\nB: [[651.934, 1624.096, -0.297], [652.686, 1623.474, 0.103], [653.181, 1623.053, 0.328], [653.687, 1622.622, 0.353]]\nC: [[607.922, 1820.17, -0.295], [753.684, 1433.034, 0.106], [678.243, 1447.392, 0.296], [570.652, 1420.87, 0.385]]\nD: [[751.414, 1685.804, -0.244], [578.476, 1684.213, 0.096], [590.679, 1441.453, 0.28], [536.506, 1378.646, 0.32]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1335.014, 862.316, 0.287], [1100.87, 1037.094, 0.23], [1485.551, 931.776, 0.26], [1291.897, 1074.94, 0.272]]\nB: [[1414.862, 952.185, 0.246], [1191.79, 1180.934, 0.227], [1337.485, 931.666, 0.225], [1205.041, 976.826, 0.257]]\nC: [[1365.108, 1014.952, 0.254], [1365.101, 1014.929, 0.254], [1365.094, 1014.907, 0.254], [1365.086, 1014.885, 0.254]]\nD: [[1286.094, 1146.653, 0.233], [1369.879, 1146.619, 0.278], [1377.756, 963.077, 0.259], [1621.927, 877.672, 0.256]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_99_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_99_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_99_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_99_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_99_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_99_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_99_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_99_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1335.014, 862.316, 0.287], [1100.87, 1037.094, 0.23], [1485.551, 931.776, 0.26], [1291.897, 1074.94, 0.272]]\nB: [[1414.862, 952.185, 0.246], [1191.79, 1180.934, 0.227], [1337.485, 931.666, 0.225], [1205.041, 976.826, 0.257]]\nC: [[1365.108, 1014.952, 0.254], [1365.101, 1014.929, 0.254], [1365.094, 1014.907, 0.254], [1365.086, 1014.885, 0.254]]\nD: [[1286.094, 1146.653, 0.233], [1369.879, 1146.619, 0.278], [1377.756, 963.077, 0.259], [1621.927, 877.672, 0.256]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[365.047, 598.348, 1.241], [286.54, 738.564, 1.05], [387.446, 604.928, 1.198], [391.006, 671.391, 1.378]]\nB: [[377.966, 628.41, 1.434], [361.11, 614.334, 1.35], [284.927, 755.854, 1.174], [403.902, 539.249, 1.302]]\nC: [[341.337, 715.12, 1.189], [372.63, 619.563, 1.39], [402.819, 670.746, 1.313], [340.745, 536.458, 1.343]]\nD: [[345.848, 655.799, 1.196], [343.13, 656.562, 1.18], [340.412, 657.325, 1.165], [337.693, 658.088, 1.149]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_100_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_100_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_100_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_100_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_100_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_100_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_100_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_100_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[365.047, 598.348, 1.241], [286.54, 738.564, 1.05], [387.446, 604.928, 1.198], [391.006, 671.391, 1.378]]\nB: [[377.966, 628.41, 1.434], [361.11, 614.334, 1.35], [284.927, 755.854, 1.174], [403.902, 539.249, 1.302]]\nC: [[341.337, 715.12, 1.189], [372.63, 619.563, 1.39], [402.819, 670.746, 1.313], [340.745, 536.458, 1.343]]\nD: [[345.848, 655.799, 1.196], [343.13, 656.562, 1.18], [340.412, 657.325, 1.165], [337.693, 658.088, 1.149]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[423.365, 1081.357, 1.92], [358.32, 1065.751, 2.221], [393.86, 1013.258, 1.856], [426.12, 1121.332, 2.203]]\nB: [[374.803, 1125.969, 1.58], [323.517, 1358.518, 1.869], [421.71, 1325.966, 2.205], [374.867, 1307.159, 2.25]]\nC: [[345.831, 1321.961, 2.14], [438.53, 1243.074, 1.588], [406.44, 1418.879, 2.198], [347.216, 1381.306, 1.978]]\nD: [[382.736, 1209.839, 1.88], [383.093, 1209.198, 1.931], [383.45, 1208.557, 1.982], [383.786, 1207.915, 1.982]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_101_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_101_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_101_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_101_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_101_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_101_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_101_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_101_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[423.365, 1081.357, 1.92], [358.32, 1065.751, 2.221], [393.86, 1013.258, 1.856], [426.12, 1121.332, 2.203]]\nB: [[374.803, 1125.969, 1.58], [323.517, 1358.518, 1.869], [421.71, 1325.966, 2.205], [374.867, 1307.159, 2.25]]\nC: [[345.831, 1321.961, 2.14], [438.53, 1243.074, 1.588], [406.44, 1418.879, 2.198], [347.216, 1381.306, 1.978]]\nD: [[382.736, 1209.839, 1.88], [383.093, 1209.198, 1.931], [383.45, 1208.557, 1.982], [383.786, 1207.915, 1.982]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[633.909, 1608.489, 1.038], [670.109, 1891.19, 1.125], [522.041, 1396.622, 1.098], [541.68, 1745.168, 1.117]]\nB: [[635.642, 1415.988, 1.081], [633.621, 1654.57, 0.946], [601.731, 1438.83, 1.36], [652.901, 1593.526, 1.066]]\nC: [[555.337, 1356.247, 1.199], [627.708, 1668.4, 0.904], [707.793, 1894.062, 1.109], [480.816, 1651.213, 1.309]]\nD: [[583.549, 1656.391, 1.267], [587.422, 1654.32, 1.126], [591.257, 1652.222, 1.146], [594.995, 1650.206, 1.166]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_102_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_102_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_102_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_102_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_102_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_102_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_102_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_102_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[633.909, 1608.489, 1.038], [670.109, 1891.19, 1.125], [522.041, 1396.622, 1.098], [541.68, 1745.168, 1.117]]\nB: [[635.642, 1415.988, 1.081], [633.621, 1654.57, 0.946], [601.731, 1438.83, 1.36], [652.901, 1593.526, 1.066]]\nC: [[555.337, 1356.247, 1.199], [627.708, 1668.4, 0.904], [707.793, 1894.062, 1.109], [480.816, 1651.213, 1.309]]\nD: [[583.549, 1656.391, 1.267], [587.422, 1654.32, 1.126], [591.257, 1652.222, 1.146], [594.995, 1650.206, 1.166]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[697.83, 1848.354, 0.41], [586.56, 1505.654, 0.534], [677.42, 1687.731, 0.544], [605.12, 1621.517, 0.808]]\nB: [[519.11, 1562.82, 0.383], [612.23, 1842.267, 0.582], [524.07, 1920.47, 0.561], [598.47, 1708.973, 0.9]]\nC: [[723.89, 1578.062, 0.473], [519.71, 1405.785, 0.584], [581.29, 1953.42, 0.735], [668.56, 1675.091, 0.868]]\nD: [[619.03, 1648.941, 0.413], [618.43, 1649.273, 0.538], [617.83, 1649.605, 0.663], [617.17, 1649.888, 0.813]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_103_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_103_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_103_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_103_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_103_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_103_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_103_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_103_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[697.83, 1848.354, 0.41], [586.56, 1505.654, 0.534], [677.42, 1687.731, 0.544], [605.12, 1621.517, 0.808]]\nB: [[519.11, 1562.82, 0.383], [612.23, 1842.267, 0.582], [524.07, 1920.47, 0.561], [598.47, 1708.973, 0.9]]\nC: [[723.89, 1578.062, 0.473], [519.71, 1405.785, 0.584], [581.29, 1953.42, 0.735], [668.56, 1675.091, 0.868]]\nD: [[619.03, 1648.941, 0.413], [618.43, 1649.273, 0.538], [617.83, 1649.605, 0.663], [617.17, 1649.888, 0.813]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[403.885, 998.16, 0.544], [424.075, 1007.073, 0.82], [461.305, 1015.923, 0.726], [400.111, 1095.775, 0.878]]\nB: [[391.661, 1114.07, 0.663], [391.696, 1114.047, 0.738], [391.688, 1114.052, 0.813], [391.697, 1114.047, 0.818]]\nC: [[386.99, 1297.58, 0.743], [409.207, 1135.586, 0.659], [357.708, 1116.073, 0.868], [392.676, 1300.061, 0.744]]\nD: [[402.241, 1225.3, 0.56], [375.81, 983.912, 0.615], [412.224, 1111.715, 0.708], [393.052, 1232.005, 0.961]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_104_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_104_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_104_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_104_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_104_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_104_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_104_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_104_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[403.885, 998.16, 0.544], [424.075, 1007.073, 0.82], [461.305, 1015.923, 0.726], [400.111, 1095.775, 0.878]]\nB: [[391.661, 1114.07, 0.663], [391.696, 1114.047, 0.738], [391.688, 1114.052, 0.813], [391.697, 1114.047, 0.818]]\nC: [[386.99, 1297.58, 0.743], [409.207, 1135.586, 0.659], [357.708, 1116.073, 0.868], [392.676, 1300.061, 0.744]]\nD: [[402.241, 1225.3, 0.56], [375.81, 983.912, 0.615], [412.224, 1111.715, 0.708], [393.052, 1232.005, 0.961]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1277.031, 1033.186, 0.322], [1277.662, 1033.929, 0.322], [1279.057, 1035.823, 0.322], [1280.749, 1038.066, 0.372]]\nB: [[1421.88, 1233.909, 0.31], [1157.401, 1129.096, 0.349], [1356.001, 893.496, 0.351], [1288.688, 983.139, 0.356]]\nC: [[1125.382, 1211.613, 0.317], [1176.913, 1001.679, 0.291], [1346.252, 1080.898, 0.373], [1066.545, 1136.811, 0.352]]\nD: [[1059.6, 1024.583, 0.258], [1367.51, 878.274, 0.29], [1278.315, 1180.834, 0.347], [1136.279, 1162.583, 0.374]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_105_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_105_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_105_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_105_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_105_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_105_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_105_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_105_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1277.031, 1033.186, 0.322], [1277.662, 1033.929, 0.322], [1279.057, 1035.823, 0.322], [1280.749, 1038.066, 0.372]]\nB: [[1421.88, 1233.909, 0.31], [1157.401, 1129.096, 0.349], [1356.001, 893.496, 0.351], [1288.688, 983.139, 0.356]]\nC: [[1125.382, 1211.613, 0.317], [1176.913, 1001.679, 0.291], [1346.252, 1080.898, 0.373], [1066.545, 1136.811, 0.352]]\nD: [[1059.6, 1024.583, 0.258], [1367.51, 878.274, 0.29], [1278.315, 1180.834, 0.347], [1136.279, 1162.583, 0.374]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[415.331, 1104.242, 0.613], [415.326, 1104.24, 0.64], [415.316, 1104.236, 0.695], [415.31, 1104.234, 0.723]]\nB: [[345.131, 1192.788, 0.505], [371.883, 1269.14, 0.69], [447.888, 1224.599, 0.614], [392.44, 1170.864, 0.783]]\nC: [[454.914, 1278.297, 0.71], [434.859, 1136.62, 0.63], [416.021, 1211.093, 0.643], [337.73, 960.185, 0.669]]\nD: [[480.222, 1069.404, 0.56], [365.517, 970.37, 0.54], [386.514, 975.732, 0.743], [393.7, 923.805, 0.642]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_106_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_106_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_106_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_106_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_106_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_106_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_106_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_106_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[415.331, 1104.242, 0.613], [415.326, 1104.24, 0.64], [415.316, 1104.236, 0.695], [415.31, 1104.234, 0.723]]\nB: [[345.131, 1192.788, 0.505], [371.883, 1269.14, 0.69], [447.888, 1224.599, 0.614], [392.44, 1170.864, 0.783]]\nC: [[454.914, 1278.297, 0.71], [434.859, 1136.62, 0.63], [416.021, 1211.093, 0.643], [337.73, 960.185, 0.669]]\nD: [[480.222, 1069.404, 0.56], [365.517, 970.37, 0.54], [386.514, 975.732, 0.743], [393.7, 923.805, 0.642]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[407.576, 1163.308, 0.729], [407.573, 1163.324, 0.746], [407.57, 1163.34, 0.762], [407.569, 1163.357, 0.779]]\nB: [[387.473, 1137.771, 0.644], [384.287, 1365.683, 0.681], [390.89, 1137.17, 0.617], [457.784, 1284.967, 0.839]]\nC: [[360.164, 1015.983, 0.678], [381.237, 1053.29, 0.859], [457.22, 1360.88, 0.63], [408.603, 1334.048, 0.816]]\nD: [[392.585, 1372.768, 0.686], [426.374, 1363.72, 0.752], [443.3, 955.82, 0.704], [326.364, 1211.631, 0.769]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_107_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_107_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_107_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_107_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_107_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_107_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_107_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_107_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[407.576, 1163.308, 0.729], [407.573, 1163.324, 0.746], [407.57, 1163.34, 0.762], [407.569, 1163.357, 0.779]]\nB: [[387.473, 1137.771, 0.644], [384.287, 1365.683, 0.681], [390.89, 1137.17, 0.617], [457.784, 1284.967, 0.839]]\nC: [[360.164, 1015.983, 0.678], [381.237, 1053.29, 0.859], [457.22, 1360.88, 0.63], [408.603, 1334.048, 0.816]]\nD: [[392.585, 1372.768, 0.686], [426.374, 1363.72, 0.752], [443.3, 955.82, 0.704], [326.364, 1211.631, 0.769]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1183.549, 1091.134, 0.407], [1449.921, 972.434, 0.409], [1115.763, 1023.251, 0.366], [1402.669, 992.802, 0.432]]\nB: [[1243.405, 864.452, 0.467], [1368.17, 1085.65, 0.361], [1076.736, 1221.575, 0.333], [1435.133, 1172.523, 0.468]]\nC: [[1295.125, 1032.757, 0.415], [1295.611, 1033.251, 0.415], [1296.187, 1033.665, 0.415], [1296.747, 1033.991, 0.415]]\nD: [[1335.953, 913.089, 0.398], [1461.39, 864.58, 0.459], [1483.452, 900.406, 0.383], [1264.928, 1038.725, 0.375]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_108_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_108_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_108_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_108_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_108_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_108_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_108_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_108_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1183.549, 1091.134, 0.407], [1449.921, 972.434, 0.409], [1115.763, 1023.251, 0.366], [1402.669, 992.802, 0.432]]\nB: [[1243.405, 864.452, 0.467], [1368.17, 1085.65, 0.361], [1076.736, 1221.575, 0.333], [1435.133, 1172.523, 0.468]]\nC: [[1295.125, 1032.757, 0.415], [1295.611, 1033.251, 0.415], [1296.187, 1033.665, 0.415], [1296.747, 1033.991, 0.415]]\nD: [[1335.953, 913.089, 0.398], [1461.39, 864.58, 0.459], [1483.452, 900.406, 0.383], [1264.928, 1038.725, 0.375]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[339.449, 659.894, 0.573], [339.446, 659.895, 0.607], [339.443, 659.896, 0.64], [339.44, 659.897, 0.674]]\nB: [[398.935, 645.734, 0.599], [298.581, 729.947, 0.634], [401.409, 592.555, 0.67], [389.37, 745.064, 0.776]]\nC: [[317.88, 666.567, 0.669], [318.154, 636.677, 0.526], [319.442, 702.387, 0.7], [331.82, 647.551, 0.682]]\nD: [[348.987, 658.876, 0.645], [370.001, 591.87, 0.551], [346.212, 591.313, 0.75], [291.32, 620.068, 0.565]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_109_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_109_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_109_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_109_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_109_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_109_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_109_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_109_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[339.449, 659.894, 0.573], [339.446, 659.895, 0.607], [339.443, 659.896, 0.64], [339.44, 659.897, 0.674]]\nB: [[398.935, 645.734, 0.599], [298.581, 729.947, 0.634], [401.409, 592.555, 0.67], [389.37, 745.064, 0.776]]\nC: [[317.88, 666.567, 0.669], [318.154, 636.677, 0.526], [319.442, 702.387, 0.7], [331.82, 647.551, 0.682]]\nD: [[348.987, 658.876, 0.645], [370.001, 591.87, 0.551], [346.212, 591.313, 0.75], [291.32, 620.068, 0.565]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1348.14, 1074.93, 0.373], [1537.25, 1072.09, 0.5], [1196.975, 870.732, 0.55], [1269.511, 1097.657, 0.609]]\nB: [[1369.98, 1210.47, 0.291], [1383.17, 1209.316, 0.44], [1098.297, 933.023, 0.49], [1055.724, 1184.093, 0.615]]\nC: [[1279.19, 1030.84, 0.349], [1282.49, 1034.214, 0.43], [1285.285, 1037.189, 0.51], [1288.217, 1040.319, 0.591]]\nD: [[1424.53, 1145.06, 0.417], [1294.63, 1198.674, 0.47], [1368.216, 886.452, 0.51], [1389.846, 1124.768, 0.48]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_110_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_110_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_110_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_110_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_110_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_110_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_110_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_110_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1348.14, 1074.93, 0.373], [1537.25, 1072.09, 0.5], [1196.975, 870.732, 0.55], [1269.511, 1097.657, 0.609]]\nB: [[1369.98, 1210.47, 0.291], [1383.17, 1209.316, 0.44], [1098.297, 933.023, 0.49], [1055.724, 1184.093, 0.615]]\nC: [[1279.19, 1030.84, 0.349], [1282.49, 1034.214, 0.43], [1285.285, 1037.189, 0.51], [1288.217, 1040.319, 0.591]]\nD: [[1424.53, 1145.06, 0.417], [1294.63, 1198.674, 0.47], [1368.216, 886.452, 0.51], [1389.846, 1124.768, 0.48]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1180.699, 1025.35, 0.352], [1360.818, 1139.597, 0.397], [1152.166, 1159.568, 0.296], [1106.717, 1234.187, 0.313]]\nB: [[1378.182, 1100.4, 0.333], [1294.85, 1232.299, 0.398], [1173.547, 969.988, 0.388], [1171.591, 1158.384, 0.396]]\nC: [[1086.537, 1116.193, 0.36], [1109.417, 1116.907, 0.31], [1478.169, 1103.822, 0.341], [1122.704, 957.886, 0.337]]\nD: [[1275.412, 1026.886, 0.336], [1278.054, 1029.742, 0.336], [1280.696, 1032.599, 0.336], [1283.018, 1035.321, 0.336]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_111_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_111_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_111_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_111_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_111_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_111_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_111_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_111_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1180.699, 1025.35, 0.352], [1360.818, 1139.597, 0.397], [1152.166, 1159.568, 0.296], [1106.717, 1234.187, 0.313]]\nB: [[1378.182, 1100.4, 0.333], [1294.85, 1232.299, 0.398], [1173.547, 969.988, 0.388], [1171.591, 1158.384, 0.396]]\nC: [[1086.537, 1116.193, 0.36], [1109.417, 1116.907, 0.31], [1478.169, 1103.822, 0.341], [1122.704, 957.886, 0.337]]\nD: [[1275.412, 1026.886, 0.336], [1278.054, 1029.742, 0.336], [1280.696, 1032.599, 0.336], [1283.018, 1035.321, 0.336]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1567.635, 999.11, 0.216], [1581.604, 1034.59, 0.201], [2215.085, 945.14, 0.266], [1822.791, 878.16, 0.212]]\nB: [[1547.391, 1001.36, 0.216], [1923.868, 772.06, 0.229], [1775.081, 857.84, 0.257], [1976.165, 741.51, 0.198]]\nC: [[1924.297, 873.96, 0.189], [1924.297, 873.96, 0.206], [1924.297, 873.96, 0.223], [1924.297, 873.96, 0.239]]\nD: [[1739.859, 831.14, 0.169], [1930.99, 1015.96, 0.221], [1891.889, 1021.13, 0.241], [2233.369, 854.3, 0.277]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_112_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_112_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_112_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_112_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_112_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_112_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_112_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_112_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1567.635, 999.11, 0.216], [1581.604, 1034.59, 0.201], [2215.085, 945.14, 0.266], [1822.791, 878.16, 0.212]]\nB: [[1547.391, 1001.36, 0.216], [1923.868, 772.06, 0.229], [1775.081, 857.84, 0.257], [1976.165, 741.51, 0.198]]\nC: [[1924.297, 873.96, 0.189], [1924.297, 873.96, 0.206], [1924.297, 873.96, 0.223], [1924.297, 873.96, 0.239]]\nD: [[1739.859, 831.14, 0.169], [1930.99, 1015.96, 0.221], [1891.889, 1021.13, 0.241], [2233.369, 854.3, 0.277]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[389.455, 1221.754, 1.957], [389.017, 1221.738, 1.957], [388.246, 1221.696, 2.082], [387.407, 1221.65, 2.007]]\nB: [[430.695, 1244.614, 1.598], [332.727, 1219.984, 2.062], [451.568, 1172.545, 2.304], [431.932, 1447.12, 2.075]]\nC: [[434.759, 1360.34, 1.798], [320.818, 1065.151, 2.275], [403.374, 995.774, 1.782], [399.338, 1318.27, 2.25]]\nD: [[338.306, 1065.478, 2.175], [359.176, 1170.276, 2.145], [422.221, 1295.741, 2.146], [318.234, 1189.1, 1.616]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_113_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_113_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_113_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_113_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_113_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_113_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_113_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_113_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[389.455, 1221.754, 1.957], [389.017, 1221.738, 1.957], [388.246, 1221.696, 2.082], [387.407, 1221.65, 2.007]]\nB: [[430.695, 1244.614, 1.598], [332.727, 1219.984, 2.062], [451.568, 1172.545, 2.304], [431.932, 1447.12, 2.075]]\nC: [[434.759, 1360.34, 1.798], [320.818, 1065.151, 2.275], [403.374, 995.774, 1.782], [399.338, 1318.27, 2.25]]\nD: [[338.306, 1065.478, 2.175], [359.176, 1170.276, 2.145], [422.221, 1295.741, 2.146], [318.234, 1189.1, 1.616]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[236.0, 747.95, 0.854], [256.234, 709.537, 0.697], [304.474, 800.037, 0.56], [331.877, 561.326, 0.514]]\nB: [[314.28, 598.25, 0.849], [236.191, 740.031, 0.728], [250.825, 688.597, 0.635], [341.366, 613.896, 0.475]]\nC: [[246.64, 693.8, 0.858], [290.257, 567.854, 0.783], [293.745, 750.544, 0.62], [309.807, 562.559, 0.531]]\nD: [[289.28, 669.01, 0.775], [291.627, 672.377, 0.668], [293.977, 675.748, 0.562], [296.214, 678.956, 0.455]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_114_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_114_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_114_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_114_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_114_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_114_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_114_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_114_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[236.0, 747.95, 0.854], [256.234, 709.537, 0.697], [304.474, 800.037, 0.56], [331.877, 561.326, 0.514]]\nB: [[314.28, 598.25, 0.849], [236.191, 740.031, 0.728], [250.825, 688.597, 0.635], [341.366, 613.896, 0.475]]\nC: [[246.64, 693.8, 0.858], [290.257, 567.854, 0.783], [293.745, 750.544, 0.62], [309.807, 562.559, 0.531]]\nD: [[289.28, 669.01, 0.775], [291.627, 672.377, 0.668], [293.977, 675.748, 0.562], [296.214, 678.956, 0.455]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[533.8, 1735.728, -0.009], [518.05, 1383.369, 0.045], [743.409, 1439.406, 0.374], [553.203, 1712.789, 0.68]]\nB: [[653.646, 1831.884, -0.01], [745.339, 1445.929, 0.044], [684.645, 1812.914, 0.333], [569.065, 1458.696, 0.754]]\nC: [[572.656, 1841.565, -0.01], [747.719, 1494.494, 0.038], [688.766, 1558.475, 0.402], [740.666, 1414.102, 0.689]]\nD: [[637.791, 1636.674, -0.011], [637.381, 1637.067, 0.039], [636.158, 1638.241, 0.389], [635.756, 1638.659, 0.689]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_115_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_115_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_115_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_115_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_115_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_115_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_115_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_115_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[533.8, 1735.728, -0.009], [518.05, 1383.369, 0.045], [743.409, 1439.406, 0.374], [553.203, 1712.789, 0.68]]\nB: [[653.646, 1831.884, -0.01], [745.339, 1445.929, 0.044], [684.645, 1812.914, 0.333], [569.065, 1458.696, 0.754]]\nC: [[572.656, 1841.565, -0.01], [747.719, 1494.494, 0.038], [688.766, 1558.475, 0.402], [740.666, 1414.102, 0.689]]\nD: [[637.791, 1636.674, -0.011], [637.381, 1637.067, 0.039], [636.158, 1638.241, 0.389], [635.756, 1638.659, 0.689]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[357.199, 1105.26, 0.925], [357.199, 1105.26, 0.874], [357.199, 1105.26, 0.901], [357.199, 1105.26, 1.083]]\nB: [[405.104, 1231.8, 0.941], [321.418, 916.12, 1.011], [382.371, 913.36, 0.794], [428.391, 1299.88, 1.177]]\nC: [[352.491, 1140.82, 0.829], [377.607, 964.69, 0.939], [341.493, 1094.81, 0.997], [329.979, 894.62, 0.879]]\nD: [[368.993, 920.78, 0.953], [328.671, 1054.8, 1.001], [426.057, 1241.84, 0.874], [319.642, 1019.55, 1.122]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_116_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_116_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_116_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_116_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_116_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_116_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_116_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_116_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[357.199, 1105.26, 0.925], [357.199, 1105.26, 0.874], [357.199, 1105.26, 0.901], [357.199, 1105.26, 1.083]]\nB: [[405.104, 1231.8, 0.941], [321.418, 916.12, 1.011], [382.371, 913.36, 0.794], [428.391, 1299.88, 1.177]]\nC: [[352.491, 1140.82, 0.829], [377.607, 964.69, 0.939], [341.493, 1094.81, 0.997], [329.979, 894.62, 0.879]]\nD: [[368.993, 920.78, 0.953], [328.671, 1054.8, 1.001], [426.057, 1241.84, 0.874], [319.642, 1019.55, 1.122]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[390.292, 1280.196, 0.538], [390.276, 1322.072, 0.606], [337.427, 1327.052, 0.501], [388.832, 1049.397, 0.585]]\nB: [[441.456, 1017.908, 0.543], [440.359, 1177.164, 0.491], [371.894, 1012.041, 0.514], [347.529, 1236.907, 0.616]]\nC: [[398.584, 1179.211, 0.555], [316.744, 1033.547, 0.547], [377.513, 1090.27, 0.445], [332.149, 1080.471, 0.473]]\nD: [[393.298, 1155.018, 0.485], [393.298, 1155.017, 0.514], [393.298, 1155.016, 0.542], [393.297, 1155.015, 0.571]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_117_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_117_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_117_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_117_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_117_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_117_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_117_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_117_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[390.292, 1280.196, 0.538], [390.276, 1322.072, 0.606], [337.427, 1327.052, 0.501], [388.832, 1049.397, 0.585]]\nB: [[441.456, 1017.908, 0.543], [440.359, 1177.164, 0.491], [371.894, 1012.041, 0.514], [347.529, 1236.907, 0.616]]\nC: [[398.584, 1179.211, 0.555], [316.744, 1033.547, 0.547], [377.513, 1090.27, 0.445], [332.149, 1080.471, 0.473]]\nD: [[393.298, 1155.018, 0.485], [393.298, 1155.017, 0.514], [393.298, 1155.016, 0.542], [393.297, 1155.015, 0.571]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[436.159, 952.778, 0.85], [380.614, 1063.82, 0.774], [459.351, 1286.857, 0.672], [356.13, 1196.862, 0.73]]\nB: [[393.174, 1367.574, 0.683], [466.835, 1298.26, 0.635], [356.883, 1226.503, 0.681], [446.634, 1121.248, 0.813]]\nC: [[399.863, 1143.574, 0.738], [398.996, 1141.132, 0.738], [398.116, 1138.632, 0.738], [397.624, 1136.322, 0.738]]\nD: [[344.514, 1172.922, 0.671], [413.852, 1079.671, 0.613], [361.577, 1132.234, 0.863], [334.055, 1043.733, 0.866]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_118_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_118_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_118_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_118_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_118_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_118_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_118_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_118_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[436.159, 952.778, 0.85], [380.614, 1063.82, 0.774], [459.351, 1286.857, 0.672], [356.13, 1196.862, 0.73]]\nB: [[393.174, 1367.574, 0.683], [466.835, 1298.26, 0.635], [356.883, 1226.503, 0.681], [446.634, 1121.248, 0.813]]\nC: [[399.863, 1143.574, 0.738], [398.996, 1141.132, 0.738], [398.116, 1138.632, 0.738], [397.624, 1136.322, 0.738]]\nD: [[344.514, 1172.922, 0.671], [413.852, 1079.671, 0.613], [361.577, 1132.234, 0.863], [334.055, 1043.733, 0.866]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[379.59, 1225.256, 1.8], [411.498, 1212.145, 1.432], [439.173, 1051.415, 1.512], [378.757, 1170.606, 1.817]]\nB: [[385.93, 1201.138, 1.613], [385.521, 1201.641, 1.663], [384.966, 1202.306, 1.763], [384.443, 1202.903, 1.763]]\nC: [[447.45, 996.224, 1.641], [321.511, 1225.058, 1.654], [320.686, 1029.24, 1.737], [312.326, 1161.223, 1.53]]\nD: [[395.57, 1047.807, 1.499], [340.373, 1260.222, 1.497], [439.995, 1104.894, 1.86], [369.975, 1070.189, 1.508]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_119_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_119_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_119_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_119_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_119_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_119_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_119_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_119_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[379.59, 1225.256, 1.8], [411.498, 1212.145, 1.432], [439.173, 1051.415, 1.512], [378.757, 1170.606, 1.817]]\nB: [[385.93, 1201.138, 1.613], [385.521, 1201.641, 1.663], [384.966, 1202.306, 1.763], [384.443, 1202.903, 1.763]]\nC: [[447.45, 996.224, 1.641], [321.511, 1225.058, 1.654], [320.686, 1029.24, 1.737], [312.326, 1161.223, 1.53]]\nD: [[395.57, 1047.807, 1.499], [340.373, 1260.222, 1.497], [439.995, 1104.894, 1.86], [369.975, 1070.189, 1.508]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[2078.323, 958.565, 0.161], [1559.705, 959.242, 0.151], [2197.62, 763.907, 0.152], [1804.38, 767.638, 0.197]]\nB: [[2138.05, 913.396, 0.132], [2178.71, 1013.596, 0.176], [1703.36, 733.089, 0.191], [1798.969, 734.79, 0.2]]\nC: [[1835.477, 1025.448, 0.137], [1705.515, 1015.928, 0.153], [1802.73, 873.747, 0.182], [1809.594, 823.179, 0.19]]\nD: [[1926.648, 875.886, 0.141], [1926.639, 875.864, 0.154], [1926.63, 875.841, 0.166], [1926.627, 875.833, 0.179]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_120_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_120_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_120_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_120_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_120_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_120_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_120_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_120_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[2078.323, 958.565, 0.161], [1559.705, 959.242, 0.151], [2197.62, 763.907, 0.152], [1804.38, 767.638, 0.197]]\nB: [[2138.05, 913.396, 0.132], [2178.71, 1013.596, 0.176], [1703.36, 733.089, 0.191], [1798.969, 734.79, 0.2]]\nC: [[1835.477, 1025.448, 0.137], [1705.515, 1015.928, 0.153], [1802.73, 873.747, 0.182], [1809.594, 823.179, 0.19]]\nD: [[1926.648, 875.886, 0.141], [1926.639, 875.864, 0.154], [1926.63, 875.841, 0.166], [1926.627, 875.833, 0.179]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1640.64, 2308.693, 0.719], [2017.236, 2113.119, 0.967], [1994.76, 2513.033, 1.14], [1810.618, 2225.686, 1.546]]\nB: [[1973.19, 2747.385, 0.918], [1843.455, 2503.49, 1.052], [1630.78, 2460.524, 1.38], [1987.593, 2630.677, 1.375]]\nC: [[1576.98, 2536.869, 0.66], [2075.147, 2055.992, 1.144], [1827.84, 2639.901, 1.45], [2070.073, 2767.351, 1.167]]\nD: [[1866.27, 2481.021, 0.817], [1865.675, 2481.739, 1.031], [1865.18, 2482.337, 1.21], [1864.684, 2482.936, 1.389]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_121_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_121_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_121_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_121_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_121_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_121_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_121_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_121_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1640.64, 2308.693, 0.719], [2017.236, 2113.119, 0.967], [1994.76, 2513.033, 1.14], [1810.618, 2225.686, 1.546]]\nB: [[1973.19, 2747.385, 0.918], [1843.455, 2503.49, 1.052], [1630.78, 2460.524, 1.38], [1987.593, 2630.677, 1.375]]\nC: [[1576.98, 2536.869, 0.66], [2075.147, 2055.992, 1.144], [1827.84, 2639.901, 1.45], [2070.073, 2767.351, 1.167]]\nD: [[1866.27, 2481.021, 0.817], [1865.675, 2481.739, 1.031], [1865.18, 2482.337, 1.21], [1864.684, 2482.936, 1.389]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1323.534, 1070.968, 0.039], [1242.872, 853.737, 0.042], [1492.766, 1030.756, 0.057], [1309.345, 1096.471, 0.046]]\nB: [[1556.573, 856.346, 0.057], [1108.062, 1183.213, 0.047], [1303.053, 903.29, 0.05], [1529.898, 1191.182, 0.045]]\nC: [[1351.279, 1022.468, 0.048], [1351.279, 1022.468, 0.048], [1351.279, 1022.468, 0.048], [1351.279, 1022.468, 0.048]]\nD: [[1160.276, 1004.554, 0.048], [1454.931, 1040.919, 0.039], [1167.504, 987.892, 0.046], [1457.735, 818.113, 0.042]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_122_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_122_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_122_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_122_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_122_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_122_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_122_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_122_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1323.534, 1070.968, 0.039], [1242.872, 853.737, 0.042], [1492.766, 1030.756, 0.057], [1309.345, 1096.471, 0.046]]\nB: [[1556.573, 856.346, 0.057], [1108.062, 1183.213, 0.047], [1303.053, 903.29, 0.05], [1529.898, 1191.182, 0.045]]\nC: [[1351.279, 1022.468, 0.048], [1351.279, 1022.468, 0.048], [1351.279, 1022.468, 0.048], [1351.279, 1022.468, 0.048]]\nD: [[1160.276, 1004.554, 0.048], [1454.931, 1040.919, 0.039], [1167.504, 987.892, 0.046], [1457.735, 818.113, 0.042]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[398.992, 1279.087, 0.118], [456.215, 1152.193, 0.133], [407.776, 1279.429, 0.095], [527.113, 1246.616, 0.136]]\nB: [[448.696, 1090.248, 0.117], [448.695, 1090.246, 0.117], [448.686, 1090.224, 0.115], [448.685, 1090.222, 0.114]]\nC: [[435.77, 875.144, 0.115], [440.962, 1303.479, 0.129], [413.225, 1290.42, 0.105], [511.071, 1036.309, 0.122]]\nD: [[438.596, 955.475, 0.137], [464.97, 1295.34, 0.118], [386.42, 1095.841, 0.125], [437.592, 1200.522, 0.127]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_123_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_123_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_123_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_123_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_123_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_123_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_123_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_123_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[398.992, 1279.087, 0.118], [456.215, 1152.193, 0.133], [407.776, 1279.429, 0.095], [527.113, 1246.616, 0.136]]\nB: [[448.696, 1090.248, 0.117], [448.695, 1090.246, 0.117], [448.686, 1090.224, 0.115], [448.685, 1090.222, 0.114]]\nC: [[435.77, 875.144, 0.115], [440.962, 1303.479, 0.129], [413.225, 1290.42, 0.105], [511.071, 1036.309, 0.122]]\nD: [[438.596, 955.475, 0.137], [464.97, 1295.34, 0.118], [386.42, 1095.841, 0.125], [437.592, 1200.522, 0.127]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1835.491, 834.002, 0.48], [2125.794, 969.393, 0.677], [1614.306, 1027.608, 0.583], [1983.247, 970.603, 0.541]]\nB: [[1651.575, 740.269, 0.56], [1919.293, 887.545, 0.629], [1867.876, 908.887, 0.565], [1937.748, 943.609, 0.511]]\nC: [[1784.634, 874.597, 0.596], [1784.597, 874.576, 0.596], [1784.564, 874.558, 0.596], [1784.764, 874.582, 0.596]]\nD: [[1674.888, 950.802, 0.589], [2065.024, 902.619, 0.528], [2130.173, 1019.966, 0.552], [2067.829, 931.775, 0.63]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_124_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_124_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_124_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_124_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_124_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_124_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_124_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_124_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1835.491, 834.002, 0.48], [2125.794, 969.393, 0.677], [1614.306, 1027.608, 0.583], [1983.247, 970.603, 0.541]]\nB: [[1651.575, 740.269, 0.56], [1919.293, 887.545, 0.629], [1867.876, 908.887, 0.565], [1937.748, 943.609, 0.511]]\nC: [[1784.634, 874.597, 0.596], [1784.597, 874.576, 0.596], [1784.564, 874.558, 0.596], [1784.764, 874.582, 0.596]]\nD: [[1674.888, 950.802, 0.589], [2065.024, 902.619, 0.528], [2130.173, 1019.966, 0.552], [2067.829, 931.775, 0.63]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[276.129, 765.803, 0.706], [239.259, 629.205, 0.8], [265.678, 619.0, 0.624], [272.857, 563.448, 0.52]]\nB: [[267.858, 571.717, 0.774], [277.532, 772.037, 0.819], [265.677, 626.589, 0.69], [303.026, 678.599, 0.635]]\nC: [[307.434, 646.641, 0.793], [279.193, 720.372, 0.75], [342.062, 733.991, 0.756], [275.316, 788.349, 0.594]]\nD: [[287.863, 668.522, 0.723], [289.106, 670.134, 0.687], [290.511, 671.955, 0.702], [292.583, 674.718, 0.593]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_125_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_125_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_125_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_125_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_125_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_125_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_125_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_125_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[276.129, 765.803, 0.706], [239.259, 629.205, 0.8], [265.678, 619.0, 0.624], [272.857, 563.448, 0.52]]\nB: [[267.858, 571.717, 0.774], [277.532, 772.037, 0.819], [265.677, 626.589, 0.69], [303.026, 678.599, 0.635]]\nC: [[307.434, 646.641, 0.793], [279.193, 720.372, 0.75], [342.062, 733.991, 0.756], [275.316, 788.349, 0.594]]\nD: [[287.863, 668.522, 0.723], [289.106, 670.134, 0.687], [290.511, 671.955, 0.702], [292.583, 674.718, 0.593]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[622.35, 1624.018, -0.016], [621.599, 1624.59, 0.068], [620.967, 1625.056, 0.201], [620.312, 1625.598, 0.284]]\nB: [[715.37, 1646.519, -0.015], [571.805, 1818.41, 0.061], [556.199, 1828.057, 0.206], [719.663, 1568.216, 0.242]]\nC: [[619.74, 1639.913, -0.014], [696.763, 1306.55, 0.056], [512.97, 1560.484, 0.186], [567.584, 1424.02, 0.237]]\nD: [[676.88, 1409.501, -0.016], [537.018, 1735.64, 0.057], [546.621, 1339.978, 0.22], [568.0, 1888.129, 0.245]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_126_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_126_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_126_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_126_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_126_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_126_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_126_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_126_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[622.35, 1624.018, -0.016], [621.599, 1624.59, 0.068], [620.967, 1625.056, 0.201], [620.312, 1625.598, 0.284]]\nB: [[715.37, 1646.519, -0.015], [571.805, 1818.41, 0.061], [556.199, 1828.057, 0.206], [719.663, 1568.216, 0.242]]\nC: [[619.74, 1639.913, -0.014], [696.763, 1306.55, 0.056], [512.97, 1560.484, 0.186], [567.584, 1424.02, 0.237]]\nD: [[676.88, 1409.501, -0.016], [537.018, 1735.64, 0.057], [546.621, 1339.978, 0.22], [568.0, 1888.129, 0.245]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[627.008, 1617.877, -0.387], [626.7, 1618.657, -0.137], [626.332, 1619.431, 0.163], [626.034, 1619.837, 0.363]]\nB: [[514.156, 1782.736, -0.333], [575.6, 1636.318, -0.131], [743.355, 1576.589, 0.179], [505.541, 1559.477, 0.32]]\nC: [[712.578, 1866.613, -0.344], [558.1, 1427.09, -0.154], [677.337, 1665.044, 0.133], [550.249, 1826.976, 0.376]]\nD: [[618.87, 1499.776, -0.427], [647.6, 1861.481, -0.148], [699.281, 1872.065, 0.164], [640.722, 1817.452, 0.342]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_127_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_127_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_127_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_127_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_127_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_127_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_127_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_127_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[627.008, 1617.877, -0.387], [626.7, 1618.657, -0.137], [626.332, 1619.431, 0.163], [626.034, 1619.837, 0.363]]\nB: [[514.156, 1782.736, -0.333], [575.6, 1636.318, -0.131], [743.355, 1576.589, 0.179], [505.541, 1559.477, 0.32]]\nC: [[712.578, 1866.613, -0.344], [558.1, 1427.09, -0.154], [677.337, 1665.044, 0.133], [550.249, 1826.976, 0.376]]\nD: [[618.87, 1499.776, -0.427], [647.6, 1861.481, -0.148], [699.281, 1872.065, 0.164], [640.722, 1817.452, 0.342]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[353.535, 1093.572, 0.8], [325.884, 1175.321, 0.708], [298.264, 1160.539, 1.06], [403.515, 1196.443, 0.896]]\nB: [[298.277, 1279.808, 0.8], [334.872, 990.495, 0.719], [317.907, 1145.582, 0.785], [428.226, 1134.096, 1.096]]\nC: [[361.234, 1127.159, 0.743], [361.244, 1127.193, 0.761], [361.254, 1127.227, 0.979], [361.252, 1127.231, 1.019]]\nD: [[351.808, 979.748, 0.733], [299.091, 972.477, 0.91], [422.591, 1328.277, 1.109], [373.924, 1003.202, 0.826]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_128_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_128_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_128_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_128_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_128_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_128_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_128_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_128_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[353.535, 1093.572, 0.8], [325.884, 1175.321, 0.708], [298.264, 1160.539, 1.06], [403.515, 1196.443, 0.896]]\nB: [[298.277, 1279.808, 0.8], [334.872, 990.495, 0.719], [317.907, 1145.582, 0.785], [428.226, 1134.096, 1.096]]\nC: [[361.234, 1127.159, 0.743], [361.244, 1127.193, 0.761], [361.254, 1127.227, 0.979], [361.252, 1127.231, 1.019]]\nD: [[351.808, 979.748, 0.733], [299.091, 972.477, 0.91], [422.591, 1328.277, 1.109], [373.924, 1003.202, 0.826]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[467.084, 1013.697, 1.484], [410.637, 1087.555, 1.47], [503.896, 994.189, 1.833], [375.598, 1172.16, 1.996]]\nB: [[403.645, 1031.052, 1.679], [463.451, 943.028, 1.451], [499.44, 1242.514, 2.094], [468.957, 1220.61, 2.107]]\nC: [[479.961, 1178.515, 1.846], [421.912, 1195.377, 1.945], [395.807, 904.258, 1.58], [479.041, 963.66, 1.573]]\nD: [[443.949, 1116.592, 1.729], [443.607, 1116.621, 1.729], [442.518, 1116.448, 1.879], [442.143, 1116.34, 1.929]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_129_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_129_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_129_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_129_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_129_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_129_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_129_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_129_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[467.084, 1013.697, 1.484], [410.637, 1087.555, 1.47], [503.896, 994.189, 1.833], [375.598, 1172.16, 1.996]]\nB: [[403.645, 1031.052, 1.679], [463.451, 943.028, 1.451], [499.44, 1242.514, 2.094], [468.957, 1220.61, 2.107]]\nC: [[479.961, 1178.515, 1.846], [421.912, 1195.377, 1.945], [395.807, 904.258, 1.58], [479.041, 963.66, 1.573]]\nD: [[443.949, 1116.592, 1.729], [443.607, 1116.621, 1.729], [442.518, 1116.448, 1.879], [442.143, 1116.34, 1.929]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1044.891, 1237.212, 0.684], [1071.2, 1248.461, 0.639], [1210.008, 933.973, 0.707], [1328.735, 877.082, 0.748]]\nB: [[1117.371, 1205.206, 0.822], [1089.2, 940.984, 0.629], [1072.282, 905.107, 0.824], [1173.176, 946.517, 0.885]]\nC: [[1227.559, 936.208, 0.663], [1471.6, 1143.386, 0.863], [1177.563, 842.525, 0.712], [1310.648, 1103.801, 0.83]]\nD: [[1267.451, 1047.078, 0.822], [1266.5, 1047.564, 0.754], [1265.609, 1047.998, 0.762], [1257.032, 1054.386, 0.759]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_130_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_130_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_130_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_130_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_130_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_130_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_130_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_130_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1044.891, 1237.212, 0.684], [1071.2, 1248.461, 0.639], [1210.008, 933.973, 0.707], [1328.735, 877.082, 0.748]]\nB: [[1117.371, 1205.206, 0.822], [1089.2, 940.984, 0.629], [1072.282, 905.107, 0.824], [1173.176, 946.517, 0.885]]\nC: [[1227.559, 936.208, 0.663], [1471.6, 1143.386, 0.863], [1177.563, 842.525, 0.712], [1310.648, 1103.801, 0.83]]\nD: [[1267.451, 1047.078, 0.822], [1266.5, 1047.564, 0.754], [1265.609, 1047.998, 0.762], [1257.032, 1054.386, 0.759]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1275.825, 1026.459, 0.275], [1278.063, 1029.09, 0.375], [1280.981, 1032.367, 0.325], [1283.902, 1035.648, 0.374]]\nB: [[1030.171, 1170.182, 0.27], [1123.271, 830.3, 0.339], [1164.96, 938.971, 0.375], [1317.327, 864.217, 0.318]]\nC: [[1058.02, 1197.606, 0.255], [1412.723, 1041.94, 0.385], [1413.334, 1081.562, 0.344], [1284.333, 1092.197, 0.438]]\nD: [[1469.903, 1189.502, 0.313], [1314.332, 1032.81, 0.399], [1118.592, 1102.621, 0.281], [1269.138, 1091.852, 0.359]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_131_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_131_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_131_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_131_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_131_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_131_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_131_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_131_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1275.825, 1026.459, 0.275], [1278.063, 1029.09, 0.375], [1280.981, 1032.367, 0.325], [1283.902, 1035.648, 0.374]]\nB: [[1030.171, 1170.182, 0.27], [1123.271, 830.3, 0.339], [1164.96, 938.971, 0.375], [1317.327, 864.217, 0.318]]\nC: [[1058.02, 1197.606, 0.255], [1412.723, 1041.94, 0.385], [1413.334, 1081.562, 0.344], [1284.333, 1092.197, 0.438]]\nD: [[1469.903, 1189.502, 0.313], [1314.332, 1032.81, 0.399], [1118.592, 1102.621, 0.281], [1269.138, 1091.852, 0.359]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[421.972, 1212.966, 0.431], [433.3, 1273.552, 0.507], [464.634, 1128.046, 0.702], [349.601, 1228.731, 0.578]]\nB: [[400.984, 1376.129, 0.581], [391.113, 1165.646, 0.7], [457.469, 1280.832, 0.616], [442.522, 1062.927, 0.701]]\nC: [[449.392, 986.304, 0.601], [473.649, 1081.286, 0.52], [358.026, 1320.626, 0.568], [395.395, 1377.932, 0.573]]\nD: [[399.773, 1169.799, 0.536], [399.773, 1169.799, 0.586], [399.773, 1169.799, 0.636], [399.773, 1169.799, 0.681]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_132_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_132_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_132_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_132_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_132_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_132_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_132_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_132_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[421.972, 1212.966, 0.431], [433.3, 1273.552, 0.507], [464.634, 1128.046, 0.702], [349.601, 1228.731, 0.578]]\nB: [[400.984, 1376.129, 0.581], [391.113, 1165.646, 0.7], [457.469, 1280.832, 0.616], [442.522, 1062.927, 0.701]]\nC: [[449.392, 986.304, 0.601], [473.649, 1081.286, 0.52], [358.026, 1320.626, 0.568], [395.395, 1377.932, 0.573]]\nD: [[399.773, 1169.799, 0.536], [399.773, 1169.799, 0.586], [399.773, 1169.799, 0.636], [399.773, 1169.799, 0.681]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[417.658, 1171.585, 1.02], [344.402, 1146.41, 1.185], [367.351, 1178.349, 1.028], [487.83, 1043.697, 0.98]]\nB: [[445.605, 1419.113, 0.98], [352.2, 1288.12, 1.051], [459.196, 983.633, 1.107], [368.22, 1292.263, 1.32]]\nC: [[450.048, 1344.51, 1.16], [403.323, 1079.3, 1.248], [335.599, 1292.674, 1.335], [385.64, 1056.834, 1.11]]\nD: [[419.296, 1191.476, 1.11], [418.846, 1191.58, 1.143], [418.293, 1191.727, 1.176], [417.52, 1191.939, 1.21]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_133_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_133_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_133_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_133_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_133_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_133_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_133_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_133_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[417.658, 1171.585, 1.02], [344.402, 1146.41, 1.185], [367.351, 1178.349, 1.028], [487.83, 1043.697, 0.98]]\nB: [[445.605, 1419.113, 0.98], [352.2, 1288.12, 1.051], [459.196, 983.633, 1.107], [368.22, 1292.263, 1.32]]\nC: [[450.048, 1344.51, 1.16], [403.323, 1079.3, 1.248], [335.599, 1292.674, 1.335], [385.64, 1056.834, 1.11]]\nD: [[419.296, 1191.476, 1.11], [418.846, 1191.58, 1.143], [418.293, 1191.727, 1.176], [417.52, 1191.939, 1.21]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[364.455, 946.84, 0.64], [334.117, 1088.62, 0.558], [343.529, 1215.1, 0.571], [332.561, 991.64, 0.55]]\nB: [[398.222, 1166.03, 0.56], [398.222, 1166.03, 0.577], [398.222, 1166.03, 0.594], [398.222, 1166.03, 0.61]]\nC: [[452.892, 1109.11, 0.63], [362.882, 1081.56, 0.574], [328.005, 1052.37, 0.65], [326.765, 997.91, 0.68]]\nD: [[389.913, 1383.18, 0.51], [334.65, 1310.36, 0.682], [445.091, 1036.45, 0.591], [404.94, 1152.47, 0.57]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_134_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_134_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_134_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_134_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_134_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_134_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_134_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_134_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[364.455, 946.84, 0.64], [334.117, 1088.62, 0.558], [343.529, 1215.1, 0.571], [332.561, 991.64, 0.55]]\nB: [[398.222, 1166.03, 0.56], [398.222, 1166.03, 0.577], [398.222, 1166.03, 0.594], [398.222, 1166.03, 0.61]]\nC: [[452.892, 1109.11, 0.63], [362.882, 1081.56, 0.574], [328.005, 1052.37, 0.65], [326.765, 997.91, 0.68]]\nD: [[389.913, 1383.18, 0.51], [334.65, 1310.36, 0.682], [445.091, 1036.45, 0.591], [404.94, 1152.47, 0.57]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[627.271, 1619.557, -0.161], [627.006, 1619.87, -0.051], [626.747, 1620.187, 0.11], [626.52, 1620.528, 0.17]]\nB: [[569.336, 1657.23, -0.136], [526.963, 1384.47, -0.061], [669.247, 1891.64, 0.11], [671.16, 1857.428, 0.15]]\nC: [[684.005, 1527.275, -0.146], [739.824, 1494.52, -0.06], [521.003, 1884.978, 0.09], [553.11, 1840.593, 0.19]]\nD: [[532.728, 1841.748, -0.144], [536.854, 1368.26, -0.059], [622.506, 1400.948, 0.12], [562.38, 1942.023, 0.18]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_135_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_135_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_135_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_135_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_135_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_135_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_135_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_135_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[627.271, 1619.557, -0.161], [627.006, 1619.87, -0.051], [626.747, 1620.187, 0.11], [626.52, 1620.528, 0.17]]\nB: [[569.336, 1657.23, -0.136], [526.963, 1384.47, -0.061], [669.247, 1891.64, 0.11], [671.16, 1857.428, 0.15]]\nC: [[684.005, 1527.275, -0.146], [739.824, 1494.52, -0.06], [521.003, 1884.978, 0.09], [553.11, 1840.593, 0.19]]\nD: [[532.728, 1841.748, -0.144], [536.854, 1368.26, -0.059], [622.506, 1400.948, 0.12], [562.38, 1942.023, 0.18]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1276.426, 1070.932, 0.876], [1276.425, 1070.932, 0.877], [1276.424, 1070.932, 0.878], [1276.423, 1070.932, 0.879]]\nB: [[1298.613, 1048.861, 0.963], [1211.744, 1284.0, 0.977], [1133.349, 1252.098, 0.958], [1442.465, 1081.694, 0.942]]\nC: [[1136.57, 1184.933, 0.959], [1263.407, 1137.283, 0.74], [1237.716, 1079.234, 0.996], [1254.286, 1092.816, 1.0]]\nD: [[1156.908, 984.436, 0.862], [1293.574, 1008.462, 0.755], [1072.394, 1109.853, 0.763], [1158.181, 1086.592, 0.975]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_136_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_136_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_136_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_136_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_136_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_136_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_136_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_136_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1276.426, 1070.932, 0.876], [1276.425, 1070.932, 0.877], [1276.424, 1070.932, 0.878], [1276.423, 1070.932, 0.879]]\nB: [[1298.613, 1048.861, 0.963], [1211.744, 1284.0, 0.977], [1133.349, 1252.098, 0.958], [1442.465, 1081.694, 0.942]]\nC: [[1136.57, 1184.933, 0.959], [1263.407, 1137.283, 0.74], [1237.716, 1079.234, 0.996], [1254.286, 1092.816, 1.0]]\nD: [[1156.908, 984.436, 0.862], [1293.574, 1008.462, 0.755], [1072.394, 1109.853, 0.763], [1158.181, 1086.592, 0.975]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1863.527, 866.104, 1.229], [1863.553, 866.65, 1.085], [1863.585, 867.332, 1.016], [1863.611, 868.023, 1.0]]\nB: [[1741.116, 973.52, 1.473], [1586.126, 927.91, 1.219], [1837.83, 816.557, 1.029], [1765.354, 1012.863, 0.8]]\nC: [[2109.608, 749.973, 1.352], [2151.463, 723.35, 1.155], [2081.946, 774.988, 1.039], [1584.067, 819.061, 1.0]]\nD: [[1619.868, 705.702, 1.426], [2015.736, 882.4, 1.072], [1611.742, 1030.157, 1.001], [1809.71, 882.281, 0.9]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_137_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_137_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_137_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_137_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_137_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_137_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_137_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_137_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1863.527, 866.104, 1.229], [1863.553, 866.65, 1.085], [1863.585, 867.332, 1.016], [1863.611, 868.023, 1.0]]\nB: [[1741.116, 973.52, 1.473], [1586.126, 927.91, 1.219], [1837.83, 816.557, 1.029], [1765.354, 1012.863, 0.8]]\nC: [[2109.608, 749.973, 1.352], [2151.463, 723.35, 1.155], [2081.946, 774.988, 1.039], [1584.067, 819.061, 1.0]]\nD: [[1619.868, 705.702, 1.426], [2015.736, 882.4, 1.072], [1611.742, 1030.157, 1.001], [1809.71, 882.281, 0.9]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[370.828, 1093.568, 0.573], [438.229, 1239.617, 0.497], [355.298, 1015.971, 0.498], [469.743, 1216.196, 0.622]]\nB: [[334.534, 1298.472, 0.487], [330.759, 1369.516, 0.441], [394.543, 1079.174, 0.619], [471.577, 1146.247, 0.639]]\nC: [[394.842, 1158.711, 0.487], [394.842, 1158.711, 0.521], [394.842, 1158.711, 0.554], [394.842, 1158.711, 0.587]]\nD: [[370.596, 976.597, 0.509], [364.598, 996.341, 0.435], [427.969, 1274.101, 0.549], [391.146, 1206.744, 0.606]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_138_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_138_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_138_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_138_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_138_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_138_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_138_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_138_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[370.828, 1093.568, 0.573], [438.229, 1239.617, 0.497], [355.298, 1015.971, 0.498], [469.743, 1216.196, 0.622]]\nB: [[334.534, 1298.472, 0.487], [330.759, 1369.516, 0.441], [394.543, 1079.174, 0.619], [471.577, 1146.247, 0.639]]\nC: [[394.842, 1158.711, 0.487], [394.842, 1158.711, 0.521], [394.842, 1158.711, 0.554], [394.842, 1158.711, 0.587]]\nD: [[370.596, 976.597, 0.509], [364.598, 996.341, 0.435], [427.969, 1274.101, 0.549], [391.146, 1206.744, 0.606]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[350.427, 1144.305, 0.623], [349.868, 1144.535, 0.69], [349.308, 1144.766, 0.756], [348.749, 1144.996, 0.823]]\nB: [[364.104, 961.597, 0.533], [321.289, 1034.564, 0.81], [289.738, 1178.466, 0.654], [369.278, 927.402, 0.746]]\nC: [[301.407, 1085.027, 0.561], [353.922, 1230.167, 0.74], [385.078, 1056.365, 0.831], [353.967, 1321.653, 0.933]]\nD: [[332.499, 1323.247, 0.603], [328.44, 1217.95, 0.71], [304.408, 1248.393, 0.704], [312.725, 1041.977, 0.788]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_139_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_139_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_139_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_139_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_139_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_139_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_139_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_139_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[350.427, 1144.305, 0.623], [349.868, 1144.535, 0.69], [349.308, 1144.766, 0.756], [348.749, 1144.996, 0.823]]\nB: [[364.104, 961.597, 0.533], [321.289, 1034.564, 0.81], [289.738, 1178.466, 0.654], [369.278, 927.402, 0.746]]\nC: [[301.407, 1085.027, 0.561], [353.922, 1230.167, 0.74], [385.078, 1056.365, 0.831], [353.967, 1321.653, 0.933]]\nD: [[332.499, 1323.247, 0.603], [328.44, 1217.95, 0.71], [304.408, 1248.393, 0.704], [312.725, 1041.977, 0.788]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1098.816, 1040.956, 2.25], [1517.027, 1201.267, 2.159], [1287.68, 1114.311, 1.84], [1553.384, 936.614, 1.891]]\nB: [[1537.939, 1003.593, 1.619], [1107.39, 826.486, 1.866], [1160.283, 877.892, 2.283], [1427.746, 1058.395, 2.165]]\nC: [[1325.647, 1026.158, 1.972], [1325.647, 1026.158, 1.972], [1325.647, 1026.158, 1.972], [1325.647, 1026.158, 1.972]]\nD: [[1454.649, 935.993, 2.155], [1581.869, 969.794, 1.581], [1203.456, 996.196, 2.063], [1385.658, 925.079, 2.322]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_140_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_140_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_140_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_140_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_140_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_140_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_140_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_140_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1098.816, 1040.956, 2.25], [1517.027, 1201.267, 2.159], [1287.68, 1114.311, 1.84], [1553.384, 936.614, 1.891]]\nB: [[1537.939, 1003.593, 1.619], [1107.39, 826.486, 1.866], [1160.283, 877.892, 2.283], [1427.746, 1058.395, 2.165]]\nC: [[1325.647, 1026.158, 1.972], [1325.647, 1026.158, 1.972], [1325.647, 1026.158, 1.972], [1325.647, 1026.158, 1.972]]\nD: [[1454.649, 935.993, 2.155], [1581.869, 969.794, 1.581], [1203.456, 996.196, 2.063], [1385.658, 925.079, 2.322]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[436.144, 1095.893, 0.64], [378.481, 1266.824, 0.483], [426.128, 1098.819, 0.65], [324.34, 949.634, 0.625]]\nB: [[397.389, 1164.192, 0.54], [397.389, 1164.192, 0.565], [397.389, 1164.192, 0.59], [397.389, 1164.192, 0.615]]\nC: [[380.365, 1356.637, 0.44], [339.063, 1111.83, 0.512], [337.584, 979.936, 0.64], [437.254, 1203.389, 0.683]]\nD: [[323.527, 1041.167, 0.63], [470.94, 1158.877, 0.637], [366.836, 1001.327, 0.61], [420.137, 1320.47, 0.577]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_141_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_141_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_141_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_141_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_141_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_141_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_141_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_141_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[436.144, 1095.893, 0.64], [378.481, 1266.824, 0.483], [426.128, 1098.819, 0.65], [324.34, 949.634, 0.625]]\nB: [[397.389, 1164.192, 0.54], [397.389, 1164.192, 0.565], [397.389, 1164.192, 0.59], [397.389, 1164.192, 0.615]]\nC: [[380.365, 1356.637, 0.44], [339.063, 1111.83, 0.512], [337.584, 979.936, 0.64], [437.254, 1203.389, 0.683]]\nD: [[323.527, 1041.167, 0.63], [470.94, 1158.877, 0.637], [366.836, 1001.327, 0.61], [420.137, 1320.47, 0.577]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[345.303, 927.986, 0.6], [322.702, 926.62, 0.836], [322.388, 1098.752, 0.715], [411.956, 1203.533, 1.062]]\nB: [[360.095, 1122.376, 0.7], [360.061, 1122.39, 0.773], [360.027, 1122.404, 0.846], [359.993, 1122.417, 0.918]]\nC: [[325.719, 970.767, 0.8], [352.264, 988.9, 0.891], [370.173, 1212.852, 0.847], [306.427, 1052.878, 0.831]]\nD: [[408.76, 1154.201, 0.8], [384.285, 1027.05, 0.647], [381.462, 1131.647, 0.827], [348.63, 1106.215, 0.947]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_142_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_142_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_142_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_142_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_142_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_142_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_142_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_142_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[345.303, 927.986, 0.6], [322.702, 926.62, 0.836], [322.388, 1098.752, 0.715], [411.956, 1203.533, 1.062]]\nB: [[360.095, 1122.376, 0.7], [360.061, 1122.39, 0.773], [360.027, 1122.404, 0.846], [359.993, 1122.417, 0.918]]\nC: [[325.719, 970.767, 0.8], [352.264, 988.9, 0.891], [370.173, 1212.852, 0.847], [306.427, 1052.878, 0.831]]\nD: [[408.76, 1154.201, 0.8], [384.285, 1027.05, 0.647], [381.462, 1131.647, 0.827], [348.63, 1106.215, 0.947]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[342.004, 1040.88, 0.744], [329.607, 1045.03, 0.684], [379.212, 1250.647, 0.868], [326.815, 1264.503, 0.847]]\nB: [[356.724, 1113.785, 0.625], [356.749, 1113.855, 0.775], [356.778, 1113.889, 0.975], [356.785, 1113.897, 1.025]]\nC: [[412.74, 910.82, 0.676], [365.411, 1210.523, 0.664], [303.937, 1114.862, 0.873], [419.175, 1333.448, 0.84]]\nD: [[295.038, 1240.739, 0.504], [341.219, 1044.42, 0.812], [352.463, 1064.815, 1.125], [371.869, 1069.702, 0.977]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_143_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_143_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_143_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_143_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_143_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_143_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_143_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_143_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[342.004, 1040.88, 0.744], [329.607, 1045.03, 0.684], [379.212, 1250.647, 0.868], [326.815, 1264.503, 0.847]]\nB: [[356.724, 1113.785, 0.625], [356.749, 1113.855, 0.775], [356.778, 1113.889, 0.975], [356.785, 1113.897, 1.025]]\nC: [[412.74, 910.82, 0.676], [365.411, 1210.523, 0.664], [303.937, 1114.862, 0.873], [419.175, 1333.448, 0.84]]\nD: [[295.038, 1240.739, 0.504], [341.219, 1044.42, 0.812], [352.463, 1064.815, 1.125], [371.869, 1069.702, 0.977]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1394.419, 833.646, 0.583], [1328.905, 1140.762, 0.779], [1153.453, 1205.926, 0.657], [1146.98, 1211.025, 0.624]]\nB: [[1313.096, 1036.989, 0.652], [1313.096, 1036.989, 0.652], [1313.096, 1036.989, 0.652], [1313.096, 1036.989, 0.652]]\nC: [[1268.974, 982.967, 0.746], [1564.315, 845.479, 0.727], [1340.978, 1034.082, 0.715], [1495.256, 1214.335, 0.578]]\nD: [[1459.081, 1060.013, 0.734], [1278.902, 880.579, 0.542], [1345.294, 988.27, 0.706], [1466.974, 993.897, 0.65]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_144_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_144_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_144_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_144_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_144_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_144_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_144_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_144_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1394.419, 833.646, 0.583], [1328.905, 1140.762, 0.779], [1153.453, 1205.926, 0.657], [1146.98, 1211.025, 0.624]]\nB: [[1313.096, 1036.989, 0.652], [1313.096, 1036.989, 0.652], [1313.096, 1036.989, 0.652], [1313.096, 1036.989, 0.652]]\nC: [[1268.974, 982.967, 0.746], [1564.315, 845.479, 0.727], [1340.978, 1034.082, 0.715], [1495.256, 1214.335, 0.578]]\nD: [[1459.081, 1060.013, 0.734], [1278.902, 880.579, 0.542], [1345.294, 988.27, 0.706], [1466.974, 993.897, 0.65]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[483.59, 928.44, 0.641], [429.525, 1137.919, 0.585], [431.636, 1075.281, 0.417], [368.098, 942.18, 0.409]]\nB: [[506.828, 1075.62, 0.78], [523.808, 941.549, 0.581], [482.43, 968.916, 0.331], [419.206, 1128.103, 0.389]]\nC: [[440.798, 1086.59, 0.718], [440.809, 1086.616, 0.568], [440.809, 1086.616, 0.368], [440.809, 1086.616, 0.368]]\nD: [[495.844, 942.38, 0.674], [400.153, 884.092, 0.599], [357.631, 872.728, 0.373], [508.512, 889.858, 0.32]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_145_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_145_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_145_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_145_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_145_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_145_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_145_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_145_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[483.59, 928.44, 0.641], [429.525, 1137.919, 0.585], [431.636, 1075.281, 0.417], [368.098, 942.18, 0.409]]\nB: [[506.828, 1075.62, 0.78], [523.808, 941.549, 0.581], [482.43, 968.916, 0.331], [419.206, 1128.103, 0.389]]\nC: [[440.798, 1086.59, 0.718], [440.809, 1086.616, 0.568], [440.809, 1086.616, 0.368], [440.809, 1086.616, 0.368]]\nD: [[495.844, 942.38, 0.674], [400.153, 884.092, 0.599], [357.631, 872.728, 0.373], [508.512, 889.858, 0.32]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[431.795, 1089.293, 0.732], [431.79, 1089.298, 0.611], [431.763, 1089.236, 0.548], [431.76, 1089.235, 0.741]]\nB: [[430.055, 1135.006, 0.834], [362.83, 1266.13, 0.535], [510.725, 963.311, 0.449], [354.76, 1199.812, 0.852]]\nC: [[374.034, 1232.506, 0.835], [446.62, 1198.857, 0.654], [454.385, 1036.14, 0.539], [461.62, 1215.977, 0.65]]\nD: [[426.107, 1134.166, 0.869], [469.51, 941.329, 0.702], [490.047, 990.374, 0.543], [356.18, 1025.654, 0.728]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_146_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_146_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_146_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_146_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_146_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_146_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_146_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_146_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[431.795, 1089.293, 0.732], [431.79, 1089.298, 0.611], [431.763, 1089.236, 0.548], [431.76, 1089.235, 0.741]]\nB: [[430.055, 1135.006, 0.834], [362.83, 1266.13, 0.535], [510.725, 963.311, 0.449], [354.76, 1199.812, 0.852]]\nC: [[374.034, 1232.506, 0.835], [446.62, 1198.857, 0.654], [454.385, 1036.14, 0.539], [461.62, 1215.977, 0.65]]\nD: [[426.107, 1134.166, 0.869], [469.51, 941.329, 0.702], [490.047, 990.374, 0.543], [356.18, 1025.654, 0.728]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1042.405, 896.49, 0.459], [1248.26, 1026.303, 0.519], [1554.895, 994.696, 0.5], [1480.656, 1055.338, 0.476]]\nB: [[1168.242, 1176.462, 0.406], [1219.42, 1198.448, 0.487], [1280.042, 1223.429, 0.5], [1301.768, 1040.639, 0.468]]\nC: [[1293.229, 1033.246, 0.388], [1296.13, 1035.001, 0.465], [1296.744, 1035.285, 0.5], [1297.358, 1035.569, 0.535]]\nD: [[1205.688, 1036.352, 0.443], [1283.41, 852.956, 0.509], [1152.749, 895.819, 0.4], [1317.874, 1012.868, 0.584]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_147_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_147_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_147_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_147_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_147_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_147_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_147_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_147_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1042.405, 896.49, 0.459], [1248.26, 1026.303, 0.519], [1554.895, 994.696, 0.5], [1480.656, 1055.338, 0.476]]\nB: [[1168.242, 1176.462, 0.406], [1219.42, 1198.448, 0.487], [1280.042, 1223.429, 0.5], [1301.768, 1040.639, 0.468]]\nC: [[1293.229, 1033.246, 0.388], [1296.13, 1035.001, 0.465], [1296.744, 1035.285, 0.5], [1297.358, 1035.569, 0.535]]\nD: [[1205.688, 1036.352, 0.443], [1283.41, 852.956, 0.509], [1152.749, 895.819, 0.4], [1317.874, 1012.868, 0.584]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[2143.23, 880.092, 1.463], [2237.79, 816.687, 1.792], [2021.67, 1004.854, 1.441], [2013.58, 762.901, 1.623]]\nB: [[2030.68, 939.082, 1.556], [1707.64, 827.801, 1.543], [2187.71, 957.754, 1.703], [1734.52, 730.487, 1.539]]\nC: [[2157.8, 869.883, 1.527], [1960.08, 1008.147, 1.759], [1779.88, 929.643, 1.772], [1538.45, 884.771, 1.889]]\nD: [[1907.37, 864.452, 1.647], [1907.37, 864.452, 1.647], [1907.37, 864.452, 1.647], [1907.37, 864.452, 1.647]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_148_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_148_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_148_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_148_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_148_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_148_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_148_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_148_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[2143.23, 880.092, 1.463], [2237.79, 816.687, 1.792], [2021.67, 1004.854, 1.441], [2013.58, 762.901, 1.623]]\nB: [[2030.68, 939.082, 1.556], [1707.64, 827.801, 1.543], [2187.71, 957.754, 1.703], [1734.52, 730.487, 1.539]]\nC: [[2157.8, 869.883, 1.527], [1960.08, 1008.147, 1.759], [1779.88, 929.643, 1.772], [1538.45, 884.771, 1.889]]\nD: [[1907.37, 864.452, 1.647], [1907.37, 864.452, 1.647], [1907.37, 864.452, 1.647], [1907.37, 864.452, 1.647]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[333.441, 1111.848, 0.881], [358.68, 1279.096, 0.848], [365.642, 1024.723, 1.135], [416.842, 1221.204, 1.061]]\nB: [[359.553, 1105.178, 0.934], [359.553, 1105.178, 1.045], [359.553, 1105.178, 1.082], [359.553, 1105.178, 1.005]]\nC: [[401.411, 1302.101, 0.9], [401.716, 1050.934, 1.205], [369.114, 1004.72, 0.951], [298.807, 954.194, 1.162]]\nD: [[326.721, 1063.94, 1.102], [316.366, 1058.028, 0.884], [321.691, 954.121, 1.273], [352.284, 1064.278, 1.172]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_149_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_149_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_149_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_149_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_149_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_149_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_149_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_149_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[333.441, 1111.848, 0.881], [358.68, 1279.096, 0.848], [365.642, 1024.723, 1.135], [416.842, 1221.204, 1.061]]\nB: [[359.553, 1105.178, 0.934], [359.553, 1105.178, 1.045], [359.553, 1105.178, 1.082], [359.553, 1105.178, 1.005]]\nC: [[401.411, 1302.101, 0.9], [401.716, 1050.934, 1.205], [369.114, 1004.72, 0.951], [298.807, 954.194, 1.162]]\nD: [[326.721, 1063.94, 1.102], [316.366, 1058.028, 0.884], [321.691, 954.121, 1.273], [352.284, 1064.278, 1.172]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1914.957, 873.014, 0.241], [1914.951, 872.993, 0.241], [1914.944, 872.972, 0.241], [1914.937, 872.951, 0.241]]\nB: [[2029.589, 880.527, 0.258], [1539.423, 812.215, 0.227], [2219.176, 984.894, 0.264], [2240.588, 737.815, 0.2]]\nC: [[2084.127, 771.252, 0.23], [1889.253, 1036.727, 0.264], [1713.036, 984.106, 0.254], [1867.742, 808.403, 0.199]]\nD: [[1951.845, 910.003, 0.272], [2067.414, 726.492, 0.226], [1574.866, 827.537, 0.223], [2080.281, 1029.475, 0.221]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_150_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_150_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_150_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_150_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_150_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_150_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_150_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_150_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1914.957, 873.014, 0.241], [1914.951, 872.993, 0.241], [1914.944, 872.972, 0.241], [1914.937, 872.951, 0.241]]\nB: [[2029.589, 880.527, 0.258], [1539.423, 812.215, 0.227], [2219.176, 984.894, 0.264], [2240.588, 737.815, 0.2]]\nC: [[2084.127, 771.252, 0.23], [1889.253, 1036.727, 0.264], [1713.036, 984.106, 0.254], [1867.742, 808.403, 0.199]]\nD: [[1951.845, 910.003, 0.272], [2067.414, 726.492, 0.226], [1574.866, 827.537, 0.223], [2080.281, 1029.475, 0.221]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[775.145, 1609.526, 0.275], [728.049, 1548.593, 0.225], [726.281, 1889.554, 0.225], [701.777, 1569.883, 0.285]]\nB: [[635.753, 1733.477, 0.272], [720.552, 1845.796, 0.237], [810.826, 1848.81, 0.272], [673.334, 1345.738, 0.236]]\nC: [[563.331, 1620.514, 0.207], [692.265, 1578.918, 0.262], [633.015, 1756.886, 0.242], [605.445, 1415.589, 0.246]]\nD: [[696.721, 1578.786, 0.244], [696.693, 1578.758, 0.244], [696.674, 1578.723, 0.244], [696.664, 1578.684, 0.244]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_151_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_151_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_151_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_151_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_151_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_151_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_151_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_151_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[775.145, 1609.526, 0.275], [728.049, 1548.593, 0.225], [726.281, 1889.554, 0.225], [701.777, 1569.883, 0.285]]\nB: [[635.753, 1733.477, 0.272], [720.552, 1845.796, 0.237], [810.826, 1848.81, 0.272], [673.334, 1345.738, 0.236]]\nC: [[563.331, 1620.514, 0.207], [692.265, 1578.918, 0.262], [633.015, 1756.886, 0.242], [605.445, 1415.589, 0.246]]\nD: [[696.721, 1578.786, 0.244], [696.693, 1578.758, 0.244], [696.674, 1578.723, 0.244], [696.664, 1578.684, 0.244]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[650.646, 1603.342, 0.03], [650.62, 1603.362, 0.13], [650.688, 1603.329, 0.308], [650.756, 1603.295, 0.485]]\nB: [[567.786, 1547.911, 0.04], [679.87, 1773.392, 0.15], [682.07, 1467.32, 0.353], [776.72, 1507.964, 0.528]]\nC: [[765.242, 1777.09, 0.03], [719.37, 1669.37, 0.15], [581.778, 1910.816, 0.336], [602.521, 1760.712, 0.392]]\nD: [[522.813, 1797.126, 0.03], [721.02, 1459.791, 0.11], [758.676, 1452.614, 0.344], [628.48, 1519.176, 0.474]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_152_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_152_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_152_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_152_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_152_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_152_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_152_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_152_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[650.646, 1603.342, 0.03], [650.62, 1603.362, 0.13], [650.688, 1603.329, 0.308], [650.756, 1603.295, 0.485]]\nB: [[567.786, 1547.911, 0.04], [679.87, 1773.392, 0.15], [682.07, 1467.32, 0.353], [776.72, 1507.964, 0.528]]\nC: [[765.242, 1777.09, 0.03], [719.37, 1669.37, 0.15], [581.778, 1910.816, 0.336], [602.521, 1760.712, 0.392]]\nD: [[522.813, 1797.126, 0.03], [721.02, 1459.791, 0.11], [758.676, 1452.614, 0.344], [628.48, 1519.176, 0.474]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1344.72, 1281.191, 3.09], [1075.39, 972.846, 3.969], [1227.93, 967.953, 2.882], [1313.85, 1191.672, 2.766]]\nB: [[1340.58, 1102.095, 3.358], [1340.58, 1102.095, 3.358], [1340.56, 1102.069, 3.358], [1340.56, 1102.069, 3.358]]\nC: [[1595.5, 1117.589, 3.115], [1363.06, 1051.692, 3.599], [1333.05, 1281.644, 3.54], [1459.61, 1297.063, 3.45]]\nD: [[1406.68, 1037.893, 3.818], [1555.01, 1107.104, 3.069], [1222.57, 1178.434, 3.387], [1139.88, 1136.126, 3.194]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_153_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_153_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_153_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_153_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_153_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_153_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_153_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_153_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1344.72, 1281.191, 3.09], [1075.39, 972.846, 3.969], [1227.93, 967.953, 2.882], [1313.85, 1191.672, 2.766]]\nB: [[1340.58, 1102.095, 3.358], [1340.58, 1102.095, 3.358], [1340.56, 1102.069, 3.358], [1340.56, 1102.069, 3.358]]\nC: [[1595.5, 1117.589, 3.115], [1363.06, 1051.692, 3.599], [1333.05, 1281.644, 3.54], [1459.61, 1297.063, 3.45]]\nD: [[1406.68, 1037.893, 3.818], [1555.01, 1107.104, 3.069], [1222.57, 1178.434, 3.387], [1139.88, 1136.126, 3.194]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[366.659, 1011.101, 1.22], [364.315, 1040.812, 1.078], [399.107, 1299.752, 1.185], [296.881, 916.886, 1.47]]\nB: [[363.259, 1094.238, 1.247], [363.277, 1094.229, 1.276], [363.296, 1094.221, 1.306], [363.315, 1094.212, 1.335]]\nC: [[349.227, 1179.598, 1.249], [388.454, 911.85, 1.32], [338.754, 1093.699, 1.127], [427.119, 948.416, 1.102]]\nD: [[420.809, 960.294, 1.148], [382.372, 1303.064, 1.394], [429.821, 1184.841, 1.121], [362.615, 1271.967, 1.2]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_154_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_154_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_154_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_154_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_154_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_154_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_154_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_154_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[366.659, 1011.101, 1.22], [364.315, 1040.812, 1.078], [399.107, 1299.752, 1.185], [296.881, 916.886, 1.47]]\nB: [[363.259, 1094.238, 1.247], [363.277, 1094.229, 1.276], [363.296, 1094.221, 1.306], [363.315, 1094.212, 1.335]]\nC: [[349.227, 1179.598, 1.249], [388.454, 911.85, 1.32], [338.754, 1093.699, 1.127], [427.119, 948.416, 1.102]]\nD: [[420.809, 960.294, 1.148], [382.372, 1303.064, 1.394], [429.821, 1184.841, 1.121], [362.615, 1271.967, 1.2]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1954.841, 997.5, 0.236], [1604.826, 1018.173, 0.282], [2056.441, 825.549, 0.202], [2053.148, 806.675, 0.206]]\nB: [[1911.473, 872.92, 0.247], [1911.473, 872.927, 0.247], [1911.473, 872.935, 0.247], [1911.473, 872.912, 0.247]]\nC: [[1627.59, 704.51, 0.221], [1743.247, 820.718, 0.239], [1954.356, 974.622, 0.27], [1682.124, 823.985, 0.25]]\nD: [[1859.848, 855.57, 0.227], [1677.344, 943.885, 0.289], [1603.535, 883.7, 0.263], [2177.549, 800.573, 0.251]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_155_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_155_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_155_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_155_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_155_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_155_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_155_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_155_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1954.841, 997.5, 0.236], [1604.826, 1018.173, 0.282], [2056.441, 825.549, 0.202], [2053.148, 806.675, 0.206]]\nB: [[1911.473, 872.92, 0.247], [1911.473, 872.927, 0.247], [1911.473, 872.935, 0.247], [1911.473, 872.912, 0.247]]\nC: [[1627.59, 704.51, 0.221], [1743.247, 820.718, 0.239], [1954.356, 974.622, 0.27], [1682.124, 823.985, 0.25]]\nD: [[1859.848, 855.57, 0.227], [1677.344, 943.885, 0.289], [1603.535, 883.7, 0.263], [2177.549, 800.573, 0.251]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[405.086, 1259.825, 0.988], [341.109, 1024.661, 1.196], [400.072, 1270.26, 0.973], [361.016, 1307.675, 1.222]]\nB: [[493.579, 972.185, 0.834], [476.692, 1075.558, 0.912], [401.433, 969.577, 0.981], [403.596, 1269.671, 1.032]]\nC: [[431.9, 1414.092, 1.036], [482.304, 1353.899, 0.879], [441.439, 1311.735, 0.916], [400.616, 1079.275, 1.136]]\nD: [[417.374, 1192.132, 0.961], [416.718, 1192.286, 1.011], [416.058, 1192.412, 1.061], [415.392, 1192.512, 1.111]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_156_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_156_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_156_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_156_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_156_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_156_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_156_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_156_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[405.086, 1259.825, 0.988], [341.109, 1024.661, 1.196], [400.072, 1270.26, 0.973], [361.016, 1307.675, 1.222]]\nB: [[493.579, 972.185, 0.834], [476.692, 1075.558, 0.912], [401.433, 969.577, 0.981], [403.596, 1269.671, 1.032]]\nC: [[431.9, 1414.092, 1.036], [482.304, 1353.899, 0.879], [441.439, 1311.735, 0.916], [400.616, 1079.275, 1.136]]\nD: [[417.374, 1192.132, 0.961], [416.718, 1192.286, 1.011], [416.058, 1192.412, 1.061], [415.392, 1192.512, 1.111]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[326.56, 1024.467, 0.519], [375.34, 1251.894, 0.454], [324.82, 1119.168, 0.508], [372.44, 1074.004, 0.7]]\nB: [[446.37, 1235.831, 0.437], [419.37, 934.045, 0.644], [380.01, 1072.298, 0.649], [417.35, 1264.432, 0.693]]\nC: [[438.81, 1043.645, 0.444], [435.77, 1350.631, 0.617], [421.85, 1208.417, 0.602], [334.9, 991.841, 0.557]]\nD: [[387.52, 1143.568, 0.508], [387.52, 1143.568, 0.541], [387.52, 1143.568, 0.575], [387.52, 1143.568, 0.608]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_157_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_157_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_157_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_157_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_157_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_157_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_157_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_157_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[326.56, 1024.467, 0.519], [375.34, 1251.894, 0.454], [324.82, 1119.168, 0.508], [372.44, 1074.004, 0.7]]\nB: [[446.37, 1235.831, 0.437], [419.37, 934.045, 0.644], [380.01, 1072.298, 0.649], [417.35, 1264.432, 0.693]]\nC: [[438.81, 1043.645, 0.444], [435.77, 1350.631, 0.617], [421.85, 1208.417, 0.602], [334.9, 991.841, 0.557]]\nD: [[387.52, 1143.568, 0.508], [387.52, 1143.568, 0.541], [387.52, 1143.568, 0.575], [387.52, 1143.568, 0.608]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[482.206, 1161.483, 0.923], [362.768, 1002.877, 1.176], [464.329, 933.744, 1.058], [365.042, 1087.466, 0.59]]\nB: [[395.933, 960.032, 0.91], [390.823, 1104.508, 1.171], [437.592, 1073.569, 0.945], [481.154, 1034.808, 0.54]]\nC: [[418.967, 1094.306, 1.038], [418.951, 1094.348, 1.008], [418.987, 1094.368, 1.068], [418.873, 1094.555, 0.56]]\nD: [[425.42, 1279.316, 1.07], [448.65, 1259.388, 1.115], [445.464, 1156.231, 1.185], [492.603, 965.675, 0.64]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_158_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_158_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_158_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_158_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_158_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_158_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_158_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_158_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[482.206, 1161.483, 0.923], [362.768, 1002.877, 1.176], [464.329, 933.744, 1.058], [365.042, 1087.466, 0.59]]\nB: [[395.933, 960.032, 0.91], [390.823, 1104.508, 1.171], [437.592, 1073.569, 0.945], [481.154, 1034.808, 0.54]]\nC: [[418.967, 1094.306, 1.038], [418.951, 1094.348, 1.008], [418.987, 1094.368, 1.068], [418.873, 1094.555, 0.56]]\nD: [[425.42, 1279.316, 1.07], [448.65, 1259.388, 1.115], [445.464, 1156.231, 1.185], [492.603, 965.675, 0.64]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[2133.097, 774.816, 1.225], [1748.933, 832.577, 1.031], [1567.379, 834.66, 1.265], [1502.433, 691.935, 1.105]]\nB: [[1806.535, 861.266, 1.066], [1807.133, 859.654, 1.066], [1807.563, 858.13, 1.066], [1807.849, 856.657, 1.021]]\nC: [[2099.2, 882.41, 1.014], [2094.1, 791.51, 0.857], [1724.174, 770.83, 0.904], [1636.953, 895.976, 1.042]]\nD: [[1853.024, 785.737, 0.887], [1793.267, 868.356, 1.224], [1854.012, 828.75, 1.266], [2127.184, 793.379, 1.141]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_159_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_159_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_159_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_159_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_159_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_159_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_159_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_159_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[2133.097, 774.816, 1.225], [1748.933, 832.577, 1.031], [1567.379, 834.66, 1.265], [1502.433, 691.935, 1.105]]\nB: [[1806.535, 861.266, 1.066], [1807.133, 859.654, 1.066], [1807.563, 858.13, 1.066], [1807.849, 856.657, 1.021]]\nC: [[2099.2, 882.41, 1.014], [2094.1, 791.51, 0.857], [1724.174, 770.83, 0.904], [1636.953, 895.976, 1.042]]\nD: [[1853.024, 785.737, 0.887], [1793.267, 868.356, 1.224], [1854.012, 828.75, 1.266], [2127.184, 793.379, 1.141]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1039.96, 1235.697, 1.849], [1056.893, 1292.385, 1.963], [1073.252, 1262.199, 2.07], [1057.534, 1122.452, 1.706]]\nB: [[1248.78, 1187.636, 2.366], [1189.102, 1066.566, 2.081], [1235.361, 1032.631, 1.92], [1111.357, 1241.726, 2.171]]\nC: [[1147.17, 1172.553, 1.994], [1344.188, 1301.314, 1.937], [974.406, 1174.168, 1.55], [1159.003, 1238.282, 2.257]]\nD: [[1181.87, 1122.359, 2.116], [1185.363, 1119.943, 2.248], [1188.856, 1117.528, 1.93], [1192.349, 1115.113, 1.954]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_160_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_160_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_160_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_160_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_160_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_160_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_160_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_160_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1039.96, 1235.697, 1.849], [1056.893, 1292.385, 1.963], [1073.252, 1262.199, 2.07], [1057.534, 1122.452, 1.706]]\nB: [[1248.78, 1187.636, 2.366], [1189.102, 1066.566, 2.081], [1235.361, 1032.631, 1.92], [1111.357, 1241.726, 2.171]]\nC: [[1147.17, 1172.553, 1.994], [1344.188, 1301.314, 1.937], [974.406, 1174.168, 1.55], [1159.003, 1238.282, 2.257]]\nD: [[1181.87, 1122.359, 2.116], [1185.363, 1119.943, 2.248], [1188.856, 1117.528, 1.93], [1192.349, 1115.113, 1.954]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[407.79, 1169.713, 1.047], [438.535, 914.451, 0.817], [474.944, 1174.579, 0.711], [407.788, 1311.155, 0.697]]\nB: [[411.096, 1097.949, 1.026], [411.096, 1097.949, 0.806], [411.096, 1097.949, 0.756], [411.181, 1097.914, 0.706]]\nC: [[380.059, 1294.905, 1.061], [462.302, 957.203, 0.843], [360.056, 1036.95, 0.635], [377.308, 1174.326, 0.803]]\nD: [[453.527, 1100.533, 1.002], [399.919, 928.877, 0.842], [458.797, 1077.795, 0.803], [333.443, 1294.271, 0.8]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_161_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_161_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_161_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_161_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_161_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_161_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_161_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_161_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[407.79, 1169.713, 1.047], [438.535, 914.451, 0.817], [474.944, 1174.579, 0.711], [407.788, 1311.155, 0.697]]\nB: [[411.096, 1097.949, 1.026], [411.096, 1097.949, 0.806], [411.096, 1097.949, 0.756], [411.181, 1097.914, 0.706]]\nC: [[380.059, 1294.905, 1.061], [462.302, 957.203, 0.843], [360.056, 1036.95, 0.635], [377.308, 1174.326, 0.803]]\nD: [[453.527, 1100.533, 1.002], [399.919, 928.877, 0.842], [458.797, 1077.795, 0.803], [333.443, 1294.271, 0.8]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[377.184, 977.334, 0.742], [375.911, 1030.014, 0.731], [428.729, 1127.517, 0.56], [402.816, 1027.37, 0.555]]\nB: [[447.851, 943.564, 0.851], [507.44, 1079.2, 0.691], [496.497, 1228.261, 0.42], [422.118, 1234.56, 0.566]]\nC: [[427.284, 1091.127, 0.774], [427.286, 1091.126, 0.707], [427.292, 1091.122, 0.507], [427.294, 1091.12, 0.628]]\nD: [[480.047, 995.531, 0.924], [418.676, 923.092, 0.59], [412.858, 1042.957, 0.421], [343.915, 1040.26, 0.623]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_162_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_162_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_162_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_162_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_162_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_162_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_162_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_162_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[377.184, 977.334, 0.742], [375.911, 1030.014, 0.731], [428.729, 1127.517, 0.56], [402.816, 1027.37, 0.555]]\nB: [[447.851, 943.564, 0.851], [507.44, 1079.2, 0.691], [496.497, 1228.261, 0.42], [422.118, 1234.56, 0.566]]\nC: [[427.284, 1091.127, 0.774], [427.286, 1091.126, 0.707], [427.292, 1091.122, 0.507], [427.294, 1091.12, 0.628]]\nD: [[480.047, 995.531, 0.924], [418.676, 923.092, 0.59], [412.858, 1042.957, 0.421], [343.915, 1040.26, 0.623]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1470.303, 1200.503, -0.117], [1211.565, 906.028, -0.109], [1265.671, 860.24, -0.139], [1225.185, 861.066, -0.166]]\nB: [[1121.534, 848.02, -0.101], [1300.088, 882.168, -0.116], [1372.338, 987.41, -0.161], [1121.468, 1062.994, -0.117]]\nC: [[1239.215, 1012.078, -0.106], [1239.169, 1012.039, -0.126], [1239.146, 1012.02, -0.136], [1239.123, 1012.001, -0.146]]\nD: [[1353.598, 917.259, -0.096], [1218.603, 1014.25, -0.105], [1110.323, 1116.23, -0.13], [1224.972, 1200.395, -0.138]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_163_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_163_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_163_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_163_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_163_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_163_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_163_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_163_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1470.303, 1200.503, -0.117], [1211.565, 906.028, -0.109], [1265.671, 860.24, -0.139], [1225.185, 861.066, -0.166]]\nB: [[1121.534, 848.02, -0.101], [1300.088, 882.168, -0.116], [1372.338, 987.41, -0.161], [1121.468, 1062.994, -0.117]]\nC: [[1239.215, 1012.078, -0.106], [1239.169, 1012.039, -0.126], [1239.146, 1012.02, -0.136], [1239.123, 1012.001, -0.146]]\nD: [[1353.598, 917.259, -0.096], [1218.603, 1014.25, -0.105], [1110.323, 1116.23, -0.13], [1224.972, 1200.395, -0.138]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[390.311, 1121.642, 0.818], [389.934, 1120.974, 0.748], [389.624, 1120.4, 0.778], [389.38, 1119.804, 0.858]]\nB: [[315.313, 963.621, 0.732], [377.113, 912.889, 0.734], [351.418, 1317.0, 0.875], [422.52, 1203.28, 0.858]]\nC: [[416.232, 1151.901, 0.879], [421.322, 1109.197, 0.81], [452.884, 1049.1, 0.63], [415.15, 1098.518, 0.99]]\nD: [[432.466, 1326.016, 0.887], [398.73, 1272.899, 0.773], [453.388, 964.3, 0.838], [398.14, 1308.497, 0.972]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_164_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_164_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_164_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_164_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_164_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_164_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_164_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_164_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[390.311, 1121.642, 0.818], [389.934, 1120.974, 0.748], [389.624, 1120.4, 0.778], [389.38, 1119.804, 0.858]]\nB: [[315.313, 963.621, 0.732], [377.113, 912.889, 0.734], [351.418, 1317.0, 0.875], [422.52, 1203.28, 0.858]]\nC: [[416.232, 1151.901, 0.879], [421.322, 1109.197, 0.81], [452.884, 1049.1, 0.63], [415.15, 1098.518, 0.99]]\nD: [[432.466, 1326.016, 0.887], [398.73, 1272.899, 0.773], [453.388, 964.3, 0.838], [398.14, 1308.497, 0.972]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[288.389, 823.36, 1.04], [243.336, 770.263, 1.17], [329.163, 556.194, 0.924], [278.167, 724.049, 1.175]]\nB: [[303.148, 635.853, 0.872], [255.423, 572.035, 1.073], [262.191, 559.079, 0.89], [295.029, 679.27, 0.862]]\nC: [[250.538, 640.039, 0.892], [355.139, 799.298, 1.133], [280.545, 705.593, 1.08], [285.606, 739.161, 1.054]]\nD: [[301.073, 691.921, 1.008], [300.166, 690.701, 1.008], [299.259, 689.481, 1.008], [298.351, 688.262, 1.008]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_165_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_165_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_165_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_165_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_165_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_165_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_165_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_165_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[288.389, 823.36, 1.04], [243.336, 770.263, 1.17], [329.163, 556.194, 0.924], [278.167, 724.049, 1.175]]\nB: [[303.148, 635.853, 0.872], [255.423, 572.035, 1.073], [262.191, 559.079, 0.89], [295.029, 679.27, 0.862]]\nC: [[250.538, 640.039, 0.892], [355.139, 799.298, 1.133], [280.545, 705.593, 1.08], [285.606, 739.161, 1.054]]\nD: [[301.073, 691.921, 1.008], [300.166, 690.701, 1.008], [299.259, 689.481, 1.008], [298.351, 688.262, 1.008]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[374.966, 918.231, 1.798], [317.815, 1228.212, 1.721], [398.89, 875.569, 1.814], [428.79, 1016.473, 1.875]]\nB: [[360.439, 1086.932, 1.56], [381.745, 1179.649, 1.447], [395.985, 1168.142, 1.848], [396.108, 960.271, 1.709]]\nC: [[358.757, 1084.221, 1.582], [358.757, 1084.221, 1.575], [358.757, 1084.221, 1.585], [358.757, 1084.221, 1.664]]\nD: [[320.557, 873.472, 1.863], [409.377, 874.584, 1.304], [376.574, 953.049, 1.86], [336.743, 903.665, 1.608]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_166_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_166_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_166_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_166_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_166_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_166_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_166_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_166_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[374.966, 918.231, 1.798], [317.815, 1228.212, 1.721], [398.89, 875.569, 1.814], [428.79, 1016.473, 1.875]]\nB: [[360.439, 1086.932, 1.56], [381.745, 1179.649, 1.447], [395.985, 1168.142, 1.848], [396.108, 960.271, 1.709]]\nC: [[358.757, 1084.221, 1.582], [358.757, 1084.221, 1.575], [358.757, 1084.221, 1.585], [358.757, 1084.221, 1.664]]\nD: [[320.557, 873.472, 1.863], [409.377, 874.584, 1.304], [376.574, 953.049, 1.86], [336.743, 903.665, 1.608]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[2192.318, 842.128, 0.202], [2028.569, 1002.104, 0.362], [1823.353, 915.088, 0.434], [1848.897, 1015.376, 0.66]]\nB: [[2200.193, 887.932, 0.279], [2035.641, 762.88, 0.308], [1865.863, 809.786, 0.584], [1497.967, 1016.346, 0.579]]\nC: [[1842.467, 871.854, 0.249], [1837.266, 871.727, 0.362], [1831.484, 871.587, 0.487], [1825.702, 871.447, 0.612]]\nD: [[1510.791, 938.627, 0.271], [1853.106, 942.739, 0.426], [1927.734, 739.554, 0.479], [1666.087, 996.74, 0.708]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_167_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_167_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_167_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_167_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_167_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_167_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_167_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_167_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[2192.318, 842.128, 0.202], [2028.569, 1002.104, 0.362], [1823.353, 915.088, 0.434], [1848.897, 1015.376, 0.66]]\nB: [[2200.193, 887.932, 0.279], [2035.641, 762.88, 0.308], [1865.863, 809.786, 0.584], [1497.967, 1016.346, 0.579]]\nC: [[1842.467, 871.854, 0.249], [1837.266, 871.727, 0.362], [1831.484, 871.587, 0.487], [1825.702, 871.447, 0.612]]\nD: [[1510.791, 938.627, 0.271], [1853.106, 942.739, 0.426], [1927.734, 739.554, 0.479], [1666.087, 996.74, 0.708]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[342.032, 761.086, -0.593], [347.646, 679.25, -0.401], [364.231, 569.092, -0.328], [289.053, 634.842, -0.205]]\nB: [[301.298, 665.695, -0.633], [284.255, 584.96, -0.505], [255.024, 783.231, -0.315], [245.543, 830.729, -0.175]]\nC: [[311.284, 836.779, -0.649], [370.864, 573.4, -0.497], [360.873, 715.839, -0.301], [249.474, 613.179, -0.21]]\nD: [[312.445, 705.589, -0.612], [310.539, 703.33, -0.479], [308.633, 701.071, -0.346], [306.729, 698.815, -0.214]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_168_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_168_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_168_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_168_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_168_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_168_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_168_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_168_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[342.032, 761.086, -0.593], [347.646, 679.25, -0.401], [364.231, 569.092, -0.328], [289.053, 634.842, -0.205]]\nB: [[301.298, 665.695, -0.633], [284.255, 584.96, -0.505], [255.024, 783.231, -0.315], [245.543, 830.729, -0.175]]\nC: [[311.284, 836.779, -0.649], [370.864, 573.4, -0.497], [360.873, 715.839, -0.301], [249.474, 613.179, -0.21]]\nD: [[312.445, 705.589, -0.612], [310.539, 703.33, -0.479], [308.633, 701.071, -0.346], [306.729, 698.815, -0.214]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[363.209, 1123.747, 1.102], [363.143, 1123.593, 1.085], [363.102, 1123.498, 1.068], [363.137, 1123.58, 1.052]]\nB: [[378.885, 1276.718, 1.19], [435.59, 1222.123, 1.009], [430.113, 989.283, 1.158], [375.367, 990.91, 0.956]]\nC: [[413.521, 1104.065, 1.115], [428.494, 917.554, 1.251], [320.18, 1021.737, 0.933], [318.09, 1005.13, 1.022]]\nD: [[427.259, 1339.216, 1.291], [315.569, 1079.127, 0.936], [304.042, 1194.504, 1.038], [323.022, 982.56, 0.905]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_169_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_169_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_169_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_169_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_169_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_169_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_169_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_169_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[363.209, 1123.747, 1.102], [363.143, 1123.593, 1.085], [363.102, 1123.498, 1.068], [363.137, 1123.58, 1.052]]\nB: [[378.885, 1276.718, 1.19], [435.59, 1222.123, 1.009], [430.113, 989.283, 1.158], [375.367, 990.91, 0.956]]\nC: [[413.521, 1104.065, 1.115], [428.494, 917.554, 1.251], [320.18, 1021.737, 0.933], [318.09, 1005.13, 1.022]]\nD: [[427.259, 1339.216, 1.291], [315.569, 1079.127, 0.936], [304.042, 1194.504, 1.038], [323.022, 982.56, 0.905]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1333.186, 1040.597, 0.635], [1333.186, 1040.597, 0.635], [1333.186, 1040.597, 0.635], [1333.186, 1040.597, 0.635]]\nB: [[1514.635, 950.684, 0.564], [1066.743, 1156.105, 0.658], [1204.49, 1019.642, 0.74], [1089.793, 1017.943, 0.569]]\nC: [[1321.867, 926.129, 0.741], [1261.374, 1241.754, 0.725], [1359.131, 1028.017, 0.564], [1440.895, 941.11, 0.737]]\nD: [[1471.054, 874.495, 0.591], [1148.049, 1089.103, 0.508], [1489.63, 929.92, 0.603], [1503.98, 1037.54, 0.682]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_170_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_170_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_170_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_170_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_170_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_170_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_170_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_170_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1333.186, 1040.597, 0.635], [1333.186, 1040.597, 0.635], [1333.186, 1040.597, 0.635], [1333.186, 1040.597, 0.635]]\nB: [[1514.635, 950.684, 0.564], [1066.743, 1156.105, 0.658], [1204.49, 1019.642, 0.74], [1089.793, 1017.943, 0.569]]\nC: [[1321.867, 926.129, 0.741], [1261.374, 1241.754, 0.725], [1359.131, 1028.017, 0.564], [1440.895, 941.11, 0.737]]\nD: [[1471.054, 874.495, 0.591], [1148.049, 1089.103, 0.508], [1489.63, 929.92, 0.603], [1503.98, 1037.54, 0.682]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[587.007, 1451.429, 1.011], [592.203, 1759.483, 1.117], [647.108, 1795.963, 1.03], [638.355, 1540.243, 0.93]]\nB: [[640.141, 1888.738, 0.846], [726.767, 1525.298, 0.951], [759.989, 1292.629, 0.84], [736.789, 1660.505, 0.979]]\nC: [[666.472, 1849.208, 0.854], [731.041, 1481.554, 0.835], [803.226, 1800.553, 1.04], [593.45, 1762.889, 1.042]]\nD: [[671.323, 1578.674, 0.957], [671.316, 1578.671, 0.964], [671.308, 1578.668, 0.97], [671.301, 1578.665, 0.976]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_171_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_171_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_171_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_171_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_171_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_171_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_171_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_171_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[587.007, 1451.429, 1.011], [592.203, 1759.483, 1.117], [647.108, 1795.963, 1.03], [638.355, 1540.243, 0.93]]\nB: [[640.141, 1888.738, 0.846], [726.767, 1525.298, 0.951], [759.989, 1292.629, 0.84], [736.789, 1660.505, 0.979]]\nC: [[666.472, 1849.208, 0.854], [731.041, 1481.554, 0.835], [803.226, 1800.553, 1.04], [593.45, 1762.889, 1.042]]\nD: [[671.323, 1578.674, 0.957], [671.316, 1578.671, 0.964], [671.308, 1578.668, 0.97], [671.301, 1578.665, 0.976]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[291.787, 679.069, -0.469], [277.905, 732.394, -0.336], [252.638, 766.267, -0.161], [332.611, 636.857, -0.009]]\nB: [[309.014, 658.598, -0.45], [335.072, 790.615, -0.333], [250.147, 699.934, -0.154], [283.681, 656.435, -0.007]]\nC: [[307.569, 699.998, -0.459], [305.228, 697.097, -0.309], [302.888, 694.195, -0.159], [300.547, 691.293, -0.008]]\nD: [[306.127, 672.26, -0.442], [332.611, 777.126, -0.361], [293.54, 777.55, -0.16], [277.878, 827.191, -0.008]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_172_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_172_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_172_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_172_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_172_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_172_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_172_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_172_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[291.787, 679.069, -0.469], [277.905, 732.394, -0.336], [252.638, 766.267, -0.161], [332.611, 636.857, -0.009]]\nB: [[309.014, 658.598, -0.45], [335.072, 790.615, -0.333], [250.147, 699.934, -0.154], [283.681, 656.435, -0.007]]\nC: [[307.569, 699.998, -0.459], [305.228, 697.097, -0.309], [302.888, 694.195, -0.159], [300.547, 691.293, -0.008]]\nD: [[306.127, 672.26, -0.442], [332.611, 777.126, -0.361], [293.54, 777.55, -0.16], [277.878, 827.191, -0.008]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[410.021, 1418.263, 1.006], [335.263, 1143.6, 0.762], [373.402, 1388.34, 1.144], [360.742, 1297.733, 1.1]]\nB: [[401.282, 1193.478, 0.862], [402.619, 1193.23, 0.782], [404.132, 1193.11, 1.001], [405.307, 1192.971, 1.1]]\nC: [[476.438, 1152.023, 0.752], [338.739, 1127.79, 0.816], [436.589, 1274.03, 1.097], [419.84, 1106.209, 1.0]]\nD: [[421.529, 1380.4, 0.797], [464.928, 1028.31, 0.794], [411.148, 983.52, 1.058], [384.373, 1245.097, 1.2]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_173_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_173_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_173_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_173_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_173_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_173_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_173_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_173_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[410.021, 1418.263, 1.006], [335.263, 1143.6, 0.762], [373.402, 1388.34, 1.144], [360.742, 1297.733, 1.1]]\nB: [[401.282, 1193.478, 0.862], [402.619, 1193.23, 0.782], [404.132, 1193.11, 1.001], [405.307, 1192.971, 1.1]]\nC: [[476.438, 1152.023, 0.752], [338.739, 1127.79, 0.816], [436.589, 1274.03, 1.097], [419.84, 1106.209, 1.0]]\nD: [[421.529, 1380.4, 0.797], [464.928, 1028.31, 0.794], [411.148, 983.52, 1.058], [384.373, 1245.097, 1.2]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[720.915, 1310.639, 0.073], [578.541, 1908.08, -0.015], [537.43, 1833.644, 0.24], [531.48, 1353.149, 0.504]]\nB: [[621.807, 1622.951, 0.061], [622.306, 1622.44, -0.014], [623.24, 1621.439, 0.236], [623.71, 1620.935, 0.436]]\nC: [[724.675, 1443.65, 0.065], [727.047, 1304.33, -0.013], [681.05, 1445.626, 0.193], [593.86, 1727.459, 0.372]]\nD: [[667.376, 1736.543, 0.069], [736.258, 1753.41, -0.016], [704.18, 1743.04, 0.25], [644.2, 1366.127, 0.492]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_174_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_174_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_174_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_174_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_174_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_174_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_174_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_174_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[720.915, 1310.639, 0.073], [578.541, 1908.08, -0.015], [537.43, 1833.644, 0.24], [531.48, 1353.149, 0.504]]\nB: [[621.807, 1622.951, 0.061], [622.306, 1622.44, -0.014], [623.24, 1621.439, 0.236], [623.71, 1620.935, 0.436]]\nC: [[724.675, 1443.65, 0.065], [727.047, 1304.33, -0.013], [681.05, 1445.626, 0.193], [593.86, 1727.459, 0.372]]\nD: [[667.376, 1736.543, 0.069], [736.258, 1753.41, -0.016], [704.18, 1743.04, 0.25], [644.2, 1366.127, 0.492]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[2009.229, 1014.34, 0.361], [1586.06, 754.207, 0.245], [2016.84, 904.343, 0.311], [2259.58, 852.389, 0.226]]\nB: [[1902.189, 877.268, 0.309], [1902.179, 877.284, 0.296], [1902.17, 877.299, 0.284], [1902.16, 877.315, 0.271]]\nC: [[1742.017, 880.394, 0.345], [2183.098, 837.873, 0.305], [2257.96, 877.436, 0.227], [1592.71, 1021.048, 0.257]]\nD: [[1584.307, 954.942, 0.354], [1730.467, 891.446, 0.254], [1805.84, 870.388, 0.252], [2140.35, 875.505, 0.278]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_175_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_175_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_175_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_175_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_175_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_175_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_175_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_175_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[2009.229, 1014.34, 0.361], [1586.06, 754.207, 0.245], [2016.84, 904.343, 0.311], [2259.58, 852.389, 0.226]]\nB: [[1902.189, 877.268, 0.309], [1902.179, 877.284, 0.296], [1902.17, 877.299, 0.284], [1902.16, 877.315, 0.271]]\nC: [[1742.017, 880.394, 0.345], [2183.098, 837.873, 0.305], [2257.96, 877.436, 0.227], [1592.71, 1021.048, 0.257]]\nD: [[1584.307, 954.942, 0.354], [1730.467, 891.446, 0.254], [1805.84, 870.388, 0.252], [2140.35, 875.505, 0.278]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[318.894, 1055.632, 0.551], [364.825, 1096.642, 0.53], [434.434, 1265.049, 0.623], [381.624, 937.181, 0.532]]\nB: [[473.765, 1023.067, 0.591], [358.411, 1214.0, 0.58], [399.844, 969.318, 0.568], [346.878, 1295.895, 0.701]]\nC: [[396.557, 1112.412, 0.545], [396.557, 1112.412, 0.57], [396.557, 1112.412, 0.595], [396.559, 1112.411, 0.612]]\nD: [[448.687, 1322.501, 0.469], [405.927, 1315.306, 0.58], [394.036, 899.204, 0.523], [445.892, 1047.925, 0.674]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_176_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_176_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_176_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_176_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_176_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_176_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_176_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_176_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[318.894, 1055.632, 0.551], [364.825, 1096.642, 0.53], [434.434, 1265.049, 0.623], [381.624, 937.181, 0.532]]\nB: [[473.765, 1023.067, 0.591], [358.411, 1214.0, 0.58], [399.844, 969.318, 0.568], [346.878, 1295.895, 0.701]]\nC: [[396.557, 1112.412, 0.545], [396.557, 1112.412, 0.57], [396.557, 1112.412, 0.595], [396.559, 1112.411, 0.612]]\nD: [[448.687, 1322.501, 0.469], [405.927, 1315.306, 0.58], [394.036, 899.204, 0.523], [445.892, 1047.925, 0.674]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[616.635, 1647.01, 0.068], [712.669, 1327.311, 0.03], [653.979, 1570.408, -0.012], [669.754, 1866.231, 0.168]]\nB: [[575.735, 1633.265, 0.067], [652.707, 1894.197, 0.04], [585.605, 1401.243, -0.011], [517.999, 1818.195, 0.152]]\nC: [[619.603, 1624.655, 0.071], [620.215, 1624.227, 0.03], [620.828, 1623.798, -0.012], [621.449, 1623.383, 0.146]]\nD: [[697.585, 1370.261, 0.08], [634.839, 1685.003, 0.02], [620.085, 1806.807, -0.014], [537.801, 1756.717, 0.169]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_177_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_177_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_177_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_177_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_177_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_177_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_177_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_177_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[616.635, 1647.01, 0.068], [712.669, 1327.311, 0.03], [653.979, 1570.408, -0.012], [669.754, 1866.231, 0.168]]\nB: [[575.735, 1633.265, 0.067], [652.707, 1894.197, 0.04], [585.605, 1401.243, -0.011], [517.999, 1818.195, 0.152]]\nC: [[619.603, 1624.655, 0.071], [620.215, 1624.227, 0.03], [620.828, 1623.798, -0.012], [621.449, 1623.383, 0.146]]\nD: [[697.585, 1370.261, 0.08], [634.839, 1685.003, 0.02], [620.085, 1806.807, -0.014], [537.801, 1756.717, 0.169]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[321.608, 1134.254, 0.47], [376.579, 1092.364, 0.561], [328.646, 1331.008, 0.5], [429.422, 1013.513, 0.542]]\nB: [[366.01, 1353.528, 0.41], [346.536, 1032.294, 0.437], [456.295, 1314.242, 0.49], [462.86, 1106.077, 0.501]]\nC: [[394.87, 1020.543, 0.46], [447.385, 1022.557, 0.479], [328.398, 1293.308, 0.63], [370.045, 1320.086, 0.474]]\nD: [[395.651, 1160.538, 0.51], [395.651, 1160.538, 0.535], [395.651, 1160.538, 0.56], [395.651, 1160.538, 0.585]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_178_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_178_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_178_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_178_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_178_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_178_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_178_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_178_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[321.608, 1134.254, 0.47], [376.579, 1092.364, 0.561], [328.646, 1331.008, 0.5], [429.422, 1013.513, 0.542]]\nB: [[366.01, 1353.528, 0.41], [346.536, 1032.294, 0.437], [456.295, 1314.242, 0.49], [462.86, 1106.077, 0.501]]\nC: [[394.87, 1020.543, 0.46], [447.385, 1022.557, 0.479], [328.398, 1293.308, 0.63], [370.045, 1320.086, 0.474]]\nD: [[395.651, 1160.538, 0.51], [395.651, 1160.538, 0.535], [395.651, 1160.538, 0.56], [395.651, 1160.538, 0.585]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[705.601, 1670.358, 1.653], [759.064, 1611.115, 1.64], [821.344, 1702.722, 1.626], [808.425, 1696.718, 1.401]]\nB: [[729.457, 1296.83, 1.225], [673.831, 1849.549, 1.6], [822.222, 1475.002, 1.59], [568.262, 1723.288, 1.529]]\nC: [[780.777, 1370.477, 1.602], [703.571, 1274.284, 1.37], [714.428, 1801.829, 1.419], [746.711, 1436.885, 1.447]]\nD: [[710.384, 1565.299, 1.507], [708.536, 1567.037, 1.44], [706.623, 1568.784, 1.524], [704.701, 1570.522, 1.457]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_179_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_179_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_179_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_179_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_179_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_179_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_179_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_179_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[705.601, 1670.358, 1.653], [759.064, 1611.115, 1.64], [821.344, 1702.722, 1.626], [808.425, 1696.718, 1.401]]\nB: [[729.457, 1296.83, 1.225], [673.831, 1849.549, 1.6], [822.222, 1475.002, 1.59], [568.262, 1723.288, 1.529]]\nC: [[780.777, 1370.477, 1.602], [703.571, 1274.284, 1.37], [714.428, 1801.829, 1.419], [746.711, 1436.885, 1.447]]\nD: [[710.384, 1565.299, 1.507], [708.536, 1567.037, 1.44], [706.623, 1568.784, 1.524], [704.701, 1570.522, 1.457]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[320.577, 1284.53, 0.932], [414.562, 975.368, 0.94], [402.331, 1119.979, 0.929], [395.463, 906.274, 0.959]]\nB: [[360.972, 1107.73, 0.916], [361.016, 1107.522, 0.816], [361.016, 1107.522, 0.816], [360.975, 1107.716, 1.016]]\nC: [[398.669, 1187.71, 1.007], [399.141, 1252.975, 0.956], [420.325, 1170.467, 0.694], [429.664, 938.089, 1.209]]\nD: [[297.101, 1040.56, 0.77], [316.568, 1235.213, 0.681], [321.404, 1279.995, 0.669], [348.852, 1148.111, 0.837]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_180_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_180_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_180_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_180_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_180_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_180_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_180_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_180_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[320.577, 1284.53, 0.932], [414.562, 975.368, 0.94], [402.331, 1119.979, 0.929], [395.463, 906.274, 0.959]]\nB: [[360.972, 1107.73, 0.916], [361.016, 1107.522, 0.816], [361.016, 1107.522, 0.816], [360.975, 1107.716, 1.016]]\nC: [[398.669, 1187.71, 1.007], [399.141, 1252.975, 0.956], [420.325, 1170.467, 0.694], [429.664, 938.089, 1.209]]\nD: [[297.101, 1040.56, 0.77], [316.568, 1235.213, 0.681], [321.404, 1279.995, 0.669], [348.852, 1148.111, 0.837]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[438.16, 1086.715, 0.696], [438.167, 1086.722, 0.834], [438.221, 1086.776, 0.858], [438.222, 1086.778, 0.851]]\nB: [[507.3, 1112.979, 0.562], [428.69, 1220.639, 0.948], [389.443, 1140.615, 0.714], [399.989, 1095.621, 0.887]]\nC: [[354.14, 1079.897, 0.71], [359.261, 923.891, 0.834], [367.923, 883.883, 0.807], [495.344, 1285.646, 0.707]]\nD: [[403.04, 1151.47, 0.76], [405.751, 1286.822, 0.742], [364.368, 898.997, 0.983], [413.957, 1207.042, 0.986]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_181_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_181_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_181_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_181_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_181_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_181_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_181_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_181_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[438.16, 1086.715, 0.696], [438.167, 1086.722, 0.834], [438.221, 1086.776, 0.858], [438.222, 1086.778, 0.851]]\nB: [[507.3, 1112.979, 0.562], [428.69, 1220.639, 0.948], [389.443, 1140.615, 0.714], [399.989, 1095.621, 0.887]]\nC: [[354.14, 1079.897, 0.71], [359.261, 923.891, 0.834], [367.923, 883.883, 0.807], [495.344, 1285.646, 0.707]]\nD: [[403.04, 1151.47, 0.76], [405.751, 1286.822, 0.742], [364.368, 898.997, 0.983], [413.957, 1207.042, 0.986]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1355.191, 1159.351, -0.246], [1395.66, 1152.84, -0.228], [1240.863, 981.042, -0.233], [1262.588, 994.473, -0.268]]\nB: [[1217.511, 1111.827, -0.25], [1078.13, 1020.65, -0.204], [1571.618, 1018.832, -0.231], [1379.544, 1182.701, -0.209]]\nC: [[1345.406, 1027.941, -0.246], [1345.406, 1027.941, -0.246], [1345.406, 1027.941, -0.246], [1345.406, 1027.941, -0.246]]\nD: [[1421.753, 850.708, -0.231], [1362.386, 1149.899, -0.264], [1385.927, 906.596, -0.27], [1544.629, 853.12, -0.225]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_182_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_182_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_182_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_182_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_182_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_182_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_182_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_182_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1355.191, 1159.351, -0.246], [1395.66, 1152.84, -0.228], [1240.863, 981.042, -0.233], [1262.588, 994.473, -0.268]]\nB: [[1217.511, 1111.827, -0.25], [1078.13, 1020.65, -0.204], [1571.618, 1018.832, -0.231], [1379.544, 1182.701, -0.209]]\nC: [[1345.406, 1027.941, -0.246], [1345.406, 1027.941, -0.246], [1345.406, 1027.941, -0.246], [1345.406, 1027.941, -0.246]]\nD: [[1421.753, 850.708, -0.231], [1362.386, 1149.899, -0.264], [1385.927, 906.596, -0.27], [1544.629, 853.12, -0.225]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1187.979, 1094.431, 0.392], [1347.424, 1034.148, 0.436], [1538.003, 902.017, 0.373], [1212.196, 1182.796, 0.356]]\nB: [[1108.77, 1168.85, 0.455], [1257.172, 1008.091, 0.364], [1442.783, 1234.413, 0.459], [1312.575, 918.52, 0.361]]\nC: [[1079.007, 1042.862, 0.339], [1523.203, 1091.192, 0.449], [1147.362, 1204.835, 0.348], [1308.995, 1207.074, 0.355]]\nD: [[1335.042, 1037.999, 0.407], [1335.042, 1037.999, 0.407], [1335.042, 1037.999, 0.407], [1335.042, 1037.999, 0.407]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_183_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_183_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_183_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_183_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_183_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_183_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_183_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_183_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1187.979, 1094.431, 0.392], [1347.424, 1034.148, 0.436], [1538.003, 902.017, 0.373], [1212.196, 1182.796, 0.356]]\nB: [[1108.77, 1168.85, 0.455], [1257.172, 1008.091, 0.364], [1442.783, 1234.413, 0.459], [1312.575, 918.52, 0.361]]\nC: [[1079.007, 1042.862, 0.339], [1523.203, 1091.192, 0.449], [1147.362, 1204.835, 0.348], [1308.995, 1207.074, 0.355]]\nD: [[1335.042, 1037.999, 0.407], [1335.042, 1037.999, 0.407], [1335.042, 1037.999, 0.407], [1335.042, 1037.999, 0.407]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[390.593, 1112.966, 0.519], [390.606, 1112.958, 0.557], [390.618, 1112.95, 0.594], [390.631, 1112.942, 0.632]]\nB: [[391.396, 942.794, 0.438], [401.44, 920.349, 0.468], [426.581, 916.13, 0.599], [338.619, 1261.56, 0.586]]\nC: [[374.135, 1327.311, 0.499], [345.631, 969.283, 0.639], [364.128, 913.86, 0.609], [339.45, 1013.046, 0.638]]\nD: [[447.459, 924.256, 0.485], [384.158, 1293.211, 0.601], [467.686, 901.08, 0.57], [450.581, 1198.823, 0.72]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_184_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_184_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_184_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_184_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_184_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_184_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_184_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_184_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[390.593, 1112.966, 0.519], [390.606, 1112.958, 0.557], [390.618, 1112.95, 0.594], [390.631, 1112.942, 0.632]]\nB: [[391.396, 942.794, 0.438], [401.44, 920.349, 0.468], [426.581, 916.13, 0.599], [338.619, 1261.56, 0.586]]\nC: [[374.135, 1327.311, 0.499], [345.631, 969.283, 0.639], [364.128, 913.86, 0.609], [339.45, 1013.046, 0.638]]\nD: [[447.459, 924.256, 0.485], [384.158, 1293.211, 0.601], [467.686, 901.08, 0.57], [450.581, 1198.823, 0.72]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1529.469, 775.588, 0.372], [1793.42, 970.233, 0.339], [2009.523, 974.973, 0.358], [1610.13, 949.492, 0.279]]\nB: [[1591.041, 893.016, 0.43], [1803.48, 918.619, 0.324], [1586.65, 1006.415, 0.274], [2124.951, 926.48, 0.338]]\nC: [[1905.651, 875.006, 0.371], [1905.64, 875.027, 0.347], [1905.629, 875.048, 0.323], [1905.617, 875.069, 0.299]]\nD: [[1763.75, 935.01, 0.421], [2101.6, 837.057, 0.378], [1529.348, 1031.722, 0.334], [1741.729, 804.694, 0.321]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_185_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_185_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_185_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_185_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_185_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_185_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_185_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_185_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1529.469, 775.588, 0.372], [1793.42, 970.233, 0.339], [2009.523, 974.973, 0.358], [1610.13, 949.492, 0.279]]\nB: [[1591.041, 893.016, 0.43], [1803.48, 918.619, 0.324], [1586.65, 1006.415, 0.274], [2124.951, 926.48, 0.338]]\nC: [[1905.651, 875.006, 0.371], [1905.64, 875.027, 0.347], [1905.629, 875.048, 0.323], [1905.617, 875.069, 0.299]]\nD: [[1763.75, 935.01, 0.421], [2101.6, 837.057, 0.378], [1529.348, 1031.722, 0.334], [1741.729, 804.694, 0.321]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1102.52, 1189.44, 1.15], [1247.531, 856.838, 0.847], [1591.837, 1070.296, 0.973], [1281.673, 1018.706, 0.914]]\nB: [[1378.756, 954.378, 1.005], [1282.349, 1065.012, 1.03], [1288.645, 985.253, 1.088], [1368.77, 1206.494, 1.161]]\nC: [[1330.066, 1046.334, 0.969], [1330.066, 1046.334, 0.969], [1330.066, 1046.334, 0.969], [1330.066, 1046.334, 0.969]]\nD: [[1490.554, 938.979, 1.093], [1292.466, 1009.582, 0.816], [1257.859, 968.601, 0.966], [1535.083, 927.732, 1.127]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_186_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_186_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_186_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_186_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_186_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_186_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_186_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_186_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1102.52, 1189.44, 1.15], [1247.531, 856.838, 0.847], [1591.837, 1070.296, 0.973], [1281.673, 1018.706, 0.914]]\nB: [[1378.756, 954.378, 1.005], [1282.349, 1065.012, 1.03], [1288.645, 985.253, 1.088], [1368.77, 1206.494, 1.161]]\nC: [[1330.066, 1046.334, 0.969], [1330.066, 1046.334, 0.969], [1330.066, 1046.334, 0.969], [1330.066, 1046.334, 0.969]]\nD: [[1490.554, 938.979, 1.093], [1292.466, 1009.582, 0.816], [1257.859, 968.601, 0.966], [1535.083, 927.732, 1.127]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[417.399, 1193.55, 0.994], [416.858, 1193.723, 1.044], [416.129, 1193.95, 1.119], [415.49, 1194.12, 1.144]]\nB: [[409.271, 1043.71, 0.802], [478.793, 1282.181, 1.098], [347.872, 1358.99, 1.243], [485.83, 1248.86, 0.927]]\nC: [[335.7, 1322.48, 1.133], [434.978, 1371.089, 0.975], [462.262, 1332.7, 0.913], [375.81, 1227.16, 1.032]]\nD: [[403.098, 1282.9, 0.834], [475.947, 968.443, 0.984], [492.927, 1029.78, 1.321], [332.54, 962.76, 1.165]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_187_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_187_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_187_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_187_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_187_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_187_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_187_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_187_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[417.399, 1193.55, 0.994], [416.858, 1193.723, 1.044], [416.129, 1193.95, 1.119], [415.49, 1194.12, 1.144]]\nB: [[409.271, 1043.71, 0.802], [478.793, 1282.181, 1.098], [347.872, 1358.99, 1.243], [485.83, 1248.86, 0.927]]\nC: [[335.7, 1322.48, 1.133], [434.978, 1371.089, 0.975], [462.262, 1332.7, 0.913], [375.81, 1227.16, 1.032]]\nD: [[403.098, 1282.9, 0.834], [475.947, 968.443, 0.984], [492.927, 1029.78, 1.321], [332.54, 962.76, 1.165]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1542.554, 1185.251, 1.339], [1408.096, 1145.054, 1.499], [1475.525, 890.578, 1.509], [1249.888, 965.619, 1.875]]\nB: [[1536.937, 1095.924, 1.505], [1199.25, 1245.415, 1.478], [1539.555, 1123.021, 1.621], [1138.513, 1047.666, 1.622]]\nC: [[1308.987, 1052.606, 1.402], [1310.095, 1053.915, 1.502], [1311.245, 1055.225, 1.598], [1312.378, 1056.412, 1.693]]\nD: [[1455.025, 1135.652, 1.649], [1113.162, 854.503, 1.292], [1160.009, 1154.438, 1.809], [1412.034, 1067.9, 1.717]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_188_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_188_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_188_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_188_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_188_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_188_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_188_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_188_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1542.554, 1185.251, 1.339], [1408.096, 1145.054, 1.499], [1475.525, 890.578, 1.509], [1249.888, 965.619, 1.875]]\nB: [[1536.937, 1095.924, 1.505], [1199.25, 1245.415, 1.478], [1539.555, 1123.021, 1.621], [1138.513, 1047.666, 1.622]]\nC: [[1308.987, 1052.606, 1.402], [1310.095, 1053.915, 1.502], [1311.245, 1055.225, 1.598], [1312.378, 1056.412, 1.693]]\nD: [[1455.025, 1135.652, 1.649], [1113.162, 854.503, 1.292], [1160.009, 1154.438, 1.809], [1412.034, 1067.9, 1.717]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1136.4, 1251.375, 0.964], [1098.34, 926.608, 0.962], [1167.04, 1063.589, 0.748], [1241.17, 957.965, 0.728]]\nB: [[1133.35, 933.225, 0.869], [1467.73, 1116.69, 0.711], [1336.16, 1216.158, 0.757], [1461.61, 1223.596, 0.736]]\nC: [[1339.79, 1239.08, 0.933], [1509.78, 946.412, 0.694], [1165.99, 1097.514, 0.848], [1235.1, 968.837, 0.75]]\nD: [[1264.56, 1079.653, 0.835], [1264.56, 1079.653, 0.836], [1264.56, 1079.653, 0.837], [1264.56, 1079.653, 0.837]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_189_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_189_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_189_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_189_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_189_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_189_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_189_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_189_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1136.4, 1251.375, 0.964], [1098.34, 926.608, 0.962], [1167.04, 1063.589, 0.748], [1241.17, 957.965, 0.728]]\nB: [[1133.35, 933.225, 0.869], [1467.73, 1116.69, 0.711], [1336.16, 1216.158, 0.757], [1461.61, 1223.596, 0.736]]\nC: [[1339.79, 1239.08, 0.933], [1509.78, 946.412, 0.694], [1165.99, 1097.514, 0.848], [1235.1, 968.837, 0.75]]\nD: [[1264.56, 1079.653, 0.835], [1264.56, 1079.653, 0.836], [1264.56, 1079.653, 0.837], [1264.56, 1079.653, 0.837]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[352.109, 1115.839, 0.635], [352.109, 1115.839, 0.814], [352.109, 1115.839, 0.993], [352.109, 1115.839, 0.801]]\nB: [[403.261, 1293.127, 0.727], [350.132, 1278.347, 0.888], [358.28, 1088.995, 1.055], [317.737, 1172.102, 0.72]]\nC: [[293.311, 1012.839, 0.541], [366.92, 1035.95, 0.854], [356.294, 946.374, 0.819], [390.703, 900.089, 0.781]]\nD: [[318.426, 1207.534, 0.602], [341.429, 1071.396, 0.779], [376.574, 1288.812, 1.059], [313.83, 1243.677, 0.781]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_190_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_190_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_190_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_190_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_190_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_190_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_190_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_190_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[352.109, 1115.839, 0.635], [352.109, 1115.839, 0.814], [352.109, 1115.839, 0.993], [352.109, 1115.839, 0.801]]\nB: [[403.261, 1293.127, 0.727], [350.132, 1278.347, 0.888], [358.28, 1088.995, 1.055], [317.737, 1172.102, 0.72]]\nC: [[293.311, 1012.839, 0.541], [366.92, 1035.95, 0.854], [356.294, 946.374, 0.819], [390.703, 900.089, 0.781]]\nD: [[318.426, 1207.534, 0.602], [341.429, 1071.396, 0.779], [376.574, 1288.812, 1.059], [313.83, 1243.677, 0.781]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[405.833, 996.81, 0.95], [355.845, 1117.198, 1.04], [354.65, 947.797, 0.81], [358.045, 1006.86, 0.9]]\nB: [[464.397, 1283.6, 0.75], [328.65, 936.28, 0.941], [365.855, 941.15, 0.91], [332.144, 978.284, 0.89]]\nC: [[390.721, 1120.16, 0.88], [390.397, 1119.603, 0.905], [390.144, 1119.015, 0.93], [389.874, 1118.388, 1.08]]\nD: [[338.901, 1032.25, 0.92], [452.113, 1110.634, 1.086], [401.774, 1235.48, 1.09], [348.321, 1273.502, 1.06]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_191_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_191_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_191_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_191_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_191_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_191_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_191_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_191_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[405.833, 996.81, 0.95], [355.845, 1117.198, 1.04], [354.65, 947.797, 0.81], [358.045, 1006.86, 0.9]]\nB: [[464.397, 1283.6, 0.75], [328.65, 936.28, 0.941], [365.855, 941.15, 0.91], [332.144, 978.284, 0.89]]\nC: [[390.721, 1120.16, 0.88], [390.397, 1119.603, 0.905], [390.144, 1119.015, 0.93], [389.874, 1118.388, 1.08]]\nD: [[338.901, 1032.25, 0.92], [452.113, 1110.634, 1.086], [401.774, 1235.48, 1.09], [348.321, 1273.502, 1.06]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[310.056, 702.514, -0.534], [308.348, 700.438, -0.379], [306.644, 698.366, -0.226], [299.451, 689.618, 0.29]]\nB: [[311.979, 810.175, -0.565], [260.058, 694.023, -0.342], [272.393, 835.115, -0.249], [357.323, 587.99, 0.25]]\nC: [[344.874, 770.786, -0.524], [341.8, 753.476, -0.452], [326.128, 633.003, -0.265], [319.66, 701.069, 0.24]]\nD: [[365.685, 814.947, -0.568], [301.272, 761.237, -0.383], [347.211, 755.567, -0.186], [320.282, 634.704, 0.25]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_192_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_192_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_192_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_192_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_192_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_192_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_192_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_192_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[310.056, 702.514, -0.534], [308.348, 700.438, -0.379], [306.644, 698.366, -0.226], [299.451, 689.618, 0.29]]\nB: [[311.979, 810.175, -0.565], [260.058, 694.023, -0.342], [272.393, 835.115, -0.249], [357.323, 587.99, 0.25]]\nC: [[344.874, 770.786, -0.524], [341.8, 753.476, -0.452], [326.128, 633.003, -0.265], [319.66, 701.069, 0.24]]\nD: [[365.685, 814.947, -0.568], [301.272, 761.237, -0.383], [347.211, 755.567, -0.186], [320.282, 634.704, 0.25]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[410.458, 1100.432, 0.572], [415.671, 1229.197, 0.401], [335.629, 978.571, 0.674], [395.098, 1300.552, 0.478]]\nB: [[401.269, 1173.484, 0.482], [401.265, 1173.449, 0.482], [401.261, 1173.415, 0.582], [401.213, 1173.399, 0.569]]\nC: [[344.262, 1103.389, 0.405], [334.337, 967.834, 0.523], [322.213, 1142.996, 0.661], [438.778, 1322.064, 0.463]]\nD: [[444.209, 1082.14, 0.539], [424.03, 1030.374, 0.393], [373.133, 1212.622, 0.685], [326.49, 1003.549, 0.642]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_193_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_193_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_193_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_193_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_193_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_193_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_193_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_193_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[410.458, 1100.432, 0.572], [415.671, 1229.197, 0.401], [335.629, 978.571, 0.674], [395.098, 1300.552, 0.478]]\nB: [[401.269, 1173.484, 0.482], [401.265, 1173.449, 0.482], [401.261, 1173.415, 0.582], [401.213, 1173.399, 0.569]]\nC: [[344.262, 1103.389, 0.405], [334.337, 967.834, 0.523], [322.213, 1142.996, 0.661], [438.778, 1322.064, 0.463]]\nD: [[444.209, 1082.14, 0.539], [424.03, 1030.374, 0.393], [373.133, 1212.622, 0.685], [326.49, 1003.549, 0.642]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1266.882, 1077.846, 0.755], [1266.882, 1077.846, 0.755], [1266.882, 1077.846, 0.755], [1266.882, 1077.846, 0.755]]\nB: [[1271.739, 1048.404, 0.906], [1320.835, 1026.02, 0.819], [1396.815, 1235.0, 0.773], [1277.754, 1106.806, 0.618]]\nC: [[1317.337, 1260.195, 0.841], [1225.296, 1191.372, 0.797], [1170.961, 1158.338, 0.874], [1386.483, 1261.547, 0.715]]\nD: [[1218.794, 899.374, 0.833], [1062.39, 1230.912, 0.743], [1031.716, 1194.236, 0.798], [1438.585, 1159.315, 0.751]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_194_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_194_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_194_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_194_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_194_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_194_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_194_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_194_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1266.882, 1077.846, 0.755], [1266.882, 1077.846, 0.755], [1266.882, 1077.846, 0.755], [1266.882, 1077.846, 0.755]]\nB: [[1271.739, 1048.404, 0.906], [1320.835, 1026.02, 0.819], [1396.815, 1235.0, 0.773], [1277.754, 1106.806, 0.618]]\nC: [[1317.337, 1260.195, 0.841], [1225.296, 1191.372, 0.797], [1170.961, 1158.338, 0.874], [1386.483, 1261.547, 0.715]]\nD: [[1218.794, 899.374, 0.833], [1062.39, 1230.912, 0.743], [1031.716, 1194.236, 0.798], [1438.585, 1159.315, 0.751]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1416.446, 917.476, 0.369], [1133.347, 1173.31, 0.385], [1116.37, 899.476, 0.388], [1512.12, 1114.073, 0.426]]\nB: [[1278.607, 1028.824, 0.314], [1281.473, 1031.847, 0.364], [1285.19, 1035.681, 0.414], [1288.26, 1038.767, 0.464]]\nC: [[1110.832, 1041.63, 0.259], [1144.062, 983.891, 0.355], [1120.76, 991.772, 0.443], [1528.04, 941.905, 0.384]]\nD: [[1057.696, 870.984, 0.36], [1077.37, 1211.58, 0.316], [1049.97, 1110.459, 0.384], [1427.8, 977.845, 0.531]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_195_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_195_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_195_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_195_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_195_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_195_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_195_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_195_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1416.446, 917.476, 0.369], [1133.347, 1173.31, 0.385], [1116.37, 899.476, 0.388], [1512.12, 1114.073, 0.426]]\nB: [[1278.607, 1028.824, 0.314], [1281.473, 1031.847, 0.364], [1285.19, 1035.681, 0.414], [1288.26, 1038.767, 0.464]]\nC: [[1110.832, 1041.63, 0.259], [1144.062, 983.891, 0.355], [1120.76, 991.772, 0.443], [1528.04, 941.905, 0.384]]\nD: [[1057.696, 870.984, 0.36], [1077.37, 1211.58, 0.316], [1049.97, 1110.459, 0.384], [1427.8, 977.845, 0.531]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[617.725, 1759.21, -0.3], [551.267, 1929.565, -0.167], [709.584, 1522.655, -0.14], [704.467, 1583.292, -0.112]]\nB: [[650.737, 1625.23, -0.3], [651.288, 1624.989, -0.175], [651.844, 1624.758, -0.15], [652.374, 1624.474, -0.125]]\nC: [[757.657, 1791.25, -0.3], [596.205, 1710.113, -0.196], [594.666, 1578.119, -0.17], [645.182, 1918.374, -0.147]]\nD: [[672.039, 1335.14, -0.3], [676.19, 1821.439, -0.205], [711.246, 1830.07, -0.17], [653.306, 1617.612, -0.115]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_196_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_196_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_196_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_196_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_196_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_196_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_196_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_196_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[617.725, 1759.21, -0.3], [551.267, 1929.565, -0.167], [709.584, 1522.655, -0.14], [704.467, 1583.292, -0.112]]\nB: [[650.737, 1625.23, -0.3], [651.288, 1624.989, -0.175], [651.844, 1624.758, -0.15], [652.374, 1624.474, -0.125]]\nC: [[757.657, 1791.25, -0.3], [596.205, 1710.113, -0.196], [594.666, 1578.119, -0.17], [645.182, 1918.374, -0.147]]\nD: [[672.039, 1335.14, -0.3], [676.19, 1821.439, -0.205], [711.246, 1830.07, -0.17], [653.306, 1617.612, -0.115]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[437.74, 1143.27, 0.674], [451.18, 1139.1, 0.835], [366.614, 1128.63, 0.978], [348.424, 1174.882, 0.985]]\nB: [[462.69, 887.14, 0.851], [342.59, 1042.19, 0.759], [433.546, 1124.124, 0.983], [359.663, 1221.9, 0.894]]\nC: [[398.14, 1103.34, 0.828], [398.08, 1103.37, 0.834], [398.005, 1103.406, 0.891], [398.065, 1103.387, 0.875]]\nD: [[378.04, 1027.98, 0.775], [428.89, 1003.86, 0.777], [374.706, 954.311, 1.028], [402.006, 1268.493, 0.732]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_197_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_197_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_197_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_197_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_197_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_197_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_197_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_197_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[437.74, 1143.27, 0.674], [451.18, 1139.1, 0.835], [366.614, 1128.63, 0.978], [348.424, 1174.882, 0.985]]\nB: [[462.69, 887.14, 0.851], [342.59, 1042.19, 0.759], [433.546, 1124.124, 0.983], [359.663, 1221.9, 0.894]]\nC: [[398.14, 1103.34, 0.828], [398.08, 1103.37, 0.834], [398.005, 1103.406, 0.891], [398.065, 1103.387, 0.875]]\nD: [[378.04, 1027.98, 0.775], [428.89, 1003.86, 0.777], [374.706, 954.311, 1.028], [402.006, 1268.493, 0.732]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[312.42, 996.53, 0.734], [392.368, 1071.586, 1.006], [362.03, 997.691, 1.059], [395.055, 894.894, 0.96]]\nB: [[292.47, 1178.83, 0.536], [385.591, 1223.459, 0.952], [347.65, 1157.122, 1.11], [325.064, 1035.946, 1.008]]\nC: [[424.62, 956.05, 0.586], [414.477, 1277.953, 1.04], [360.719, 916.865, 1.121], [431.128, 1236.879, 1.07]]\nD: [[364.33, 1100.33, 0.667], [364.332, 1100.333, 0.879], [364.336, 1100.342, 1.067], [364.336, 1100.342, 0.917]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_198_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_198_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_198_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_198_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_198_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_198_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_198_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_198_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[312.42, 996.53, 0.734], [392.368, 1071.586, 1.006], [362.03, 997.691, 1.059], [395.055, 894.894, 0.96]]\nB: [[292.47, 1178.83, 0.536], [385.591, 1223.459, 0.952], [347.65, 1157.122, 1.11], [325.064, 1035.946, 1.008]]\nC: [[424.62, 956.05, 0.586], [414.477, 1277.953, 1.04], [360.719, 916.865, 1.121], [431.128, 1236.879, 1.07]]\nD: [[364.33, 1100.33, 0.667], [364.332, 1100.333, 0.879], [364.336, 1100.342, 1.067], [364.336, 1100.342, 0.917]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Tracking"}
{"source": "NuScenes_threed_Object_Tracking", "options": "A: [[1802.663, 947.701, 0.425], [1936.882, 764.775, 0.32], [1669.337, 970.661, 0.35], [2083.327, 843.762, 0.422]]\nB: [[1895.725, 877.102, 0.355], [1895.725, 877.102, 0.34], [1895.725, 877.102, 0.39], [1895.773, 877.087, 0.415]]\nC: [[2260.495, 1033.212, 0.352], [1682.669, 730.505, 0.36], [1808.702, 968.32, 0.35], [2274.387, 847.273, 0.38]]\nD: [[2228.008, 726.803, 0.308], [1759.634, 872.261, 0.3], [2044.819, 846.131, 0.41], [2237.11, 733.52, 0.386]]", "visual_input_component": "LiDAR depth image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_199_0.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_199_1.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_199_2.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_199_3.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_199_4.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_199_5.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_199_6.png", "3D-spatial/threeD_Object_Tracking/threeD_Object_Tracking_199_7.png"], "question": "Given a sequence of RGB and LiDAR depth images capturing object motion over time, please track the movement of the object outlined in the RGB images. In the LiDAR depth images, LiDAR points were projected back to the corresponding RGB images. The output should be in the format of a sequence of 3D positions, i.e., [x, y, z], which represents the gravity center of the 3D bounding boxes in meters of the obejct, with respect to the global coordinate system.", "context": "Your task is to track the movement of objects in 3D space across multiple frames. \nSelect from the following choices.\nA: [[1802.663, 947.701, 0.425], [1936.882, 764.775, 0.32], [1669.337, 970.661, 0.35], [2083.327, 843.762, 0.422]]\nB: [[1895.725, 877.102, 0.355], [1895.725, 877.102, 0.34], [1895.725, 877.102, 0.39], [1895.773, 877.087, 0.415]]\nC: [[2260.495, 1033.212, 0.352], [1682.669, 730.505, 0.36], [1808.702, 968.32, 0.35], [2274.387, 847.273, 0.38]]\nD: [[2228.008, 726.803, 0.308], [1759.634, 872.261, 0.3], [2044.819, 846.131, 0.41], [2237.11, 733.52, 0.386]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Tracking"}
{"source": "ScanObjectNN", "options": "A: bed\nB: cabinet\nC: bin\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_0_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_0_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_0_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_0_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_0_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_0_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: cabinet\nC: bin\nD: sink"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: box\nB: sink\nC: cabinet\nD: shelf", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_1_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_1_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_1_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_1_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_1_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_1_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: box\nB: sink\nC: cabinet\nD: shelf"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: cabinet\nC: bag\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_2_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_2_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_2_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_2_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_2_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_2_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: cabinet\nC: bag\nD: bed"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: box\nB: sink\nC: chair\nD: shelf", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_3_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_3_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_3_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_3_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_3_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_3_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: box\nB: sink\nC: chair\nD: shelf"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: chair\nB: sofa\nC: bed\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_4_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_4_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_4_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_4_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_4_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_4_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: sofa\nC: bed\nD: cabinet"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bag\nB: cabinet\nC: desk\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_5_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_5_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_5_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_5_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_5_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_5_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bag\nB: cabinet\nC: desk\nD: sink"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: desk\nB: cabinet\nC: shelf\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_6_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_6_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_6_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_6_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_6_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_6_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: desk\nB: cabinet\nC: shelf\nD: bed"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: sink\nC: bag\nD: bin", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_7_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_7_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_7_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_7_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_7_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_7_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: sink\nC: bag\nD: bin"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: bed\nC: bin\nD: display", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_8_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_8_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_8_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_8_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_8_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_8_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bed\nC: bin\nD: display"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: sofa\nC: sink\nD: bag", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_9_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_9_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_9_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_9_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_9_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_9_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: sofa\nC: sink\nD: bag"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: shelf\nC: door\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_10_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_10_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_10_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_10_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_10_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_10_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: shelf\nC: door\nD: cabinet"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: desk\nB: chair\nC: sofa\nD: toilet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_11_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_11_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_11_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_11_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_11_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_11_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: desk\nB: chair\nC: sofa\nD: toilet"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: bed\nC: shelf\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_12_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_12_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_12_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_12_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_12_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_12_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bed\nC: shelf\nD: cabinet"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: shelf\nB: cabinet\nC: desk\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_13_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_13_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_13_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_13_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_13_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_13_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: shelf\nB: cabinet\nC: desk\nD: bed"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: bed\nC: shelf\nD: box", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_14_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_14_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_14_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_14_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_14_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_14_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: bed\nC: shelf\nD: box"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: chair\nC: cabinet\nD: sofa", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_15_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_15_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_15_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_15_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_15_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_15_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: chair\nC: cabinet\nD: sofa"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: bag\nC: cabinet\nD: door", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_16_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_16_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_16_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_16_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_16_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_16_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bag\nC: cabinet\nD: door"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: cabinet\nC: table\nD: pillow", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_17_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_17_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_17_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_17_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_17_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_17_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: cabinet\nC: table\nD: pillow"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: table\nB: sink\nC: bed\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_18_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_18_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_18_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_18_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_18_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_18_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: table\nB: sink\nC: bed\nD: cabinet"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: bag\nC: sink\nD: box", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_19_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_19_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_19_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_19_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_19_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_19_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: bag\nC: sink\nD: box"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: sink\nC: shelf\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_20_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_20_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_20_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_20_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_20_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_20_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: sink\nC: shelf\nD: bed"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sofa\nB: cabinet\nC: chair\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_21_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_21_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_21_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_21_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_21_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_21_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sofa\nB: cabinet\nC: chair\nD: bed"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: cabinet\nC: bed\nD: display", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_22_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_22_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_22_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_22_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_22_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_22_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: cabinet\nC: bed\nD: display"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: display\nB: shelf\nC: bin\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_23_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_23_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_23_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_23_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_23_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_23_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: display\nB: shelf\nC: bin\nD: cabinet"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: bed\nC: display\nD: shelf", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_24_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_24_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_24_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_24_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_24_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_24_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: bed\nC: display\nD: shelf"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: pillow\nC: chair\nD: desk", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_25_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_25_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_25_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_25_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_25_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_25_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: pillow\nC: chair\nD: desk"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: pillow\nB: shelf\nC: sink\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_26_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_26_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_26_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_26_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_26_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_26_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: pillow\nB: shelf\nC: sink\nD: bed"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: bed\nC: shelf\nD: table", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_27_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_27_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_27_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_27_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_27_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_27_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: bed\nC: shelf\nD: table"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: bed\nC: bag\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_28_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_28_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_28_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_28_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_28_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_28_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: bed\nC: bag\nD: sink"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: shelf\nB: cabinet\nC: sofa\nD: desk", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_29_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_29_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_29_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_29_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_29_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_29_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: shelf\nB: cabinet\nC: sofa\nD: desk"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: chair\nC: door\nD: pillow", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_30_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_30_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_30_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_30_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_30_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_30_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: chair\nC: door\nD: pillow"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: chair\nB: display\nC: bed\nD: sofa", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_31_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_31_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_31_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_31_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_31_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_31_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: display\nC: bed\nD: sofa"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: pillow\nB: sofa\nC: cabinet\nD: toilet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_32_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_32_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_32_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_32_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_32_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_32_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: pillow\nB: sofa\nC: cabinet\nD: toilet"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: cabinet\nC: table\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_33_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_33_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_33_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_33_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_33_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_33_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: cabinet\nC: table\nD: bed"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: bag\nC: sink\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_34_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_34_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_34_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_34_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_34_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_34_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: bag\nC: sink\nD: bed"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: cabinet\nC: bin\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_35_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_35_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_35_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_35_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_35_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_35_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: cabinet\nC: bin\nD: sink"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: cabinet\nC: door\nD: bag", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_36_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_36_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_36_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_36_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_36_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_36_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: cabinet\nC: door\nD: bag"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: display\nB: cabinet\nC: sink\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_37_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_37_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_37_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_37_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_37_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_37_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: display\nB: cabinet\nC: sink\nD: bed"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: sink\nC: cabinet\nD: bag", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_38_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_38_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_38_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_38_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_38_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_38_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: sink\nC: cabinet\nD: bag"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sofa\nB: cabinet\nC: bed\nD: shelf", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_39_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_39_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_39_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_39_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_39_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_39_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sofa\nB: cabinet\nC: bed\nD: shelf"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: desk\nC: shelf\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_40_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_40_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_40_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_40_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_40_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_40_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: desk\nC: shelf\nD: cabinet"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: cabinet\nC: bed\nD: table", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_41_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_41_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_41_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_41_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_41_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_41_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: cabinet\nC: bed\nD: table"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: display\nB: table\nC: bed\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_42_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_42_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_42_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_42_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_42_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_42_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: display\nB: table\nC: bed\nD: cabinet"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: bed\nC: cabinet\nD: shelf", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_43_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_43_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_43_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_43_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_43_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_43_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bed\nC: cabinet\nD: shelf"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: shelf\nB: bed\nC: cabinet\nD: door", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_44_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_44_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_44_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_44_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_44_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_44_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: shelf\nB: bed\nC: cabinet\nD: door"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bag\nB: sink\nC: cabinet\nD: table", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_45_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_45_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_45_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_45_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_45_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_45_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bag\nB: sink\nC: cabinet\nD: table"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: display\nB: toilet\nC: chair\nD: table", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_46_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_46_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_46_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_46_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_46_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_46_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: display\nB: toilet\nC: chair\nD: table"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: sink\nC: cabinet\nD: bag", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_47_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_47_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_47_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_47_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_47_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_47_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: sink\nC: cabinet\nD: bag"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bag\nB: sink\nC: bed\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_48_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_48_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_48_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_48_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_48_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_48_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bag\nB: sink\nC: bed\nD: cabinet"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: desk\nB: shelf\nC: bed\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_49_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_49_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_49_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_49_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_49_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_49_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: desk\nB: shelf\nC: bed\nD: cabinet"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: bag\nC: bed\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_50_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_50_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_50_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_50_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_50_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_50_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bag\nC: bed\nD: cabinet"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: bag\nC: sink\nD: box", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_51_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_51_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_51_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_51_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_51_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_51_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: bag\nC: sink\nD: box"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: box\nB: display\nC: bed\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_52_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_52_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_52_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_52_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_52_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_52_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: box\nB: display\nC: bed\nD: cabinet"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bin\nB: cabinet\nC: bed\nD: display", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_53_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_53_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_53_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_53_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_53_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_53_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bin\nB: cabinet\nC: bed\nD: display"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: sink\nC: bag\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_54_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_54_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_54_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_54_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_54_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_54_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: sink\nC: bag\nD: bed"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: box\nB: cabinet\nC: bed\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_55_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_55_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_55_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_55_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_55_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_55_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: box\nB: cabinet\nC: bed\nD: sink"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: door\nC: bed\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_56_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_56_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_56_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_56_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_56_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_56_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: door\nC: bed\nD: cabinet"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: bed\nC: chair\nD: bin", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_57_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_57_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_57_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_57_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_57_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_57_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: bed\nC: chair\nD: bin"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: sink\nC: cabinet\nD: bag", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_58_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_58_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_58_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_58_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_58_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_58_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: sink\nC: cabinet\nD: bag"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: bed\nC: box\nD: table", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_59_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_59_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_59_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_59_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_59_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_59_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: bed\nC: box\nD: table"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sofa\nB: cabinet\nC: sink\nD: display", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_60_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_60_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_60_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_60_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_60_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_60_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sofa\nB: cabinet\nC: sink\nD: display"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: bag\nC: sink\nD: display", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_61_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_61_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_61_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_61_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_61_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_61_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: bag\nC: sink\nD: display"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: display\nB: cabinet\nC: sofa\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_62_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_62_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_62_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_62_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_62_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_62_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: display\nB: cabinet\nC: sofa\nD: bed"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: shelf\nB: box\nC: chair\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_63_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_63_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_63_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_63_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_63_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_63_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: shelf\nB: box\nC: chair\nD: bed"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: display\nC: chair\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_64_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_64_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_64_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_64_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_64_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_64_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: display\nC: chair\nD: bed"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: bag\nC: bed\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_65_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_65_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_65_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_65_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_65_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_65_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bag\nC: bed\nD: cabinet"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: shelf\nB: cabinet\nC: display\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_66_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_66_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_66_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_66_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_66_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_66_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: shelf\nB: cabinet\nC: display\nD: bed"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: pillow\nC: cabinet\nD: toilet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_67_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_67_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_67_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_67_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_67_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_67_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: pillow\nC: cabinet\nD: toilet"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: shelf\nB: bed\nC: door\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_68_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_68_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_68_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_68_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_68_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_68_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: shelf\nB: bed\nC: door\nD: cabinet"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: bin\nC: cabinet\nD: display", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_69_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_69_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_69_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_69_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_69_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_69_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bin\nC: cabinet\nD: display"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: shelf\nC: chair\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_70_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_70_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_70_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_70_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_70_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_70_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: shelf\nC: chair\nD: cabinet"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: cabinet\nC: chair\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_71_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_71_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_71_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_71_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_71_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_71_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: cabinet\nC: chair\nD: sink"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: bed\nC: shelf\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_72_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_72_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_72_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_72_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_72_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_72_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bed\nC: shelf\nD: cabinet"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: bed\nC: shelf\nD: pillow", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_73_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_73_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_73_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_73_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_73_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_73_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: bed\nC: shelf\nD: pillow"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: toilet\nB: bag\nC: cabinet\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_74_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_74_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_74_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_74_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_74_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_74_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: toilet\nB: bag\nC: cabinet\nD: sink"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: bin\nC: sink\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_75_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_75_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_75_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_75_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_75_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_75_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: bin\nC: sink\nD: bed"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: cabinet\nC: bed\nD: display", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_76_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_76_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_76_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_76_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_76_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_76_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: cabinet\nC: bed\nD: display"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: chair\nB: cabinet\nC: bed\nD: sofa", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_77_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_77_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_77_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_77_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_77_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_77_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: cabinet\nC: bed\nD: sofa"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: display\nC: cabinet\nD: bin", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_78_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_78_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_78_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_78_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_78_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_78_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: display\nC: cabinet\nD: bin"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: bed\nC: bag\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_79_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_79_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_79_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_79_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_79_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_79_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: bed\nC: bag\nD: sink"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bag\nB: sink\nC: bed\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_80_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_80_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_80_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_80_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_80_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_80_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bag\nB: sink\nC: bed\nD: cabinet"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sofa\nB: display\nC: sink\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_81_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_81_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_81_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_81_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_81_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_81_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sofa\nB: display\nC: sink\nD: cabinet"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: display\nC: shelf\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_82_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_82_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_82_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_82_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_82_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_82_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: display\nC: shelf\nD: cabinet"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: sofa\nC: chair\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_83_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_83_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_83_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_83_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_83_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_83_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: sofa\nC: chair\nD: cabinet"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: table\nB: cabinet\nC: bed\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_84_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_84_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_84_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_84_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_84_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_84_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: table\nB: cabinet\nC: bed\nD: sink"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bin\nB: box\nC: cabinet\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_85_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_85_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_85_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_85_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_85_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_85_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bin\nB: box\nC: cabinet\nD: sink"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: cabinet\nC: bin\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_86_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_86_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_86_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_86_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_86_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_86_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: cabinet\nC: bin\nD: bed"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: cabinet\nC: bag\nD: display", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_87_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_87_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_87_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_87_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_87_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_87_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: cabinet\nC: bag\nD: display"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: chair\nC: door\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_88_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_88_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_88_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_88_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_88_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_88_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: chair\nC: door\nD: bed"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: bed\nC: sink\nD: sofa", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_89_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_89_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_89_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_89_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_89_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_89_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: bed\nC: sink\nD: sofa"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: chair\nC: cabinet\nD: desk", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_90_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_90_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_90_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_90_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_90_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_90_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: chair\nC: cabinet\nD: desk"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: sink\nC: bag\nD: box", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_91_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_91_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_91_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_91_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_91_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_91_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: sink\nC: bag\nD: box"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: display\nC: sink\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_92_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_92_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_92_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_92_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_92_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_92_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: display\nC: sink\nD: cabinet"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bag\nB: sink\nC: cabinet\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_93_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_93_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_93_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_93_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_93_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_93_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bag\nB: sink\nC: cabinet\nD: bed"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: sink\nC: chair\nD: display", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_94_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_94_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_94_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_94_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_94_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_94_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: sink\nC: chair\nD: display"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: desk\nB: bed\nC: chair\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_95_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_95_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_95_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_95_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_95_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_95_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: desk\nB: bed\nC: chair\nD: cabinet"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: sofa\nC: shelf\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_96_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_96_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_96_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_96_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_96_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_96_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: sofa\nC: shelf\nD: bed"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: bin\nC: cabinet\nD: sofa", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_97_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_97_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_97_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_97_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_97_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_97_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: bin\nC: cabinet\nD: sofa"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: sink\nC: bed\nD: bag", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_98_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_98_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_98_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_98_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_98_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_98_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: sink\nC: bed\nD: bag"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: toilet\nC: bag\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_99_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_99_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_99_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_99_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_99_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_99_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: toilet\nC: bag\nD: sink"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: shelf\nB: chair\nC: bed\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_100_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_100_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_100_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_100_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_100_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_100_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: shelf\nB: chair\nC: bed\nD: cabinet"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: bin\nC: cabinet\nD: box", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_101_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_101_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_101_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_101_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_101_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_101_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bin\nC: cabinet\nD: box"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: bin\nC: bag\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_102_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_102_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_102_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_102_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_102_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_102_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bin\nC: bag\nD: cabinet"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: cabinet\nC: toilet\nD: display", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_103_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_103_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_103_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_103_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_103_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_103_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: cabinet\nC: toilet\nD: display"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bin\nB: bed\nC: table\nD: shelf", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_104_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_104_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_104_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_104_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_104_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_104_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bin\nB: bed\nC: table\nD: shelf"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: table\nC: sink\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_105_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_105_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_105_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_105_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_105_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_105_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: table\nC: sink\nD: bed"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: bin\nC: bed\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_106_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_106_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_106_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_106_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_106_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_106_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: bin\nC: bed\nD: sink"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: cabinet\nC: chair\nD: shelf", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_107_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_107_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_107_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_107_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_107_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_107_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: cabinet\nC: chair\nD: shelf"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: desk\nB: chair\nC: bin\nD: display", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_108_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_108_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_108_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_108_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_108_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_108_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: desk\nB: chair\nC: bin\nD: display"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: display\nC: sink\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_109_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_109_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_109_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_109_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_109_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_109_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: display\nC: sink\nD: cabinet"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: chair\nB: cabinet\nC: bin\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_110_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_110_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_110_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_110_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_110_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_110_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: cabinet\nC: bin\nD: bed"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: chair\nB: bed\nC: sofa\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_111_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_111_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_111_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_111_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_111_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_111_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: bed\nC: sofa\nD: cabinet"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: chair\nB: table\nC: bed\nD: toilet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_112_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_112_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_112_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_112_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_112_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_112_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: table\nC: bed\nD: toilet"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: shelf\nC: table\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_113_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_113_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_113_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_113_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_113_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_113_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: shelf\nC: table\nD: cabinet"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: table\nC: chair\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_114_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_114_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_114_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_114_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_114_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_114_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: table\nC: chair\nD: cabinet"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bag\nB: box\nC: toilet\nD: pillow", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_115_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_115_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_115_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_115_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_115_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_115_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bag\nB: box\nC: toilet\nD: pillow"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: door\nC: bag\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_116_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_116_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_116_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_116_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_116_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_116_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: door\nC: bag\nD: sink"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: chair\nB: desk\nC: bed\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_117_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_117_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_117_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_117_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_117_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_117_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: desk\nC: bed\nD: cabinet"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: table\nB: sink\nC: cabinet\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_118_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_118_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_118_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_118_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_118_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_118_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: table\nB: sink\nC: cabinet\nD: bed"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bin\nB: bed\nC: bag\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_119_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_119_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_119_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_119_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_119_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_119_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bin\nB: bed\nC: bag\nD: cabinet"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: display\nB: cabinet\nC: sink\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_120_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_120_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_120_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_120_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_120_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_120_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: display\nB: cabinet\nC: sink\nD: bed"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: pillow\nB: bed\nC: cabinet\nD: background", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_121_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_121_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_121_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_121_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_121_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_121_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: pillow\nB: bed\nC: cabinet\nD: background"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: pillow\nB: sofa\nC: bed\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_122_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_122_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_122_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_122_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_122_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_122_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: pillow\nB: sofa\nC: bed\nD: chair"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: display\nB: bed\nC: sink\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_123_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_123_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_123_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_123_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_123_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_123_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: display\nB: bed\nC: sink\nD: cabinet"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: cabinet\nC: shelf\nD: box", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_124_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_124_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_124_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_124_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_124_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_124_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: cabinet\nC: shelf\nD: box"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: cabinet\nC: shelf\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_125_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_125_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_125_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_125_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_125_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_125_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: cabinet\nC: shelf\nD: bed"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: bed\nC: cabinet\nD: bag", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_126_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_126_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_126_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_126_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_126_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_126_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bed\nC: cabinet\nD: bag"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: door\nB: cabinet\nC: sink\nD: shelf", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_127_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_127_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_127_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_127_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_127_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_127_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: door\nB: cabinet\nC: sink\nD: shelf"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: cabinet\nC: toilet\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_128_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_128_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_128_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_128_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_128_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_128_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: cabinet\nC: toilet\nD: sink"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: bed\nC: desk\nD: shelf", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_129_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_129_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_129_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_129_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_129_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_129_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: bed\nC: desk\nD: shelf"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: sink\nC: bed\nD: bag", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_130_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_130_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_130_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_130_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_130_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_130_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: sink\nC: bed\nD: bag"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sofa\nB: cabinet\nC: toilet\nD: shelf", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_131_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_131_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_131_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_131_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_131_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_131_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sofa\nB: cabinet\nC: toilet\nD: shelf"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: cabinet\nC: bag\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_132_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_132_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_132_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_132_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_132_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_132_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: cabinet\nC: bag\nD: sink"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bin\nB: cabinet\nC: display\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_133_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_133_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_133_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_133_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_133_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_133_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bin\nB: cabinet\nC: display\nD: sink"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: cabinet\nC: bag\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_134_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_134_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_134_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_134_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_134_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_134_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: cabinet\nC: bag\nD: bed"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: bed\nC: cabinet\nD: shelf", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_135_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_135_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_135_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_135_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_135_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_135_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bed\nC: cabinet\nD: shelf"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: toilet\nB: cabinet\nC: sink\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_136_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_136_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_136_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_136_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_136_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_136_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: toilet\nB: cabinet\nC: sink\nD: bed"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: pillow\nB: display\nC: chair\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_137_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_137_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_137_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_137_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_137_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_137_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: pillow\nB: display\nC: chair\nD: sink"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: bed\nC: cabinet\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_138_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_138_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_138_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_138_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_138_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_138_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bed\nC: cabinet\nD: chair"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: bed\nC: box\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_139_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_139_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_139_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_139_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_139_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_139_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bed\nC: box\nD: cabinet"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bin\nB: display\nC: sink\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_140_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_140_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_140_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_140_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_140_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_140_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bin\nB: display\nC: sink\nD: cabinet"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: cabinet\nC: table\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_141_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_141_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_141_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_141_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_141_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_141_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: cabinet\nC: table\nD: sink"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: shelf\nC: bed\nD: sofa", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_142_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_142_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_142_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_142_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_142_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_142_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: shelf\nC: bed\nD: sofa"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: box\nC: sink\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_143_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_143_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_143_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_143_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_143_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_143_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: box\nC: sink\nD: bed"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bin\nB: cabinet\nC: shelf\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_144_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_144_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_144_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_144_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_144_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_144_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bin\nB: cabinet\nC: shelf\nD: bed"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: shelf\nC: chair\nD: table", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_145_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_145_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_145_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_145_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_145_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_145_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: shelf\nC: chair\nD: table"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: bed\nC: box\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_146_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_146_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_146_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_146_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_146_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_146_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bed\nC: box\nD: cabinet"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: desk\nB: bed\nC: cabinet\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_147_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_147_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_147_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_147_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_147_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_147_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: desk\nB: bed\nC: cabinet\nD: chair"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: chair\nB: bed\nC: cabinet\nD: sofa", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_148_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_148_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_148_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_148_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_148_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_148_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: bed\nC: cabinet\nD: sofa"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: cabinet\nC: display\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_149_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_149_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_149_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_149_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_149_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_149_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: cabinet\nC: display\nD: sink"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: sink\nC: bag\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_150_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_150_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_150_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_150_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_150_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_150_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: sink\nC: bag\nD: cabinet"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: display\nB: sink\nC: bag\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_151_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_151_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_151_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_151_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_151_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_151_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: display\nB: sink\nC: bag\nD: cabinet"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: door\nB: cabinet\nC: bed\nD: shelf", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_152_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_152_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_152_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_152_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_152_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_152_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: door\nB: cabinet\nC: bed\nD: shelf"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: bin\nC: shelf\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_153_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_153_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_153_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_153_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_153_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_153_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: bin\nC: shelf\nD: cabinet"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: chair\nB: bed\nC: pillow\nD: sofa", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_154_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_154_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_154_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_154_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_154_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_154_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: bed\nC: pillow\nD: sofa"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: cabinet\nC: bed\nD: display", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_155_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_155_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_155_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_155_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_155_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_155_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: cabinet\nC: bed\nD: display"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: bag\nC: sink\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_156_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_156_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_156_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_156_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_156_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_156_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: bag\nC: sink\nD: bed"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bin\nB: display\nC: toilet\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_157_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_157_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_157_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_157_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_157_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_157_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bin\nB: display\nC: toilet\nD: cabinet"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: chair\nB: sink\nC: cabinet\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_158_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_158_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_158_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_158_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_158_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_158_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: sink\nC: cabinet\nD: bed"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: shelf\nB: bed\nC: table\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_159_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_159_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_159_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_159_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_159_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_159_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: shelf\nB: bed\nC: table\nD: cabinet"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: pillow\nC: bed\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_160_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_160_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_160_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_160_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_160_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_160_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: pillow\nC: bed\nD: cabinet"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: bin\nC: cabinet\nD: bag", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_161_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_161_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_161_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_161_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_161_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_161_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bin\nC: cabinet\nD: bag"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: toilet\nC: cabinet\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_162_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_162_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_162_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_162_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_162_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_162_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: toilet\nC: cabinet\nD: bed"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: bed\nC: display\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_163_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_163_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_163_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_163_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_163_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_163_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bed\nC: display\nD: cabinet"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: bin\nC: cabinet\nD: door", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_164_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_164_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_164_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_164_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_164_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_164_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: bin\nC: cabinet\nD: door"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bag\nB: sink\nC: door\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_165_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_165_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_165_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_165_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_165_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_165_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bag\nB: sink\nC: door\nD: cabinet"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: desk\nB: cabinet\nC: shelf\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_166_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_166_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_166_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_166_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_166_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_166_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: desk\nB: cabinet\nC: shelf\nD: bed"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: chair\nB: cabinet\nC: desk\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_167_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_167_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_167_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_167_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_167_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_167_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: cabinet\nC: desk\nD: bed"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sofa\nB: chair\nC: desk\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_168_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_168_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_168_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_168_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_168_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_168_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sofa\nB: chair\nC: desk\nD: bed"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: display\nB: bag\nC: sink\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_169_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_169_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_169_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_169_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_169_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_169_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: display\nB: bag\nC: sink\nD: cabinet"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bag\nB: cabinet\nC: bed\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_170_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_170_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_170_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_170_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_170_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_170_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bag\nB: cabinet\nC: bed\nD: sink"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: shelf\nB: cabinet\nC: sink\nD: door", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_171_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_171_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_171_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_171_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_171_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_171_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: shelf\nB: cabinet\nC: sink\nD: door"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: sink\nC: door\nD: shelf", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_172_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_172_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_172_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_172_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_172_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_172_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: sink\nC: door\nD: shelf"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: shelf\nC: sink\nD: door", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_173_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_173_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_173_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_173_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_173_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_173_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: shelf\nC: sink\nD: door"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: cabinet\nC: sink\nD: table", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_174_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_174_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_174_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_174_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_174_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_174_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: cabinet\nC: sink\nD: table"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: table\nB: cabinet\nC: sink\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_175_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_175_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_175_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_175_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_175_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_175_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: table\nB: cabinet\nC: sink\nD: bed"}, "output": {"output_text": "A"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: chair\nB: sink\nC: cabinet\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_176_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_176_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_176_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_176_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_176_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_176_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: sink\nC: cabinet\nD: bed"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: chair\nB: shelf\nC: cabinet\nD: display", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_177_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_177_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_177_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_177_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_177_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_177_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: shelf\nC: cabinet\nD: display"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: bed\nC: bag\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_178_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_178_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_178_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_178_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_178_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_178_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bed\nC: bag\nD: cabinet"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: chair\nC: cabinet\nD: bag", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_179_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_179_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_179_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_179_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_179_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_179_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: chair\nC: cabinet\nD: bag"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: bed\nC: table\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_180_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_180_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_180_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_180_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_180_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_180_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bed\nC: table\nD: cabinet"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: door\nC: sink\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_181_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_181_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_181_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_181_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_181_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_181_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: door\nC: sink\nD: cabinet"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: sofa\nC: bed\nD: bin", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_182_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_182_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_182_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_182_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_182_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_182_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: sofa\nC: bed\nD: bin"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: shelf\nB: display\nC: bed\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_183_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_183_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_183_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_183_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_183_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_183_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: shelf\nB: display\nC: bed\nD: cabinet"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: display\nB: sofa\nC: pillow\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_184_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_184_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_184_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_184_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_184_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_184_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: display\nB: sofa\nC: pillow\nD: chair"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bin\nB: bed\nC: cabinet\nD: pillow", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_185_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_185_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_185_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_185_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_185_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_185_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bin\nB: bed\nC: cabinet\nD: pillow"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: chair\nC: sink\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_186_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_186_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_186_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_186_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_186_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_186_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: chair\nC: sink\nD: cabinet"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: display\nB: cabinet\nC: shelf\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_187_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_187_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_187_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_187_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_187_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_187_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: display\nB: cabinet\nC: shelf\nD: bed"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: cabinet\nC: door\nD: bag", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_188_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_188_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_188_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_188_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_188_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_188_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: cabinet\nC: door\nD: bag"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: cabinet\nC: table\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_189_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_189_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_189_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_189_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_189_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_189_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: cabinet\nC: table\nD: bed"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: shelf\nC: bed\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_190_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_190_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_190_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_190_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_190_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_190_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: shelf\nC: bed\nD: chair"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: display\nB: cabinet\nC: bed\nD: sofa", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_191_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_191_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_191_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_191_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_191_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_191_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: display\nB: cabinet\nC: bed\nD: sofa"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: door\nC: cabinet\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_192_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_192_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_192_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_192_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_192_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_192_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: door\nC: cabinet\nD: bed"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bag\nB: table\nC: sink\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_193_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_193_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_193_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_193_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_193_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_193_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bag\nB: table\nC: sink\nD: cabinet"}, "output": {"output_text": "B"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: shelf\nB: bed\nC: cabinet\nD: door", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_194_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_194_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_194_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_194_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_194_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_194_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: shelf\nB: bed\nC: cabinet\nD: door"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bed\nB: sink\nC: toilet\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_195_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_195_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_195_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_195_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_195_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_195_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: sink\nC: toilet\nD: cabinet"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: sink\nB: bed\nC: bin\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_196_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_196_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_196_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_196_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_196_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_196_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bed\nC: bin\nD: cabinet"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: bag\nB: sink\nC: bed\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_197_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_197_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_197_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_197_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_197_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_197_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bag\nB: sink\nC: bed\nD: cabinet"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: chair\nB: table\nC: sofa\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_198_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_198_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_198_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_198_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_198_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_198_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: table\nC: sofa\nD: bed"}, "output": {"output_text": "C"}, "task": "threed_indoor_recognition"}
{"source": "ScanObjectNN", "options": "A: cabinet\nB: bin\nC: bed\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_indoor_recognition/threed_indoor_recognition_199_0.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_199_1.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_199_2.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_199_3.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_199_4.jpg", "3D-spatial/threed_indoor_recognition/threed_indoor_recognition_199_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: bin\nC: bed\nD: sink"}, "output": {"output_text": "D"}, "task": "threed_indoor_recognition"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_0_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_0_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_1_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_1_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_2_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_2_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_3_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_3_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_4_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_4_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_5_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_5_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_6_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_6_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_7_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_7_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_8_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_8_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_9_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_9_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_10_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_10_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_11_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_11_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_12_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_12_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_13_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_13_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_14_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_14_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_15_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_15_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_16_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_16_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_17_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_17_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_18_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_18_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_19_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_19_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_20_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_20_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_21_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_21_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_22_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_22_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_23_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_23_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_24_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_24_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_25_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_25_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_26_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_26_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_27_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_27_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_28_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_28_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_29_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_29_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_30_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_30_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_31_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_31_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_32_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_32_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_33_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_33_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_34_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_34_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_35_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_35_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_36_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_36_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_37_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_37_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_38_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_38_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_39_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_39_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_40_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_40_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_41_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_41_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_42_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_42_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_43_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_43_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_44_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_44_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_45_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_45_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_46_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_46_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_47_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_47_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_48_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_48_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_49_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_49_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_50_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_50_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_51_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_51_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_52_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_52_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_53_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_53_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_54_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_54_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_55_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_55_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_56_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_56_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_57_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_57_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_58_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_58_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_59_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_59_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_60_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_60_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_61_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_61_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_62_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_62_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_63_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_63_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_64_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_64_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_65_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_65_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_66_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_66_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_67_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_67_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_68_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_68_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_69_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_69_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_70_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_70_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_71_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_71_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_72_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_72_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_73_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_73_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_74_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_74_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_75_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_75_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_76_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_76_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_77_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_77_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_78_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_78_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_79_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_79_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_80_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_80_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_81_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_81_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_82_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_82_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_83_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_83_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_84_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_84_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_85_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_85_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_86_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_86_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_87_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_87_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_88_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_88_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_89_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_89_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_90_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_90_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_91_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_91_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_92_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_92_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_93_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_93_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_94_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_94_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_95_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_95_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_96_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_96_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_97_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_97_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_98_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_98_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_99_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_99_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_100_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_100_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_101_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_101_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_102_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_102_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_103_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_103_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_104_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_104_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_105_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_105_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_106_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_106_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_107_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_107_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_108_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_108_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_109_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_109_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_110_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_110_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_111_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_111_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_112_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_112_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_113_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_113_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_114_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_114_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_115_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_115_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_116_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_116_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_117_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_117_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_118_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_118_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_119_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_119_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_120_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_120_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_121_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_121_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_122_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_122_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_123_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_123_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_124_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_124_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_125_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_125_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_126_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_126_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_127_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_127_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_128_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_128_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_129_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_129_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_130_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_130_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "A"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_131_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_131_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "BLINK_MVR", "options": "A: left\nB: right", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_reasoning/Multiview_reasoning_132_0.jpg", "3D-spatial/Multiview_reasoning/Multiview_reasoning_132_1.jpg"], "question": "The images are frames from a video. The first image is from the beginning of the video and the second image is from the end. Is the camera moving left or right when shooting the video?", "context": "Your task is centered on evaluating the multi-view reasoning capabilities of models. The objective is to deduce the relative camera motion based on two images of an object captured from different viewpoints.\nSelect from the following choices.\nA: left\nB: right"}, "output": {"output_text": "B"}, "task": "Multiview_reasoning"}
{"source": "ModelNet40", "options": "A: bottle\nB: lamp\nC: chair\nD: clock", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_0_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_0_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_0_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_0_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_0_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_0_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bottle\nB: lamp\nC: chair\nD: clock"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: wardrobe\nB: television stand\nC: radio\nD: xbox", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_1_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_1_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_1_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_1_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_1_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_1_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: wardrobe\nB: television stand\nC: radio\nD: xbox"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: tv stand\nB: sofa\nC: stool\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_2_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_2_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_2_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_2_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_2_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_2_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: tv stand\nB: sofa\nC: stool\nD: chair"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: radio\nB: loudspeaker\nC: guitar\nD: microphone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_3_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_3_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_3_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_3_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_3_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_3_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: radio\nB: loudspeaker\nC: guitar\nD: microphone"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: cabinet\nB: bathtub\nC: glass box\nD: monitor", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_4_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_4_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_4_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_4_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_4_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_4_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: bathtub\nC: glass box\nD: monitor"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: mantel\nB: bookshelf\nC: curtain\nD: stool", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_5_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_5_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_5_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_5_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_5_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_5_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: mantel\nB: bookshelf\nC: curtain\nD: stool"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: toilet\nB: sink\nC: bathtub\nD: stool", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_6_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_6_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_6_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_6_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_6_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_6_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: toilet\nB: sink\nC: bathtub\nD: stool"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: bowl\nB: table\nC: stairs\nD: laptop", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_7_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_7_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_7_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_7_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_7_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_7_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bowl\nB: table\nC: stairs\nD: laptop"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: television stand\nB: radio\nC: vase\nD: lamp", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_8_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_8_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_8_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_8_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_8_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_8_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: television stand\nB: radio\nC: vase\nD: lamp"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: bookshelf\nB: telephone\nC: chair\nD: desk", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_9_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_9_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_9_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_9_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_9_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_9_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bookshelf\nB: telephone\nC: chair\nD: desk"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: loudspeaker\nB: watercraft\nC: airplane\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_10_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_10_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_10_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_10_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_10_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_10_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: loudspeaker\nB: watercraft\nC: airplane\nD: chair"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: chair\nB: dresser\nC: night stand\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_11_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_11_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_11_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_11_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_11_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_11_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: dresser\nC: night stand\nD: bed"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: bookshelf\nB: desk\nC: toilet\nD: lamp", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_12_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_12_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_12_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_12_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_12_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_12_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bookshelf\nB: desk\nC: toilet\nD: lamp"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: tv stand\nB: telephone\nC: clock\nD: laptop", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_13_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_13_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_13_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_13_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_13_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_13_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: tv stand\nB: telephone\nC: clock\nD: laptop"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: cabinet\nB: lamp\nC: mantel\nD: table", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_14_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_14_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_14_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_14_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_14_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_14_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: lamp\nC: mantel\nD: table"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: clock\nB: vase\nC: bookshelf\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_15_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_15_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_15_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_15_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_15_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_15_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: clock\nB: vase\nC: bookshelf\nD: telephone"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: guitar\nB: speaker\nC: table\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_16_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_16_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_16_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_16_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_16_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_16_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: guitar\nB: speaker\nC: table\nD: chair"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: stool\nB: piano\nC: microphone\nD: guitar", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_17_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_17_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_17_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_17_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_17_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_17_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: stool\nB: piano\nC: microphone\nD: guitar"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: desk\nB: chair\nC: sofa\nD: table", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_18_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_18_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_18_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_18_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_18_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_18_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: desk\nB: chair\nC: sofa\nD: table"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: chair\nB: night stand\nC: bed\nD: lamp", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_19_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_19_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_19_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_19_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_19_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_19_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: night stand\nC: bed\nD: lamp"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: telephone\nB: sofa\nC: table\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_20_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_20_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_20_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_20_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_20_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_20_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: telephone\nB: sofa\nC: table\nD: chair"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: range hood\nB: clock\nC: telephone\nD: vase", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_21_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_21_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_21_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_21_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_21_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_21_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: range hood\nB: clock\nC: telephone\nD: vase"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: bathtub\nB: airplane\nC: watercraft\nD: car", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_22_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_22_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_22_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_22_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_22_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_22_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bathtub\nB: airplane\nC: watercraft\nD: car"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: airplane\nB: bicycle\nC: motorcycle\nD: car", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_23_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_23_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_23_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_23_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_23_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_23_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: airplane\nB: bicycle\nC: motorcycle\nD: car"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: table\nB: night stand\nC: lamp\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_24_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_24_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_24_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_24_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_24_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_24_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: table\nB: night stand\nC: lamp\nD: chair"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: car\nB: telephone\nC: toilet\nD: bottle", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_25_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_25_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_25_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_25_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_25_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_25_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: car\nB: telephone\nC: toilet\nD: bottle"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: flower pot\nB: lamp\nC: stairs\nD: plant", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_26_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_26_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_26_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_26_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_26_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_26_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: flower pot\nB: lamp\nC: stairs\nD: plant"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: bookshelf\nB: desk\nC: table\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_27_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_27_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_27_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_27_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_27_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_27_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bookshelf\nB: desk\nC: table\nD: chair"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: table\nB: chair\nC: night stand\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_28_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_28_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_28_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_28_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_28_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_28_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: table\nB: chair\nC: night stand\nD: telephone"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: faucet\nB: telephone\nC: clock\nD: vase", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_29_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_29_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_29_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_29_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_29_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_29_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: faucet\nB: telephone\nC: clock\nD: vase"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: night stand\nB: chair\nC: lamp\nD: dresser", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_30_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_30_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_30_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_30_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_30_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_30_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: night stand\nB: chair\nC: lamp\nD: dresser"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: desk\nB: cabinet\nC: table\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_31_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_31_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_31_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_31_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_31_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_31_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: desk\nB: cabinet\nC: table\nD: chair"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: guitar\nB: microphone\nC: piano\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_32_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_32_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_32_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_32_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_32_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_32_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: guitar\nB: microphone\nC: piano\nD: telephone"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: mantel\nB: chair\nC: sofa\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_33_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_33_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_33_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_33_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_33_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_33_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: mantel\nB: chair\nC: sofa\nD: bed"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: desk\nB: sofa\nC: table\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_34_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_34_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_34_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_34_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_34_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_34_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: desk\nB: sofa\nC: table\nD: chair"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: bike\nB: car\nC: airplane\nD: bus", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_35_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_35_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_35_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_35_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_35_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_35_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bike\nB: car\nC: airplane\nD: bus"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: lamp\nB: plant\nC: chair\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_36_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_36_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_36_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_36_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_36_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_36_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: lamp\nB: plant\nC: chair\nD: telephone"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: mug\nB: bottle\nC: glass box\nD: faucet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_37_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_37_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_37_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_37_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_37_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_37_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: mug\nB: bottle\nC: glass box\nD: faucet"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: clock\nB: tv stand\nC: mantel\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_38_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_38_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_38_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_38_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_38_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_38_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: clock\nB: tv stand\nC: mantel\nD: telephone"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: lamp\nB: sofa\nC: chair\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_39_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_39_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_39_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_39_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_39_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_39_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: lamp\nB: sofa\nC: chair\nD: telephone"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: airplane\nB: boat\nC: sofa\nD: watercraft", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_40_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_40_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_40_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_40_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_40_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_40_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: airplane\nB: boat\nC: sofa\nD: watercraft"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: telephone\nB: clock\nC: vase\nD: car", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_41_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_41_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_41_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_41_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_41_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_41_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: telephone\nB: clock\nC: vase\nD: car"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: monitor\nB: keyboard\nC: television\nD: speaker", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_42_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_42_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_42_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_42_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_42_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_42_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: monitor\nB: keyboard\nC: television\nD: speaker"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: sink\nB: bathtub\nC: toilet\nD: faucet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_43_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_43_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_43_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_43_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_43_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_43_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bathtub\nC: toilet\nD: faucet"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: vase\nB: telephone\nC: clock\nD: guitar", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_44_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_44_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_44_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_44_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_44_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_44_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: vase\nB: telephone\nC: clock\nD: guitar"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: monitor\nB: loudspeaker\nC: guitar\nD: piano", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_45_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_45_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_45_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_45_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_45_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_45_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: monitor\nB: loudspeaker\nC: guitar\nD: piano"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: tv stand\nB: radio\nC: chair\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_46_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_46_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_46_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_46_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_46_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_46_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: tv stand\nB: radio\nC: chair\nD: cabinet"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: chair\nB: table\nC: sofa\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_47_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_47_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_47_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_47_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_47_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_47_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: table\nC: sofa\nD: telephone"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: lamp\nB: sofa\nC: bed\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_48_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_48_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_48_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_48_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_48_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_48_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: lamp\nB: sofa\nC: bed\nD: chair"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: cabinet\nB: chair\nC: telephone\nD: tv stand", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_49_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_49_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_49_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_49_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_49_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_49_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: chair\nC: telephone\nD: tv stand"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: toilet\nB: chair\nC: lamp\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_50_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_50_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_50_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_50_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_50_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_50_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: toilet\nB: chair\nC: lamp\nD: sink"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: monitor\nB: airplane\nC: car\nD: person", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_51_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_51_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_51_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_51_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_51_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_51_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: monitor\nB: airplane\nC: car\nD: person"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: mantel\nB: sofa\nC: telephone\nD: clock", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_52_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_52_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_52_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_52_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_52_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_52_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: mantel\nB: sofa\nC: telephone\nD: clock"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: glass box\nB: bottle\nC: mug\nD: watercraft", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_53_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_53_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_53_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_53_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_53_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_53_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: glass box\nB: bottle\nC: mug\nD: watercraft"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: telephone\nB: guitar\nC: vase\nD: clock", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_54_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_54_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_54_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_54_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_54_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_54_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: telephone\nB: guitar\nC: vase\nD: clock"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: lamp\nB: pistol\nC: rifle\nD: tv stand", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_55_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_55_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_55_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_55_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_55_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_55_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: lamp\nB: pistol\nC: rifle\nD: tv stand"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: bookshelf\nB: sofa\nC: mantel\nD: television", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_56_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_56_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_56_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_56_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_56_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_56_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bookshelf\nB: sofa\nC: mantel\nD: television"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: lamp\nB: vase\nC: bookshelf\nD: curtain", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_57_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_57_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_57_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_57_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_57_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_57_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: lamp\nB: vase\nC: bookshelf\nD: curtain"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: dresser\nB: bookshelf\nC: stool\nD: night stand", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_58_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_58_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_58_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_58_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_58_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_58_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: dresser\nB: bookshelf\nC: stool\nD: night stand"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: vase\nB: clock\nC: tv stand\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_59_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_59_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_59_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_59_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_59_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_59_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: vase\nB: clock\nC: tv stand\nD: telephone"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: desk\nB: laptop\nC: keyboard\nD: monitor", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_60_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_60_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_60_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_60_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_60_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_60_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: desk\nB: laptop\nC: keyboard\nD: monitor"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: sofa\nB: clock\nC: telephone\nD: guitar", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_61_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_61_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_61_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_61_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_61_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_61_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sofa\nB: clock\nC: telephone\nD: guitar"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: range hood\nB: telephone\nC: clock\nD: bathtub", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_62_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_62_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_62_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_62_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_62_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_62_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: range hood\nB: telephone\nC: clock\nD: bathtub"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: loudspeaker\nB: radio\nC: telephone\nD: tv stand", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_63_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_63_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_63_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_63_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_63_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_63_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: loudspeaker\nB: radio\nC: telephone\nD: tv stand"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: guitar\nB: microphone\nC: table\nD: piano", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_64_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_64_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_64_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_64_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_64_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_64_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: guitar\nB: microphone\nC: table\nD: piano"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: telephone\nB: chair\nC: sofa\nD: table", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_65_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_65_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_65_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_65_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_65_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_65_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: telephone\nB: chair\nC: sofa\nD: table"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: stair\nB: keyboard\nC: laptop\nD: cellphone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_66_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_66_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_66_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_66_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_66_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_66_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: stair\nB: keyboard\nC: laptop\nD: cellphone"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: clock\nB: telephone\nC: vase\nD: monitor", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_67_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_67_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_67_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_67_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_67_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_67_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: clock\nB: telephone\nC: vase\nD: monitor"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: night stand\nB: dresser\nC: television\nD: bookshelf", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_68_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_68_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_68_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_68_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_68_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_68_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: night stand\nB: dresser\nC: television\nD: bookshelf"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: laptop\nB: monitor\nC: keyboard\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_69_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_69_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_69_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_69_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_69_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_69_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: laptop\nB: monitor\nC: keyboard\nD: telephone"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: chair\nB: bed\nC: lamp\nD: night stand", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_70_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_70_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_70_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_70_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_70_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_70_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: bed\nC: lamp\nD: night stand"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: telephone\nB: clock\nC: vase\nD: tv stand", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_71_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_71_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_71_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_71_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_71_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_71_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: telephone\nB: clock\nC: vase\nD: tv stand"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: bottle\nB: lamp\nC: glass box\nD: mug", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_72_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_72_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_72_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_72_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_72_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_72_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bottle\nB: lamp\nC: glass box\nD: mug"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: clock\nB: telephone\nC: tv stand\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_73_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_73_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_73_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_73_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_73_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_73_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: clock\nB: telephone\nC: tv stand\nD: chair"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: lamp\nB: piano\nC: dresser\nD: night stand", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_74_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_74_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_74_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_74_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_74_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_74_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: lamp\nB: piano\nC: dresser\nD: night stand"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: table\nB: sofa\nC: lamp\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_75_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_75_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_75_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_75_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_75_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_75_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: table\nB: sofa\nC: lamp\nD: chair"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: radio\nB: chair\nC: desk\nD: bench", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_76_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_76_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_76_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_76_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_76_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_76_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: radio\nB: chair\nC: desk\nD: bench"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: piano\nB: chair\nC: stool\nD: guitar", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_77_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_77_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_77_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_77_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_77_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_77_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: piano\nB: chair\nC: stool\nD: guitar"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: faucet\nB: telephone\nC: stool\nD: range hood", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_78_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_78_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_78_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_78_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_78_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_78_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: faucet\nB: telephone\nC: stool\nD: range hood"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: vase\nB: telephone\nC: bookshelf\nD: clock", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_79_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_79_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_79_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_79_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_79_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_79_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: vase\nB: telephone\nC: bookshelf\nD: clock"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: sink\nB: chair\nC: plant\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_80_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_80_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_80_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_80_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_80_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_80_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: chair\nC: plant\nD: cabinet"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: faucet\nB: telephone\nC: table\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_81_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_81_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_81_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_81_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_81_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_81_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: faucet\nB: telephone\nC: table\nD: chair"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: telephone\nB: lamp\nC: bookshelf\nD: sink", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_82_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_82_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_82_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_82_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_82_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_82_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: telephone\nB: lamp\nC: bookshelf\nD: sink"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: tv stand\nB: desk\nC: monitor\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_83_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_83_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_83_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_83_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_83_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_83_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: tv stand\nB: desk\nC: monitor\nD: chair"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: night stand\nB: vase\nC: clock\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_84_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_84_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_84_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_84_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_84_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_84_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: night stand\nB: vase\nC: clock\nD: telephone"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: chair\nB: desk\nC: stool\nD: bookshelf", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_85_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_85_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_85_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_85_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_85_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_85_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: desk\nC: stool\nD: bookshelf"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: rifle\nB: telephone\nC: car\nD: airplane", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_86_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_86_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_86_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_86_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_86_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_86_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: rifle\nB: telephone\nC: car\nD: airplane"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: bottle\nB: sink\nC: toilet\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_87_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_87_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_87_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_87_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_87_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_87_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bottle\nB: sink\nC: toilet\nD: chair"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: vase\nB: television\nC: mirror\nD: decorative bowl", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_88_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_88_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_88_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_88_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_88_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_88_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: vase\nB: television\nC: mirror\nD: decorative bowl"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: bed\nB: chair\nC: sofa\nD: table", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_89_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_89_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_89_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_89_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_89_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_89_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: chair\nC: sofa\nD: table"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: sink\nB: faucet\nC: toilet\nD: bathtub", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_90_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_90_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_90_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_90_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_90_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_90_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: faucet\nC: toilet\nD: bathtub"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: table\nB: lamp\nC: vase\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_91_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_91_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_91_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_91_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_91_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_91_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: table\nB: lamp\nC: vase\nD: chair"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: telephone\nB: bottle\nC: glass box\nD: faucet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_92_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_92_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_92_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_92_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_92_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_92_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: telephone\nB: bottle\nC: glass box\nD: faucet"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: faucet\nB: telephone\nC: airplane\nD: clock", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_93_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_93_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_93_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_93_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_93_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_93_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: faucet\nB: telephone\nC: airplane\nD: clock"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: faucet\nB: clock\nC: telephone\nD: range hood", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_94_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_94_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_94_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_94_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_94_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_94_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: faucet\nB: clock\nC: telephone\nD: range hood"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: rifle\nB: laptop\nC: clock\nD: pistol", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_95_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_95_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_95_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_95_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_95_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_95_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: rifle\nB: laptop\nC: clock\nD: pistol"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: cup\nB: bottle\nC: glass box\nD: mug", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_96_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_96_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_96_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_96_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_96_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_96_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cup\nB: bottle\nC: glass box\nD: mug"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: glass box\nB: television\nC: monitor\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_97_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_97_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_97_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_97_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_97_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_97_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: glass box\nB: television\nC: monitor\nD: chair"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: car\nB: telephone\nC: radio\nD: airplane", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_98_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_98_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_98_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_98_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_98_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_98_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: car\nB: telephone\nC: radio\nD: airplane"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: chair\nB: flower pot\nC: lamp\nD: vase", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_99_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_99_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_99_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_99_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_99_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_99_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: flower pot\nC: lamp\nD: vase"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: chair\nB: night stand\nC: bottle\nD: sofa", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_100_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_100_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_100_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_100_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_100_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_100_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: night stand\nC: bottle\nD: sofa"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: chair\nB: table\nC: tv stand\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_101_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_101_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_101_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_101_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_101_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_101_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: table\nC: tv stand\nD: telephone"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: glass box\nB: table\nC: lamp\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_102_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_102_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_102_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_102_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_102_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_102_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: glass box\nB: table\nC: lamp\nD: telephone"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: table\nB: vase\nC: chair\nD: lamp", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_103_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_103_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_103_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_103_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_103_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_103_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: table\nB: vase\nC: chair\nD: lamp"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: lamp\nB: chair\nC: table\nD: desk", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_104_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_104_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_104_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_104_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_104_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_104_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: lamp\nB: chair\nC: table\nD: desk"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: vase\nB: lamp\nC: flower pot\nD: plant", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_105_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_105_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_105_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_105_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_105_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_105_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: vase\nB: lamp\nC: flower pot\nD: plant"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: table\nB: sofa\nC: chair\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_106_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_106_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_106_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_106_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_106_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_106_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: table\nB: sofa\nC: chair\nD: bed"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: telephone\nB: guitar\nC: radio\nD: lamp", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_107_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_107_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_107_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_107_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_107_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_107_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: telephone\nB: guitar\nC: radio\nD: lamp"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: telephone\nB: bench\nC: table\nD: lamp", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_108_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_108_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_108_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_108_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_108_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_108_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: telephone\nB: bench\nC: table\nD: lamp"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: telephone\nB: clock\nC: vase\nD: lamp", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_109_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_109_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_109_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_109_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_109_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_109_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: telephone\nB: clock\nC: vase\nD: lamp"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: sofa\nB: table\nC: chair\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_110_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_110_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_110_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_110_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_110_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_110_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sofa\nB: table\nC: chair\nD: telephone"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: chair\nB: toilet\nC: table\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_111_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_111_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_111_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_111_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_111_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_111_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: toilet\nC: table\nD: telephone"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: lamp\nB: toilet\nC: vase\nD: table", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_112_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_112_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_112_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_112_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_112_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_112_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: lamp\nB: toilet\nC: vase\nD: table"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: car\nB: vase\nC: telephone\nD: clock", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_113_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_113_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_113_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_113_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_113_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_113_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: car\nB: vase\nC: telephone\nD: clock"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: chair\nB: desk\nC: bookshelf\nD: wardrobe", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_114_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_114_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_114_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_114_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_114_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_114_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: desk\nC: bookshelf\nD: wardrobe"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: microphone\nB: table\nC: stool\nD: guitar", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_115_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_115_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_115_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_115_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_115_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_115_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: microphone\nB: table\nC: stool\nD: guitar"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: piano\nB: rifle\nC: guitar\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_116_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_116_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_116_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_116_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_116_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_116_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: piano\nB: rifle\nC: guitar\nD: telephone"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: chair\nB: stairs\nC: laptop\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_117_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_117_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_117_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_117_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_117_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_117_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: stairs\nC: laptop\nD: bed"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: radio\nB: glass box\nC: monitor\nD: lamp", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_118_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_118_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_118_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_118_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_118_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_118_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: radio\nB: glass box\nC: monitor\nD: lamp"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: vase\nB: clock\nC: guitar\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_119_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_119_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_119_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_119_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_119_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_119_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: vase\nB: clock\nC: guitar\nD: telephone"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: chair\nB: piano\nC: monitor\nD: laptop", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_120_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_120_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_120_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_120_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_120_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_120_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: piano\nC: monitor\nD: laptop"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: clock\nB: telephone\nC: guitar\nD: vase", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_121_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_121_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_121_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_121_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_121_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_121_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: clock\nB: telephone\nC: guitar\nD: vase"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: clock\nB: telephone\nC: vase\nD: plant", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_122_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_122_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_122_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_122_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_122_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_122_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: clock\nB: telephone\nC: vase\nD: plant"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: table\nB: lamp\nC: desk\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_123_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_123_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_123_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_123_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_123_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_123_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: table\nB: lamp\nC: desk\nD: chair"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: sink\nB: telephone\nC: chair\nD: toilet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_124_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_124_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_124_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_124_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_124_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_124_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: telephone\nC: chair\nD: toilet"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: night stand\nB: chair\nC: bed\nD: lamp", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_125_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_125_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_125_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_125_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_125_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_125_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: night stand\nB: chair\nC: bed\nD: lamp"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: table\nB: sofa\nC: chair\nD: cabinet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_126_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_126_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_126_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_126_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_126_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_126_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: table\nB: sofa\nC: chair\nD: cabinet"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: chair\nB: toilet\nC: telephone\nD: vase", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_127_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_127_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_127_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_127_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_127_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_127_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: toilet\nC: telephone\nD: vase"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: bottle\nB: watercraft\nC: airplane\nD: car", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_128_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_128_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_128_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_128_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_128_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_128_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bottle\nB: watercraft\nC: airplane\nD: car"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: chair\nB: desk\nC: table\nD: sofa", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_129_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_129_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_129_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_129_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_129_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_129_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: desk\nC: table\nD: sofa"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: clock\nB: vase\nC: stool\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_130_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_130_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_130_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_130_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_130_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_130_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: clock\nB: vase\nC: stool\nD: telephone"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: piano\nB: telephone\nC: clock\nD: vase", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_131_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_131_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_131_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_131_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_131_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_131_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: piano\nB: telephone\nC: clock\nD: vase"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: bottle\nB: faucet\nC: glass box\nD: radio", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_132_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_132_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_132_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_132_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_132_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_132_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bottle\nB: faucet\nC: glass box\nD: radio"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: vase\nB: faucet\nC: clock\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_133_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_133_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_133_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_133_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_133_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_133_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: vase\nB: faucet\nC: clock\nD: telephone"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: radio\nB: tv stand\nC: lamp\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_134_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_134_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_134_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_134_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_134_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_134_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: radio\nB: tv stand\nC: lamp\nD: telephone"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: night stand\nB: dresser\nC: bed\nD: lamp", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_135_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_135_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_135_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_135_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_135_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_135_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: night stand\nB: dresser\nC: bed\nD: lamp"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: wardrobe\nB: curtain\nC: bathtub\nD: desk", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_136_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_136_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_136_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_136_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_136_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_136_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: wardrobe\nB: curtain\nC: bathtub\nD: desk"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: stool\nB: chair\nC: desk\nD: table", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_137_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_137_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_137_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_137_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_137_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_137_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: stool\nB: chair\nC: desk\nD: table"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: vase\nB: lamp\nC: telephone\nD: toilet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_138_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_138_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_138_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_138_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_138_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_138_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: vase\nB: lamp\nC: telephone\nD: toilet"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: guitar\nB: telephone\nC: radio\nD: laptop", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_139_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_139_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_139_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_139_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_139_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_139_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: guitar\nB: telephone\nC: radio\nD: laptop"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: sink\nB: tv stand\nC: clock\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_140_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_140_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_140_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_140_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_140_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_140_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: tv stand\nC: clock\nD: telephone"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: flower pot\nB: clock\nC: vase\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_141_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_141_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_141_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_141_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_141_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_141_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: flower pot\nB: clock\nC: vase\nD: telephone"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: lamp\nB: vase\nC: bottle\nD: stool", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_142_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_142_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_142_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_142_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_142_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_142_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: lamp\nB: vase\nC: bottle\nD: stool"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: sofa\nB: chair\nC: bed\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_143_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_143_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_143_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_143_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_143_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_143_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sofa\nB: chair\nC: bed\nD: telephone"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: telephone\nB: chair\nC: sofa\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_144_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_144_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_144_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_144_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_144_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_144_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: telephone\nB: chair\nC: sofa\nD: bed"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: dresser\nB: desk\nC: bathtub\nD: wardrobe", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_145_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_145_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_145_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_145_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_145_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_145_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: dresser\nB: desk\nC: bathtub\nD: wardrobe"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: stool\nB: chair\nC: desk\nD: bench", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_146_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_146_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_146_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_146_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_146_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_146_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: stool\nB: chair\nC: desk\nD: bench"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: telephone\nB: rifle\nC: lamp\nD: plant", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_147_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_147_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_147_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_147_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_147_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_147_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: telephone\nB: rifle\nC: lamp\nD: plant"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: chair\nB: bed\nC: dresser\nD: wardrobe", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_148_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_148_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_148_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_148_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_148_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_148_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: bed\nC: dresser\nD: wardrobe"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: curtain\nB: stool\nC: mantel\nD: bookshelf", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_149_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_149_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_149_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_149_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_149_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_149_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: curtain\nB: stool\nC: mantel\nD: bookshelf"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: vase\nB: tv stand\nC: clock\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_150_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_150_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_150_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_150_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_150_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_150_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: vase\nB: tv stand\nC: clock\nD: telephone"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: desk\nB: bookshelf\nC: table\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_151_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_151_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_151_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_151_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_151_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_151_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: desk\nB: bookshelf\nC: table\nD: chair"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: lamp\nB: glass box\nC: mug\nD: bottle", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_152_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_152_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_152_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_152_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_152_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_152_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: lamp\nB: glass box\nC: mug\nD: bottle"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: chair\nB: cellphone\nC: watercraft\nD: laptop", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_153_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_153_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_153_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_153_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_153_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_153_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: cellphone\nC: watercraft\nD: laptop"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: chair\nB: sofa\nC: table\nD: lamp", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_154_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_154_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_154_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_154_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_154_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_154_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: sofa\nC: table\nD: lamp"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: microphone\nB: guitar\nC: piano\nD: stool", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_155_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_155_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_155_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_155_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_155_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_155_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: microphone\nB: guitar\nC: piano\nD: stool"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: bookshelf\nB: chair\nC: telephone\nD: table", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_156_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_156_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_156_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_156_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_156_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_156_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bookshelf\nB: chair\nC: telephone\nD: table"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: bed\nB: chair\nC: sofa\nD: lamp", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_157_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_157_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_157_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_157_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_157_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_157_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: chair\nC: sofa\nD: lamp"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: telephone\nB: bowl\nC: mug\nD: lamp", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_158_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_158_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_158_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_158_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_158_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_158_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: telephone\nB: bowl\nC: mug\nD: lamp"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: faucet\nB: bathtub\nC: shower\nD: toilet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_159_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_159_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_159_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_159_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_159_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_159_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: faucet\nB: bathtub\nC: shower\nD: toilet"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: cabinet\nB: desk\nC: table\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_160_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_160_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_160_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_160_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_160_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_160_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: cabinet\nB: desk\nC: table\nD: chair"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: guitar\nB: stool\nC: telephone\nD: clock", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_161_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_161_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_161_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_161_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_161_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_161_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: guitar\nB: stool\nC: telephone\nD: clock"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: bed\nB: stool\nC: night stand\nD: desk", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_162_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_162_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_162_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_162_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_162_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_162_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bed\nB: stool\nC: night stand\nD: desk"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: airplane\nB: car\nC: motorcycle\nD: bicycle", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_163_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_163_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_163_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_163_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_163_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_163_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: airplane\nB: car\nC: motorcycle\nD: bicycle"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: tv stand\nB: sofa\nC: stool\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_164_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_164_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_164_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_164_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_164_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_164_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: tv stand\nB: sofa\nC: stool\nD: chair"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: piano\nB: clock\nC: guitar\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_165_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_165_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_165_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_165_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_165_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_165_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: piano\nB: clock\nC: guitar\nD: telephone"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: laptop\nB: telephone\nC: stool\nD: airplane", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_166_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_166_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_166_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_166_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_166_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_166_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: laptop\nB: telephone\nC: stool\nD: airplane"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: telephone\nB: clock\nC: vase\nD: pistol", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_167_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_167_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_167_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_167_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_167_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_167_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: telephone\nB: clock\nC: vase\nD: pistol"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: plant\nB: television stand\nC: lamp\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_168_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_168_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_168_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_168_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_168_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_168_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: plant\nB: television stand\nC: lamp\nD: chair"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: airplane\nB: lamp\nC: radio\nD: tent", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_169_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_169_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_169_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_169_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_169_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_169_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: airplane\nB: lamp\nC: radio\nD: tent"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: lamp\nB: stairs\nC: piano\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_170_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_170_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_170_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_170_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_170_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_170_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: lamp\nB: stairs\nC: piano\nD: telephone"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: sink\nB: faucet\nC: bottle\nD: tv stand", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_171_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_171_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_171_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_171_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_171_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_171_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: faucet\nC: bottle\nD: tv stand"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: table\nB: sofa\nC: desk\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_172_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_172_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_172_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_172_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_172_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_172_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: table\nB: sofa\nC: desk\nD: chair"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: telephone\nB: vase\nC: chair\nD: toilet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_173_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_173_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_173_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_173_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_173_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_173_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: telephone\nB: vase\nC: chair\nD: toilet"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: telephone\nB: chair\nC: table\nD: sofa", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_174_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_174_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_174_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_174_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_174_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_174_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: telephone\nB: chair\nC: table\nD: sofa"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: sink\nB: bathtub\nC: telephone\nD: toilet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_175_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_175_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_175_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_175_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_175_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_175_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bathtub\nC: telephone\nD: toilet"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: clock\nB: tv stand\nC: telephone\nD: vase", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_176_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_176_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_176_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_176_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_176_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_176_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: clock\nB: tv stand\nC: telephone\nD: vase"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: car\nB: bookshelf\nC: airplane\nD: stool", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_177_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_177_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_177_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_177_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_177_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_177_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: car\nB: bookshelf\nC: airplane\nD: stool"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: chair\nB: table\nC: sofa\nD: stool", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_178_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_178_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_178_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_178_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_178_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_178_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: table\nC: sofa\nD: stool"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: faucet\nB: telephone\nC: range hood\nD: stool", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_179_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_179_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_179_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_179_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_179_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_179_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: faucet\nB: telephone\nC: range hood\nD: stool"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: telephone\nB: table\nC: chair\nD: bookshelf", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_180_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_180_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_180_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_180_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_180_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_180_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: telephone\nB: table\nC: chair\nD: bookshelf"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: lamp\nB: desk\nC: bookshelf\nD: chair", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_181_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_181_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_181_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_181_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_181_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_181_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: lamp\nB: desk\nC: bookshelf\nD: chair"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: sink\nB: bathtub\nC: faucet\nD: toilet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_182_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_182_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_182_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_182_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_182_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_182_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bathtub\nC: faucet\nD: toilet"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: telephone\nB: stool\nC: chair\nD: tv stand", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_183_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_183_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_183_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_183_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_183_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_183_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: telephone\nB: stool\nC: chair\nD: tv stand"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: mantel\nB: stairs\nC: fireplace\nD: sofa", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_184_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_184_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_184_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_184_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_184_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_184_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: mantel\nB: stairs\nC: fireplace\nD: sofa"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: desktop\nB: lamp\nC: radio\nD: glass box", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_185_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_185_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_185_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_185_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_185_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_185_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: desktop\nB: lamp\nC: radio\nD: glass box"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: mantel\nB: plant\nC: radio\nD: tv stand", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_186_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_186_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_186_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_186_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_186_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_186_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: mantel\nB: plant\nC: radio\nD: tv stand"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: chair\nB: clock\nC: vase\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_187_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_187_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_187_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_187_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_187_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_187_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: clock\nC: vase\nD: telephone"}, "output": {"output_text": "A"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: clock\nB: car\nC: vase\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_188_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_188_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_188_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_188_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_188_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_188_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: clock\nB: car\nC: vase\nD: telephone"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: telephone\nB: clock\nC: piano\nD: vase", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_189_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_189_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_189_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_189_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_189_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_189_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: telephone\nB: clock\nC: piano\nD: vase"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: television\nB: glass box\nC: chair\nD: bookshelf", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_190_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_190_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_190_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_190_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_190_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_190_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: television\nB: glass box\nC: chair\nD: bookshelf"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: sink\nB: shower curtain\nC: monitor\nD: toilet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_191_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_191_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_191_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_191_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_191_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_191_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: shower curtain\nC: monitor\nD: toilet"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: lamp\nB: telephone\nC: stool\nD: sofa", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_192_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_192_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_192_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_192_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_192_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_192_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: lamp\nB: telephone\nC: stool\nD: sofa"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: chair\nB: keyboard\nC: guitar\nD: telephone", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_193_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_193_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_193_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_193_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_193_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_193_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: chair\nB: keyboard\nC: guitar\nD: telephone"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: bookshelf\nB: desk\nC: chair\nD: mantel", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_194_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_194_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_194_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_194_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_194_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_194_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bookshelf\nB: desk\nC: chair\nD: mantel"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: night stand\nB: chair\nC: lamp\nD: bed", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_195_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_195_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_195_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_195_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_195_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_195_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: night stand\nB: chair\nC: lamp\nD: bed"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: sink\nB: bathtub\nC: stool\nD: toilet", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_196_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_196_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_196_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_196_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_196_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_196_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: sink\nB: bathtub\nC: stool\nD: toilet"}, "output": {"output_text": "D"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: lamp\nB: plant\nC: flower pot\nD: bookshelf", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_197_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_197_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_197_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_197_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_197_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_197_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: lamp\nB: plant\nC: flower pot\nD: bookshelf"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: bottle\nB: mug\nC: keyboard\nD: cup", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_198_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_198_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_198_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_198_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_198_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_198_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: bottle\nB: mug\nC: keyboard\nD: cup"}, "output": {"output_text": "B"}, "task": "threed_cad_recognition"}
{"source": "ModelNet40", "options": "A: stool\nB: chair\nC: piano\nD: guitar", "visual_input_component": "Poine cloud image", "input": {"input_image_path": ["3D-spatial/threed_cad_recognition/threed_cad_recognition_199_0.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_199_1.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_199_2.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_199_3.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_199_4.jpg", "3D-spatial/threed_cad_recognition/threed_cad_recognition_199_5.jpg"], "question": "What is the category of the point cloud based on the multi-view of the point cloud?", "context": "Select from the following choices.\nA: stool\nB: chair\nC: piano\nD: guitar"}, "output": {"output_text": "C"}, "task": "threed_cad_recognition"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_0_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_0_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_0_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_0_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_0_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_0_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.891251, 0.378307, -0.25011], [0.443048, 0.608538, -0.658323], [-0.096846, -0.697542, -0.709969]] and translation vector: [4.935522, 3.588868, 1.45033], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.887006, 0.383874, -0.256633], [0.452131, 0.60913, -0.651566], [-0.093796, -0.693975, -0.713864]] and translation vector: [4.940225, 3.582454, 1.45688], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_1_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_1_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_1_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_1_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_1_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_1_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.997112, 0.02462, 0.071841], [-0.04661, 0.548461, -0.834876], [-0.059957, -0.835814, -0.545729]] and translation vector: [4.834615, 3.436689, 1.398379], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.998397, 0.025746, 0.050402], [-0.028149, 0.546702, -0.836854], [-0.0491, -0.836932, -0.545101]] and translation vector: [4.839047, 3.434593, 1.400064], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_2_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_2_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_2_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_2_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_2_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_2_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.485844, -0.617081, 0.619005], [-0.873216, -0.311825, 0.374512], [-0.038083, -0.722479, -0.690343]] and translation vector: [-0.164865, 3.073333, 1.323993], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.482952, -0.621872, 0.616468], [-0.874972, -0.315096, 0.367612], [-0.034361, -0.716931, -0.696297]] and translation vector: [-0.16601, 3.069565, 1.320265], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_3_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_3_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_3_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_3_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_3_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_3_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.934582, -0.143102, 0.325696], [-0.355737, 0.383069, -0.852473], [-0.002774, -0.912568, -0.408916]] and translation vector: [2.694367, 2.483235, 1.465763], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.935747, -0.141154, 0.323191], [-0.352667, 0.379116, -0.85551], [-0.001768, -0.91452, -0.404537]] and translation vector: [2.694351, 2.483417, 1.465522], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_4_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_4_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_4_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_4_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_4_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_4_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.08083, -0.463089, 0.882618], [-0.994842, 0.091929, -0.042874], [-0.061284, -0.881531, -0.468131]] and translation vector: [4.543997, 3.147744, 1.235262], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.097623, -0.477164, 0.873375], [-0.993778, 0.094019, -0.059714], [-0.05362, -0.873771, -0.483373]] and translation vector: [4.550471, 3.148599, 1.246367], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_5_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_5_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_5_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_5_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_5_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_5_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.877021, 0.121711, -0.464779], [0.46491, 0.459041, -0.75706], [0.12121, -0.880038, -0.459173]] and translation vector: [3.922419, 3.230202, 1.747047], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.876473, 0.11975, -0.466322], [0.465798, 0.455895, -0.758415], [0.121773, -0.881941, -0.455359]] and translation vector: [3.923546, 3.227255, 1.740959], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_6_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_6_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_6_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_6_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_6_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_6_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.246516, -0.470365, 0.847341], [-0.959136, 0.006886, 0.282862], [-0.138884, -0.882445, -0.449446]] and translation vector: [3.043058, 2.955299, 1.551102], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.243276, -0.470143, 0.8484], [-0.960213, 0.006937, 0.279182], [-0.13714, -0.882563, -0.44975]] and translation vector: [3.042024, 2.954946, 1.550413], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_7_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_7_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_7_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_7_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_7_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_7_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.236277, -0.452541, 0.859872], [-0.970097, 0.160455, -0.182119], [-0.055554, -0.877189, -0.47692]] and translation vector: [1.575898, 1.961144, 1.314442], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.238966, -0.451212, 0.859828], [-0.9694, 0.162109, -0.184349], [-0.056205, -0.87757, -0.476143]] and translation vector: [1.575219, 1.960128, 1.313122], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_8_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_8_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_8_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_8_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_8_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_8_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.633294, -0.360819, 0.684652], [-0.773758, -0.312806, 0.550863], [0.015401, -0.878613, -0.477285]] and translation vector: [3.241882, 3.386626, 1.367882], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.618852, -0.359339, 0.698497], [-0.785116, -0.311057, 0.535572], [0.02482, -0.87984, -0.47462]] and translation vector: [3.234923, 3.400149, 1.365622], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_9_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_9_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_9_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_9_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_9_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_9_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.974605, -0.106498, 0.196986], [-0.223762, -0.428932, 0.875185], [-0.008712, -0.897037, -0.44187]] and translation vector: [2.006689, 0.552817, 1.711334], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.976991, -0.101609, 0.187523], [-0.213093, -0.42809, 0.878254], [-0.008962, -0.898006, -0.439892]] and translation vector: [2.014877, 0.551422, 1.700123], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_10_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_10_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_10_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_10_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_10_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_10_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.874867, -0.0675, 0.479638], [-0.482919, 0.197999, -0.852987], [-0.037391, -0.977875, -0.205819]] and translation vector: [2.397274, 1.722858, 1.486845], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.874077, -0.063653, 0.4816], [-0.484123, 0.196153, -0.852731], [-0.040189, -0.978505, -0.202269]] and translation vector: [2.402604, 1.721845, 1.489477], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_11_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_11_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_11_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_11_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_11_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_11_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.606497, 0.359513, -0.709163], [0.793947, -0.321582, 0.515978], [-0.042553, -0.875977, -0.480473]] and translation vector: [5.898605, 1.464963, 1.329018], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.603336, 0.358994, -0.712116], [0.79647, -0.316333, 0.515334], [-0.040264, -0.878098, -0.476783]] and translation vector: [5.91512, 1.4588, 1.326343], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_12_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_12_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_12_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_12_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_12_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_12_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.810147, -0.229725, 0.539341], [-0.586224, 0.314131, -0.746769], [0.002128, -0.921167, -0.389162]] and translation vector: [3.108561, 2.950706, 1.466118], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.798041, -0.241673, 0.552019], [-0.602539, 0.306626, -0.736836], [0.00881, -0.920638, -0.390318]] and translation vector: [3.094201, 2.939754, 1.46817], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_13_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_13_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_13_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_13_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_13_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_13_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.994136, 0.036629, -0.101745], [0.107123, -0.462198, 0.880283], [-0.014782, -0.88602, -0.463411]] and translation vector: [3.8191, 1.340951, 1.354002], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.994264, 0.034625, -0.101195], [0.105882, -0.452335, 0.885541], [-0.015112, -0.891176, -0.453407]] and translation vector: [3.821174, 1.339834, 1.359098], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_14_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_14_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_14_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_14_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_14_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_14_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.199941, 0.263531, -0.943703], [0.979453, -0.027844, 0.19974], [0.026362, -0.964249, -0.263683]] and translation vector: [3.611549, 3.757055, 1.562045], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.20075, 0.267793, -0.94233], [0.97934, -0.030969, 0.199834], [0.024331, -0.962979, -0.268477]] and translation vector: [3.608934, 3.756757, 1.557843], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_15_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_15_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_15_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_15_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_15_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_15_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.24604, -0.551346, 0.797171], [-0.968826, -0.115295, 0.219278], [-0.028988, -0.826271, -0.562526]] and translation vector: [1.704247, 2.057158, 1.361636], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.236706, -0.55071, 0.800431], [-0.971342, -0.115817, 0.207564], [-0.021604, -0.826623, -0.562342]] and translation vector: [1.70792, 2.062619, 1.364929], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_16_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_16_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_16_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_16_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_16_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_16_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.695296, -0.421579, 0.582095], [-0.717067, -0.351947, 0.601622], [-0.048765, -0.835707, -0.547007]] and translation vector: [2.470866, 0.652559, 1.473924], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.695871, -0.418819, 0.583399], [-0.716734, -0.353708, 0.600986], [-0.045352, -0.83635, -0.546317]] and translation vector: [2.469546, 0.651931, 1.473078], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_17_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_17_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_17_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_17_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_17_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_17_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.937403, 0.174354, -0.301457], [0.34768, 0.517889, -0.781607], [0.019845, -0.837491, -0.54609]] and translation vector: [1.513881, 1.499843, 1.388066], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.93698, 0.17766, -0.300842], [0.348874, 0.522274, -0.77815], [0.018876, -0.834067, -0.551341]] and translation vector: [1.515168, 1.503997, 1.385631], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_18_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_18_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_18_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_18_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_18_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_18_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.693623, 0.392298, -0.604144], [0.720137, 0.397492, -0.568686], [0.017048, -0.82952, -0.558217]] and translation vector: [2.706242, 2.586761, 1.453005], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.690051, 0.396658, -0.605386], [0.723517, 0.399766, -0.56277], [0.018785, -0.826347, -0.562848]] and translation vector: [2.704536, 2.590014, 1.45316], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_19_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_19_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_19_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_19_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_19_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_19_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.530794, 0.426739, -0.732224], [0.841151, 0.159702, -0.516681], [-0.10355, -0.890162, -0.443721]] and translation vector: [5.418979, 4.373359, 1.385162], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.532043, 0.421439, -0.734384], [0.841755, 0.169492, -0.512564], [-0.091542, -0.890877, -0.444925]] and translation vector: [5.415919, 4.39552, 1.38299], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_20_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_20_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_20_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_20_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_20_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_20_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.484778, 0.389748, -0.782998], [0.874059, -0.248441, 0.417491], [-0.031813, -0.886777, -0.461102]] and translation vector: [2.948564, 2.712566, 1.480667], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.484062, 0.388161, -0.784229], [0.874419, -0.248162, 0.416902], [-0.03279, -0.887551, -0.459542]] and translation vector: [2.949191, 2.711738, 1.477649], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_21_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_21_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_21_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_21_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_21_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_21_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.998134, -0.025826, -0.055325], [0.04389, 0.326427, -0.944203], [0.042444, -0.94487, -0.324684]] and translation vector: [2.355182, 2.984659, 1.395898], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.998605, -0.022906, -0.047579], [0.037628, 0.323493, -0.945482], [0.037048, -0.945953, -0.32218]] and translation vector: [2.345251, 2.98743, 1.391141], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_22_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_22_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_22_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_22_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_22_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_22_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.473704, -0.275929, 0.836342], [-0.879436, -0.198746, 0.432542], [0.046868, -0.940406, -0.336809]] and translation vector: [2.984934, 2.048073, 1.446683], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.466625, -0.271085, 0.841888], [-0.8831, -0.195475, 0.426525], [0.048943, -0.942498, -0.330608]] and translation vector: [2.979092, 2.049407, 1.446378], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_23_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_23_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_23_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_23_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_23_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_23_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.566304, -0.590941, 0.574533], [-0.823945, 0.423135, -0.376925], [-0.020365, -0.686838, -0.726526]] and translation vector: [2.143516, 1.760119, 1.343188], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.561614, -0.596242, 0.57366], [-0.827171, 0.420904, -0.372329], [-0.019457, -0.683619, -0.729579]] and translation vector: [2.147258, 1.761594, 1.344016], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_24_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_24_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_24_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_24_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_24_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_24_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.054781, -0.427281, 0.902458], [-0.998013, -0.051617, 0.036143], [0.031139, -0.902644, -0.429259]] and translation vector: [1.328526, 0.849821, 1.501181], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.086578, -0.407933, 0.908898], [-0.995883, -0.060028, 0.067922], [0.026852, -0.911036, -0.41145]] and translation vector: [1.314662, 0.836147, 1.492068], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_25_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_25_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_25_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_25_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_25_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_25_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.941243, -0.209403, 0.264975], [-0.336113, 0.504116, -0.795548], [0.033012, -0.837865, -0.544878]] and translation vector: [4.828751, 9.008894, 1.463441], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.939528, -0.206646, 0.273103], [-0.341818, 0.516505, -0.785101], [0.021179, -0.830976, -0.555906]] and translation vector: [4.819307, 9.009376, 1.463735], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_26_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_26_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_26_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_26_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_26_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_26_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.68967, 0.288211, -0.664297], [0.724122, -0.27239, 0.633602], [0.001663, -0.918008, -0.396559]] and translation vector: [2.530043, 2.005069, 1.437417], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.68921, 0.288518, -0.66464], [0.724561, -0.273014, 0.632831], [0.001127, -0.917726, -0.397212]] and translation vector: [2.5334, 2.008455, 1.44069], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_27_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_27_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_27_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_27_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_27_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_27_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.994446, -0.078697, 0.06988], [-0.104992, -0.787844, 0.606859], [0.007297, -0.610826, -0.791731]] and translation vector: [1.305105, 0.510448, 1.183315], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.994112, -0.083607, 0.068931], [-0.10831, -0.785774, 0.608956], [0.003251, -0.612836, -0.790203]] and translation vector: [1.308194, 0.508844, 1.184721], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_28_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_28_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_28_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_28_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_28_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_28_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.928375, -0.17783, 0.326339], [-0.371449, 0.415395, -0.830345], [0.012101, -0.892089, -0.451697]] and translation vector: [2.096006, 1.919092, 1.36174], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.929206, -0.177937, 0.323905], [-0.369314, 0.414969, -0.83151], [0.013546, -0.892266, -0.451307]] and translation vector: [2.095672, 1.922099, 1.363168], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_29_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_29_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_29_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_29_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_29_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_29_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.684823, -0.326379, 0.651532], [-0.728707, -0.304485, 0.613413], [-0.001823, -0.894855, -0.446353]] and translation vector: [2.86358, 2.414664, 1.549631], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.684506, -0.325468, 0.652321], [-0.729004, -0.308374, 0.611113], [0.002261, -0.893855, -0.448351]] and translation vector: [2.864701, 2.413023, 1.547001], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_30_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_30_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_30_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_30_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_30_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_30_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.928108, -0.125197, 0.35063], [-0.371823, 0.3599, -0.855699], [-0.019061, -0.924553, -0.380577]] and translation vector: [5.296664, 4.137775, 1.856988], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.930637, -0.119308, 0.34595], [-0.365378, 0.355543, -0.860284], [-0.020361, -0.927014, -0.374474]] and translation vector: [5.29653, 4.126579, 1.856014], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_31_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_31_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_31_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_31_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_31_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_31_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.399387, 0.327689, -0.856218], [0.9115, 0.041819, -0.409169], [-0.098274, -0.94386, -0.315391]] and translation vector: [4.88233, 2.963563, 1.403722], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.394763, 0.316878, -0.86241], [0.913367, 0.033579, -0.40575], [-0.099614, -0.947872, -0.302681]] and translation vector: [4.88409, 2.965299, 1.400614], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_32_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_32_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_32_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_32_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_32_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_32_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.119369, -0.433868, 0.893034], [-0.990549, 0.113242, -0.077387], [-0.067553, -0.893832, -0.443285]] and translation vector: [3.407035, 4.679209, 1.397058], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.120544, -0.432859, 0.893366], [-0.990306, 0.115004, -0.077902], [-0.06902, -0.894096, -0.442526]] and translation vector: [3.401289, 4.681283, 1.397495], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_33_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_33_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_33_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_33_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_33_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_33_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.264492, -0.222038, 0.938479], [-0.962334, 0.002714, 0.271857], [-0.062909, -0.975034, -0.212957]] and translation vector: [0.925816, 4.784833, 1.497389], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.263009, -0.220134, 0.939344], [-0.962729, 0.003779, 0.270443], [-0.063084, -0.975462, -0.210935]] and translation vector: [0.925807, 4.784041, 1.498483], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_34_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_34_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_34_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_34_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_34_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_34_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.711391, -0.463973, 0.527875], [-0.700286, 0.531398, -0.476672], [-0.059349, -0.708763, -0.702945]] and translation vector: [2.53321, 4.394931, 1.530427], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.710702, -0.465347, 0.527594], [-0.701175, 0.5294, -0.477586], [-0.057065, -0.709357, -0.702536]] and translation vector: [2.526067, 4.393322, 1.526345], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_35_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_35_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_35_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_35_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_35_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_35_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.524333, 0.441188, -0.728305], [0.848808, -0.202677, 0.488311], [0.067827, -0.874228, -0.480754]] and translation vector: [3.10696, 1.250425, 1.344077], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.531491, 0.437044, -0.72561], [0.844432, -0.205894, 0.494513], [0.066725, -0.875557, -0.478485]] and translation vector: [3.107462, 1.25329, 1.344278], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_36_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_36_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_36_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_36_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_36_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_36_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.205964, -0.505778, 0.837716], [-0.978495, 0.11627, -0.170378], [-0.011228, -0.854792, -0.518849]] and translation vector: [2.901534, 4.292832, 1.280844], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.204012, -0.504726, 0.838827], [-0.978841, 0.118998, -0.166463], [-0.0158, -0.855039, -0.518324]] and translation vector: [2.909629, 4.290413, 1.285823], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_37_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_37_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_37_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_37_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_37_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_37_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.999847, -0.004634, 0.01689], [-0.017397, -0.374134, 0.927211], [0.002023, -0.927363, -0.374157]] and translation vector: [3.310194, 3.16458, 1.506432], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.999774, -0.010896, 0.018284], [-0.021018, -0.369724, 0.928904], [-0.003361, -0.929078, -0.369869]] and translation vector: [3.316631, 3.168954, 1.519748], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_38_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_38_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_38_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_38_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_38_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_38_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.951558, 0.16536, -0.259218], [0.307283, -0.481983, 0.820531], [0.010744, -0.860436, -0.509446]] and translation vector: [2.919862, 3.428013, 1.521081], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.951326, 0.167996, -0.258374], [0.307875, -0.4803, 0.821295], [0.013877, -0.860866, -0.508643]] and translation vector: [2.920042, 3.428186, 1.518811], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_39_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_39_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_39_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_39_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_39_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_39_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.567127, -0.123224, 0.81436], [-0.823556, -0.071568, 0.562702], [-0.011056, -0.989795, -0.14207]] and translation vector: [0.249561, 0.967409, 1.634127], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.566682, -0.123694, 0.814599], [-0.82386, -0.07149, 0.562268], [-0.011313, -0.989742, -0.142418]] and translation vector: [0.249762, 0.967631, 1.633273], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_40_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_40_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_40_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_40_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_40_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_40_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.464707, 0.496079, -0.733453], [0.882598, 0.326106, -0.338639], [0.071191, -0.804711, -0.589382]] and translation vector: [2.864701, 0.868861, 1.204561], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.473617, 0.501904, -0.723726], [0.878064, 0.332992, -0.343688], [0.068496, -0.798254, -0.598414]] and translation vector: [2.869803, 0.866998, 1.20304], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_41_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_41_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_41_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_41_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_41_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_41_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.943065, -0.17817, 0.280864], [-0.332105, 0.550897, -0.765649], [-0.018311, -0.815333, -0.578703]] and translation vector: [2.74599, 1.673222, 1.294065], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.942639, -0.173012, 0.285478], [-0.332909, 0.550136, -0.765848], [-0.024551, -0.816957, -0.576177]] and translation vector: [2.737266, 1.663808, 1.300966], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_42_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_42_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_42_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_42_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_42_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_42_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.590232, -0.352789, 0.726062], [-0.807221, -0.252962, 0.533296], [-0.004475, -0.900861, -0.434086]] and translation vector: [2.518124, 2.463328, 1.346668], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.586587, -0.358769, 0.726086], [-0.809845, -0.250747, 0.530356], [-0.008212, -0.899117, -0.437632]] and translation vector: [2.520116, 2.462175, 1.344964], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_43_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_43_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_43_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_43_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_43_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_43_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.454685, 0.144673, -0.878824], [0.890085, 0.109034, -0.442562], [0.031795, -0.983454, -0.178347]] and translation vector: [3.311996, 2.119304, 1.59409], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.453171, 0.138778, -0.880555], [0.890847, 0.10604, -0.441756], [0.032068, -0.98463, -0.171684]] and translation vector: [3.314367, 2.120091, 1.591769], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_44_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_44_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_44_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_44_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_44_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_44_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.86482, -0.183466, 0.467362], [-0.501092, -0.256948, 0.826368], [-0.031523, -0.948851, -0.314147]] and translation vector: [3.012278, 2.022242, 1.442339], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.863867, -0.189194, 0.466839], [-0.502557, -0.260784, 0.824274], [-0.034203, -0.946677, -0.320364]] and translation vector: [3.015002, 2.018446, 1.436262], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_45_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_45_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_45_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_45_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_45_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_45_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.880278, -0.246293, 0.405524], [-0.473973, 0.417832, -0.775091], [0.021459, -0.874503, -0.484545]] and translation vector: [3.281806, 2.754624, 1.352781], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.883446, -0.241464, 0.401521], [-0.467927, 0.41107, -0.782347], [0.023856, -0.879043, -0.476146]] and translation vector: [3.2823, 2.745028, 1.352692], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_46_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_46_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_46_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_46_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_46_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_46_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.133825, -0.39571, 0.908573], [-0.990975, -0.046263, 0.125813], [-0.007752, -0.91721, -0.398329]] and translation vector: [4.990516, 4.227292, 1.32289], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.168071, -0.388121, 0.906153], [-0.985699, -0.054747, 0.159375], [-0.012247, -0.919981, -0.391772]] and translation vector: [4.987841, 4.19209, 1.32312], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_47_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_47_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_47_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_47_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_47_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_47_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.48142, 0.335029, -0.809933], [0.872625, 0.096524, -0.478757], [-0.08222, -0.937251, -0.338823]] and translation vector: [4.429162, 2.287411, 1.464776], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.484328, 0.331289, -0.809737], [0.871134, 0.09698, -0.481374], [-0.080946, -0.938532, -0.335568]] and translation vector: [4.432656, 2.285767, 1.465956], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_48_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_48_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_48_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_48_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_48_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_48_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.672393, -0.274439, 0.687438], [-0.739855, -0.221079, 0.635404], [-0.022402, -0.935846, -0.351697]] and translation vector: [3.802358, 2.110255, 1.494557], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.672432, -0.275262, 0.687071], [-0.739825, -0.222066, 0.635095], [-0.022242, -0.93537, -0.35297]] and translation vector: [3.806542, 2.108163, 1.497405], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_49_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_49_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_49_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_49_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_49_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_49_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.176261, -0.039155, 0.983564], [-0.983722, -0.028492, -0.177423], [0.03497, -0.998827, -0.033496]] and translation vector: [3.054739, 2.437738, 1.503838], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.18153, -0.048874, 0.98217], [-0.982778, -0.026092, -0.182941], [0.034567, -0.998464, -0.043296]] and translation vector: [3.061021, 2.450195, 1.498681], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_50_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_50_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_50_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_50_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_50_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_50_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.467192, 0.317292, -0.825262], [0.883302, -0.126478, 0.451421], [0.038855, -0.939856, -0.339354]] and translation vector: [2.723032, 3.168159, 1.438168], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.467636, 0.312306, -0.826911], [0.883318, -0.130557, 0.450227], [0.03265, -0.940968, -0.336919]] and translation vector: [2.722188, 3.168039, 1.441817], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_51_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_51_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_51_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_51_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_51_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_51_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.51864, -0.44867, 0.727811], [-0.853934, -0.229463, 0.467059], [-0.04255, -0.863738, -0.502143]] and translation vector: [1.002297, 1.98866, 1.344191], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.519607, -0.444592, 0.729621], [-0.853432, -0.229314, 0.468049], [-0.040778, -0.865883, -0.498582]] and translation vector: [1.000441, 1.985865, 1.344846], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_52_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_52_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_52_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_52_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_52_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_52_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.688084, 0.423256, -0.589401], [0.725514, -0.415863, 0.54835], [-0.013017, -0.80493, -0.593227]] and translation vector: [3.968163, 0.8771, 1.421607], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.688048, 0.420794, -0.591205], [0.725576, -0.411726, 0.551381], [-0.011397, -0.80834, -0.588605]] and translation vector: [3.964529, 0.870938, 1.417962], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_53_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_53_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_53_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_53_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_53_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_53_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.042655, 0.409797, -0.911179], [0.998036, -0.024411, -0.0577], [-0.045888, -0.91185, -0.40795]] and translation vector: [2.423933, 1.356295, 3.282493], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.032887, 0.418885, -0.907444], [0.998611, -0.023628, -0.047098], [-0.041169, -0.907732, -0.417526]] and translation vector: [2.425306, 1.358764, 3.278826], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_54_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_54_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_54_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_54_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_54_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_54_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.925351, 0.122106, -0.358909], [0.376741, 0.190476, -0.906524], [-0.042329, -0.974068, -0.222259]] and translation vector: [4.735593, 2.732706, 1.21643], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.924788, 0.125024, -0.359357], [0.377675, 0.187086, -0.906841], [-0.046146, -0.974355, -0.220234]] and translation vector: [4.740286, 2.733964, 1.218072], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_55_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_55_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_55_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_55_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_55_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_55_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.908726, 0.150598, -0.389277], [0.406624, 0.108936, -0.907078], [-0.094198, -0.982575, -0.16023]] and translation vector: [8.822721, 3.830595, 1.476402], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.908663, 0.151907, -0.388916], [0.40641, 0.108245, -0.907256], [-0.09572, -0.98245, -0.160095]] and translation vector: [8.818814, 3.832555, 1.475788], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_56_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_56_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_56_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_56_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_56_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_56_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.984594, -0.069457, 0.160469], [-0.174127, -0.305795, 0.936039], [-0.015944, -0.949561, -0.313178]] and translation vector: [3.941113, 2.817773, 1.559826], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.984592, -0.069572, 0.160429], [-0.174152, -0.307406, 0.935507], [-0.015768, -0.949032, -0.314785]] and translation vector: [3.94407, 2.817183, 1.553188], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_57_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_57_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_57_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_57_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_57_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_57_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.677945, 0.409221, -0.610679], [0.735109, 0.38004, -0.561413], [0.00234, -0.829523, -0.558468]] and translation vector: [3.092599, 2.044437, 1.437429], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.678782, 0.408186, -0.610442], [0.734335, 0.380383, -0.562193], [0.002723, -0.829875, -0.557943]] and translation vector: [3.0892, 2.043949, 1.440375], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_58_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_58_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_58_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_58_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_58_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_58_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.330673, -0.328207, 0.884837], [-0.942686, -0.070458, 0.326157], [-0.044703, -0.941975, -0.332694]] and translation vector: [3.753276, 4.481459, 1.345242], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.306694, -0.326667, 0.893995], [-0.950878, -0.063631, 0.302957], [-0.04208, -0.942995, -0.330136]] and translation vector: [3.754864, 4.497246, 1.34429], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_59_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_59_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_59_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_59_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_59_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_59_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.305635, -0.390507, 0.868385], [-0.952144, 0.122302, -0.280116], [0.003183, -0.91244, -0.409198]] and translation vector: [4.266061, 1.773856, 1.285079], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.300987, -0.399102, 0.866097], [-0.953628, 0.125052, -0.273781], [0.00096, -0.908339, -0.418234]] and translation vector: [4.263163, 1.772832, 1.291083], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_60_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_60_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_60_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_60_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_60_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_60_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.853196, -0.330732, 0.403328], [-0.517406, -0.438892, 0.734619], [-0.065945, -0.835458, -0.545584]] and translation vector: [2.734716, 6.775187, 1.412962], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.853022, -0.336855, 0.398601], [-0.516617, -0.436898, 0.736361], [-0.0739, -0.834056, -0.546708]] and translation vector: [2.728871, 6.767794, 1.411126], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_61_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_61_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_61_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_61_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_61_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_61_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.207785, -0.462455, 0.861952], [-0.977184, 0.13779, -0.161637], [-0.044019, -0.875871, -0.480534]] and translation vector: [2.720584, 1.654419, 1.522448], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.211008, -0.462778, 0.860995], [-0.976592, 0.137438, -0.165466], [-0.04176, -0.875755, -0.480946]] and translation vector: [2.717844, 1.649691, 1.521912], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_62_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_62_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_62_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_62_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_62_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_62_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.624751, -0.31057, 0.716403], [-0.780527, -0.273701, 0.562018], [0.021534, -0.910293, -0.413403]] and translation vector: [-0.212106, 0.775797, 1.619325], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.624146, -0.312612, 0.716042], [-0.781019, -0.274551, 0.56092], [0.02124, -0.909338, -0.415515]] and translation vector: [-0.212874, 0.777223, 1.616059], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_63_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_63_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_63_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_63_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_63_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_63_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.964843, 0.186346, -0.185345], [0.252505, 0.461537, -0.850426], [-0.07293, -0.867329, -0.492364]] and translation vector: [3.779865, 2.337391, 1.461827], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.966867, 0.182729, -0.178267], [0.244986, 0.467845, -0.849178], [-0.071768, -0.864715, -0.49711]] and translation vector: [3.779708, 2.335608, 1.46105], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_64_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_64_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_64_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_64_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_64_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_64_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.935902, 0.160482, -0.313582], [0.351212, -0.493772, 0.795512], [-0.027173, -0.854655, -0.518485]] and translation vector: [4.465, -0.226232, 1.550028], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.933656, 0.161027, -0.319933], [0.356818, -0.495752, 0.791777], [-0.03111, -0.853405, -0.520319]] and translation vector: [4.478531, -0.229773, 1.540292], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_65_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_65_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_65_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_65_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_65_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_65_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.955421, 0.119616, -0.269932], [0.295248, 0.388339, -0.872939], [0.000408, -0.91372, -0.406343]] and translation vector: [2.65583, 2.981598, 1.368648], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.951595, 0.120375, -0.282803], [0.307283, 0.392547, -0.866882], [0.006663, -0.91182, -0.410535]] and translation vector: [2.655525, 2.981353, 1.361859], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_66_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_66_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_66_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_66_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_66_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_66_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.409087, -0.112571, 0.905525], [-0.910894, 0.109148, -0.397943], [-0.05404, -0.987631, -0.147191]] and translation vector: [4.421403, 3.579741, 1.526424], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.417977, -0.10834, 0.901974], [-0.906895, 0.107978, -0.407287], [-0.053267, -0.988232, -0.143386]] and translation vector: [4.418822, 3.582731, 1.526625], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_67_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_67_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_67_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_67_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_67_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_67_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.931668, 0.072515, -0.356001], [0.362912, -0.231685, 0.902561], [-0.017031, -0.970084, -0.24217]] and translation vector: [5.886859, 3.543659, 1.354971], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.931979, 0.073028, -0.355079], [0.362119, -0.233112, 0.902513], [-0.016864, -0.969704, -0.2437]] and translation vector: [5.882501, 3.543666, 1.354317], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_68_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_68_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_68_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_68_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_68_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_68_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.081815, 0.638296, -0.765431], [0.996577, -0.061545, 0.055199], [-0.011875, -0.767327, -0.641146]] and translation vector: [3.004073, 1.570726, 1.431248], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.083332, 0.64082, -0.763155], [0.996457, -0.062303, 0.056492], [-0.011346, -0.765159, -0.643742]] and translation vector: [3.00242, 1.571458, 1.432065], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_69_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_69_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_69_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_69_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_69_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_69_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.606468, -0.360414, 0.70873], [-0.789578, -0.16805, 0.590192], [-0.093612, -0.91753, -0.386492]] and translation vector: [2.373669, 6.226582, 1.48631], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.603564, -0.356146, 0.713352], [-0.791899, -0.163667, 0.588311], [-0.092772, -0.919986, -0.380815]] and translation vector: [2.370215, 6.229294, 1.484576], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_70_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_70_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_70_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_70_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_70_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_70_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.481759, -0.460793, 0.745371], [-0.875469, 0.290199, -0.386444], [-0.038235, -0.838722, -0.543216]] and translation vector: [3.08436, 2.075189, 1.468295], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.482142, -0.463533, 0.743422], [-0.87538, 0.289132, -0.387445], [-0.035354, -0.83758, -0.54517]] and translation vector: [3.085865, 2.079347, 1.468915], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_71_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_71_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_71_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_71_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_71_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_71_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.731293, 0.384445, -0.563394], [0.682011, 0.401944, -0.610984], [-0.008437, -0.831049, -0.556135]] and translation vector: [5.176627, 2.209938, 1.427488], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.733453, 0.387758, -0.558292], [0.679719, 0.411882, -0.606907], [-0.005383, -0.82462, -0.565663]] and translation vector: [5.175584, 2.209993, 1.422561], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_72_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_72_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_72_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_72_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_72_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_72_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.414473, -0.491559, 0.765887], [-0.909569, 0.196057, -0.366396], [0.029948, -0.848488, -0.528367]] and translation vector: [0.955419, 3.497842, 1.497559], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.410009, -0.490704, 0.768832], [-0.911757, 0.198024, -0.359841], [0.024328, -0.848526, -0.528594]] and translation vector: [0.937857, 3.503192, 1.495427], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_73_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_73_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_73_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_73_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_73_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_73_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.82141, -0.124481, 0.556588], [-0.562763, -0.33543, 0.755503], [0.092651, -0.933805, -0.345579]] and translation vector: [1.795382, 2.457259, 1.379582], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.820332, -0.124179, 0.558243], [-0.564621, -0.330977, 0.75608], [0.090876, -0.935432, -0.341626]] and translation vector: [1.795684, 2.460531, 1.380001], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_74_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_74_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_74_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_74_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_74_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_74_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.993805, -0.057016, 0.095394], [-0.110597, -0.423109, 0.899304], [-0.010913, -0.904283, -0.426794]] and translation vector: [3.282054, 2.568905, 1.512321], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.993106, -0.061381, 0.099861], [-0.116562, -0.427194, 0.896615], [-0.012375, -0.902074, -0.431404]] and translation vector: [3.283498, 2.568158, 1.509645], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_75_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_75_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_75_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_75_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_75_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_75_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.348231, 0.123124, -0.929288], [0.936413, -1.6e-05, 0.350899], [0.043189, -0.992391, -0.1153]] and translation vector: [2.712005, 2.075202, 1.464169], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.348319, 0.120186, -0.929639], [0.93641, 0.000395, 0.350907], [0.042542, -0.992751, -0.112406]] and translation vector: [2.712393, 2.076758, 1.463984], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_76_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_76_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_76_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_76_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_76_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_76_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.482968, -0.397392, 0.78027], [-0.874514, 0.173759, -0.452807], [0.044362, -0.901048, -0.431445]] and translation vector: [8.974016, 2.795387, 1.945192], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.496352, -0.388832, 0.776173], [-0.867003, 0.176647, -0.465943], [0.044064, -0.904216, -0.424797]] and translation vector: [8.98292, 2.792107, 1.939625], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_77_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_77_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_77_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_77_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_77_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_77_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.079918, -0.690871, 0.718547], [-0.996802, 0.055321, -0.057677], [9.6e-05, -0.720858, -0.693082]] and translation vector: [1.142658, 0.968078, 1.385987], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.080635, -0.691404, 0.717954], [-0.996742, 0.054488, -0.059473], [0.002, -0.72041, -0.693545]] and translation vector: [1.144302, 0.967344, 1.387927], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_78_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_78_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_78_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_78_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_78_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_78_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.725417, 0.297171, -0.620854], [0.687848, -0.279954, 0.669695], [0.025203, -0.912861, -0.407492]] and translation vector: [3.434752, 3.057745, 1.556519], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.722045, 0.303192, -0.621873], [0.691238, -0.278447, 0.666827], [0.029018, -0.911341, -0.410629]] and translation vector: [3.433538, 3.052318, 1.549734], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_79_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_79_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_79_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_79_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_79_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_79_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.156961, 0.257294, -0.953501], [0.986843, 0.002956, -0.161652], [-0.038773, -0.966329, -0.254373]] and translation vector: [1.838324, 1.205476, 1.480452], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.155829, 0.255617, -0.954137], [0.987039, 0.002796, -0.160453], [-0.038347, -0.966774, -0.252739]] and translation vector: [1.83996, 1.205416, 1.474648], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_80_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_80_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_80_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_80_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_80_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_80_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.922168, 0.178823, -0.342969], [0.38661, 0.453076, -0.803278], [0.011746, -0.873352, -0.486947]] and translation vector: [3.207336, 1.959871, 1.267555], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.914921, 0.180426, -0.361063], [0.403188, 0.450583, -0.796502], [0.018979, -0.874312, -0.484993]] and translation vector: [3.204391, 1.957541, 1.273759], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_81_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_81_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_81_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_81_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_81_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_81_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.241978, -0.427128, 0.871211], [-0.963615, 0.210861, -0.164264], [-0.113543, -0.879261, -0.462611]] and translation vector: [2.164319, 10.11033, 1.716674], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.23973, -0.426819, 0.871983], [-0.964754, 0.205144, -0.16482], [-0.108534, -0.880762, -0.460955]] and translation vector: [2.164643, 10.108889, 1.726434], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_82_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_82_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_82_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_82_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_82_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_82_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.424269, -0.366439, 0.828081], [-0.894198, -0.025281, 0.446957], [-0.142848, -0.930098, -0.338395]] and translation vector: [2.638367, 6.760901, 1.41712], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.432512, -0.37625, 0.819371], [-0.890339, -0.034872, 0.45396], [-0.14223, -0.925862, -0.350073]] and translation vector: [2.640049, 6.763855, 1.420073], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_83_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_83_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_83_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_83_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_83_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_83_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.645842, -0.099101, 0.757012], [-0.761541, -0.013148, 0.647984], [-0.054263, -0.994991, -0.083961]] and translation vector: [3.729951, 1.432448, 1.733539], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.649827, -0.099601, 0.753528], [-0.757797, -0.00807, 0.652441], [-0.058903, -0.994995, -0.080722]] and translation vector: [3.727943, 1.43259, 1.731865], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_84_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_84_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_84_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_84_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_84_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_84_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.686341, -0.358824, 0.632599], [-0.727213, -0.35045, 0.590209], [0.009912, -0.865119, -0.50147]] and translation vector: [2.486494, 4.601647, 1.455454], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.681394, -0.352774, 0.64129], [-0.731846, -0.340576, 0.590263], [0.010179, -0.871527, -0.490243]] and translation vector: [2.480601, 4.595852, 1.449959], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_85_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_85_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_85_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_85_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_85_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_85_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.515401, -0.339121, 0.786994], [-0.847541, -0.337435, 0.40965], [0.126638, -0.878143, -0.461333]] and translation vector: [4.776819, 1.138867, 1.280463], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.495978, -0.33911, 0.799381], [-0.859276, -0.324304, 0.395565], [0.125103, -0.88308, -0.452237]] and translation vector: [4.773187, 1.14016, 1.284317], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_86_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_86_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_86_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_86_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_86_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_86_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.799511, 0.533863, -0.275266], [0.600541, 0.71925, -0.349328], [0.011492, -0.4446, -0.895656]] and translation vector: [2.031323, 2.312379, 1.200993], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.794986, 0.540559, -0.275306], [0.606553, 0.715482, -0.346669], [0.009582, -0.442584, -0.896676]] and translation vector: [2.031011, 2.313572, 1.199732], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_87_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_87_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_87_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_87_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_87_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_87_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.830629, 0.239867, -0.502514], [0.556756, 0.37214, -0.742654], [0.008867, -0.896647, -0.442658]] and translation vector: [4.849209, 2.614689, 1.447477], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.826514, 0.239564, -0.509396], [0.562778, 0.371773, -0.738286], [0.012512, -0.89688, -0.442097]] and translation vector: [4.848542, 2.612423, 1.449706], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_88_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_88_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_88_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_88_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_88_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_88_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.977181, 0.077241, -0.197866], [0.211774, -0.426158, 0.879512], [-0.016388, -0.901345, -0.432791]] and translation vector: [0.977323, 0.877303, 1.40232], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.979446, 0.063797, -0.19135], [0.200663, -0.404476, 0.892263], [-0.020472, -0.912321, -0.408965]] and translation vector: [0.961423, 0.875672, 1.418643], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_89_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_89_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_89_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_89_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_89_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_89_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.977514, -0.102294, 0.184398], [-0.210796, -0.497303, 0.841578], [0.005613, -0.861525, -0.507684]] and translation vector: [3.555602, 1.207732, 1.356493], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.976582, -0.105336, 0.187593], [-0.215087, -0.498001, 0.840079], [0.00493, -0.860755, -0.508995]] and translation vector: [3.555365, 1.207812, 1.356155], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_90_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_90_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_90_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_90_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_90_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_90_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.869565, 0.231948, -0.435955], [0.492522, 0.471291, -0.731647], [0.035758, -0.850932, -0.524058]] and translation vector: [2.750575, 3.154689, 1.290553], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.871211, 0.246607, -0.424472], [0.49036, 0.478017, -0.72873], [0.023195, -0.843022, -0.53738]] and translation vector: [2.712538, 3.137298, 1.287246], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_91_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_91_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_91_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_91_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_91_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_91_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.991592, 0.052224, -0.118397], [0.1292, -0.348306, 0.928435], [0.007248, -0.935925, -0.352124]] and translation vector: [2.177373, 2.142725, 1.46728], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.992093, 0.047571, -0.11614], [0.125441, -0.346386, 0.929667], [0.003996, -0.936885, -0.349615]] and translation vector: [2.181058, 2.142908, 1.465582], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_92_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_92_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_92_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_92_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_92_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_92_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.987126, 0.106622, -0.119219], [0.159938, -0.652529, 0.740693], [0.00118, -0.750225, -0.661181]] and translation vector: [4.64166, 4.052867, 1.404314], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.987387, 0.107853, -0.115912], [0.158278, -0.654013, 0.73974], [0.003975, -0.748756, -0.662834]] and translation vector: [4.649776, 4.051806, 1.400746], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_93_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_93_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_93_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_93_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_93_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_93_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.892065, -0.360019, 0.273141], [-0.443019, -0.577417, 0.685801], [-0.089185, -0.732786, -0.674589]] and translation vector: [2.898737, 2.45906, 1.649541], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.888376, -0.366176, 0.276954], [-0.450762, -0.581088, 0.677606], [-0.087189, -0.726809, -0.681283]] and translation vector: [2.873446, 2.440832, 1.651115], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_94_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_94_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_94_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_94_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_94_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_94_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.610102, 0.375008, -0.697958], [0.791763, 0.255448, -0.554849], [-0.029781, -0.891132, -0.452767]] and translation vector: [2.349929, 1.419923, 1.358478], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.607496, 0.374505, -0.700496], [0.793845, 0.255679, -0.551759], [-0.027534, -0.891277, -0.452623]] and translation vector: [2.354864, 1.421781, 1.358478], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_95_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_95_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_95_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_95_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_95_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_95_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.386761, -0.304254, 0.870543], [-0.920043, 0.191539, -0.34181], [-0.062746, -0.933136, -0.354007]] and translation vector: [2.082368, 4.008438, 1.845888], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.387201, -0.298257, 0.872421], [-0.919947, 0.188025, -0.344013], [-0.061432, -0.935783, -0.347183]] and translation vector: [2.08001, 4.010775, 1.842824], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_96_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_96_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_96_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_96_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_96_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_96_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.993306, 0.029023, -0.111812], [0.110831, -0.512349, 0.851596], [-0.032571, -0.858287, -0.512136]] and translation vector: [2.482234, 1.391135, 1.348064], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.992702, 0.031717, -0.116349], [0.116167, -0.510508, 0.85199], [-0.032374, -0.859288, -0.510467]] and translation vector: [2.48213, 1.388715, 1.34704], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_97_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_97_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_97_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_97_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_97_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_97_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.660671, 0.426343, -0.617856], [0.749322, -0.423957, 0.508701], [-0.045063, -0.799057, -0.599565]] and translation vector: [1.739014, 2.260029, 1.323145], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.661948, 0.412501, -0.625834], [0.748146, -0.41469, 0.517987], [-0.045857, -0.811095, -0.583114]] and translation vector: [1.741474, 2.257287, 1.327618], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_98_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_98_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_98_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_98_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_98_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_98_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.283698, -0.38675, 0.877463], [-0.95878, 0.129662, -0.252839], [-0.015988, -0.913024, -0.407593]] and translation vector: [3.69525, 3.551647, 1.352095], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.292652, -0.378333, 0.878191], [-0.956147, 0.127043, -0.2639], [-0.011726, -0.91691, -0.398922]] and translation vector: [3.694781, 3.553972, 1.346799], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_99_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_99_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_99_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_99_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_99_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_99_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.988959, -0.006087, -0.148062], [0.148117, 0.009943, 0.98892], [-0.004548, -0.999932, 0.010735]] and translation vector: [3.911582, 2.672538, 1.565046], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.987297, -0.007995, -0.158684], [0.158774, 0.012251, 0.987239], [-0.005949, -0.999893, 0.013365]] and translation vector: [3.955948, 2.679338, 1.574419], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_100_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_100_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_100_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_100_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_100_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_100_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.95695, -0.100486, 0.272304], [-0.288986, 0.24231, -0.92616], [0.027085, -0.964981, -0.260918]] and translation vector: [1.227478, 4.879099, 1.55452], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.957752, -0.097454, 0.27058], [-0.286469, 0.240112, -0.927514], [0.025421, -0.965841, -0.257885]] and translation vector: [1.221714, 4.885019, 1.554874], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_101_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_101_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_101_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_101_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_101_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_101_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.895509, 0.17248, -0.410263], [0.444823, 0.375965, -0.812886], [0.014038, -0.91044, -0.413402]] and translation vector: [2.818061, 5.409916, 1.54775], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.895274, 0.172164, -0.410907], [0.445264, 0.376844, -0.812237], [0.01501, -0.910136, -0.414037]] and translation vector: [2.819061, 5.407142, 1.548651], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_102_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_102_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_102_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_102_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_102_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_102_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.355681, -0.20797, 0.911175], [-0.934036, 0.113197, -0.338769], [-0.032689, -0.971563, -0.234514]] and translation vector: [0.539195, 4.841905, 1.636959], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.354881, -0.205091, 0.912139], [-0.934375, 0.110848, -0.338608], [-0.031664, -0.972446, -0.230969]] and translation vector: [0.533365, 4.84225, 1.627512], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_103_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_103_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_103_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_103_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_103_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_103_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.506976, -0.449046, 0.735753], [-0.861802, 0.247713, -0.442646], [0.016513, -0.858485, -0.512574]] and translation vector: [1.568574, 4.423309, 1.333385], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.503836, -0.444181, 0.740846], [-0.863753, 0.25025, -0.437385], [0.008882, -0.860278, -0.509748]] and translation vector: [1.576928, 4.418399, 1.331934], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_104_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_104_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_104_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_104_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_104_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_104_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.221984, 0.421429, -0.879273], [0.97466, 0.121427, -0.187867], [0.027595, -0.898695, -0.437705]] and translation vector: [3.155292, 0.483793, 1.35371], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.224547, 0.416482, -0.880978], [0.973822, 0.128715, -0.187361], [0.035363, -0.899986, -0.434482]] and translation vector: [3.157119, 0.483672, 1.354178], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_105_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_105_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_105_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_105_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_105_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_105_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.997074, 0.061747, -0.045056], [0.074474, 0.651998, -0.754554], [-0.017215, -0.755702, -0.654689]] and translation vector: [1.815792, 5.369752, 1.288561], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.994543, 0.080066, -0.066881], [0.102674, 0.63762, -0.763478], [-0.018484, -0.766179, -0.642361]] and translation vector: [1.819087, 5.36055, 1.286161], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_106_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_106_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_106_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_106_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_106_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_106_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.476704, 0.41796, -0.773345], [0.878176, 0.186897, -0.440314], [-0.039498, -0.889033, -0.456137]] and translation vector: [2.405627, 4.675593, 1.276166], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.455958, 0.42895, -0.779811], [0.88909, 0.179883, -0.420905], [-0.040272, -0.885237, -0.463394]] and translation vector: [2.408911, 4.675395, 1.276879], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_107_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_107_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_107_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_107_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_107_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_107_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.573165, 0.475287, -0.667521], [0.819422, -0.337921, 0.462988], [-0.005517, -0.81235, -0.583144]] and translation vector: [4.230747, 1.597944, 1.425469], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.580595, 0.472456, -0.663095], [0.814187, -0.339873, 0.470729], [-0.002969, -0.813186, -0.581996]] and translation vector: [4.228813, 1.597838, 1.42741], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_108_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_108_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_108_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_108_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_108_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_108_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.218501, -0.721835, 0.656667], [-0.97193, -0.10083, 0.212566], [-0.087226, -0.684681, -0.723605]] and translation vector: [2.10902, 2.428258, 1.386435], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.218569, -0.722397, 0.656026], [-0.971546, -0.098231, 0.215522], [-0.091251, -0.684466, -0.723312]] and translation vector: [2.107975, 2.430531, 1.385643], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_109_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_109_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_109_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_109_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_109_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_109_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.819759, -0.274444, 0.502669], [-0.572709, 0.39303, -0.719397], [-0.00013, -0.877615, -0.479366]] and translation vector: [2.765326, 1.370172, 1.355227], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.819555, -0.26888, 0.505998], [-0.572993, 0.389095, -0.721307], [-0.002936, -0.881084, -0.472951]] and translation vector: [2.765196, 1.369276, 1.358405], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_110_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_110_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_110_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_110_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_110_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_110_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.769532, -0.429513, 0.472588], [-0.615738, -0.302759, 0.727464], [-0.169375, -0.850797, -0.49745]] and translation vector: [2.184386, 2.253813, 1.283805], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.76638, -0.428136, 0.478917], [-0.620171, -0.298738, 0.725357], [-0.167481, -0.85291, -0.494464]] and translation vector: [2.185226, 2.257666, 1.286817], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_111_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_111_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_111_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_111_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_111_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_111_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.493838, -0.420518, 0.76111], [-0.864926, -0.147366, 0.479777], [-0.089593, -0.895236, -0.436493]] and translation vector: [0.736944, 2.108944, 1.402726], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.487676, -0.423405, 0.763479], [-0.869284, -0.154634, 0.469504], [-0.080731, -0.892646, -0.443471]] and translation vector: [0.733117, 2.095654, 1.39687], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_112_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_112_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_112_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_112_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_112_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_112_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.341382, 0.594812, -0.727775], [0.932196, 0.11517, -0.343142], [-0.120287, -0.795572, -0.593798]] and translation vector: [7.151203, 3.587152, 1.581923], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.344041, 0.585523, -0.734029], [0.930897, 0.110501, -0.348168], [-0.122749, -0.803089, -0.583079]] and translation vector: [7.150104, 3.60012, 1.584136], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_113_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_113_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_113_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_113_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_113_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_113_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.060487, 0.154719, -0.986105], [0.998165, 0.006603, -0.060191], [-0.002801, -0.987936, -0.154835]] and translation vector: [6.630666, 2.572317, 1.44523], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.062036, 0.175232, -0.982571], [0.998074, 0.011306, -0.060998], [0.00042, -0.984462, -0.175596]] and translation vector: [6.62843, 2.567178, 1.442285], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_114_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_114_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_114_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_114_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_114_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_114_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.207705, 0.494542, -0.843971], [0.97739, -0.069996, 0.199524], [0.039599, -0.866331, -0.497898]] and translation vector: [4.53083, 2.291093, 1.52739], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.209269, 0.494574, -0.843566], [0.977066, -0.071037, 0.200739], [0.039356, -0.866228, -0.498097]] and translation vector: [4.529976, 2.291335, 1.526507], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_115_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_115_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_115_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_115_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_115_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_115_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.778266, 0.076502, -0.623257], [0.626532, 0.028295, -0.778882], [-0.041951, -0.996668, -0.069952]] and translation vector: [4.354075, 2.27787, 1.510689], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.774603, 0.078895, -0.627508], [0.631084, 0.031306, -0.775082], [-0.041505, -0.996391, -0.074039]] and translation vector: [4.353431, 2.276987, 1.507071], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_116_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_116_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_116_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_116_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_116_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_116_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.982764, 0.054289, -0.17671], [0.184841, -0.27426, 0.943724], [0.002769, -0.960122, -0.279568]] and translation vector: [4.072058, 1.220293, 1.47625], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.982485, 0.057917, -0.177113], [0.186218, -0.270474, 0.944546], [0.0068, -0.960984, -0.276522]] and translation vector: [4.071517, 1.218265, 1.477941], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_117_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_117_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_117_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_117_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_117_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_117_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.286652, 0.220257, -0.932372], [0.958024, -0.061246, 0.28007], [0.004584, -0.973517, -0.228568]] and translation vector: [3.76659, 1.676076, 1.452194], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.299829, 0.216367, -0.929133], [0.953977, -0.07366, 0.290693], [-0.005544, -0.973529, -0.228495]] and translation vector: [3.753121, 1.670498, 1.452776], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_118_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_118_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_118_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_118_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_118_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_118_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.848489, -0.131122, 0.512712], [-0.527579, 0.133483, -0.838954], [0.041567, -0.982339, -0.182436]] and translation vector: [2.702568, 1.718074, 1.602473], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.851363, -0.128939, 0.508484], [-0.523333, 0.142037, -0.840207], [0.036112, -0.981428, -0.188403]] and translation vector: [2.706553, 1.721294, 1.602035], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_119_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_119_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_119_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_119_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_119_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_119_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.764638, 0.028658, -0.643823], [0.64431, -0.055554, 0.762744], [-0.013909, -0.998044, -0.060944]] and translation vector: [3.061982, 3.98913, 1.495508], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.765028, 0.027801, -0.643396], [0.643825, -0.056098, 0.763114], [-0.014878, -0.998038, -0.060816]] and translation vector: [3.064652, 3.991985, 1.487138], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_120_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_120_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_120_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_120_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_120_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_120_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.935878, -0.161972, 0.312885], [-0.352322, 0.433116, -0.829627], [-0.001139, -0.886666, -0.46241]] and translation vector: [1.123681, 2.231354, 1.408983], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.935522, -0.159, 0.315466], [-0.353249, 0.430874, -0.830399], [-0.003893, -0.888294, -0.459258]] and translation vector: [1.123559, 2.231523, 1.408322], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_121_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_121_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_121_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_121_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_121_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_121_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.45377, -0.425062, 0.783208], [-0.891046, 0.227634, -0.392708], [-0.01136, -0.876074, -0.482043]] and translation vector: [2.25004, 3.862298, 1.519108], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.453547, -0.422981, 0.784463], [-0.891155, 0.226808, -0.392938], [-0.011717, -0.877294, -0.47981]] and translation vector: [2.249275, 3.861866, 1.519019], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_122_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_122_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_122_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_122_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_122_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_122_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.205292, 0.226186, -0.952205], [0.97316, -0.150555, 0.174048], [-0.103992, -0.962379, -0.251024]] and translation vector: [4.876985, 2.837537, 1.671042], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.210488, 0.22021, -0.952472], [0.971775, -0.153305, 0.17931], [-0.106533, -0.96333, -0.246263]] and translation vector: [4.87733, 2.840179, 1.675237], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_123_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_123_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_123_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_123_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_123_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_123_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.037281, 0.595041, -0.80283], [0.998378, -0.012419, -0.055566], [-0.043034, -0.803599, -0.593613]] and translation vector: [3.95675, 2.244474, 1.442954], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.038109, 0.594465, -0.803218], [0.998341, -0.012073, -0.056302], [-0.043167, -0.80403, -0.593019]] and translation vector: [3.957906, 2.244142, 1.441716], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_124_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_124_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_124_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_124_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_124_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_124_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.070416, -0.411804, 0.908548], [-0.99671, 0.065705, -0.047468], [-0.040148, -0.908901, -0.415075]] and translation vector: [2.214543, 1.806687, 1.391502], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.072195, -0.409813, 0.909308], [-0.996578, 0.066438, -0.049181], [-0.040258, -0.909747, -0.413207]] and translation vector: [2.216063, 1.808517, 1.395188], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_125_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_125_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_125_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_125_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_125_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_125_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.086843, 0.425015, -0.901011], [0.995696, 0.066429, -0.064634], [0.032383, -0.902745, -0.428955]] and translation vector: [4.261571, 5.85756, 1.66629], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.086953, 0.422316, -0.902268], [0.995713, 0.06553, -0.065286], [0.031554, -0.904077, -0.426204]] and translation vector: [4.260677, 5.865657, 1.669414], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_126_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_126_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_126_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_126_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_126_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_126_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.882784, 0.25224, -0.396318], [0.469583, -0.498211, 0.728888], [-0.013595, -0.829554, -0.55826]] and translation vector: [3.463734, 1.394934, 1.262723], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.883097, 0.250738, -0.396574], [0.468931, -0.499833, 0.728197], [-0.015634, -0.829034, -0.558979]] and translation vector: [3.462241, 1.393432, 1.262782], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_127_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_127_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_127_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_127_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_127_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_127_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.079656, -0.319192, 0.944337], [-0.994012, 0.096527, -0.051219], [-0.074805, -0.942762, -0.324969]] and translation vector: [4.3352, 2.935251, 1.464921], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.08136, -0.319768, 0.943996], [-0.993796, 0.098086, -0.052427], [-0.075828, -0.942405, -0.325765]] and translation vector: [4.335558, 2.933583, 1.460394], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_128_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_128_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_128_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_128_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_128_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_128_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.255252, -0.433184, 0.864406], [-0.966562, 0.137073, -0.216725], [-0.024605, -0.890821, -0.453687]] and translation vector: [1.468232, 3.881342, 1.432686], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.253329, -0.437174, 0.862962], [-0.967015, 0.138948, -0.213484], [-0.026577, -0.888579, -0.457953]] and translation vector: [1.469363, 3.879031, 1.438972], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_129_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_129_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_129_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_129_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_129_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_129_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.999403, 0.004498, 0.03425], [-0.034232, -0.004158, 0.999405], [0.004638, -0.999981, -0.004001]] and translation vector: [2.393484, 5.775056, 1.371464], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.998454, -0.001139, 0.055575], [-0.055569, 0.004857, 0.998443], [-0.001408, -0.999988, 0.004786]] and translation vector: [2.356134, 5.774678, 1.367739], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_130_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_130_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_130_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_130_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_130_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_130_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.233902, -0.58763, 0.774584], [-0.967246, -0.059828, 0.246692], [-0.098622, -0.806915, -0.582377]] and translation vector: [0.860343, 3.117731, 1.418568], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.233684, -0.587102, 0.775051], [-0.967496, -0.061159, 0.24538], [-0.096661, -0.8072, -0.58231]] and translation vector: [0.859973, 3.119137, 1.418853], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_131_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_131_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_131_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_131_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_131_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_131_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.767458, -0.265442, 0.583565], [-0.640543, 0.35536, -0.680752], [-0.026676, -0.896248, -0.442751]] and translation vector: [3.343537, 3.697402, 1.375352], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.780866, -0.263741, 0.566294], [-0.624403, 0.357431, -0.694525], [-0.019236, -0.895926, -0.443786]] and translation vector: [3.344022, 3.709659, 1.376654], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_132_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_132_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_132_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_132_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_132_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_132_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.623567, 0.536294, -0.568817], [0.781209, -0.455034, 0.427384], [-0.029628, -0.710867, -0.702702]] and translation vector: [1.790477, 1.816361, 1.229059], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.636074, 0.528408, -0.562313], [0.771074, -0.462894, 0.437235], [-0.029252, -0.711698, -0.701876]] and translation vector: [1.794875, 1.819226, 1.230937], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_133_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_133_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_133_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_133_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_133_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_133_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.140295, 0.625342, -0.767636], [0.990108, -0.090149, 0.107516], [-0.001967, -0.775126, -0.631804]] and translation vector: [3.410891, 3.073526, 1.198756], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.148525, 0.612201, -0.776627], [0.988818, -0.102561, 0.108258], [-0.013376, -0.784022, -0.620589]] and translation vector: [3.421496, 3.097678, 1.206193], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_134_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_134_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_134_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_134_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_134_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_134_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.14018, 0.443083, -0.885453], [0.989985, -0.07783, 0.117782], [-0.016727, -0.893096, -0.449556]] and translation vector: [3.549726, 0.935059, 1.485921], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.140682, 0.443565, -0.885132], [0.989931, -0.077142, 0.11868], [-0.015638, -0.892916, -0.449951]] and translation vector: [3.549777, 0.934132, 1.483108], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_135_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_135_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_135_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_135_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_135_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_135_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.631332, 0.312126, -0.709927], [0.775472, -0.26347, 0.573784], [-0.007951, -0.912776, -0.408382]] and translation vector: [1.600176, 0.624978, 1.327739], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.627277, 0.311053, -0.713982], [0.778666, -0.267257, 0.567673], [-0.014241, -0.912041, -0.409851]] and translation vector: [1.601099, 0.627571, 1.328079], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_136_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_136_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_136_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_136_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_136_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_136_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.963317, 0.154363, -0.219528], [0.260086, 0.335369, -0.905474], [-0.066149, -0.929355, -0.363214]] and translation vector: [5.972451, 2.818726, 1.468896], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.963149, 0.154275, -0.220326], [0.260736, 0.334417, -0.905639], [-0.066037, -0.929712, -0.362318]] and translation vector: [5.973901, 2.819783, 1.467855], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_137_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_137_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_137_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_137_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_137_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_137_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.983299, 0.047874, -0.175588], [0.180439, -0.382417, 0.9062], [-0.023764, -0.922749, -0.384668]] and translation vector: [2.208684, 3.483128, 1.468268], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.982577, 0.045136, -0.18029], [0.183889, -0.376806, 0.907856], [-0.026957, -0.925192, -0.378541]] and translation vector: [2.211137, 3.481059, 1.465482], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_138_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_138_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_138_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_138_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_138_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_138_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.824719, -0.175736, 0.537546], [-0.564369, 0.316962, -0.762249], [-0.036427, -0.932015, -0.360584]] and translation vector: [4.397487, 4.054199, 1.411764], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.821778, -0.181799, 0.540028], [-0.568729, 0.319986, -0.757731], [-0.035047, -0.929816, -0.366351]] and translation vector: [4.391561, 4.044915, 1.406417], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_139_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_139_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_139_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_139_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_139_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_139_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.804945, -0.278842, 0.523748], [-0.593014, 0.407765, -0.694307], [-0.019964, -0.869468, -0.493585]] and translation vector: [4.871809, 2.494869, 1.402737], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.804444, -0.274614, 0.526742], [-0.593612, 0.404842, -0.695506], [-0.022252, -0.872176, -0.488687]] and translation vector: [4.863627, 2.491699, 1.400121], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_140_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_140_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_140_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_140_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_140_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_140_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.000188, -0.47362, 0.88073], [-0.997828, 0.057931, 0.031365], [-0.065877, -0.878822, -0.47258]] and translation vector: [4.366519, 5.511691, 1.307889], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.002248, -0.465195, 0.885205], [-0.998254, 0.053289, 0.02547], [-0.05902, -0.883603, -0.464503]] and translation vector: [4.36891, 5.516212, 1.317108], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_141_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_141_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_141_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_141_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_141_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_141_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.881415, -0.308012, 0.3581], [-0.47008, 0.646119, -0.601294], [-0.046169, -0.698325, -0.71429]] and translation vector: [3.147524, 1.689608, 1.273114], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.879224, -0.311908, 0.360109], [-0.474637, 0.638627, -0.605703], [-0.041052, -0.703469, -0.709539]] and translation vector: [3.141599, 1.689583, 1.27073], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_142_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_142_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_142_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_142_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_142_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_142_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.954506, 0.05554, -0.292973], [0.288831, -0.41644, 0.862064], [-0.074127, -0.907465, -0.413536]] and translation vector: [2.66447, 1.005586, 1.476015], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.956668, 0.052296, -0.286448], [0.280824, -0.425753, 0.860158], [-0.076973, -0.903327, -0.42199]] and translation vector: [2.657996, 1.004761, 1.470821], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_143_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_143_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_143_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_143_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_143_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_143_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.804414, -0.195207, 0.561082], [-0.593456, -0.306943, 0.74404], [0.026978, -0.931494, -0.362756]] and translation vector: [4.397897, 1.805397, 1.263968], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.81043, -0.19082, 0.553888], [-0.585149, -0.309439, 0.749566], [0.028363, -0.931577, -0.362436]] and translation vector: [4.406421, 1.797547, 1.276681], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_144_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_144_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_144_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_144_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_144_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_144_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.924593, 0.219455, -0.311397], [0.371095, 0.334047, -0.86643], [-0.086121, -0.916653, -0.390296]] and translation vector: [7.650298, 2.745242, 1.444521], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.925403, 0.221817, -0.30729], [0.368562, 0.337876, -0.866026], [-0.088274, -0.914679, -0.394425]] and translation vector: [7.650829, 2.747432, 1.442508], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_145_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_145_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_145_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_145_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_145_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_145_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.173351, 0.592298, -0.78685], [0.984858, -0.105806, 0.137329], [-0.001913, -0.798742, -0.601671]] and translation vector: [3.264189, 1.940071, 1.28435], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.172933, 0.589263, -0.789217], [0.98493, -0.105695, 0.136901], [-0.002745, -0.800998, -0.598661]] and translation vector: [3.267153, 1.942133, 1.284021], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_146_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_146_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_146_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_146_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_146_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_146_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.861262, 0.35211, -0.366398], [0.508128, 0.60504, -0.61297], [0.005853, -0.714105, -0.700014]] and translation vector: [3.145762, 3.637784, 1.437024], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.859655, 0.347273, -0.374693], [0.510745, 0.600786, -0.614977], [0.011546, -0.720041, -0.693836]] and translation vector: [3.145171, 3.63531, 1.440385], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_147_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_147_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_147_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_147_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_147_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_147_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.927869, -0.125596, 0.351119], [-0.372891, -0.32108, 0.870551], [0.003399, -0.938687, -0.344754]] and translation vector: [5.442723, 4.031985, 1.348893], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.928984, -0.124208, 0.348657], [-0.370086, -0.32475, 0.870387], [0.005117, -0.937609, -0.347654]] and translation vector: [5.438782, 4.038163, 1.363364], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_148_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_148_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_148_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_148_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_148_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_148_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.32152, -0.4706, 0.821681], [-0.946681, 0.178549, -0.268172], [-0.020508, -0.864092, -0.502915]] and translation vector: [2.120097, 2.367636, 1.494245], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.324752, -0.471365, 0.819971], [-0.945715, 0.173395, -0.274877], [-0.012612, -0.864725, -0.502087]] and translation vector: [2.101204, 2.346659, 1.492081], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_149_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_149_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_149_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_149_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_149_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_149_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.857694, 0.203115, -0.472341], [0.513544, 0.293426, -0.806333], [-0.025181, -0.934155, -0.355978]] and translation vector: [3.161674, 3.662206, 1.335287], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.856666, 0.203827, -0.473897], [0.515344, 0.296604, -0.804019], [-0.023321, -0.932995, -0.359132]] and translation vector: [3.164327, 3.659025, 1.330704], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_150_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_150_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_150_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_150_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_150_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_150_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.975982, 0.033782, -0.215214], [0.215389, -0.297687, 0.930048], [-0.032648, -0.954066, -0.297814]] and translation vector: [2.838751, 1.414222, 1.664536], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.976127, 0.034525, -0.21444], [0.21483, -0.298963, 0.929769], [-0.03201, -0.95364, -0.299243]] and translation vector: [2.83798, 1.414721, 1.663024], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_151_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_151_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_151_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_151_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_151_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_151_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.844798, -0.442354, 0.301064], [-0.534849, 0.714819, -0.450523], [-0.015916, -0.541624, -0.84047]] and translation vector: [3.085932, 7.995926, 1.934485], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.833593, -0.457276, 0.309873], [-0.552243, 0.702368, -0.449118], [-0.012274, -0.545507, -0.838017]] and translation vector: [3.091993, 8.002051, 1.93396], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_152_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_152_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_152_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_152_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_152_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_152_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.956223, -0.170898, 0.237554], [-0.292595, -0.544035, 0.786393], [-0.005155, -0.821474, -0.570223]] and translation vector: [1.275326, 2.834272, 1.3185], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.956815, -0.170774, 0.235249], [-0.290631, -0.544392, 0.786875], [-0.00631, -0.821263, -0.570514]] and translation vector: [1.276568, 2.833979, 1.318089], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_153_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_153_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_153_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_153_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_153_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_153_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.852441, 0.228219, -0.470383], [0.522431, 0.337001, -0.78326], [-0.020235, -0.913426, -0.406502]] and translation vector: [1.798405, 5.320803, 1.619482], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.850776, 0.231102, -0.471988], [0.52508, 0.336676, -0.781627], [-0.021728, -0.91282, -0.407783]] and translation vector: [1.793927, 5.32593, 1.618758], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_154_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_154_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_154_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_154_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_154_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_154_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.999494, 0.005595, 0.031322], [-0.029883, 0.172936, -0.98448], [-0.010925, -0.984917, -0.172681]] and translation vector: [6.687301, 5.436423, 1.742894], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.999393, 0.00615, 0.034285], [-0.032681, 0.175053, -0.984017], [-0.012053, -0.98454, -0.174746]] and translation vector: [6.681215, 5.427393, 1.75699], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_155_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_155_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_155_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_155_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_155_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_155_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.99336, -0.011945, -0.114427], [0.103059, -0.349694, 0.931178], [-0.051137, -0.936788, -0.346141]] and translation vector: [2.948285, 4.432959, 1.460427], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.99314, -0.016022, -0.115825], [0.102925, -0.35027, 0.930977], [-0.055486, -0.936512, -0.346218]] and translation vector: [2.949102, 4.433566, 1.463483], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_156_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_156_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_156_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_156_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_156_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_156_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.40936, -0.486807, 0.77165], [-0.912164, 0.236459, -0.334729], [-0.019515, -0.840896, -0.540844]] and translation vector: [1.412713, 1.214489, 1.390939], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.417972, -0.487805, 0.766384], [-0.908352, 0.237425, -0.344277], [-0.014019, -0.840045, -0.542336]] and translation vector: [1.411881, 1.212071, 1.390231], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_157_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_157_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_157_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_157_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_157_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_157_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.442667, -0.46733, 0.765277], [-0.896368, 0.253361, -0.363776], [-0.023888, -0.847001, -0.531054]] and translation vector: [2.453469, 1.905797, 1.451684], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.441405, -0.472001, 0.763136], [-0.897015, 0.253848, -0.361837], [-0.022933, -0.844261, -0.535442]] and translation vector: [2.45238, 1.90449, 1.449179], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_158_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_158_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_158_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_158_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_158_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_158_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.88123, -0.188698, 0.433389], [-0.470321, -0.258404, 0.843816], [-0.047237, -0.947428, -0.316462]] and translation vector: [1.061636, 1.321782, 1.457525], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.879526, -0.187337, 0.437423], [-0.473303, -0.249401, 0.844857], [-0.049179, -0.950107, -0.308022]] and translation vector: [1.052651, 1.315727, 1.459226], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_159_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_159_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_159_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_159_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_159_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_159_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.15851, 0.420096, -0.893529], [0.981106, -0.034663, -0.190342], [-0.110934, -0.906817, -0.406664]] and translation vector: [4.004256, 0.910349, 2.578562], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.153085, 0.419732, -0.894645], [0.982322, -0.034068, -0.184071], [-0.107739, -0.907009, -0.407097]] and translation vector: [4.005316, 0.908549, 2.574668], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_160_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_160_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_160_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_160_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_160_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_160_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.565317, -0.50256, 0.654103], [-0.824719, 0.328974, -0.460017], [0.016003, -0.799506, -0.600445]] and translation vector: [4.07549, 5.065369, 1.281872], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.538132, -0.502349, 0.676801], [-0.842747, 0.30749, -0.441846], [0.013851, -0.808143, -0.588824]] and translation vector: [4.054681, 5.042427, 1.283033], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_161_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_161_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_161_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_161_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_161_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_161_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.998162, -0.007354, -0.06016], [0.055338, 0.294228, -0.954132], [0.024717, -0.955707, -0.293281]] and translation vector: [1.687981, 4.43329, 1.569003], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.998237, -0.004775, -0.059163], [0.055295, 0.287523, -0.956176], [0.021577, -0.957762, -0.286752]] and translation vector: [1.687716, 4.435163, 1.571974], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_162_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_162_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_162_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_162_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_162_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_162_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.30056, -0.511506, 0.805], [-0.953151, 0.130866, -0.272721], [0.034151, -0.849256, -0.526876]] and translation vector: [-0.281614, 2.924112, 1.306122], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.318531, -0.50267, 0.803655], [-0.947336, 0.139247, -0.288383], [0.033055, -0.85319, -0.520551]] and translation vector: [-0.284617, 2.924129, 1.305331], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_163_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_163_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_163_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_163_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_163_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_163_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.815869, 0.244354, -0.524069], [0.578211, -0.336271, 0.743367], [0.005416, -0.909513, -0.415641]] and translation vector: [2.358014, 1.230078, 1.369842], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.817563, 0.244526, -0.521342], [0.575764, -0.332513, 0.746947], [0.009295, -0.910847, -0.41264]] and translation vector: [2.355037, 1.229076, 1.372478], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_164_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_164_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_164_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_164_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_164_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_164_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.971613, -0.06682, 0.226943], [-0.235147, 0.378036, -0.89543], [-0.02596, -0.923376, -0.383017]] and translation vector: [2.775299, 4.618156, 1.427592], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.969099, -0.066923, 0.237421], [-0.244849, 0.377786, -0.892932], [-0.029937, -0.923471, -0.382498]] and translation vector: [2.770648, 4.620754, 1.418404], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_165_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_165_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_165_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_165_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_165_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_165_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.117057, -0.769276, 0.628102], [-0.987232, -0.021336, 0.157855], [-0.108033, -0.638561, -0.761951]] and translation vector: [1.032686, 1.226834, 2.186959], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.111522, -0.769903, 0.628341], [-0.98843, -0.020525, 0.150284], [-0.102807, -0.637831, -0.763284]] and translation vector: [1.037875, 1.232625, 2.186027], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_166_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_166_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_166_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_166_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_166_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_166_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.053762, 0.423971, -0.904079], [0.99709, -0.071809, 0.025618], [-0.05406, -0.902825, -0.426597]] and translation vector: [3.696534, 7.381392, 1.65485], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.059051, 0.424044, -0.903714], [0.996629, -0.076693, 0.029136], [-0.056954, -0.902388, -0.427143]] and translation vector: [3.693501, 7.384472, 1.654036], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_167_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_167_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_167_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_167_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_167_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_167_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.255196, -0.436856, 0.862573], [-0.966393, 0.143834, -0.213066], [-0.030988, -0.887958, -0.45888]] and translation vector: [1.734999, 0.744851, 1.432124], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.254375, -0.435236, 0.863634], [-0.966628, 0.142475, -0.21291], [-0.03038, -0.888972, -0.456953]] and translation vector: [1.735377, 0.747301, 1.433656], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_168_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_168_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_168_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_168_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_168_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_168_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.299058, 0.37418, -0.877812], [0.95368, -0.085842, 0.288314], [0.032528, -0.923375, -0.38252]] and translation vector: [3.908031, 4.993837, 1.41318], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.301871, 0.365699, -0.880419], [0.952911, -0.087746, 0.290279], [0.028901, -0.926588, -0.374966]] and translation vector: [3.903484, 4.991583, 1.422828], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_169_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_169_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_169_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_169_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_169_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_169_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.349467, 0.022881, -0.936669], [0.936944, -0.011774, 0.349282], [-0.003037, -0.999669, -0.025553]] and translation vector: [3.08553, 2.787215, 1.609269], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.348555, 0.021762, -0.937036], [0.937279, -0.012701, 0.34835], [-0.00432, -0.999682, -0.024824]] and translation vector: [3.086167, 2.787834, 1.610474], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_170_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_170_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_170_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_170_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_170_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_170_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.187285, -0.627824, 0.755488], [-0.982305, 0.118515, -0.145025], [0.001514, -0.76928, -0.63891]] and translation vector: [1.001752, 1.17634, 1.437838], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.187139, -0.630563, 0.75324], [-0.982328, 0.117514, -0.14568], [0.003345, -0.767191, -0.64141]] and translation vector: [1.00191, 1.178201, 1.437088], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_171_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_171_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_171_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_171_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_171_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_171_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.052123, 0.492225, -0.868906], [0.996177, 0.08671, -0.010637], [0.070107, -0.866138, -0.494863]] and translation vector: [3.27549, 2.071379, 1.287401], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.035278, 0.492309, -0.869705], [0.997133, 0.075637, 0.002369], [0.066948, -0.867128, -0.493566]] and translation vector: [3.286684, 2.076202, 1.285681], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_172_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_172_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_172_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_172_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_172_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_172_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.721847, -0.019511, -0.691778], [0.690918, -0.036893, 0.721991], [-0.039608, -0.999129, -0.013151]] and translation vector: [1.871862, 0.815296, 1.594356], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.723033, -0.022358, -0.690452], [0.689637, -0.034974, 0.723311], [-0.04032, -0.999138, -0.009869]] and translation vector: [1.872181, 0.815734, 1.596287], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_173_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_173_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_173_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_173_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_173_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_173_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.112591, -0.547395, 0.829266], [-0.992672, 0.098819, -0.069547], [-0.043877, -0.83102, -0.55451]] and translation vector: [1.18498, 1.814175, 1.496605], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.111637, -0.546351, 0.830083], [-0.992679, 0.100057, -0.067648], [-0.046096, -0.831558, -0.553521]] and translation vector: [1.186424, 1.810214, 1.495373], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_174_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_174_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_174_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_174_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_174_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_174_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.59597, 0.482312, -0.642025], [0.802979, -0.35126, 0.4815], [0.006716, -0.802491, -0.596626]] and translation vector: [3.449961, 1.112515, 1.412234], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.596047, 0.483799, -0.640833], [0.802896, -0.349913, 0.482617], [0.009254, -0.802184, -0.597005]] and translation vector: [3.451157, 1.111087, 1.411899], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_175_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_175_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_175_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_175_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_175_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_175_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.132001, -0.567775, 0.812532], [-0.991224, 0.069667, -0.112349], [0.007182, -0.820231, -0.571988]] and translation vector: [2.407685, 4.450429, 1.359714], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.130918, -0.563466, 0.8157], [-0.991376, 0.069526, -0.111087], [0.005882, -0.823209, -0.567709]] and translation vector: [2.40989, 4.444678, 1.359228], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_176_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_176_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_176_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_176_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_176_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_176_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.443363, -0.325026, 0.835337], [-0.895367, 0.117125, -0.429651], [0.041809, -0.938424, -0.342946]] and translation vector: [2.190343, 3.392878, 1.594635], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.439336, -0.32163, 0.838772], [-0.897253, 0.111545, -0.427195], [0.043838, -0.940272, -0.337589]] and translation vector: [2.183471, 3.393708, 1.586874], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_177_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_177_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_177_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_177_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_177_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_177_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.985254, -0.134646, 0.105573], [-0.142287, -0.302097, 0.942599], [-0.095024, -0.94372, -0.3168]] and translation vector: [1.134605, 1.549487, 1.505245], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.985752, -0.13049, 0.106142], [-0.141062, -0.297585, 0.944216], [-0.091624, -0.945736, -0.311752]] and translation vector: [1.131707, 1.551058, 1.506377], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_178_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_178_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_178_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_178_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_178_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_178_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.753053, 0.123809, -0.646206], [0.619922, -0.462608, 0.633791], [-0.220471, -0.877875, -0.42512]] and translation vector: [4.259223, 3.769218, 1.505729], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.760823, 0.125761, -0.636658], [0.611756, -0.466381, 0.638939], [-0.216572, -0.875599, -0.431768]] and translation vector: [4.257898, 3.775608, 1.505422], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_179_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_179_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_179_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_179_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_179_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_179_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.924746, 0.145405, -0.351715], [0.379908, 0.407811, -0.830277], [0.022707, -0.901414, -0.432362]] and translation vector: [3.891577, 4.106122, 1.335216], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.925289, 0.144931, -0.350479], [0.378485, 0.412032, -0.828842], [0.024284, -0.899569, -0.436102]] and translation vector: [3.892777, 4.104329, 1.336806], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_180_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_180_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_180_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_180_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_180_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_180_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.748873, -0.374013, 0.547087], [-0.662404, -0.447673, 0.600675], [0.020256, -0.812221, -0.582998]] and translation vector: [3.709567, 4.406117, 1.261793], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.747082, -0.370975, 0.551585], [-0.664465, -0.440253, 0.603874], [0.018814, -0.817652, -0.575405]] and translation vector: [3.708719, 4.403161, 1.261416], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_181_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_181_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_181_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_181_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_181_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_181_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.934222, -0.219071, 0.281493], [-0.356558, -0.595286, 0.72007], [0.009823, -0.773073, -0.634241]] and translation vector: [0.331108, 1.989283, 1.551545], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.93341, -0.222981, 0.281114], [-0.358788, -0.589093, 0.724045], [0.004154, -0.776691, -0.629868]] and translation vector: [0.338532, 1.98258, 1.554168], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_182_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_182_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_182_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_182_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_182_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_182_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.52463, -0.231347, 0.819293], [-0.850589, 0.102279, -0.515789], [0.03553, -0.96748, -0.25044]] and translation vector: [5.897326, 2.792535, 1.553822], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.52763, -0.228151, 0.818263], [-0.84888, 0.105585, -0.517933], [0.03177, -0.967884, -0.249382]] and translation vector: [5.897463, 2.790525, 1.551499], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_183_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_183_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_183_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_183_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_183_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_183_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.699126, -0.324611, 0.637064], [-0.713802, 0.265353, -0.648131], [0.041344, -0.907863, -0.417224]] and translation vector: [0.050403, 3.78209, 1.506908], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.698648, -0.327666, 0.636024], [-0.713993, 0.262294, -0.649166], [0.045885, -0.907654, -0.417203]] and translation vector: [0.047406, 3.786517, 1.504266], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_184_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_184_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_184_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_184_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_184_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_184_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.990268, -0.101591, 0.095124], [-0.135934, -0.559426, 0.817658], [-0.029851, -0.822631, -0.567792]] and translation vector: [6.679901, 2.488796, 1.402653], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.989948, -0.105417, 0.094292], [-0.137296, -0.556168, 0.819651], [-0.033963, -0.824357, -0.565051]] and translation vector: [6.681146, 2.493639, 1.408598], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_185_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_185_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_185_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_185_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_185_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_185_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.311411, -0.45253, 0.835607], [-0.948656, 0.199362, -0.245576], [-0.055457, -0.869179, -0.491379]] and translation vector: [2.299133, 2.388773, 1.459468], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.314195, -0.454542, 0.833471], [-0.947818, 0.20019, -0.248124], [-0.05407, -0.867937, -0.493722]] and translation vector: [2.299448, 2.389842, 1.45904], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_186_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_186_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_186_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_186_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_186_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_186_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.789457, 0.162095, -0.592016], [0.613764, 0.197318, -0.764434], [-0.007096, -0.966846, -0.255262]] and translation vector: [5.114759, 3.17533, 1.386193], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.785271, 0.158609, -0.598492], [0.619131, 0.193201, -0.761151], [-0.005096, -0.968255, -0.249915]] and translation vector: [5.11251, 3.170745, 1.383731], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_187_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_187_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_187_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_187_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_187_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_187_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.408988, -0.323891, 0.853126], [-0.912443, -0.158736, 0.37716], [0.013263, -0.932683, -0.360453]] and translation vector: [3.672612, 2.990265, 1.494339], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.403714, -0.307769, 0.861564], [-0.914697, -0.154884, 0.373283], [0.018558, -0.93877, -0.344045]] and translation vector: [3.67724, 2.998002, 1.501107], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_188_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_188_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_188_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_188_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_188_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_188_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.831143, 0.312948, -0.459636], [0.555586, 0.43327, -0.709649], [-0.022937, -0.845187, -0.533978]] and translation vector: [2.360292, 3.05803, 1.315354], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.8108, 0.328121, -0.484706], [0.584922, 0.423558, -0.691711], [-0.021664, -0.844355, -0.535346]] and translation vector: [2.374215, 3.08026, 1.318953], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_189_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_189_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_189_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_189_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_189_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_189_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.802837, 0.056561, -0.593509], [0.596192, 0.071654, -0.799638], [-0.002701, -0.995825, -0.091248]] and translation vector: [2.583219, 4.008804, 1.439254], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.802466, 0.056012, -0.594063], [0.59669, 0.070227, -0.799393], [-0.003056, -0.995957, -0.089777]] and translation vector: [2.583684, 4.008714, 1.434935], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_190_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_190_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_190_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_190_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_190_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_190_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.032646, 0.194727, -0.980314], [0.998594, -0.034636, -0.040135], [-0.04177, -0.980246, -0.193322]] and translation vector: [3.506056, 2.493951, 1.706783], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.038857, 0.192835, -0.980462], [0.998032, -0.040846, -0.047587], [-0.049225, -0.980381, -0.190868]] and translation vector: [3.502031, 2.499079, 1.701362], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_191_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_191_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_191_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_191_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_191_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_191_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.573389, -0.355745, 0.738018], [-0.818965, 0.223754, -0.528424], [0.02285, -0.907403, -0.419641]] and translation vector: [2.061407, 3.857203, 1.382209], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.569689, -0.351701, 0.742806], [-0.821614, 0.221591, -0.525212], [0.020118, -0.909508, -0.4152]] and translation vector: [2.058259, 3.848013, 1.384733], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_192_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_192_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_192_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_192_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_192_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_192_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.863619, -0.252896, 0.436126], [-0.502889, 0.371124, -0.780621], [0.03556, -0.893482, -0.447688]] and translation vector: [2.007098, 3.82416, 1.536992], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.862677, -0.255046, 0.436739], [-0.504412, 0.370978, -0.779707], [0.036841, -0.892932, -0.448682]] and translation vector: [2.007321, 3.81907, 1.542811], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_193_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_193_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_193_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_193_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_193_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_193_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.986418, -0.051155, 0.156087], [-0.152905, 0.633099, -0.758819], [-0.060001, -0.772379, -0.632322]] and translation vector: [2.055195, 1.600374, 1.268236], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.986809, -0.050817, 0.15371], [-0.151071, 0.630346, -0.761474], [-0.058194, -0.77465, -0.629707]] and translation vector: [2.054364, 1.600927, 1.26836], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_194_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_194_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_194_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_194_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_194_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_194_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.436119, -0.427186, 0.79203], [-0.89981, 0.218659, -0.377532], [-0.011909, -0.877326, -0.479747]] and translation vector: [1.992302, 3.72193, 1.553249], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.436462, -0.426736, 0.792084], [-0.899636, 0.219226, -0.377618], [-0.012502, -0.877403, -0.47959]] and translation vector: [1.991236, 3.722176, 1.553282], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "D"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_195_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_195_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_195_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_195_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_195_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_195_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.996429, -0.081152, -0.023325], [-0.01119, 0.400709, -0.916137], [0.083693, -0.912604, -0.400187]] and translation vector: [7.365378, 2.610504, 1.343957], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.997089, -0.075007, -0.013671], [-0.016913, 0.392439, -0.919623], [0.074343, -0.916715, -0.392565]] and translation vector: [7.36531, 2.61944, 1.344548], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_196_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_196_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_196_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_196_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_196_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_196_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.896132, -0.052356, 0.440688], [-0.436974, -0.277444, 0.855616], [0.07747, -0.959314, -0.271505]] and translation vector: [3.211431, 3.110947, 1.584554], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.889709, -0.065096, 0.451863], [-0.451099, -0.277541, 0.848222], [0.070195, -0.958506, -0.276295]] and translation vector: [3.215954, 3.116336, 1.570817], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "A"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_197_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_197_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_197_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_197_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_197_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_197_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.643628, -0.362528, 0.674031], [-0.765241, -0.290748, 0.574345], [-0.012243, -0.88546, -0.464555]] and translation vector: [2.632762, 2.243425, 1.452714], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.642371, -0.361874, 0.675579], [-0.76623, -0.285016, 0.575898], [-0.015852, -0.887589, -0.460364]] and translation vector: [2.634792, 2.237319, 1.452971], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "B"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_198_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_198_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_198_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_198_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_198_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_198_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[-0.612656, -0.411508, 0.674769], [-0.789543, 0.280105, -0.546043], [0.035694, -0.867296, -0.496511]] and translation vector: [1.897828, 2.372103, 1.388776], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[-0.615876, -0.406578, 0.674826], [-0.787242, 0.284147, -0.547275], [0.03076, -0.868305, -0.495075]] and translation vector: [1.892345, 2.36762, 1.390764], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_depth_estimation", "options": "A: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_199_0.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_199_1.jpg", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_199_2.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_199_3.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_199_4.png", "3D-spatial/threeD_Depth_Estimation/threeD_Depth_Estimation_199_5.png"], "question": "Given the first color image view of the scene with the corresponding camera pose, i.e., rotation matrix: [[0.752445, 0.275595, -0.598225], [0.657828, -0.35994, 0.661593], [-0.032994, -0.891342, -0.452129]] and translation vector: [2.633805, 2.70906, 1.31733], and the second color image view of the same scene with the corresponding camera pose, i.e., rotation matrix: [[0.746128, 0.269733, -0.608718], [0.664676, -0.35493, 0.657443], [-0.038718, -0.895136, -0.444108]] and translation vector: [2.667176, 2.689206, 1.310347], please estimate the depth map for the first view of the RGB image. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to estimate the depth map for a color image based on two color images captured from two viewpoints, along with the corresponding camera poses.The input images are the first 2 images\nSelect from the following choices.\nA: The 3th image\nB: The 4th image\nC: The 5th image\nD: The 6th image"}, "output": {"output_text": "C"}, "task": "threeD_Depth_Estimation"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.097, -2.343, -0.119, 0.31, 0.062, 0.564], [-0.682, 2.2, 0.854, 0.245, 0.21, 0.887], [1.912, 1.405, 1.111, 0.468, 0.452, 0.649], [1.666, 2.151, 1.319, 0.566, 0.243, 0.586], [1.68, 1.827, 0.754, -0.048, 0.681, 0.119], [1.224, 1.284, 0.947, -0.031, 0.464, 0.194], [1.776, 1.335, 0.376, 0.886, 0.055, 0.335], [1.559, 1.179, 1.34, -0.063, -0.136, -0.017], [0.95, 0.255, 1.046, -0.137, 0.36, -0.187], [1.987, 0.956, 0.62, 0.226, -0.239, 0.309], [1.652, 0.525, 1.179, 0.104, 0.539, -0.125], [1.409, 0.711, 0.681, 0.259, 0.215, 0.643], [1.086, -0.177, -0.123, 0.706, 0.621, 0.551], [1.203, 1.982, 0.324, 0.158, 0.718, -0.1], [-1.373, -0.521, 0.674, -0.225, 0.726, 0.299], [-0.949, 2.103, 0.551, 0.314, 0.298, 0.513], [-0.76, 1.491, 2.338, 0.158, -0.084, 0.396], [1.233, -0.382, 0.447, 0.091, 0.059, -0.038], [1.9, -1.181, 1.39, 0.188, -0.114, -0.011]]\nB: [[-0.029, -1.923, 0.096, 0.249, 0.113, 0.317], [-0.92, 1.815, 0.646, 0.107, 0.184, 0.516], [1.611, 1.619, 0.954, 0.253, 0.266, 0.249], [1.544, 1.826, 0.949, 0.149, 0.178, 0.182], [1.432, 1.79, 0.87, 0.251, 0.301, 0.054], [1.423, 1.326, 0.897, 0.087, 0.104, 0.188], [1.554, 0.837, 0.836, 0.609, 0.432, 0.17], [1.27, 0.844, 0.842, 0.093, 0.107, 0.179], [1.248, 0.676, 0.764, 0.25, 0.269, 0.064], [1.848, 0.645, 0.825, 0.074, 0.102, 0.07], [1.69, 0.454, 0.837, 0.248, 0.167, 0.182], [1.715, 0.276, 0.86, 0.335, 0.399, 0.17], [1.4, -0.193, 0.037, 0.353, 0.275, 0.161], [1.684, 1.781, 0.29, 0.433, 0.395, 0.339], [-1.62, -0.65, 0.742, 0.272, 0.321, 0.114], [-0.975, 1.832, 0.171, 0.262, 0.195, 0.125], [-1.021, 1.599, 2.098, 0.217, 0.273, 0.221], [1.433, 0.084, 0.074, 0.398, 0.344, 0.176], [1.733, -1.208, 1.076, 0.125, 0.108, 0.327]]\nC: [[0.373, -2.148, -0.291, 0.339, 0.018, 0.694], [-0.499, 2.165, 0.993, 0.276, 0.335, 0.775], [1.74, 1.478, 1.323, -0.069, 0.758, 0.607], [1.532, 2.302, 1.262, 0.285, 0.22, -0.252], [1.323, 1.537, 0.593, 0.351, 0.467, 0.392], [1.364, 1.041, 1.236, 0.12, 0.57, 0.444], [1.442, 1.263, 1.284, 1.004, 0.007, 0.304], [1.115, 0.536, 0.672, -0.113, -0.219, -0.082], [1.743, 0.762, 0.395, 0.159, 0.41, 0.323], [2.121, 0.573, 0.527, -0.324, 0.247, 0.462], [1.447, 0.752, 1.299, 0.299, 0.347, 0.233], [1.92, 0.62, 0.769, -0.13, 0.686, -0.059], [0.942, 0.049, -0.066, 0.316, 0.607, 0.459], [2.077, 2.024, 0.781, 0.373, -0.058, 0.752], [-1.491, -0.599, 0.622, 0.707, -0.171, -0.319], [-1.023, 1.772, -0.236, 0.203, 0.47, 0.117], [-0.596, 1.76, 1.726, 0.197, 0.073, 0.18], [1.574, 0.398, 0.118, 0.732, 0.235, 0.24], [1.654, -1.081, 1.126, -0.043, 0.128, 0.085]]\nD: [[-0.016, -2.182, 0.529, 0.012, -0.234, 0.082], [-0.638, 1.532, 1.107, 0.49, 0.648, 0.861], [1.27, 1.262, 1.438, 0.461, 0.457, 0.658], [1.731, 1.955, 1.411, 0.079, 0.038, 0.636], [1.916, 1.8, 0.455, 0.749, 0.555, 0.441], [1.273, 0.97, 0.909, 0.183, -0.155, 0.402], [1.478, 1.046, 1.305, 0.37, 0.729, 0.224], [1.279, 0.48, 0.354, 0.143, -0.211, 0.086], [1.055, 0.494, 1.055, -0.029, 0.559, -0.151], [2.256, 0.151, 1.167, -0.326, -0.138, 0.075], [1.326, 0.605, 0.815, -0.119, 0.42, 0.177], [2.172, 0.341, 0.688, 0.742, 0.292, 0.566], [1.621, -0.605, 0.175, 0.538, -0.117, 0.628], [1.477, 1.542, -0.082, 0.684, 0.168, -0.065], [-1.675, -0.211, 0.417, 0.169, -0.09, -0.164], [-1.277, 1.624, 0.657, -0.231, 0.334, -0.097], [-0.751, 1.371, 1.707, -0.044, 0.702, 0.452], [1.41, -0.207, 0.284, 0.114, 0.651, -0.312], [1.447, -0.888, 1.553, -0.369, 0.402, 0.174]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_0_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_0_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the object in the scene. The camera pose information includes: the rotation matrix: [[0.86482, -0.183466, 0.467362], [-0.501092, -0.256948, 0.826368], [-0.031523, -0.948851, -0.314147]]; the translation vector: [3.012278, 2.022242, 1.442339], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.097, -2.343, -0.119, 0.31, 0.062, 0.564], [-0.682, 2.2, 0.854, 0.245, 0.21, 0.887], [1.912, 1.405, 1.111, 0.468, 0.452, 0.649], [1.666, 2.151, 1.319, 0.566, 0.243, 0.586], [1.68, 1.827, 0.754, -0.048, 0.681, 0.119], [1.224, 1.284, 0.947, -0.031, 0.464, 0.194], [1.776, 1.335, 0.376, 0.886, 0.055, 0.335], [1.559, 1.179, 1.34, -0.063, -0.136, -0.017], [0.95, 0.255, 1.046, -0.137, 0.36, -0.187], [1.987, 0.956, 0.62, 0.226, -0.239, 0.309], [1.652, 0.525, 1.179, 0.104, 0.539, -0.125], [1.409, 0.711, 0.681, 0.259, 0.215, 0.643], [1.086, -0.177, -0.123, 0.706, 0.621, 0.551], [1.203, 1.982, 0.324, 0.158, 0.718, -0.1], [-1.373, -0.521, 0.674, -0.225, 0.726, 0.299], [-0.949, 2.103, 0.551, 0.314, 0.298, 0.513], [-0.76, 1.491, 2.338, 0.158, -0.084, 0.396], [1.233, -0.382, 0.447, 0.091, 0.059, -0.038], [1.9, -1.181, 1.39, 0.188, -0.114, -0.011]]\nB: [[-0.029, -1.923, 0.096, 0.249, 0.113, 0.317], [-0.92, 1.815, 0.646, 0.107, 0.184, 0.516], [1.611, 1.619, 0.954, 0.253, 0.266, 0.249], [1.544, 1.826, 0.949, 0.149, 0.178, 0.182], [1.432, 1.79, 0.87, 0.251, 0.301, 0.054], [1.423, 1.326, 0.897, 0.087, 0.104, 0.188], [1.554, 0.837, 0.836, 0.609, 0.432, 0.17], [1.27, 0.844, 0.842, 0.093, 0.107, 0.179], [1.248, 0.676, 0.764, 0.25, 0.269, 0.064], [1.848, 0.645, 0.825, 0.074, 0.102, 0.07], [1.69, 0.454, 0.837, 0.248, 0.167, 0.182], [1.715, 0.276, 0.86, 0.335, 0.399, 0.17], [1.4, -0.193, 0.037, 0.353, 0.275, 0.161], [1.684, 1.781, 0.29, 0.433, 0.395, 0.339], [-1.62, -0.65, 0.742, 0.272, 0.321, 0.114], [-0.975, 1.832, 0.171, 0.262, 0.195, 0.125], [-1.021, 1.599, 2.098, 0.217, 0.273, 0.221], [1.433, 0.084, 0.074, 0.398, 0.344, 0.176], [1.733, -1.208, 1.076, 0.125, 0.108, 0.327]]\nC: [[0.373, -2.148, -0.291, 0.339, 0.018, 0.694], [-0.499, 2.165, 0.993, 0.276, 0.335, 0.775], [1.74, 1.478, 1.323, -0.069, 0.758, 0.607], [1.532, 2.302, 1.262, 0.285, 0.22, -0.252], [1.323, 1.537, 0.593, 0.351, 0.467, 0.392], [1.364, 1.041, 1.236, 0.12, 0.57, 0.444], [1.442, 1.263, 1.284, 1.004, 0.007, 0.304], [1.115, 0.536, 0.672, -0.113, -0.219, -0.082], [1.743, 0.762, 0.395, 0.159, 0.41, 0.323], [2.121, 0.573, 0.527, -0.324, 0.247, 0.462], [1.447, 0.752, 1.299, 0.299, 0.347, 0.233], [1.92, 0.62, 0.769, -0.13, 0.686, -0.059], [0.942, 0.049, -0.066, 0.316, 0.607, 0.459], [2.077, 2.024, 0.781, 0.373, -0.058, 0.752], [-1.491, -0.599, 0.622, 0.707, -0.171, -0.319], [-1.023, 1.772, -0.236, 0.203, 0.47, 0.117], [-0.596, 1.76, 1.726, 0.197, 0.073, 0.18], [1.574, 0.398, 0.118, 0.732, 0.235, 0.24], [1.654, -1.081, 1.126, -0.043, 0.128, 0.085]]\nD: [[-0.016, -2.182, 0.529, 0.012, -0.234, 0.082], [-0.638, 1.532, 1.107, 0.49, 0.648, 0.861], [1.27, 1.262, 1.438, 0.461, 0.457, 0.658], [1.731, 1.955, 1.411, 0.079, 0.038, 0.636], [1.916, 1.8, 0.455, 0.749, 0.555, 0.441], [1.273, 0.97, 0.909, 0.183, -0.155, 0.402], [1.478, 1.046, 1.305, 0.37, 0.729, 0.224], [1.279, 0.48, 0.354, 0.143, -0.211, 0.086], [1.055, 0.494, 1.055, -0.029, 0.559, -0.151], [2.256, 0.151, 1.167, -0.326, -0.138, 0.075], [1.326, 0.605, 0.815, -0.119, 0.42, 0.177], [2.172, 0.341, 0.688, 0.742, 0.292, 0.566], [1.621, -0.605, 0.175, 0.538, -0.117, 0.628], [1.477, 1.542, -0.082, 0.684, 0.168, -0.065], [-1.675, -0.211, 0.417, 0.169, -0.09, -0.164], [-1.277, 1.624, 0.657, -0.231, 0.334, -0.097], [-0.751, 1.371, 1.707, -0.044, 0.702, 0.452], [1.41, -0.207, 0.284, 0.114, 0.651, -0.312], [1.447, -0.888, 1.553, -0.369, 0.402, 0.174]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-2.373, -1.08, 0.874, 0.298, 4.385, 1.982], [2.17, -0.036, 1.086, 0.309, 6.903, 1.887], [0.087, 4.155, 1.455, 2.931, 0.24, 1.054], [-2.394, 2.523, 0.998, 0.208, 1.864, 1.096]]\nB: [[-2.011, -0.956, 1.222, 0.755, 4.764, 2.451], [2.068, 0.255, 0.587, 0.436, 7.258, 1.991], [0.329, 4.55, 1.265, 3.421, 0.529, 1.367], [-2.081, 2.555, 0.715, 0.343, 1.488, 1.021]]\nC: [[-2.751, -0.591, 0.65, -0.115, 4.495, 2.351], [1.978, 0.331, 1.034, 0.171, 7.03, 2.051], [0.03, 3.84, 1.693, 3.348, 0.554, 1.247], [-2.636, 2.957, 1.408, -0.018, 1.435, 1.132]]\nD: [[-2.401, -1.35, 0.706, 0.08, 4.387, 2.134], [2.651, -0.401, 0.766, 0.612, 6.557, 1.511], [0.041, 3.914, 1.655, 3.173, 0.701, 0.821], [-2.147, 2.752, 0.898, 0.388, 2.028, 1.081]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_1_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_1_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[-0.060487, 0.154719, -0.986105], [0.998165, 0.006603, -0.060191], [-0.002801, -0.987936, -0.154835]]; the translation vector: [6.630666, 2.572317, 1.44523], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-2.373, -1.08, 0.874, 0.298, 4.385, 1.982], [2.17, -0.036, 1.086, 0.309, 6.903, 1.887], [0.087, 4.155, 1.455, 2.931, 0.24, 1.054], [-2.394, 2.523, 0.998, 0.208, 1.864, 1.096]]\nB: [[-2.011, -0.956, 1.222, 0.755, 4.764, 2.451], [2.068, 0.255, 0.587, 0.436, 7.258, 1.991], [0.329, 4.55, 1.265, 3.421, 0.529, 1.367], [-2.081, 2.555, 0.715, 0.343, 1.488, 1.021]]\nC: [[-2.751, -0.591, 0.65, -0.115, 4.495, 2.351], [1.978, 0.331, 1.034, 0.171, 7.03, 2.051], [0.03, 3.84, 1.693, 3.348, 0.554, 1.247], [-2.636, 2.957, 1.408, -0.018, 1.435, 1.132]]\nD: [[-2.401, -1.35, 0.706, 0.08, 4.387, 2.134], [2.651, -0.401, 0.766, 0.612, 6.557, 1.511], [0.041, 3.914, 1.655, 3.173, 0.701, 0.821], [-2.147, 2.752, 0.898, 0.388, 2.028, 1.081]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.552, 0.743, 0.817, 1.009, -0.013, 1.113], [0.943, 1.174, 0.929, -0.18, 0.779, 1.068]]\nB: [[0.748, 0.782, 0.621, 0.556, 0.127, 0.839], [1.697, 1.131, 0.375, -0.273, 1.039, 1.495]]\nC: [[0.612, 1.202, 0.708, 0.529, 0.114, 0.821], [1.612, 1.184, 0.198, 0.419, 0.977, 0.647]]\nD: [[0.368, 1.181, 0.615, 0.989, 0.028, 1.271], [1.284, 0.726, 0.504, 0.067, 0.905, 1.037]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_2_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_2_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the doorframe in the scene. The camera pose information includes: the rotation matrix: [[-0.610102, 0.375008, -0.697958], [0.791763, 0.255448, -0.554849], [-0.029781, -0.891132, -0.452767]]; the translation vector: [2.349929, 1.419923, 1.358478], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.552, 0.743, 0.817, 1.009, -0.013, 1.113], [0.943, 1.174, 0.929, -0.18, 0.779, 1.068]]\nB: [[0.748, 0.782, 0.621, 0.556, 0.127, 0.839], [1.697, 1.131, 0.375, -0.273, 1.039, 1.495]]\nC: [[0.612, 1.202, 0.708, 0.529, 0.114, 0.821], [1.612, 1.184, 0.198, 0.419, 0.977, 0.647]]\nD: [[0.368, 1.181, 0.615, 0.989, 0.028, 1.271], [1.284, 0.726, 0.504, 0.067, 0.905, 1.037]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.47, 0.453, 0.894, 0.2, 0.52, 0.291], [1.542, -0.676, 0.862, 0.217, 0.405, 0.289], [-1.666, -1.034, 0.158, 0.332, 0.363, 0.294]]\nB: [[1.471, 0.336, 1.375, -0.216, 0.786, 0.736], [1.469, -0.24, 1.152, 0.44, 0.255, 0.196], [-1.84, -1.112, 0.203, 0.586, 0.569, 0.159]]\nC: [[1.315, 0.861, 1.294, -0.145, 0.334, 0.615], [1.166, -0.686, 1.016, 0.2, 0.258, 0.346], [-2.029, -1.236, -0.071, 0.818, 0.37, 0.684]]\nD: [[1.59, 0.904, 1.331, 0.394, 0.302, 0.781], [1.626, -0.262, 1.266, -0.178, 0.337, 0.326], [-1.34, -1.047, 0.45, -0.149, 0.438, 0.179]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_3_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_3_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the speaker in the scene. The camera pose information includes: the rotation matrix: [[-0.283698, -0.38675, 0.877463], [-0.95878, 0.129662, -0.252839], [-0.015988, -0.913024, -0.407593]]; the translation vector: [3.69525, 3.551647, 1.352095], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.47, 0.453, 0.894, 0.2, 0.52, 0.291], [1.542, -0.676, 0.862, 0.217, 0.405, 0.289], [-1.666, -1.034, 0.158, 0.332, 0.363, 0.294]]\nB: [[1.471, 0.336, 1.375, -0.216, 0.786, 0.736], [1.469, -0.24, 1.152, 0.44, 0.255, 0.196], [-1.84, -1.112, 0.203, 0.586, 0.569, 0.159]]\nC: [[1.315, 0.861, 1.294, -0.145, 0.334, 0.615], [1.166, -0.686, 1.016, 0.2, 0.258, 0.346], [-2.029, -1.236, -0.071, 0.818, 0.37, 0.684]]\nD: [[1.59, 0.904, 1.331, 0.394, 0.302, 0.781], [1.626, -0.262, 1.266, -0.178, 0.337, 0.326], [-1.34, -1.047, 0.45, -0.149, 0.438, 0.179]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.415, 0.474, 0.662, 0.608, 0.318, 0.607], [0.137, 1.366, 0.214, 0.809, 0.687, 0.563], [-0.119, -1.513, 0.412, 0.991, 0.469, 0.436], [0.958, -1.756, 0.374, 0.393, 0.461, 0.273]]\nB: [[0.097, 0.337, 0.367, 0.736, 0.669, 0.76], [-0.118, 0.915, 0.406, 0.54, 0.71, 0.78], [0.039, -1.273, 0.366, 0.52, 0.703, 0.787], [0.484, -2.107, 0.393, 0.516, 0.773, 0.731]]\nC: [[-0.145, 0.33, 0.215, 0.329, 0.397, 1.235], [-0.041, 1.377, -0.008, 0.173, 0.698, 1.043], [0.354, -0.822, 0.479, 0.306, 0.474, 0.987], [0.885, -2.559, 0.576, 0.548, 1.045, 0.546]]\nD: [[-0.062, 0.608, 0.646, 1.11, 1.056, 0.374], [0.266, 1.23, 0.893, 0.95, 0.801, 1.268], [-0.368, -1.641, 0.003, 0.257, 0.709, 0.427], [0.563, -2.189, 0.486, 0.531, 1.025, 0.714]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_4_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_4_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the chair in the scene. The camera pose information includes: the rotation matrix: [[-0.857694, 0.203115, -0.472341], [0.513544, 0.293426, -0.806333], [-0.025181, -0.934155, -0.355978]]; the translation vector: [3.161674, 3.662206, 1.335287], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.415, 0.474, 0.662, 0.608, 0.318, 0.607], [0.137, 1.366, 0.214, 0.809, 0.687, 0.563], [-0.119, -1.513, 0.412, 0.991, 0.469, 0.436], [0.958, -1.756, 0.374, 0.393, 0.461, 0.273]]\nB: [[0.097, 0.337, 0.367, 0.736, 0.669, 0.76], [-0.118, 0.915, 0.406, 0.54, 0.71, 0.78], [0.039, -1.273, 0.366, 0.52, 0.703, 0.787], [0.484, -2.107, 0.393, 0.516, 0.773, 0.731]]\nC: [[-0.145, 0.33, 0.215, 0.329, 0.397, 1.235], [-0.041, 1.377, -0.008, 0.173, 0.698, 1.043], [0.354, -0.822, 0.479, 0.306, 0.474, 0.987], [0.885, -2.559, 0.576, 0.548, 1.045, 0.546]]\nD: [[-0.062, 0.608, 0.646, 1.11, 1.056, 0.374], [0.266, 1.23, 0.893, 0.95, 0.801, 1.268], [-0.368, -1.641, 0.003, 0.257, 0.709, 0.427], [0.563, -2.189, 0.486, 0.531, 1.025, 0.714]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.3, -0.383, 0.923, -0.356, 3.02, 2.635], [-2.115, 1.383, 0.841, 0.469, 0.927, 1.856], [-0.097, 1.484, 1.187, 3.044, -0.119, 1.807], [-1.377, 2.117, 0.899, -0.033, 1.21, 1.808], [1.159, -1.198, 1.874, 0.555, 0.176, 1.325]]\nB: [[1.941, -0.755, 1.598, -0.121, 2.674, 2.518], [-2.423, 1.211, 1.402, 0.192, 0.868, 2.164], [0.169, 1.203, 1.223, 2.673, -0.21, 2.157], [-1.688, 1.565, 0.939, 0.535, 1.926, 1.811], [1.734, -1.649, 1.385, 0.714, 0.109, 1.38]]\nC: [[1.696, -0.287, 1.129, 0.119, 2.8, 2.268], [-2.577, 1.535, 1.204, 0.613, 1.32, 2.198], [0.155, 1.133, 1.131, 3.032, 0.104, 2.204], [-1.285, 1.824, 1.154, 0.225, 1.437, 2.219], [1.488, -1.695, 1.419, 0.405, 0.098, 1.172]]\nD: [[1.453, -0.695, 1.348, 0.547, 3.272, 2.434], [-2.777, 1.417, 1.534, 1.007, 1.19, 1.834], [-0.034, 0.735, 1.208, 2.75, 0.551, 2.499], [-1.311, 1.97, 1.046, -0.151, 1.928, 1.721], [1.211, -2.136, 1.037, 0.829, -0.033, 1.518]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_5_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_5_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[0.199941, 0.263531, -0.943703], [0.979453, -0.027844, 0.19974], [0.026362, -0.964249, -0.263683]]; the translation vector: [3.611549, 3.757055, 1.562045], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.3, -0.383, 0.923, -0.356, 3.02, 2.635], [-2.115, 1.383, 0.841, 0.469, 0.927, 1.856], [-0.097, 1.484, 1.187, 3.044, -0.119, 1.807], [-1.377, 2.117, 0.899, -0.033, 1.21, 1.808], [1.159, -1.198, 1.874, 0.555, 0.176, 1.325]]\nB: [[1.941, -0.755, 1.598, -0.121, 2.674, 2.518], [-2.423, 1.211, 1.402, 0.192, 0.868, 2.164], [0.169, 1.203, 1.223, 2.673, -0.21, 2.157], [-1.688, 1.565, 0.939, 0.535, 1.926, 1.811], [1.734, -1.649, 1.385, 0.714, 0.109, 1.38]]\nC: [[1.696, -0.287, 1.129, 0.119, 2.8, 2.268], [-2.577, 1.535, 1.204, 0.613, 1.32, 2.198], [0.155, 1.133, 1.131, 3.032, 0.104, 2.204], [-1.285, 1.824, 1.154, 0.225, 1.437, 2.219], [1.488, -1.695, 1.419, 0.405, 0.098, 1.172]]\nD: [[1.453, -0.695, 1.348, 0.547, 3.272, 2.434], [-2.777, 1.417, 1.534, 1.007, 1.19, 1.834], [-0.034, 0.735, 1.208, 2.75, 0.551, 2.499], [-1.311, 1.97, 1.046, -0.151, 1.928, 1.721], [1.211, -2.136, 1.037, 0.829, -0.033, 1.518]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[2.228, -1.379, 0.968, 0.05, 0.868, 0.876]]\nB: [[1.972, -1.363, 0.684, 0.094, 1.002, 1.369]]\nC: [[2.421, -1.068, 1.034, 0.177, 1.167, 1.478]]\nD: [[2.274, -1.598, 1.168, 0.52, 1.421, 1.228]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_6_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_6_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the door in the scene. The camera pose information includes: the rotation matrix: [[-0.156961, 0.257294, -0.953501], [0.986843, 0.002956, -0.161652], [-0.038773, -0.966329, -0.254373]]; the translation vector: [1.838324, 1.205476, 1.480452], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[2.228, -1.379, 0.968, 0.05, 0.868, 0.876]]\nB: [[1.972, -1.363, 0.684, 0.094, 1.002, 1.369]]\nC: [[2.421, -1.068, 1.034, 0.177, 1.167, 1.478]]\nD: [[2.274, -1.598, 1.168, 0.52, 1.421, 1.228]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.821, -1.627, 0.918, 0.317, 0.52, -0.34]]\nB: [[-1.196, -1.892, 0.539, 0.329, 0.374, 0.146]]\nC: [[-1.472, -2.353, 0.745, 0.703, 0.302, -0.352]]\nD: [[-1.33, -1.906, 0.911, -0.061, 0.797, -0.104]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_7_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_7_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the jacket in the scene. The camera pose information includes: the rotation matrix: [[0.999847, -0.004634, 0.01689], [-0.017397, -0.374134, 0.927211], [0.002023, -0.927363, -0.374157]]; the translation vector: [3.310194, 3.16458, 1.506432], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.821, -1.627, 0.918, 0.317, 0.52, -0.34]]\nB: [[-1.196, -1.892, 0.539, 0.329, 0.374, 0.146]]\nC: [[-1.472, -2.353, 0.745, 0.703, 0.302, -0.352]]\nD: [[-1.33, -1.906, 0.911, -0.061, 0.797, -0.104]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.441, 1.064, 0.78, 0.6, 1.194, 1.759]]\nB: [[0.806, 1.175, 0.723, 1.145, 0.857, 1.307]]\nC: [[1.47, 1.204, 0.738, 1.161, 1.149, 1.298]]\nD: [[1.013, 1.023, 0.774, 0.913, 1.329, 1.578]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_8_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_8_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the desk in the scene. The camera pose information includes: the rotation matrix: [[0.977181, 0.077241, -0.197866], [0.211774, -0.426158, 0.879512], [-0.016388, -0.901345, -0.432791]]; the translation vector: [0.977323, 0.877303, 1.40232], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.441, 1.064, 0.78, 0.6, 1.194, 1.759]]\nB: [[0.806, 1.175, 0.723, 1.145, 0.857, 1.307]]\nC: [[1.47, 1.204, 0.738, 1.161, 1.149, 1.298]]\nD: [[1.013, 1.023, 0.774, 0.913, 1.329, 1.578]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.32, 0.548, 0.015, 3.907, 5.219, 0.432]]\nB: [[-0.869, 0.661, -0.307, 3.672, 4.614, -0.069]]\nC: [[-0.885, 0.436, 0.066, 3.44, 4.871, 0.305]]\nD: [[-1.228, 0.813, -0.025, 3.355, 4.94, 0.54]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_9_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_9_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the floor in the scene. The camera pose information includes: the rotation matrix: [[-0.30056, -0.511506, 0.805], [-0.953151, 0.130866, -0.272721], [0.034151, -0.849256, -0.526876]]; the translation vector: [-0.281614, 2.924112, 1.306122], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.32, 0.548, 0.015, 3.907, 5.219, 0.432]]\nB: [[-0.869, 0.661, -0.307, 3.672, 4.614, -0.069]]\nC: [[-0.885, 0.436, 0.066, 3.44, 4.871, 0.305]]\nD: [[-1.228, 0.813, -0.025, 3.355, 4.94, 0.54]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.236, 0.438, 2.571, 1.376, 1.585, 0.296]]\nB: [[0.105, 0.071, 2.209, 1.375, 1.269, -0.259]]\nC: [[-0.082, 0.088, 2.553, 1.257, 1.665, 0.102]]\nD: [[-0.566, -0.056, 2.979, 1.134, 1.904, -0.21]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_10_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_10_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the ceiling in the scene. The camera pose information includes: the rotation matrix: [[-0.255196, -0.436856, 0.862573], [-0.966393, 0.143834, -0.213066], [-0.030988, -0.887958, -0.45888]]; the translation vector: [1.734999, 0.744851, 1.432124], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.236, 0.438, 2.571, 1.376, 1.585, 0.296]]\nB: [[0.105, 0.071, 2.209, 1.375, 1.269, -0.259]]\nC: [[-0.082, 0.088, 2.553, 1.257, 1.665, 0.102]]\nD: [[-0.566, -0.056, 2.979, 1.134, 1.904, -0.21]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.043, 0.444, 0.066, 3.645, 4.94, 0.241]]\nB: [[0.071, 0.025, -0.197, 3.897, 4.771, 0.696]]\nC: [[-0.523, 0.143, -0.403, 3.288, 4.973, 0.134]]\nD: [[0.378, 0.809, 0.444, 3.764, 4.725, 0.036]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_11_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_11_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the floor in the scene. The camera pose information includes: the rotation matrix: [[-0.436119, -0.427186, 0.79203], [-0.89981, 0.218659, -0.377532], [-0.011909, -0.877326, -0.479747]]; the translation vector: [1.992302, 3.72193, 1.553249], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.043, 0.444, 0.066, 3.645, 4.94, 0.241]]\nB: [[0.071, 0.025, -0.197, 3.897, 4.771, 0.696]]\nC: [[-0.523, 0.143, -0.403, 3.288, 4.973, 0.134]]\nD: [[0.378, 0.809, 0.444, 3.764, 4.725, 0.036]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.786, -1.469, 1.112, 0.86, 0.176, 1.647]]\nB: [[-0.914, -1.825, 1.495, 0.394, 0.281, 2.141]]\nC: [[-1.155, -1.563, 0.935, 0.81, 0.246, 1.235]]\nD: [[-0.398, -1.079, 1.275, 0.659, -0.007, 1.932]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_12_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_12_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the curtain in the scene. The camera pose information includes: the rotation matrix: [[-0.112591, -0.547395, 0.829266], [-0.992672, 0.098819, -0.069547], [-0.043877, -0.83102, -0.55451]]; the translation vector: [1.18498, 1.814175, 1.496605], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.786, -1.469, 1.112, 0.86, 0.176, 1.647]]\nB: [[-0.914, -1.825, 1.495, 0.394, 0.281, 2.141]]\nC: [[-1.155, -1.563, 0.935, 0.81, 0.246, 1.235]]\nD: [[-0.398, -1.079, 1.275, 0.659, -0.007, 1.932]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.187, -2.136, 1.49, 0.407, 0.4, 0.612], [0.6, -1.205, 1.939, 0.176, 0.133, -0.205]]\nB: [[0.434, -1.704, 1.717, 0.327, 0.549, 0.278], [0.752, -1.616, 1.803, 0.403, 0.362, 0.211]]\nC: [[0.158, -1.92, 1.36, -0.055, 0.096, 0.484], [0.44, -1.879, 1.563, 0.594, 0.374, 0.673]]\nD: [[-0.017, -1.973, 1.957, -0.127, 0.324, 0.483], [0.88, -1.365, 2.154, 0.664, 0.083, -0.049]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_13_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_13_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the box in the scene. The camera pose information includes: the rotation matrix: [[0.645842, -0.099101, 0.757012], [-0.761541, -0.013148, 0.647984], [-0.054263, -0.994991, -0.083961]]; the translation vector: [3.729951, 1.432448, 1.733539], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.187, -2.136, 1.49, 0.407, 0.4, 0.612], [0.6, -1.205, 1.939, 0.176, 0.133, -0.205]]\nB: [[0.434, -1.704, 1.717, 0.327, 0.549, 0.278], [0.752, -1.616, 1.803, 0.403, 0.362, 0.211]]\nC: [[0.158, -1.92, 1.36, -0.055, 0.096, 0.484], [0.44, -1.879, 1.563, 0.594, 0.374, 0.673]]\nD: [[-0.017, -1.973, 1.957, -0.127, 0.324, 0.483], [0.88, -1.365, 2.154, 0.664, 0.083, -0.049]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.798, -1.611, 1.132, 0.285, 0.531, 1.165]]\nB: [[1.687, -1.332, 1.2, 0.199, 0.988, 0.799]]\nC: [[1.357, -0.901, 1.518, -0.194, 0.606, 1.017]]\nD: [[1.876, -1.168, 0.737, 0.277, 1.058, 1.074]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_14_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_14_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the window in the scene. The camera pose information includes: the rotation matrix: [[0.14018, 0.443083, -0.885453], [0.989985, -0.07783, 0.117782], [-0.016727, -0.893096, -0.449556]]; the translation vector: [3.549726, 0.935059, 1.485921], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.798, -1.611, 1.132, 0.285, 0.531, 1.165]]\nB: [[1.687, -1.332, 1.2, 0.199, 0.988, 0.799]]\nC: [[1.357, -0.901, 1.518, -0.194, 0.606, 1.017]]\nD: [[1.876, -1.168, 0.737, 0.277, 1.058, 1.074]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.819, -0.006, 0.434, 0.452, 1.821, 0.691], [-2.563, 0.098, 0.464, 0.939, 2.679, 0.721]]\nB: [[-1.198, -0.018, -0.225, 0.953, 2.14, 0.57], [-3.038, 0.583, 0.16, 0.212, 2.66, 1.39]]\nC: [[-1.115, -0.366, 0.124, 1.037, 1.922, 0.126], [-3.074, 0.098, -0.014, 0.214, 2.71, 0.451]]\nD: [[-0.889, -0.312, 0.236, 0.943, 2.266, 0.443], [-3.042, 0.305, 0.458, 0.511, 3.034, 0.927]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_15_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_15_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the table in the scene. The camera pose information includes: the rotation matrix: [[0.988959, -0.006087, -0.148062], [0.148117, 0.009943, 0.98892], [-0.004548, -0.999932, 0.010735]]; the translation vector: [3.911582, 2.672538, 1.565046], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.819, -0.006, 0.434, 0.452, 1.821, 0.691], [-2.563, 0.098, 0.464, 0.939, 2.679, 0.721]]\nB: [[-1.198, -0.018, -0.225, 0.953, 2.14, 0.57], [-3.038, 0.583, 0.16, 0.212, 2.66, 1.39]]\nC: [[-1.115, -0.366, 0.124, 1.037, 1.922, 0.126], [-3.074, 0.098, -0.014, 0.214, 2.71, 0.451]]\nD: [[-0.889, -0.312, 0.236, 0.943, 2.266, 0.443], [-3.042, 0.305, 0.458, 0.511, 3.034, 0.927]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.003, 1.71, 2.094, 0.541, 0.263, 0.118], [1.203, 1.68, 0.477, 1.133, 0.414, 1.172]]\nB: [[1.233, 1.735, 1.724, 0.591, 0.58, 0.487], [0.701, 1.63, 0.882, 0.862, 0.077, 0.96]]\nC: [[0.897, 1.469, 2.006, 0.732, 0.251, 0.23], [0.896, 1.321, 0.509, 1.078, 0.563, 0.956]]\nD: [[1.067, 1.911, 1.889, 0.58, 0.392, -0.26], [1.382, 1.503, 0.381, 1.083, 0.31, 0.478]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_16_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_16_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the shelf in the scene. The camera pose information includes: the rotation matrix: [[-0.767458, -0.265442, 0.583565], [-0.640543, 0.35536, -0.680752], [-0.026676, -0.896248, -0.442751]]; the translation vector: [3.343537, 3.697402, 1.375352], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.003, 1.71, 2.094, 0.541, 0.263, 0.118], [1.203, 1.68, 0.477, 1.133, 0.414, 1.172]]\nB: [[1.233, 1.735, 1.724, 0.591, 0.58, 0.487], [0.701, 1.63, 0.882, 0.862, 0.077, 0.96]]\nC: [[0.897, 1.469, 2.006, 0.732, 0.251, 0.23], [0.896, 1.321, 0.509, 1.078, 0.563, 0.956]]\nD: [[1.067, 1.911, 1.889, 0.58, 0.392, -0.26], [1.382, 1.503, 0.381, 1.083, 0.31, 0.478]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.138, 0.124, 0.676, -0.24, 4.388, 1.6], [-0.991, 0.479, 1.092, 0.412, 4.521, 1.772], [0.357, 1.729, 0.48, 2.481, 0.664, 1.17]]\nB: [[1.22, 0.284, 0.605, 0.161, 4.409, 2.133], [-1.442, 0.481, 1.313, -0.024, 4.063, 1.777], [-0.203, 2.498, 0.224, 1.968, 0.299, 1.17]]\nC: [[0.938, 0.113, 0.929, -0.179, 3.724, 1.454], [-0.685, 0.25, 0.853, -0.017, 3.941, 2.536], [-0.076, 2.502, 0.394, 2.11, -0.271, 0.712]]\nD: [[1.264, 0.297, 0.846, 0.212, 3.931, 1.71], [-1.088, 0.197, 1.004, 0.293, 4.063, 2.062], [0.059, 2.138, 0.489, 2.4, 0.176, 0.937]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_17_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_17_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[-0.311411, -0.45253, 0.835607], [-0.948656, 0.199362, -0.245576], [-0.055457, -0.869179, -0.491379]]; the translation vector: [2.299133, 2.388773, 1.459468], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.138, 0.124, 0.676, -0.24, 4.388, 1.6], [-0.991, 0.479, 1.092, 0.412, 4.521, 1.772], [0.357, 1.729, 0.48, 2.481, 0.664, 1.17]]\nB: [[1.22, 0.284, 0.605, 0.161, 4.409, 2.133], [-1.442, 0.481, 1.313, -0.024, 4.063, 1.777], [-0.203, 2.498, 0.224, 1.968, 0.299, 1.17]]\nC: [[0.938, 0.113, 0.929, -0.179, 3.724, 1.454], [-0.685, 0.25, 0.853, -0.017, 3.941, 2.536], [-0.076, 2.502, 0.394, 2.11, -0.271, 0.712]]\nD: [[1.264, 0.297, 0.846, 0.212, 3.931, 1.71], [-1.088, 0.197, 1.004, 0.293, 4.063, 2.062], [0.059, 2.138, 0.489, 2.4, 0.176, 0.937]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.286, 0.023, 0.43, 0.149, 0.955, 0.837], [-1.223, 1.506, 0.654, 0.172, 1.002, 1.099]]\nB: [[-1.716, 0.263, -0.049, 0.591, 1.354, 0.711], [-1.546, 1.706, 0.156, 0.078, 0.869, 0.807]]\nC: [[-0.94, -0.207, 0.36, 0.417, 1.226, 0.947], [-1.061, 1.683, 0.653, 0.491, 0.617, 1.297]]\nD: [[-1.505, -0.176, 0.438, -0.283, 0.675, 1.3], [-1.566, 1.679, 1.013, -0.274, 0.726, 0.998]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_18_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_18_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the doorframe in the scene. The camera pose information includes: the rotation matrix: [[-0.305635, -0.390507, 0.868385], [-0.952144, 0.122302, -0.280116], [0.003183, -0.91244, -0.409198]]; the translation vector: [4.266061, 1.773856, 1.285079], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.286, 0.023, 0.43, 0.149, 0.955, 0.837], [-1.223, 1.506, 0.654, 0.172, 1.002, 1.099]]\nB: [[-1.716, 0.263, -0.049, 0.591, 1.354, 0.711], [-1.546, 1.706, 0.156, 0.078, 0.869, 0.807]]\nC: [[-0.94, -0.207, 0.36, 0.417, 1.226, 0.947], [-1.061, 1.683, 0.653, 0.491, 0.617, 1.297]]\nD: [[-1.505, -0.176, 0.438, -0.283, 0.675, 1.3], [-1.566, 1.679, 1.013, -0.274, 0.726, 0.998]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.301, -0.248, -0.183, 3.399, 5.209, 0.282]]\nB: [[0.089, -0.015, -0.009, 3.337, 5.518, 0.258]]\nC: [[0.396, -0.159, 0.362, 3.257, 5.951, -0.2]]\nD: [[0.093, 0.115, -0.474, 3.284, 5.168, 0.122]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_19_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_19_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the floor in the scene. The camera pose information includes: the rotation matrix: [[-0.934582, -0.143102, 0.325696], [-0.355737, 0.383069, -0.852473], [-0.002774, -0.912568, -0.408916]]; the translation vector: [2.694367, 2.483235, 1.465763], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.301, -0.248, -0.183, 3.399, 5.209, 0.282]]\nB: [[0.089, -0.015, -0.009, 3.337, 5.518, 0.258]]\nC: [[0.396, -0.159, 0.362, 3.257, 5.951, -0.2]]\nD: [[0.093, 0.115, -0.474, 3.284, 5.168, 0.122]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.264, 0.68, 0.463, 0.725, 0.55, 0.967], [1.225, 0.142, 2.156, 0.68, 2.62, 0.669]]\nB: [[0.179, 0.182, 0.661, 0.23, 1.022, 0.617], [1.51, -0.031, 1.909, 0.955, 2.219, 0.647]]\nC: [[0.069, 0.653, 0.766, 0.622, 0.263, 0.911], [0.908, 0.073, 1.898, 0.615, 2.442, 0.579]]\nD: [[-0.094, 1.133, 0.833, 0.562, 0.551, 0.493], [1.073, 0.074, 2.645, 0.407, 2.814, 0.994]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_20_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_20_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the cabinet in the scene. The camera pose information includes: the rotation matrix: [[-0.928375, -0.17783, 0.326339], [-0.371449, 0.415395, -0.830345], [0.012101, -0.892089, -0.451697]]; the translation vector: [2.096006, 1.919092, 1.36174], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.264, 0.68, 0.463, 0.725, 0.55, 0.967], [1.225, 0.142, 2.156, 0.68, 2.62, 0.669]]\nB: [[0.179, 0.182, 0.661, 0.23, 1.022, 0.617], [1.51, -0.031, 1.909, 0.955, 2.219, 0.647]]\nC: [[0.069, 0.653, 0.766, 0.622, 0.263, 0.911], [0.908, 0.073, 1.898, 0.615, 2.442, 0.579]]\nD: [[-0.094, 1.133, 0.833, 0.562, 0.551, 0.493], [1.073, 0.074, 2.645, 0.407, 2.814, 0.994]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.718, -0.44, 1.96, 0.228, 0.897, 0.293], [-1.706, -1.293, 1.868, 0.22, 0.846, 0.362], [-1.707, -1.314, 0.762, 0.375, 0.826, 0.302], [-1.691, 1.543, 1.626, 0.337, 0.697, 0.437], [-1.573, 1.406, 1.291, 0.181, 0.564, 0.313]]\nB: [[-1.988, -0.706, 1.585, 0.615, 0.861, 0.547], [-1.403, -1.309, 1.785, -0.129, 1.049, -0.092], [-1.749, -1.25, 0.92, 0.869, 1.088, 0.428], [-1.92, 1.941, 1.694, 0.669, 1.107, 0.403], [-1.483, 1.056, 1.615, 0.417, 0.387, 0.739]]\nC: [[-1.546, -0.182, 1.499, 0.527, 1.029, 0.605], [-1.401, -1.244, 2.308, -0.222, 0.467, 0.206], [-2.193, -1.361, 0.929, 0.133, 0.525, 0.091], [-1.321, 1.865, 1.781, -0.053, 0.666, 0.358], [-1.503, 1.488, 1.689, 0.165, 0.203, 0.17]]\nD: [[-1.94, -0.345, 2.215, 0.028, 0.642, 0.092], [-2.035, -1.654, 1.937, 0.612, 1.134, -0.102], [-1.249, -1.385, 0.367, 0.613, 1.003, 0.682], [-2.01, 1.507, 1.513, 0.614, 0.573, 0.003], [-1.183, 1.016, 0.985, -0.012, 0.86, 0.417]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_21_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_21_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the books in the scene. The camera pose information includes: the rotation matrix: [[0.725417, 0.297171, -0.620854], [0.687848, -0.279954, 0.669695], [0.025203, -0.912861, -0.407492]]; the translation vector: [3.434752, 3.057745, 1.556519], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.718, -0.44, 1.96, 0.228, 0.897, 0.293], [-1.706, -1.293, 1.868, 0.22, 0.846, 0.362], [-1.707, -1.314, 0.762, 0.375, 0.826, 0.302], [-1.691, 1.543, 1.626, 0.337, 0.697, 0.437], [-1.573, 1.406, 1.291, 0.181, 0.564, 0.313]]\nB: [[-1.988, -0.706, 1.585, 0.615, 0.861, 0.547], [-1.403, -1.309, 1.785, -0.129, 1.049, -0.092], [-1.749, -1.25, 0.92, 0.869, 1.088, 0.428], [-1.92, 1.941, 1.694, 0.669, 1.107, 0.403], [-1.483, 1.056, 1.615, 0.417, 0.387, 0.739]]\nC: [[-1.546, -0.182, 1.499, 0.527, 1.029, 0.605], [-1.401, -1.244, 2.308, -0.222, 0.467, 0.206], [-2.193, -1.361, 0.929, 0.133, 0.525, 0.091], [-1.321, 1.865, 1.781, -0.053, 0.666, 0.358], [-1.503, 1.488, 1.689, 0.165, 0.203, 0.17]]\nD: [[-1.94, -0.345, 2.215, 0.028, 0.642, 0.092], [-2.035, -1.654, 1.937, 0.612, 1.134, -0.102], [-1.249, -1.385, 0.367, 0.613, 1.003, 0.682], [-2.01, 1.507, 1.513, 0.614, 0.573, 0.003], [-1.183, 1.016, 0.985, -0.012, 0.86, 0.417]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-2.266, 0.688, 1.427, 0.645, 4.144, 1.891], [1.793, 0.377, 0.356, 0.744, 3.81, 1.61], [-0.941, -1.334, 0.579, 2.335, 0.039, 1.673], [0.362, -1.428, 0.335, 0.484, 0.146, 1.101], [0.403, -1.616, 0.92, 1.722, 0.842, 1.057], [1.194, 3.045, 0.588, 0.013, 0.929, 1.121], [1.761, 2.38, 0.509, 0.767, -0.159, 0.975]]\nB: [[-2.307, 0.099, 1.206, 0.234, 3.804, 1.593], [2.401, 0.098, 0.732, 0.485, 3.642, 1.662], [-1.38, -1.427, 1.26, 2.485, 0.117, 1.419], [0.047, -1.412, 0.542, 0.454, 0.56, 1.109], [0.451, -2.029, 0.885, 1.313, 0.841, 0.961], [1.821, 2.284, 0.965, -0.181, 0.842, 1.118], [1.675, 2.553, 0.956, 0.491, 0.104, 1.591]]\nC: [[-1.548, 0.69, 1.589, 0.293, 3.816, 1.624], [2.411, 0.459, 0.334, 0.543, 4.513, 1.336], [-0.832, -2.051, 0.999, 1.925, 0.593, 1.075], [-0.217, -1.618, 0.815, -0.295, 0.494, 0.985], [1.068, -1.834, 1.273, 1.646, 0.657, 0.959], [1.898, 2.458, 0.543, 0.44, 1.518, 1.452], [2.071, 1.877, 0.293, 1.12, 0.358, 1.716]]\nD: [[-1.964, 0.397, 1.135, 0.305, 4.04, 1.813], [2.143, 0.114, 0.673, 0.413, 4.08, 1.439], [-0.926, -1.676, 0.892, 2.284, 0.231, 1.529], [0.195, -1.875, 0.811, 0.153, 0.424, 1.364], [0.78, -1.998, 0.788, 1.226, 0.36, 1.309], [1.439, 2.685, 0.692, 0.249, 1.216, 1.435], [1.802, 2.098, 0.616, 0.629, 0.105, 1.315]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_22_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_22_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[0.205292, 0.226186, -0.952205], [0.97316, -0.150555, 0.174048], [-0.103992, -0.962379, -0.251024]]; the translation vector: [4.876985, 2.837537, 1.671042], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-2.266, 0.688, 1.427, 0.645, 4.144, 1.891], [1.793, 0.377, 0.356, 0.744, 3.81, 1.61], [-0.941, -1.334, 0.579, 2.335, 0.039, 1.673], [0.362, -1.428, 0.335, 0.484, 0.146, 1.101], [0.403, -1.616, 0.92, 1.722, 0.842, 1.057], [1.194, 3.045, 0.588, 0.013, 0.929, 1.121], [1.761, 2.38, 0.509, 0.767, -0.159, 0.975]]\nB: [[-2.307, 0.099, 1.206, 0.234, 3.804, 1.593], [2.401, 0.098, 0.732, 0.485, 3.642, 1.662], [-1.38, -1.427, 1.26, 2.485, 0.117, 1.419], [0.047, -1.412, 0.542, 0.454, 0.56, 1.109], [0.451, -2.029, 0.885, 1.313, 0.841, 0.961], [1.821, 2.284, 0.965, -0.181, 0.842, 1.118], [1.675, 2.553, 0.956, 0.491, 0.104, 1.591]]\nC: [[-1.548, 0.69, 1.589, 0.293, 3.816, 1.624], [2.411, 0.459, 0.334, 0.543, 4.513, 1.336], [-0.832, -2.051, 0.999, 1.925, 0.593, 1.075], [-0.217, -1.618, 0.815, -0.295, 0.494, 0.985], [1.068, -1.834, 1.273, 1.646, 0.657, 0.959], [1.898, 2.458, 0.543, 0.44, 1.518, 1.452], [2.071, 1.877, 0.293, 1.12, 0.358, 1.716]]\nD: [[-1.964, 0.397, 1.135, 0.305, 4.04, 1.813], [2.143, 0.114, 0.673, 0.413, 4.08, 1.439], [-0.926, -1.676, 0.892, 2.284, 0.231, 1.529], [0.195, -1.875, 0.811, 0.153, 0.424, 1.364], [0.78, -1.998, 0.788, 1.226, 0.36, 1.309], [1.439, 2.685, 0.692, 0.249, 1.216, 1.435], [1.802, 2.098, 0.616, 0.629, 0.105, 1.315]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.121, -0.501, -0.221, 0.439, 0.387, 0.089], [1.109, -1.077, -0.06, 0.221, 0.081, 0.556]]\nB: [[-0.019, -0.497, 0.389, 1.016, 0.944, 0.39], [1.279, -1.542, -0.239, 0.195, 0.216, 0.872]]\nC: [[0.21, -0.049, -0.032, 0.947, 0.552, 0.204], [0.617, -0.987, 0.392, 0.284, 0.553, 0.828]]\nD: [[0.392, -0.219, 0.176, 0.595, 0.63, 0.481], [0.882, -1.099, 0.197, 0.524, 0.524, 0.466]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_23_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_23_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the ottoman in the scene. The camera pose information includes: the rotation matrix: [[0.133825, -0.39571, 0.908573], [-0.990975, -0.046263, 0.125813], [-0.007752, -0.91721, -0.398329]]; the translation vector: [4.990516, 4.227292, 1.32289], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.121, -0.501, -0.221, 0.439, 0.387, 0.089], [1.109, -1.077, -0.06, 0.221, 0.081, 0.556]]\nB: [[-0.019, -0.497, 0.389, 1.016, 0.944, 0.39], [1.279, -1.542, -0.239, 0.195, 0.216, 0.872]]\nC: [[0.21, -0.049, -0.032, 0.947, 0.552, 0.204], [0.617, -0.987, 0.392, 0.284, 0.553, 0.828]]\nD: [[0.392, -0.219, 0.176, 0.595, 0.63, 0.481], [0.882, -1.099, 0.197, 0.524, 0.524, 0.466]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.923, 3.072, 1.641, 0.406, 0.224, 0.224], [0.852, 2.684, 1.628, 0.411, 0.369, 0.342], [0.952, 2.353, 1.591, 0.332, 0.315, 0.303], [0.919, 1.934, 1.549, 0.278, 0.356, 0.3], [0.991, 1.596, 1.521, 0.302, 0.285, 0.248], [1.083, 1.197, 1.51, 0.2, 0.428, 0.292], [1.067, 0.874, 1.479, 0.258, 0.387, 0.349], [1.029, 0.682, 1.414, 0.27, 0.238, 0.229], [1.041, 0.446, 1.386, 0.31, 0.355, 0.267], [1.007, 0.119, 1.367, 0.313, 0.297, 0.251], [1.072, -0.152, 1.331, 0.368, 0.301, 0.196], [0.978, -0.542, 1.366, 0.293, 0.411, 0.344], [1.038, -0.846, 1.349, 0.398, 0.352, 0.371], [0.995, -1.285, 1.277, 0.273, 0.319, 0.287], [1.051, -1.623, 1.317, 0.372, 0.433, 0.346], [1.016, -1.909, 1.267, 0.375, 0.379, 0.355], [1.01, -2.206, 1.239, 0.32, 0.305, 0.33], [1.021, -2.389, 1.248, 0.292, 0.375, 0.256], [0.945, -2.669, 1.168, 0.312, 0.307, 0.249], [0.986, -2.904, 1.157, 0.265, 0.331, 0.203]]\nB: [[1.16, 2.801, 1.566, 0.581, 0.486, -0.268], [0.756, 2.458, 1.347, -0.04, 0.522, 0.189], [0.535, 2.032, 1.866, 0.051, 0.318, 0.012], [0.896, 2.321, 1.823, -0.143, 0.711, 0.696], [1.3, 1.485, 1.216, 0.089, 0.474, 0.726], [1.333, 1.63, 1.281, 0.587, 0.639, -0.131], [1.034, 0.752, 1.496, 0.694, 0.45, 0.002], [1.132, 0.488, 1.903, -0.121, -0.068, 0.586], [1.244, 0.056, 1.06, 0.343, 0.366, 0.492], [0.523, 0.369, 1.091, 0.036, 0.297, 0.341], [0.945, -0.379, 1.231, -0.009, 0.698, 0.282], [0.742, -0.538, 1.804, 0.143, 0.887, 0.377], [1.245, -0.568, 1.71, 0.143, 0.603, 0.41], [1.356, -0.879, 1.397, 0.576, 0.048, 0.554], [1.47, -2.036, 1.112, 0.54, 0.795, 0.096], [1.472, -1.52, 0.829, 0.648, 0.598, 0.49], [0.775, -2.633, 1.506, -0.16, -0.139, -0.099], [0.838, -2.702, 1.211, 0.137, 0.331, -0.011], [1.261, -2.818, 1.474, 0.679, -0.005, 0.352], [0.793, -2.949, 1.566, -0.008, 0.477, 0.693]]\nC: [[1.056, 2.871, 1.196, 0.82, -0.168, 0.476], [1.086, 3.168, 1.177, -0.05, 0.768, 0.624], [1.078, 2.314, 1.991, 0.481, -0.014, 0.382], [0.899, 1.855, 1.409, -0.073, 0.065, 0.078], [0.796, 1.846, 1.026, -0.008, 0.461, 0.294], [0.96, 0.751, 1.316, 0.52, 0.805, 0.752], [1.18, 1.031, 1.766, 0.673, 0.119, 0.034], [1.398, 0.505, 1.118, -0.168, 0.16, -0.249], [0.838, 0.65, 1.392, 0.173, 0.458, 0.332], [1.111, -0.328, 1.396, 0.558, 0.481, 0.366], [0.597, -0.355, 1.146, 0.623, 0.368, 0.632], [0.691, -0.514, 1.338, -0.157, 0.304, -0.124], [0.696, -1.125, 1.476, 0.501, 0.757, 0.356], [0.907, -0.859, 1.385, 0.656, 0.571, -0.029], [1.035, -1.127, 1.219, 0.093, 0.841, 0.704], [0.635, -1.763, 1.501, -0.076, -0.097, 0.162], [0.614, -1.848, 1.062, 0.328, 0.483, 0.674], [0.692, -2.453, 1.556, 0.665, 0.718, 0.625], [1.074, -2.937, 1.026, 0.776, 0.224, 0.639], [0.852, -3.222, 1.01, 0.571, -0.139, 0.12]]\nD: [[1.022, 3.318, 1.189, 0.205, -0.146, 0.042], [0.815, 2.622, 1.239, 0.213, 0.653, 0.265], [1.051, 2.623, 1.858, 0.743, -0.174, 0.425], [1.36, 1.47, 1.216, -0.071, -0.098, -0.074], [1.312, 2.017, 2.002, -0.015, 0.439, 0.124], [0.798, 1.663, 1.184, 0.218, 0.773, 0.512], [1.438, 0.663, 1.321, 0.334, 0.497, 0.799], [1.496, 1.067, 1.009, 0.492, 0.69, -0.197], [0.673, 0.916, 1.137, 0.692, -0.115, 0.537], [0.588, 0.319, 1.507, 0.723, 0.486, 0.106], [0.938, -0.596, 1.384, 0.378, 0.487, -0.284], [0.718, -0.867, 0.941, 0.405, 0.388, -0.074], [1.365, -0.417, 1.613, 0.897, 0.508, -0.003], [1.124, -1.228, 1.16, 0.374, 0.651, 0.692], [0.872, -1.666, 1.25, 0.857, 0.612, -0.1], [0.693, -1.777, 1.038, 0.754, 0.733, 0.072], [1.133, -1.714, 1.626, 0.475, -0.192, 0.478], [1.392, -2.804, 1.671, -0.124, 0.18, 0.524], [1.024, -2.671, 1.235, 0.602, 0.29, 0.162], [0.636, -2.621, 1.52, -0.11, 0.64, 0.18]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_24_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_24_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the book in the scene. The camera pose information includes: the rotation matrix: [[0.999403, 0.004498, 0.03425], [-0.034232, -0.004158, 0.999405], [0.004638, -0.999981, -0.004001]]; the translation vector: [2.393484, 5.775056, 1.371464], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.923, 3.072, 1.641, 0.406, 0.224, 0.224], [0.852, 2.684, 1.628, 0.411, 0.369, 0.342], [0.952, 2.353, 1.591, 0.332, 0.315, 0.303], [0.919, 1.934, 1.549, 0.278, 0.356, 0.3], [0.991, 1.596, 1.521, 0.302, 0.285, 0.248], [1.083, 1.197, 1.51, 0.2, 0.428, 0.292], [1.067, 0.874, 1.479, 0.258, 0.387, 0.349], [1.029, 0.682, 1.414, 0.27, 0.238, 0.229], [1.041, 0.446, 1.386, 0.31, 0.355, 0.267], [1.007, 0.119, 1.367, 0.313, 0.297, 0.251], [1.072, -0.152, 1.331, 0.368, 0.301, 0.196], [0.978, -0.542, 1.366, 0.293, 0.411, 0.344], [1.038, -0.846, 1.349, 0.398, 0.352, 0.371], [0.995, -1.285, 1.277, 0.273, 0.319, 0.287], [1.051, -1.623, 1.317, 0.372, 0.433, 0.346], [1.016, -1.909, 1.267, 0.375, 0.379, 0.355], [1.01, -2.206, 1.239, 0.32, 0.305, 0.33], [1.021, -2.389, 1.248, 0.292, 0.375, 0.256], [0.945, -2.669, 1.168, 0.312, 0.307, 0.249], [0.986, -2.904, 1.157, 0.265, 0.331, 0.203]]\nB: [[1.16, 2.801, 1.566, 0.581, 0.486, -0.268], [0.756, 2.458, 1.347, -0.04, 0.522, 0.189], [0.535, 2.032, 1.866, 0.051, 0.318, 0.012], [0.896, 2.321, 1.823, -0.143, 0.711, 0.696], [1.3, 1.485, 1.216, 0.089, 0.474, 0.726], [1.333, 1.63, 1.281, 0.587, 0.639, -0.131], [1.034, 0.752, 1.496, 0.694, 0.45, 0.002], [1.132, 0.488, 1.903, -0.121, -0.068, 0.586], [1.244, 0.056, 1.06, 0.343, 0.366, 0.492], [0.523, 0.369, 1.091, 0.036, 0.297, 0.341], [0.945, -0.379, 1.231, -0.009, 0.698, 0.282], [0.742, -0.538, 1.804, 0.143, 0.887, 0.377], [1.245, -0.568, 1.71, 0.143, 0.603, 0.41], [1.356, -0.879, 1.397, 0.576, 0.048, 0.554], [1.47, -2.036, 1.112, 0.54, 0.795, 0.096], [1.472, -1.52, 0.829, 0.648, 0.598, 0.49], [0.775, -2.633, 1.506, -0.16, -0.139, -0.099], [0.838, -2.702, 1.211, 0.137, 0.331, -0.011], [1.261, -2.818, 1.474, 0.679, -0.005, 0.352], [0.793, -2.949, 1.566, -0.008, 0.477, 0.693]]\nC: [[1.056, 2.871, 1.196, 0.82, -0.168, 0.476], [1.086, 3.168, 1.177, -0.05, 0.768, 0.624], [1.078, 2.314, 1.991, 0.481, -0.014, 0.382], [0.899, 1.855, 1.409, -0.073, 0.065, 0.078], [0.796, 1.846, 1.026, -0.008, 0.461, 0.294], [0.96, 0.751, 1.316, 0.52, 0.805, 0.752], [1.18, 1.031, 1.766, 0.673, 0.119, 0.034], [1.398, 0.505, 1.118, -0.168, 0.16, -0.249], [0.838, 0.65, 1.392, 0.173, 0.458, 0.332], [1.111, -0.328, 1.396, 0.558, 0.481, 0.366], [0.597, -0.355, 1.146, 0.623, 0.368, 0.632], [0.691, -0.514, 1.338, -0.157, 0.304, -0.124], [0.696, -1.125, 1.476, 0.501, 0.757, 0.356], [0.907, -0.859, 1.385, 0.656, 0.571, -0.029], [1.035, -1.127, 1.219, 0.093, 0.841, 0.704], [0.635, -1.763, 1.501, -0.076, -0.097, 0.162], [0.614, -1.848, 1.062, 0.328, 0.483, 0.674], [0.692, -2.453, 1.556, 0.665, 0.718, 0.625], [1.074, -2.937, 1.026, 0.776, 0.224, 0.639], [0.852, -3.222, 1.01, 0.571, -0.139, 0.12]]\nD: [[1.022, 3.318, 1.189, 0.205, -0.146, 0.042], [0.815, 2.622, 1.239, 0.213, 0.653, 0.265], [1.051, 2.623, 1.858, 0.743, -0.174, 0.425], [1.36, 1.47, 1.216, -0.071, -0.098, -0.074], [1.312, 2.017, 2.002, -0.015, 0.439, 0.124], [0.798, 1.663, 1.184, 0.218, 0.773, 0.512], [1.438, 0.663, 1.321, 0.334, 0.497, 0.799], [1.496, 1.067, 1.009, 0.492, 0.69, -0.197], [0.673, 0.916, 1.137, 0.692, -0.115, 0.537], [0.588, 0.319, 1.507, 0.723, 0.486, 0.106], [0.938, -0.596, 1.384, 0.378, 0.487, -0.284], [0.718, -0.867, 0.941, 0.405, 0.388, -0.074], [1.365, -0.417, 1.613, 0.897, 0.508, -0.003], [1.124, -1.228, 1.16, 0.374, 0.651, 0.692], [0.872, -1.666, 1.25, 0.857, 0.612, -0.1], [0.693, -1.777, 1.038, 0.754, 0.733, 0.072], [1.133, -1.714, 1.626, 0.475, -0.192, 0.478], [1.392, -2.804, 1.671, -0.124, 0.18, 0.524], [1.024, -2.671, 1.235, 0.602, 0.29, 0.162], [0.636, -2.621, 1.52, -0.11, 0.64, 0.18]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.127, 1.263, 0.842, 1.099, 0.165, 0.151], [0.899, 0.349, 0.833, 0.078, 0.633, 0.087]]\nB: [[-0.285, 1.099, 0.515, 1.523, 0.256, -0.319], [0.56, 0.838, 0.875, -0.327, 0.985, 0.228]]\nC: [[0.446, 1.442, 1.259, 1.427, 0.331, 0.006], [0.446, 0.556, 0.643, 0.276, 0.563, -0.341]]\nD: [[-0.356, 1.631, 0.612, 0.864, 0.511, -0.226], [0.523, 0.674, 0.57, 0.567, 0.594, 0.019]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_25_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_25_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the rail in the scene. The camera pose information includes: the rotation matrix: [[0.631332, 0.312126, -0.709927], [0.775472, -0.26347, 0.573784], [-0.007951, -0.912776, -0.408382]]; the translation vector: [1.600176, 0.624978, 1.327739], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.127, 1.263, 0.842, 1.099, 0.165, 0.151], [0.899, 0.349, 0.833, 0.078, 0.633, 0.087]]\nB: [[-0.285, 1.099, 0.515, 1.523, 0.256, -0.319], [0.56, 0.838, 0.875, -0.327, 0.985, 0.228]]\nC: [[0.446, 1.442, 1.259, 1.427, 0.331, 0.006], [0.446, 0.556, 0.643, 0.276, 0.563, -0.341]]\nD: [[-0.356, 1.631, 0.612, 0.864, 0.511, -0.226], [0.523, 0.674, 0.57, 0.567, 0.594, 0.019]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.787, 2.876, 1.457, 2.063, -0.079, 1.518], [-0.953, 1.998, 0.997, 0.069, 3.579, 2.369], [0.693, -0.876, 1.265, 0.33, 4.219, 2.072], [0.345, -2.632, 0.88, 1.928, -0.067, 1.565], [-0.455, -2.068, 1.068, 0.08, 1.617, 2.382], [-0.899, -1.196, 0.623, 0.651, 0.095, 2.066]]\nB: [[0.116, 3.687, 0.955, 2.711, 0.51, 1.785], [-0.801, 1.888, 0.628, 0.573, 3.732, 2.205], [1.093, -0.187, 0.521, -0.148, 5.045, 2.538], [0.42, -2.481, 1.79, 1.307, 0.36, 0.947], [-0.514, -1.855, 0.567, 0.468, 1.76, 1.511], [-1.181, -1.155, 0.753, 0.267, -0.268, 1.847]]\nC: [[0.302, 3.207, 1.219, 2.255, 0.306, 1.414], [-0.871, 1.59, 0.966, 0.239, 3.492, 2.066], [0.732, -0.454, 0.961, 0.242, 4.576, 2.069], [-0.078, -2.664, 1.355, 1.624, 0.192, 1.303], [-0.886, -1.849, 0.913, 0.175, 1.703, 1.972], [-1.091, -1.016, 0.816, 0.518, 0.228, 1.826]]\nD: [[0.349, 2.764, 1.178, 2.112, -0.17, 1.603], [-1.032, 1.356, 0.914, 0.415, 3.877, 2.097], [0.285, -0.798, 1.205, 0.303, 4.409, 2.223], [-0.233, -2.574, 1.577, 1.241, 0.359, 1.513], [-1.059, -2.05, 1.259, 0.503, 1.807, 1.753], [-1.108, -1.393, 0.584, 0.052, -0.001, 1.469]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_26_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_26_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[-0.386761, -0.304254, 0.870543], [-0.920043, 0.191539, -0.34181], [-0.062746, -0.933136, -0.354007]]; the translation vector: [2.082368, 4.008438, 1.845888], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.787, 2.876, 1.457, 2.063, -0.079, 1.518], [-0.953, 1.998, 0.997, 0.069, 3.579, 2.369], [0.693, -0.876, 1.265, 0.33, 4.219, 2.072], [0.345, -2.632, 0.88, 1.928, -0.067, 1.565], [-0.455, -2.068, 1.068, 0.08, 1.617, 2.382], [-0.899, -1.196, 0.623, 0.651, 0.095, 2.066]]\nB: [[0.116, 3.687, 0.955, 2.711, 0.51, 1.785], [-0.801, 1.888, 0.628, 0.573, 3.732, 2.205], [1.093, -0.187, 0.521, -0.148, 5.045, 2.538], [0.42, -2.481, 1.79, 1.307, 0.36, 0.947], [-0.514, -1.855, 0.567, 0.468, 1.76, 1.511], [-1.181, -1.155, 0.753, 0.267, -0.268, 1.847]]\nC: [[0.302, 3.207, 1.219, 2.255, 0.306, 1.414], [-0.871, 1.59, 0.966, 0.239, 3.492, 2.066], [0.732, -0.454, 0.961, 0.242, 4.576, 2.069], [-0.078, -2.664, 1.355, 1.624, 0.192, 1.303], [-0.886, -1.849, 0.913, 0.175, 1.703, 1.972], [-1.091, -1.016, 0.816, 0.518, 0.228, 1.826]]\nD: [[0.349, 2.764, 1.178, 2.112, -0.17, 1.603], [-1.032, 1.356, 0.914, 0.415, 3.877, 2.097], [0.285, -0.798, 1.205, 0.303, 4.409, 2.223], [-0.233, -2.574, 1.577, 1.241, 0.359, 1.513], [-1.059, -2.05, 1.259, 0.503, 1.807, 1.753], [-1.108, -1.393, 0.584, 0.052, -0.001, 1.469]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-2.506, 0.209, 0.255, 0.924, 1.928, 0.478], [0.463, -1.087, 0.626, 1.179, 0.62, 0.996], [2.049, 0.799, -0.061, 0.618, 1.041, 1.191]]\nB: [[-2.054, 0.6, 0.688, 1.044, 1.508, 0.567], [0.964, -1.042, 0.495, 1.122, 0.573, 0.421], [2.453, 0.513, 0.739, 0.463, 1.578, 0.424]]\nC: [[-2.686, -0.003, 0.374, 0.562, 1.486, 0.489], [1.084, -0.733, 0.31, 1.073, 1.131, 0.967], [1.7, 0.788, 0.091, 0.433, 1.461, 1.21]]\nD: [[-2.225, 0.184, 0.565, 0.652, 1.867, 0.966], [0.89, -0.986, 0.428, 1.537, 0.782, 0.844], [2.106, 0.485, 0.423, 0.73, 1.476, 0.84]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_27_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_27_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the couch in the scene. The camera pose information includes: the rotation matrix: [[-0.565317, -0.50256, 0.654103], [-0.824719, 0.328974, -0.460017], [0.016003, -0.799506, -0.600445]]; the translation vector: [4.07549, 5.065369, 1.281872], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-2.506, 0.209, 0.255, 0.924, 1.928, 0.478], [0.463, -1.087, 0.626, 1.179, 0.62, 0.996], [2.049, 0.799, -0.061, 0.618, 1.041, 1.191]]\nB: [[-2.054, 0.6, 0.688, 1.044, 1.508, 0.567], [0.964, -1.042, 0.495, 1.122, 0.573, 0.421], [2.453, 0.513, 0.739, 0.463, 1.578, 0.424]]\nC: [[-2.686, -0.003, 0.374, 0.562, 1.486, 0.489], [1.084, -0.733, 0.31, 1.073, 1.131, 0.967], [1.7, 0.788, 0.091, 0.433, 1.461, 1.21]]\nD: [[-2.225, 0.184, 0.565, 0.652, 1.867, 0.966], [0.89, -0.986, 0.428, 1.537, 0.782, 0.844], [2.106, 0.485, 0.423, 0.73, 1.476, 0.84]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.787, -0.535, 0.927, 0.017, -0.194, -0.206]]\nB: [[-1.049, -0.444, 0.739, 0.127, 0.097, 0.179]]\nC: [[-1.148, -0.307, 0.649, -0.194, 0.004, 0.501]]\nD: [[-1.423, -0.784, 0.923, 0.285, 0.539, 0.33]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_28_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_28_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the water bottle in the scene. The camera pose information includes: the rotation matrix: [[0.684823, -0.326379, 0.651532], [-0.728707, -0.304485, 0.613413], [-0.001823, -0.894855, -0.446353]]; the translation vector: [2.86358, 2.414664, 1.549631], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.787, -0.535, 0.927, 0.017, -0.194, -0.206]]\nB: [[-1.049, -0.444, 0.739, 0.127, 0.097, 0.179]]\nC: [[-1.148, -0.307, 0.649, -0.194, 0.004, 0.501]]\nD: [[-1.423, -0.784, 0.923, 0.285, 0.539, 0.33]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.125, -0.371, 0.52, 0.921, 0.949, 1.032], [-0.05, 0.47, 0.51, 0.929, 1.055, 1.018]]\nB: [[-0.03, 0.021, 0.629, 1.294, 0.744, 0.853], [0.141, 0.523, 0.057, 0.461, 0.601, 1.102]]\nC: [[-0.027, -0.543, 0.255, 1.392, 0.459, 1.351], [-0.542, 0.241, 0.854, 1.099, 1.281, 1.01]]\nD: [[-0.353, -0.617, 0.621, 0.568, 1.229, 1.321], [-0.327, 0.58, 0.56, 0.835, 0.644, 0.683]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_29_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_29_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the table in the scene. The camera pose information includes: the rotation matrix: [[0.935902, 0.160482, -0.313582], [0.351212, -0.493772, 0.795512], [-0.027173, -0.854655, -0.518485]]; the translation vector: [4.465, -0.226232, 1.550028], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.125, -0.371, 0.52, 0.921, 0.949, 1.032], [-0.05, 0.47, 0.51, 0.929, 1.055, 1.018]]\nB: [[-0.03, 0.021, 0.629, 1.294, 0.744, 0.853], [0.141, 0.523, 0.057, 0.461, 0.601, 1.102]]\nC: [[-0.027, -0.543, 0.255, 1.392, 0.459, 1.351], [-0.542, 0.241, 0.854, 1.099, 1.281, 1.01]]\nD: [[-0.353, -0.617, 0.621, 0.568, 1.229, 1.321], [-0.327, 0.58, 0.56, 0.835, 0.644, 0.683]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.113, 1.152, 0.299, 1.212, 0.824, 1.479], [-0.739, -1.761, 0.838, 1.759, 0.908, 0.436]]\nB: [[-1.686, 0.962, 0.402, 1.418, 0.984, 0.915], [-0.524, -1.303, 0.377, 1.429, 0.342, 0.995]]\nC: [[-1.37, 1.148, 0.616, 1.114, 0.537, 1.159], [-0.283, -1.543, 0.412, 1.531, 0.506, 0.887]]\nD: [[-1.358, 1.603, 0.665, 1.495, 0.045, 1.488], [0.077, -1.171, 0.113, 1.245, 0.683, 1.338]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_30_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_30_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the dresser in the scene. The camera pose information includes: the rotation matrix: [[0.993306, 0.029023, -0.111812], [0.110831, -0.512349, 0.851596], [-0.032571, -0.858287, -0.512136]]; the translation vector: [2.482234, 1.391135, 1.348064], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.113, 1.152, 0.299, 1.212, 0.824, 1.479], [-0.739, -1.761, 0.838, 1.759, 0.908, 0.436]]\nB: [[-1.686, 0.962, 0.402, 1.418, 0.984, 0.915], [-0.524, -1.303, 0.377, 1.429, 0.342, 0.995]]\nC: [[-1.37, 1.148, 0.616, 1.114, 0.537, 1.159], [-0.283, -1.543, 0.412, 1.531, 0.506, 0.887]]\nD: [[-1.358, 1.603, 0.665, 1.495, 0.045, 1.488], [0.077, -1.171, 0.113, 1.245, 0.683, 1.338]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.429, 0.564, 1.259, 0.514, 4.432, 2.586], [-1.998, 0.309, 1.385, 0.292, 3.896, 2.792], [0.693, 2.704, 1.079, 1.949, 0.124, 2.2]]\nB: [[1.111, 0.098, 1.082, 0.466, 4.575, 2.917], [-1.93, 0.083, 1.425, -0.025, 4.078, 2.389], [0.372, 3.074, 1.309, 1.613, 0.349, 2.653]]\nC: [[1.746, 0.141, 1.259, 0.14, 4.199, 2.418], [-1.8, 0.062, 1.744, -0.163, 3.558, 2.447], [0.931, 3.17, 1.18, 1.489, -0.095, 2.336]]\nD: [[1.116, 0.433, 1.412, 0.515, 4.324, 2.69], [-1.509, 0.174, 1.744, -0.053, 3.532, 2.532], [0.744, 2.248, 0.965, 1.964, 0.231, 1.764]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_31_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_31_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[-0.32152, -0.4706, 0.821681], [-0.946681, 0.178549, -0.268172], [-0.020508, -0.864092, -0.502915]]; the translation vector: [2.120097, 2.367636, 1.494245], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.429, 0.564, 1.259, 0.514, 4.432, 2.586], [-1.998, 0.309, 1.385, 0.292, 3.896, 2.792], [0.693, 2.704, 1.079, 1.949, 0.124, 2.2]]\nB: [[1.111, 0.098, 1.082, 0.466, 4.575, 2.917], [-1.93, 0.083, 1.425, -0.025, 4.078, 2.389], [0.372, 3.074, 1.309, 1.613, 0.349, 2.653]]\nC: [[1.746, 0.141, 1.259, 0.14, 4.199, 2.418], [-1.8, 0.062, 1.744, -0.163, 3.558, 2.447], [0.931, 3.17, 1.18, 1.489, -0.095, 2.336]]\nD: [[1.116, 0.433, 1.412, 0.515, 4.324, 2.69], [-1.509, 0.174, 1.744, -0.053, 3.532, 2.532], [0.744, 2.248, 0.965, 1.964, 0.231, 1.764]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.189, -0.394, 0.453, 1.615, 0.833, 0.943]]\nB: [[-0.04, -0.278, 0.23, 1.326, 1.046, 0.463]]\nC: [[-0.492, -0.1, 0.679, 1.535, 0.67, -0.014]]\nD: [[0.006, 0.067, 0.535, 1.038, 1.473, 0.446]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_32_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_32_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the coffee table in the scene. The camera pose information includes: the rotation matrix: [[-0.799511, 0.533863, -0.275266], [0.600541, 0.71925, -0.349328], [0.011492, -0.4446, -0.895656]]; the translation vector: [2.031323, 2.312379, 1.200993], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.189, -0.394, 0.453, 1.615, 0.833, 0.943]]\nB: [[-0.04, -0.278, 0.23, 1.326, 1.046, 0.463]]\nC: [[-0.492, -0.1, 0.679, 1.535, 0.67, -0.014]]\nD: [[0.006, 0.067, 0.535, 1.038, 1.473, 0.446]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.534, -3.167, 1.655, 0.929, 0.443, 2.126]]\nB: [[1.524, -3.177, 0.91, 0.507, 0.601, 2.272]]\nC: [[1.265, -3.361, 1.281, 0.587, 0.91, 2.343]]\nD: [[1.106, -3.397, 1.033, 0.365, 0.531, 2.023]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_33_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_33_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the shower walls in the scene. The camera pose information includes: the rotation matrix: [[0.590232, -0.352789, 0.726062], [-0.807221, -0.252962, 0.533296], [-0.004475, -0.900861, -0.434086]]; the translation vector: [2.518124, 2.463328, 1.346668], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.534, -3.167, 1.655, 0.929, 0.443, 2.126]]\nB: [[1.524, -3.177, 0.91, 0.507, 0.601, 2.272]]\nC: [[1.265, -3.361, 1.281, 0.587, 0.91, 2.343]]\nD: [[1.106, -3.397, 1.033, 0.365, 0.531, 2.023]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.432, -0.058, 1.349, -0.208, 0.669, 1.766], [0.527, -0.253, 0.616, -0.259, 1.051, 2.58]]\nB: [[-1.145, -0.538, 0.911, 0.071, 0.71, 1.954], [0.803, -0.422, 1.032, 0.108, 0.84, 2.211]]\nC: [[-1.363, -0.409, 0.647, 0.052, 0.929, 2.359], [0.332, 0.057, 1.462, -0.091, 0.807, 2.526]]\nD: [[-1.139, -0.369, 0.72, -0.007, 0.535, 2.292], [0.44, -0.22, 1.3, 0.54, 1.144, 2.107]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_34_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_34_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the door in the scene. The camera pose information includes: the rotation matrix: [[-0.464707, 0.496079, -0.733453], [0.882598, 0.326106, -0.338639], [0.071191, -0.804711, -0.589382]]; the translation vector: [2.864701, 0.868861, 1.204561], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.432, -0.058, 1.349, -0.208, 0.669, 1.766], [0.527, -0.253, 0.616, -0.259, 1.051, 2.58]]\nB: [[-1.145, -0.538, 0.911, 0.071, 0.71, 1.954], [0.803, -0.422, 1.032, 0.108, 0.84, 2.211]]\nC: [[-1.363, -0.409, 0.647, 0.052, 0.929, 2.359], [0.332, 0.057, 1.462, -0.091, 0.807, 2.526]]\nD: [[-1.139, -0.369, 0.72, -0.007, 0.535, 2.292], [0.44, -0.22, 1.3, 0.54, 1.144, 2.107]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-2.366, -0.589, 0.493, 0.271, 1.157, 0.396]]\nB: [[-2.148, -0.107, 0.643, 0.495, 1.354, 0.165]]\nC: [[-2.396, -0.378, 0.719, 0.293, 1.134, 0.807]]\nD: [[-2.162, -0.271, 0.293, -0.116, 0.802, 0.089]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_35_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_35_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the books in the scene. The camera pose information includes: the rotation matrix: [[0.467192, 0.317292, -0.825262], [0.883302, -0.126478, 0.451421], [0.038855, -0.939856, -0.339354]]; the translation vector: [2.723032, 3.168159, 1.438168], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-2.366, -0.589, 0.493, 0.271, 1.157, 0.396]]\nB: [[-2.148, -0.107, 0.643, 0.495, 1.354, 0.165]]\nC: [[-2.396, -0.378, 0.719, 0.293, 1.134, 0.807]]\nD: [[-2.162, -0.271, 0.293, -0.116, 0.802, 0.089]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.721, -0.518, 0.621, 0.489, 0.194, 0.671], [0.219, 1.2, 0.605, 0.561, 1.11, 0.032]]\nB: [[1.127, -0.237, 0.575, 0.571, 0.442, 0.463], [0.315, 0.86, 0.589, 0.436, 0.639, 0.436]]\nC: [[1.534, -0.019, 0.554, 1.064, 0.929, 0.813], [0.238, 0.541, 0.519, 0.085, 0.619, 0.329]]\nD: [[0.67, 0.235, 1.051, 0.639, -0.039, 0.084], [0.187, 0.38, 0.829, 0.452, 0.327, 0.898]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_36_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_36_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the chair in the scene. The camera pose information includes: the rotation matrix: [[0.473704, -0.275929, 0.836342], [-0.879436, -0.198746, 0.432542], [0.046868, -0.940406, -0.336809]]; the translation vector: [2.984934, 2.048073, 1.446683], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.721, -0.518, 0.621, 0.489, 0.194, 0.671], [0.219, 1.2, 0.605, 0.561, 1.11, 0.032]]\nB: [[1.127, -0.237, 0.575, 0.571, 0.442, 0.463], [0.315, 0.86, 0.589, 0.436, 0.639, 0.436]]\nC: [[1.534, -0.019, 0.554, 1.064, 0.929, 0.813], [0.238, 0.541, 0.519, 0.085, 0.619, 0.329]]\nD: [[0.67, 0.235, 1.051, 0.639, -0.039, 0.084], [0.187, 0.38, 0.829, 0.452, 0.327, 0.898]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.092, -0.678, 1.584, -0.059, 1.814, 1.264], [-1.925, -0.058, 1.478, -0.34, 2.948, 1.581]]\nB: [[1.208, -0.318, 1.322, 0.047, 1.935, 1.314], [-2.088, -0.879, 1.441, 0.235, 2.296, 1.085]]\nC: [[1.41, -0.38, 1.574, 0.141, 1.666, 1.41], [-1.712, -0.407, 1.364, 0.152, 2.69, 1.496]]\nD: [[1.415, -0.841, 1.953, -0.188, 1.625, 1.182], [-1.333, -0.183, 1.414, 0.172, 2.326, 1.539]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_37_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_37_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the blackboard in the scene. The camera pose information includes: the rotation matrix: [[0.24604, -0.551346, 0.797171], [-0.968826, -0.115295, 0.219278], [-0.028988, -0.826271, -0.562526]]; the translation vector: [1.704247, 2.057158, 1.361636], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.092, -0.678, 1.584, -0.059, 1.814, 1.264], [-1.925, -0.058, 1.478, -0.34, 2.948, 1.581]]\nB: [[1.208, -0.318, 1.322, 0.047, 1.935, 1.314], [-2.088, -0.879, 1.441, 0.235, 2.296, 1.085]]\nC: [[1.41, -0.38, 1.574, 0.141, 1.666, 1.41], [-1.712, -0.407, 1.364, 0.152, 2.69, 1.496]]\nD: [[1.415, -0.841, 1.953, -0.188, 1.625, 1.182], [-1.333, -0.183, 1.414, 0.172, 2.326, 1.539]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.294, -3.518, 1.054, 3.936, 0.361, 0.915], [0.879, 3.786, 1.41, 2.097, 0.63, 1.328]]\nB: [[-0.76, -3.309, 1.31, 3.985, 0.372, 1.047], [0.904, 3.311, 1.519, 1.8, 0.243, 1.41]]\nC: [[-0.969, -3.07, 1.797, 3.572, 0.172, 1.293], [1.021, 3.539, 1.127, 2.014, -0.169, 1.491]]\nD: [[-0.614, -3.4, 1.295, 4.114, 0.42, 0.553], [0.711, 2.902, 1.12, 1.656, 0.643, 1.016]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_38_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_38_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the whiteboard in the scene. The camera pose information includes: the rotation matrix: [[-0.852441, 0.228219, -0.470383], [0.522431, 0.337001, -0.78326], [-0.020235, -0.913426, -0.406502]]; the translation vector: [1.798405, 5.320803, 1.619482], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.294, -3.518, 1.054, 3.936, 0.361, 0.915], [0.879, 3.786, 1.41, 2.097, 0.63, 1.328]]\nB: [[-0.76, -3.309, 1.31, 3.985, 0.372, 1.047], [0.904, 3.311, 1.519, 1.8, 0.243, 1.41]]\nC: [[-0.969, -3.07, 1.797, 3.572, 0.172, 1.293], [1.021, 3.539, 1.127, 2.014, -0.169, 1.491]]\nD: [[-0.614, -3.4, 1.295, 4.114, 0.42, 0.553], [0.711, 2.902, 1.12, 1.656, 0.643, 1.016]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.694, -2.027, 0.441, 1.326, 1.107, 0.898], [-0.288, -2.078, 0.474, 1.039, 1.539, 0.924]]\nB: [[1.654, -2.115, 0.692, 1.098, 1.029, 0.654], [-0.011, -1.968, 0.288, 1.388, 1.994, 1.185]]\nC: [[2.035, -2.378, 0.613, 1.604, 1.492, 1.161], [-0.68, -1.93, 0.48, 0.656, 1.897, 0.701]]\nD: [[1.361, -2.093, 0.306, 1.061, 0.846, 0.974], [-0.065, -1.942, 0.682, 1.519, 1.648, 1.035]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_39_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_39_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the foosball table in the scene. The camera pose information includes: the rotation matrix: [[-0.699126, -0.324611, 0.637064], [-0.713802, 0.265353, -0.648131], [0.041344, -0.907863, -0.417224]]; the translation vector: [0.050403, 3.78209, 1.506908], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.694, -2.027, 0.441, 1.326, 1.107, 0.898], [-0.288, -2.078, 0.474, 1.039, 1.539, 0.924]]\nB: [[1.654, -2.115, 0.692, 1.098, 1.029, 0.654], [-0.011, -1.968, 0.288, 1.388, 1.994, 1.185]]\nC: [[2.035, -2.378, 0.613, 1.604, 1.492, 1.161], [-0.68, -1.93, 0.48, 0.656, 1.897, 0.701]]\nD: [[1.361, -2.093, 0.306, 1.061, 0.846, 0.974], [-0.065, -1.942, 0.682, 1.519, 1.648, 1.035]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.934, -0.844, -0.178, -0.06, 0.379, 0.377]]\nB: [[-2.118, -0.866, 0.424, -0.166, 0.218, 0.556]]\nC: [[-2.075, -0.928, -0.19, 0.558, 0.471, 0.431]]\nD: [[-1.78, -0.879, 0.057, 0.14, 0.194, 0.118]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_40_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_40_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the chair in the scene. The camera pose information includes: the rotation matrix: [[-0.079918, -0.690871, 0.718547], [-0.996802, 0.055321, -0.057677], [9.6e-05, -0.720858, -0.693082]]; the translation vector: [1.142658, 0.968078, 1.385987], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.934, -0.844, -0.178, -0.06, 0.379, 0.377]]\nB: [[-2.118, -0.866, 0.424, -0.166, 0.218, 0.556]]\nC: [[-2.075, -0.928, -0.19, 0.558, 0.471, 0.431]]\nD: [[-1.78, -0.879, 0.057, 0.14, 0.194, 0.118]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.004, -0.056, 0.156, 0.548, 2.574, 0.973], [0.863, 1.538, 0.8, 1.622, 0.932, 0.511]]\nB: [[-0.752, -0.451, 0.479, 0.974, 2.169, 0.971], [0.505, 1.322, 0.592, 1.774, 0.902, 0.995]]\nC: [[-0.502, -0.659, 0.53, 0.847, 2.257, 0.624], [0.069, 1.171, 0.213, 2.015, 1.277, 1.24]]\nD: [[-0.413, -0.371, 0.765, 1.102, 2.094, 1.312], [0.364, 1.532, 0.25, 2.233, 1.243, 0.916]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_41_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_41_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the couch in the scene. The camera pose information includes: the rotation matrix: [[-0.861262, 0.35211, -0.366398], [0.508128, 0.60504, -0.61297], [0.005853, -0.714105, -0.700014]]; the translation vector: [3.145762, 3.637784, 1.437024], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.004, -0.056, 0.156, 0.548, 2.574, 0.973], [0.863, 1.538, 0.8, 1.622, 0.932, 0.511]]\nB: [[-0.752, -0.451, 0.479, 0.974, 2.169, 0.971], [0.505, 1.322, 0.592, 1.774, 0.902, 0.995]]\nC: [[-0.502, -0.659, 0.53, 0.847, 2.257, 0.624], [0.069, 1.171, 0.213, 2.015, 1.277, 1.24]]\nD: [[-0.413, -0.371, 0.765, 1.102, 2.094, 1.312], [0.364, 1.532, 0.25, 2.233, 1.243, 0.916]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.464, -1.008, 0.704, 0.548, 0.603, 1.02], [-0.19, -0.382, 0.144, 0.733, 0.716, 0.646], [-0.404, 0.288, 0.436, 0.98, 0.357, 1.05], [1.664, -1.226, -0.006, 0.561, 0.79, 0.588], [0.842, 1.15, 0.487, 0.536, 0.705, 0.632], [0.433, 0.35, -0.074, 0.642, 0.688, 0.335], [1.494, 3.097, 0.552, 0.862, 0.855, 0.649], [-1.799, -1.668, 0.843, 1.135, 1.012, 0.533], [2.071, -0.103, 0.082, 0.7, 0.467, 1.183], [2.558, 1.11, 0.748, 0.486, 0.458, 0.736], [-0.954, 2.892, -0.06, 0.296, 0.278, 1.194], [-1.303, 2.083, 0.061, 0.236, 0.278, 0.444], [-1.569, 0.894, 0.218, 0.482, 1.049, 0.471]]\nB: [[0.772, -0.719, 0.389, 0.713, 0.789, 0.818], [-0.024, -0.745, 0.397, 0.693, 0.69, 0.791], [-0.445, -0.009, 0.396, 0.704, 0.6, 0.798], [1.881, -0.924, 0.405, 0.629, 0.643, 0.773], [0.681, 0.918, 0.401, 0.691, 0.741, 0.776], [0.646, 0.122, 0.392, 0.618, 0.697, 0.804], [1.675, 2.694, 0.343, 0.794, 0.824, 0.712], [-1.741, -1.918, 0.384, 0.689, 0.734, 0.793], [1.972, 0.182, 0.329, 0.798, 0.905, 0.759], [2.104, 1.432, 0.601, 0.176, 0.467, 0.305], [-1.26, 2.803, 0.397, 0.519, 0.618, 0.85], [-1.699, 1.837, 0.379, 0.732, 0.671, 0.798], [-1.685, 1.314, 0.409, 0.719, 0.764, 0.815]]\nC: [[0.533, -0.974, 0.234, 0.918, 0.378, 0.964], [-0.355, -1.19, 0.156, 0.302, 0.635, 0.774], [-0.597, 0.157, 0.288, 1.05, 0.184, 0.298], [2.072, -0.909, 0.536, 0.468, 0.691, 0.463], [0.786, 1.284, 0.692, 1.11, 1.012, 1.207], [0.407, 0.333, 0.418, 0.195, 0.858, 0.97], [1.968, 3.191, -0.153, 0.695, 1.269, 0.454], [-1.257, -1.997, 0.349, 0.303, 0.286, 0.552], [2.317, 0.459, 0.175, 0.403, 1.116, 1.213], [2.141, 1.823, 0.68, -0.29, 0.059, -0.035], [-1.354, 3.299, 0.362, 0.406, 0.802, 0.98], [-2.092, 2.265, 0.732, 1.224, 0.725, 0.93], [-1.784, 1.414, 0.713, 0.316, 1.116, 0.675]]\nD: [[0.989, -0.333, 0.223, 0.813, 0.656, 0.519], [0.19, -0.985, 0.389, 0.303, 0.729, 1.121], [-0.625, 0.156, 0.665, 1.074, 0.926, 0.429], [2.366, -0.669, 0.862, 0.551, 0.718, 0.409], [1.078, 0.548, 0.472, 1.129, 0.587, 0.295], [0.268, -0.298, 0.199, 0.384, 0.582, 0.724], [1.775, 3.124, 0.353, 0.87, 1.306, 0.424], [-2.119, -2.015, 0.712, 0.444, 0.613, 1.097], [2.125, 0.536, -0.025, 0.783, 0.67, 0.385], [2.16, 1.441, 0.464, 0.575, 0.443, 0.108], [-1.127, 3.006, 0.402, 0.226, 0.819, 0.552], [-1.981, 2.007, -0.054, 1.127, 0.372, 0.846], [-1.217, 1.009, -0.072, 0.967, 0.351, 1.126]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_42_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_42_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the chair in the scene. The camera pose information includes: the rotation matrix: [[0.951558, 0.16536, -0.259218], [0.307283, -0.481983, 0.820531], [0.010744, -0.860436, -0.509446]]; the translation vector: [2.919862, 3.428013, 1.521081], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.464, -1.008, 0.704, 0.548, 0.603, 1.02], [-0.19, -0.382, 0.144, 0.733, 0.716, 0.646], [-0.404, 0.288, 0.436, 0.98, 0.357, 1.05], [1.664, -1.226, -0.006, 0.561, 0.79, 0.588], [0.842, 1.15, 0.487, 0.536, 0.705, 0.632], [0.433, 0.35, -0.074, 0.642, 0.688, 0.335], [1.494, 3.097, 0.552, 0.862, 0.855, 0.649], [-1.799, -1.668, 0.843, 1.135, 1.012, 0.533], [2.071, -0.103, 0.082, 0.7, 0.467, 1.183], [2.558, 1.11, 0.748, 0.486, 0.458, 0.736], [-0.954, 2.892, -0.06, 0.296, 0.278, 1.194], [-1.303, 2.083, 0.061, 0.236, 0.278, 0.444], [-1.569, 0.894, 0.218, 0.482, 1.049, 0.471]]\nB: [[0.772, -0.719, 0.389, 0.713, 0.789, 0.818], [-0.024, -0.745, 0.397, 0.693, 0.69, 0.791], [-0.445, -0.009, 0.396, 0.704, 0.6, 0.798], [1.881, -0.924, 0.405, 0.629, 0.643, 0.773], [0.681, 0.918, 0.401, 0.691, 0.741, 0.776], [0.646, 0.122, 0.392, 0.618, 0.697, 0.804], [1.675, 2.694, 0.343, 0.794, 0.824, 0.712], [-1.741, -1.918, 0.384, 0.689, 0.734, 0.793], [1.972, 0.182, 0.329, 0.798, 0.905, 0.759], [2.104, 1.432, 0.601, 0.176, 0.467, 0.305], [-1.26, 2.803, 0.397, 0.519, 0.618, 0.85], [-1.699, 1.837, 0.379, 0.732, 0.671, 0.798], [-1.685, 1.314, 0.409, 0.719, 0.764, 0.815]]\nC: [[0.533, -0.974, 0.234, 0.918, 0.378, 0.964], [-0.355, -1.19, 0.156, 0.302, 0.635, 0.774], [-0.597, 0.157, 0.288, 1.05, 0.184, 0.298], [2.072, -0.909, 0.536, 0.468, 0.691, 0.463], [0.786, 1.284, 0.692, 1.11, 1.012, 1.207], [0.407, 0.333, 0.418, 0.195, 0.858, 0.97], [1.968, 3.191, -0.153, 0.695, 1.269, 0.454], [-1.257, -1.997, 0.349, 0.303, 0.286, 0.552], [2.317, 0.459, 0.175, 0.403, 1.116, 1.213], [2.141, 1.823, 0.68, -0.29, 0.059, -0.035], [-1.354, 3.299, 0.362, 0.406, 0.802, 0.98], [-2.092, 2.265, 0.732, 1.224, 0.725, 0.93], [-1.784, 1.414, 0.713, 0.316, 1.116, 0.675]]\nD: [[0.989, -0.333, 0.223, 0.813, 0.656, 0.519], [0.19, -0.985, 0.389, 0.303, 0.729, 1.121], [-0.625, 0.156, 0.665, 1.074, 0.926, 0.429], [2.366, -0.669, 0.862, 0.551, 0.718, 0.409], [1.078, 0.548, 0.472, 1.129, 0.587, 0.295], [0.268, -0.298, 0.199, 0.384, 0.582, 0.724], [1.775, 3.124, 0.353, 0.87, 1.306, 0.424], [-2.119, -2.015, 0.712, 0.444, 0.613, 1.097], [2.125, 0.536, -0.025, 0.783, 0.67, 0.385], [2.16, 1.441, 0.464, 0.575, 0.443, 0.108], [-1.127, 3.006, 0.402, 0.226, 0.819, 0.552], [-1.981, 2.007, -0.054, 1.127, 0.372, 0.846], [-1.217, 1.009, -0.072, 0.967, 0.351, 1.126]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.467, 4.66, 0.479, 1.188, 0.953, 0.41], [-0.153, 2.813, 0.487, 0.892, 1.061, 0.54], [0.179, 1.102, 0.898, 0.937, 1.029, 0.418], [1.771, 1.676, 0.076, 1.486, 0.58, 0.338], [1.933, -1.484, -0.005, 1.579, 0.28, 0.413], [-0.13, 5.403, 0.908, 0.195, 1.153, 0.536]]\nB: [[2.334, 4.242, 0.72, 1.63, 0.144, 0.491], [-0.388, 2.622, 0.373, 0.028, 1.059, 0.86], [0.405, 0.837, 0.295, 0.037, 1.048, 0.862], [2.233, 1.663, 0.713, 1.024, 0.482, 0.49], [1.733, -1.171, 0.524, 1.296, 0.141, 0.721], [-0.04, 4.994, 0.079, 0.373, 0.629, 0.062]]\nC: [[2.181, 4.661, 0.338, 1.164, 0.599, 0.637], [-0.181, 2.466, 0.019, 0.362, 0.849, 0.165], [-0.035, 1.291, 0.403, 0.392, 0.795, 0.638], [2.338, 1.45, 0.464, 0.895, 0.891, 0.816], [2.039, -1.264, 0.768, 1.237, 0.686, -0.053], [-0.249, 5.084, 0.593, 0.24, 0.421, 0.492]]\nD: [[1.918, 4.662, 0.478, 1.328, 0.546, 0.414], [0.093, 2.502, 0.4, 0.472, 0.776, 0.619], [0.138, 1.203, 0.414, 0.446, 0.869, 0.461], [1.918, 1.858, 0.513, 1.358, 0.507, 0.451], [2.021, -1.528, 0.41, 1.371, 0.472, 0.431], [0.209, 5.284, 0.463, 0.428, 0.778, 0.322]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_43_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_43_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the bench in the scene. The camera pose information includes: the rotation matrix: [[-0.482968, -0.397392, 0.78027], [-0.874514, 0.173759, -0.452807], [0.044362, -0.901048, -0.431445]]; the translation vector: [8.974016, 2.795387, 1.945192], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.467, 4.66, 0.479, 1.188, 0.953, 0.41], [-0.153, 2.813, 0.487, 0.892, 1.061, 0.54], [0.179, 1.102, 0.898, 0.937, 1.029, 0.418], [1.771, 1.676, 0.076, 1.486, 0.58, 0.338], [1.933, -1.484, -0.005, 1.579, 0.28, 0.413], [-0.13, 5.403, 0.908, 0.195, 1.153, 0.536]]\nB: [[2.334, 4.242, 0.72, 1.63, 0.144, 0.491], [-0.388, 2.622, 0.373, 0.028, 1.059, 0.86], [0.405, 0.837, 0.295, 0.037, 1.048, 0.862], [2.233, 1.663, 0.713, 1.024, 0.482, 0.49], [1.733, -1.171, 0.524, 1.296, 0.141, 0.721], [-0.04, 4.994, 0.079, 0.373, 0.629, 0.062]]\nC: [[2.181, 4.661, 0.338, 1.164, 0.599, 0.637], [-0.181, 2.466, 0.019, 0.362, 0.849, 0.165], [-0.035, 1.291, 0.403, 0.392, 0.795, 0.638], [2.338, 1.45, 0.464, 0.895, 0.891, 0.816], [2.039, -1.264, 0.768, 1.237, 0.686, -0.053], [-0.249, 5.084, 0.593, 0.24, 0.421, 0.492]]\nD: [[1.918, 4.662, 0.478, 1.328, 0.546, 0.414], [0.093, 2.502, 0.4, 0.472, 0.776, 0.619], [0.138, 1.203, 0.414, 0.446, 0.869, 0.461], [1.918, 1.858, 0.513, 1.358, 0.507, 0.451], [2.021, -1.528, 0.41, 1.371, 0.472, 0.431], [0.209, 5.284, 0.463, 0.428, 0.778, 0.322]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.653, 1.297, 0.818, 0.22, 0.426, 1.095]]\nB: [[-1.511, 1.726, 0.43, 0.986, 0.39, 0.401]]\nC: [[-0.81, 1.586, -0.129, 0.278, 0.94, 0.466]]\nD: [[-1.238, 1.344, 0.361, 0.491, 0.703, 0.77]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_44_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_44_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the toilet in the scene. The camera pose information includes: the rotation matrix: [[0.573165, 0.475287, -0.667521], [0.819422, -0.337921, 0.462988], [-0.005517, -0.81235, -0.583144]]; the translation vector: [4.230747, 1.597944, 1.425469], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.653, 1.297, 0.818, 0.22, 0.426, 1.095]]\nB: [[-1.511, 1.726, 0.43, 0.986, 0.39, 0.401]]\nC: [[-0.81, 1.586, -0.129, 0.278, 0.94, 0.466]]\nD: [[-1.238, 1.344, 0.361, 0.491, 0.703, 0.77]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.21, -0.485, 1.162, 0.745, 0.977, 0.286], [0.409, 1.308, 0.507, 0.07, 0.653, 0.254], [-1.112, -1.013, 0.307, 0.502, 0.872, 0.567], [-0.178, 2.738, 0.98, 0.567, 0.888, 0.53], [0.062, 1.603, 0.573, 0.692, 0.195, 0.048], [0.203, -0.892, 0.691, 0.653, 0.429, 0.535], [0.028, 1.784, 0.14, 1.147, 0.406, 0.851], [-1.458, 1.116, 0.904, -0.122, 0.156, 0.773], [-1.192, -0.149, 0.71, 0.375, 0.509, 0.581], [1.914, -2.0, 0.71, 0.384, 0.176, -0.331], [1.687, -2.156, 1.387, -0.058, 0.551, 0.368], [0.793, -1.724, 1.309, 1.148, 0.62, 0.588], [1.399, -0.955, 1.401, 0.399, 0.543, 0.388], [-0.785, -3.035, 1.174, 0.319, 0.082, 0.789], [-0.814, -2.329, 0.623, 0.245, 0.091, 0.496], [-1.62, -3.469, 0.316, 0.527, 0.537, -0.091]]\nB: [[-0.08, -0.154, 1.025, 0.591, 0.905, 0.775], [0.195, 0.928, 0.983, 0.833, 0.216, 0.071], [-0.777, -0.244, 0.921, 0.352, 0.434, 0.837], [-0.104, 1.99, 0.831, 0.825, 0.625, 0.159], [1.019, 2.186, 0.505, 0.763, 0.5, 0.673], [0.085, -0.695, 1.038, 0.323, 0.449, 0.684], [-0.014, 1.677, 0.448, 0.846, 0.305, -0.088], [-0.906, 1.351, 0.456, 0.541, 1.066, 0.626], [-1.282, 0.246, 0.87, 0.842, 0.096, -0.15], [1.42, -1.945, 0.918, 0.762, 0.341, 0.254], [1.009, -1.899, 1.409, -0.041, 0.531, 0.04], [0.874, -1.746, 1.047, 0.664, 0.437, 0.465], [0.723, -1.178, 0.705, 0.411, 0.715, 0.301], [-0.325, -2.808, 0.799, 0.443, 0.515, -0.023], [-1.586, -1.764, 0.236, 0.308, 0.382, 0.158], [-1.704, -3.657, 0.202, 0.579, -0.129, 0.217]]\nC: [[0.074, -0.449, 0.793, 0.473, 0.548, 0.492], [0.224, 1.038, 0.781, 0.486, 0.546, 0.522], [-0.941, -0.689, 0.578, 0.69, 0.615, 0.42], [-0.002, 2.387, 0.73, 0.7, 0.637, 0.471], [0.54, 1.814, 0.876, 0.434, 0.466, 0.544], [-0.295, -1.043, 0.729, 0.48, 0.533, 0.501], [-0.372, 1.676, 0.602, 0.676, 0.567, 0.405], [-1.148, 1.569, 0.485, 0.349, 0.639, 0.495], [-0.821, 0.09, 0.693, 0.409, 0.4, 0.269], [1.644, -1.897, 1.107, 0.364, 0.18, 0.12], [1.307, -2.14, 1.134, 0.414, 0.578, 0.428], [0.763, -1.797, 0.957, 0.648, 0.49, 0.409], [1.155, -1.373, 0.909, 0.317, 0.441, 0.117], [-0.563, -2.579, 0.735, 0.309, 0.521, 0.447], [-1.263, -2.059, 0.721, 0.472, 0.232, 0.232], [-1.688, -3.278, 0.604, 0.595, 0.313, 0.401]]\nD: [[0.369, -0.147, 1.222, 0.22, 0.106, 0.249], [0.37, 1.261, 1.11, 0.14, 1.02, 0.894], [-0.639, -0.96, 0.333, 0.677, 0.877, 0.601], [0.112, 1.921, 0.621, 0.682, 0.214, 0.04], [0.061, 1.445, 0.485, 0.375, 0.738, 0.414], [-0.478, -0.871, 0.684, 0.362, 0.566, 0.762], [-0.314, 1.927, 0.136, 0.42, 0.773, 0.685], [-1.086, 1.078, 0.616, 0.363, 0.796, 0.02], [-0.78, 0.455, 1.075, -0.039, 0.211, 0.125], [1.409, -1.503, 1.252, 0.797, 0.258, -0.146], [1.115, -1.981, 0.929, 0.053, 0.518, 0.484], [1.215, -2.2, 1.257, 0.76, 0.293, 0.427], [1.189, -1.058, 0.631, 0.369, 0.328, -0.119], [-0.365, -2.692, 1.041, -0.142, 0.542, 0.05], [-0.833, -2.437, 0.641, 0.718, 0.012, 0.121], [-2.016, -3.644, 1.062, 0.946, -0.031, -0.016]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_45_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_45_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the chair in the scene. The camera pose information includes: the rotation matrix: [[-0.844798, -0.442354, 0.301064], [-0.534849, 0.714819, -0.450523], [-0.015916, -0.541624, -0.84047]]; the translation vector: [3.085932, 7.995926, 1.934485], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.21, -0.485, 1.162, 0.745, 0.977, 0.286], [0.409, 1.308, 0.507, 0.07, 0.653, 0.254], [-1.112, -1.013, 0.307, 0.502, 0.872, 0.567], [-0.178, 2.738, 0.98, 0.567, 0.888, 0.53], [0.062, 1.603, 0.573, 0.692, 0.195, 0.048], [0.203, -0.892, 0.691, 0.653, 0.429, 0.535], [0.028, 1.784, 0.14, 1.147, 0.406, 0.851], [-1.458, 1.116, 0.904, -0.122, 0.156, 0.773], [-1.192, -0.149, 0.71, 0.375, 0.509, 0.581], [1.914, -2.0, 0.71, 0.384, 0.176, -0.331], [1.687, -2.156, 1.387, -0.058, 0.551, 0.368], [0.793, -1.724, 1.309, 1.148, 0.62, 0.588], [1.399, -0.955, 1.401, 0.399, 0.543, 0.388], [-0.785, -3.035, 1.174, 0.319, 0.082, 0.789], [-0.814, -2.329, 0.623, 0.245, 0.091, 0.496], [-1.62, -3.469, 0.316, 0.527, 0.537, -0.091]]\nB: [[-0.08, -0.154, 1.025, 0.591, 0.905, 0.775], [0.195, 0.928, 0.983, 0.833, 0.216, 0.071], [-0.777, -0.244, 0.921, 0.352, 0.434, 0.837], [-0.104, 1.99, 0.831, 0.825, 0.625, 0.159], [1.019, 2.186, 0.505, 0.763, 0.5, 0.673], [0.085, -0.695, 1.038, 0.323, 0.449, 0.684], [-0.014, 1.677, 0.448, 0.846, 0.305, -0.088], [-0.906, 1.351, 0.456, 0.541, 1.066, 0.626], [-1.282, 0.246, 0.87, 0.842, 0.096, -0.15], [1.42, -1.945, 0.918, 0.762, 0.341, 0.254], [1.009, -1.899, 1.409, -0.041, 0.531, 0.04], [0.874, -1.746, 1.047, 0.664, 0.437, 0.465], [0.723, -1.178, 0.705, 0.411, 0.715, 0.301], [-0.325, -2.808, 0.799, 0.443, 0.515, -0.023], [-1.586, -1.764, 0.236, 0.308, 0.382, 0.158], [-1.704, -3.657, 0.202, 0.579, -0.129, 0.217]]\nC: [[0.074, -0.449, 0.793, 0.473, 0.548, 0.492], [0.224, 1.038, 0.781, 0.486, 0.546, 0.522], [-0.941, -0.689, 0.578, 0.69, 0.615, 0.42], [-0.002, 2.387, 0.73, 0.7, 0.637, 0.471], [0.54, 1.814, 0.876, 0.434, 0.466, 0.544], [-0.295, -1.043, 0.729, 0.48, 0.533, 0.501], [-0.372, 1.676, 0.602, 0.676, 0.567, 0.405], [-1.148, 1.569, 0.485, 0.349, 0.639, 0.495], [-0.821, 0.09, 0.693, 0.409, 0.4, 0.269], [1.644, -1.897, 1.107, 0.364, 0.18, 0.12], [1.307, -2.14, 1.134, 0.414, 0.578, 0.428], [0.763, -1.797, 0.957, 0.648, 0.49, 0.409], [1.155, -1.373, 0.909, 0.317, 0.441, 0.117], [-0.563, -2.579, 0.735, 0.309, 0.521, 0.447], [-1.263, -2.059, 0.721, 0.472, 0.232, 0.232], [-1.688, -3.278, 0.604, 0.595, 0.313, 0.401]]\nD: [[0.369, -0.147, 1.222, 0.22, 0.106, 0.249], [0.37, 1.261, 1.11, 0.14, 1.02, 0.894], [-0.639, -0.96, 0.333, 0.677, 0.877, 0.601], [0.112, 1.921, 0.621, 0.682, 0.214, 0.04], [0.061, 1.445, 0.485, 0.375, 0.738, 0.414], [-0.478, -0.871, 0.684, 0.362, 0.566, 0.762], [-0.314, 1.927, 0.136, 0.42, 0.773, 0.685], [-1.086, 1.078, 0.616, 0.363, 0.796, 0.02], [-0.78, 0.455, 1.075, -0.039, 0.211, 0.125], [1.409, -1.503, 1.252, 0.797, 0.258, -0.146], [1.115, -1.981, 0.929, 0.053, 0.518, 0.484], [1.215, -2.2, 1.257, 0.76, 0.293, 0.427], [1.189, -1.058, 0.631, 0.369, 0.328, -0.119], [-0.365, -2.692, 1.041, -0.142, 0.542, 0.05], [-0.833, -2.437, 0.641, 0.718, 0.012, 0.121], [-2.016, -3.644, 1.062, 0.946, -0.031, -0.016]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.564, -1.252, 0.695, 0.857, 0.171, 1.483], [-0.805, -0.829, 1.211, 0.152, 2.16, 2.47], [-1.232, 0.204, 0.072, 0.257, 0.055, 0.162], [0.074, 0.233, 1.112, 1.831, 0.158, 2.315], [0.903, -0.43, 1.266, 0.188, 1.396, 2.012], [0.949, -1.643, 0.661, 0.101, 0.755, 1.399], [0.614, -1.995, 0.572, 0.724, 0.056, 1.162]]\nB: [[0.352, -1.05, 0.8, 0.589, 0.069, 1.588], [-0.381, -1.063, 0.88, -0.027, 2.004, 2.387], [-0.929, 0.409, 0.362, 0.309, 0.339, -0.301], [-0.26, 0.432, 1.078, 1.853, 0.513, 2.721], [1.171, -0.028, 1.724, -0.263, 0.948, 2.304], [1.072, -2.041, 1.024, -0.297, 0.869, 1.517], [0.352, -2.32, 0.85, 0.916, -0.424, 1.2]]\nC: [[0.424, -1.563, 1.009, 0.591, -0.023, 1.935], [-0.442, -0.344, 1.695, 0.23, 2.524, 2.736], [-1.205, 0.414, 0.154, -0.209, -0.177, -0.009], [-0.098, 0.328, 1.36, 1.735, 0.101, 1.922], [0.835, -0.195, 1.265, 0.532, 0.907, 2.267], [1.354, -1.455, 1.149, 0.399, 0.893, 1.521], [0.733, -1.909, 0.585, 1.055, -0.351, 1.621]]\nD: [[0.598, -1.618, 0.741, 0.612, 0.383, 1.422], [-0.532, -0.954, 1.597, 0.537, 2.362, 2.085], [-0.843, 0.31, -0.092, 0.065, -0.048, 0.556], [0.212, 0.31, 0.904, 1.605, 0.458, 1.973], [0.493, -0.221, 1.142, 0.015, 1.45, 2.441], [1.383, -2.104, 0.997, -0.035, 0.835, 1.803], [0.664, -2.077, 1.046, 1.1, 0.235, 1.396]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_46_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_46_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[0.982764, 0.054289, -0.17671], [0.184841, -0.27426, 0.943724], [0.002769, -0.960122, -0.279568]]; the translation vector: [4.072058, 1.220293, 1.47625], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.564, -1.252, 0.695, 0.857, 0.171, 1.483], [-0.805, -0.829, 1.211, 0.152, 2.16, 2.47], [-1.232, 0.204, 0.072, 0.257, 0.055, 0.162], [0.074, 0.233, 1.112, 1.831, 0.158, 2.315], [0.903, -0.43, 1.266, 0.188, 1.396, 2.012], [0.949, -1.643, 0.661, 0.101, 0.755, 1.399], [0.614, -1.995, 0.572, 0.724, 0.056, 1.162]]\nB: [[0.352, -1.05, 0.8, 0.589, 0.069, 1.588], [-0.381, -1.063, 0.88, -0.027, 2.004, 2.387], [-0.929, 0.409, 0.362, 0.309, 0.339, -0.301], [-0.26, 0.432, 1.078, 1.853, 0.513, 2.721], [1.171, -0.028, 1.724, -0.263, 0.948, 2.304], [1.072, -2.041, 1.024, -0.297, 0.869, 1.517], [0.352, -2.32, 0.85, 0.916, -0.424, 1.2]]\nC: [[0.424, -1.563, 1.009, 0.591, -0.023, 1.935], [-0.442, -0.344, 1.695, 0.23, 2.524, 2.736], [-1.205, 0.414, 0.154, -0.209, -0.177, -0.009], [-0.098, 0.328, 1.36, 1.735, 0.101, 1.922], [0.835, -0.195, 1.265, 0.532, 0.907, 2.267], [1.354, -1.455, 1.149, 0.399, 0.893, 1.521], [0.733, -1.909, 0.585, 1.055, -0.351, 1.621]]\nD: [[0.598, -1.618, 0.741, 0.612, 0.383, 1.422], [-0.532, -0.954, 1.597, 0.537, 2.362, 2.085], [-0.843, 0.31, -0.092, 0.065, -0.048, 0.556], [0.212, 0.31, 0.904, 1.605, 0.458, 1.973], [0.493, -0.221, 1.142, 0.015, 1.45, 2.441], [1.383, -2.104, 0.997, -0.035, 0.835, 1.803], [0.664, -2.077, 1.046, 1.1, 0.235, 1.396]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.784, -1.767, 0.476, 0.231, 0.24, 0.946], [-0.366, -0.774, 1.245, 0.024, 1.212, 0.879], [0.003, -1.957, 1.089, 0.298, 0.345, 0.685], [0.22, -0.648, 1.189, -0.053, 1.037, 0.737]]\nB: [[0.318, -1.739, 0.9, 0.365, 0.659, 0.502], [-0.143, -0.934, 0.904, 0.311, 0.754, 0.487], [-0.263, -1.46, 0.926, 0.248, 0.697, 0.452], [0.319, -1.069, 0.941, 0.277, 0.615, 0.5]]\nC: [[0.289, -1.409, 1.144, 0.67, 0.233, 0.02], [0.068, -0.634, 0.752, -0.119, 1.056, 0.899], [0.211, -1.754, 1.05, -0.206, 0.931, 0.732], [-0.148, -1.524, 1.046, -0.083, 1.07, 0.467]]\nD: [[0.118, -1.502, 0.988, 0.826, 0.676, 0.125], [-0.431, -1.392, 0.927, 0.243, 0.317, 0.128], [-0.041, -1.634, 0.476, -0.222, 0.764, 0.802], [0.199, -1.056, 1.182, 0.1, 0.287, 0.626]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_47_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_47_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the monitor in the scene. The camera pose information includes: the rotation matrix: [[-0.481759, -0.460793, 0.745371], [-0.875469, 0.290199, -0.386444], [-0.038235, -0.838722, -0.543216]]; the translation vector: [3.08436, 2.075189, 1.468295], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.784, -1.767, 0.476, 0.231, 0.24, 0.946], [-0.366, -0.774, 1.245, 0.024, 1.212, 0.879], [0.003, -1.957, 1.089, 0.298, 0.345, 0.685], [0.22, -0.648, 1.189, -0.053, 1.037, 0.737]]\nB: [[0.318, -1.739, 0.9, 0.365, 0.659, 0.502], [-0.143, -0.934, 0.904, 0.311, 0.754, 0.487], [-0.263, -1.46, 0.926, 0.248, 0.697, 0.452], [0.319, -1.069, 0.941, 0.277, 0.615, 0.5]]\nC: [[0.289, -1.409, 1.144, 0.67, 0.233, 0.02], [0.068, -0.634, 0.752, -0.119, 1.056, 0.899], [0.211, -1.754, 1.05, -0.206, 0.931, 0.732], [-0.148, -1.524, 1.046, -0.083, 1.07, 0.467]]\nD: [[0.118, -1.502, 0.988, 0.826, 0.676, 0.125], [-0.431, -1.392, 0.927, 0.243, 0.317, 0.128], [-0.041, -1.634, 0.476, -0.222, 0.764, 0.802], [0.199, -1.056, 1.182, 0.1, 0.287, 0.626]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.668, 1.082, 1.323, 0.017, 1.605, 2.936], [2.048, 0.314, 0.42, 0.03, 0.539, 1.761], [1.696, -0.749, 1.568, 0.626, 3.055, 2.333], [0.245, -2.087, 0.863, 3.306, 0.237, 1.624], [-1.623, -0.389, 0.569, -0.197, 4.462, 2.242], [-0.209, 2.531, 1.246, 3.173, 0.694, 2.668]]\nB: [[2.245, 1.07, 1.564, -0.254, 1.675, 2.343], [1.954, 0.142, 1.271, 0.081, 0.135, 1.547], [1.76, -0.992, 1.136, -0.068, 2.332, 2.454], [-0.223, -2.118, 0.902, 3.53, 0.211, 2.156], [-1.973, 0.007, 0.511, -0.091, 4.007, 2.11], [0.095, 1.842, 1.661, 2.856, 0.289, 2.599]]\nC: [[1.954, 0.955, 1.134, 0.469, 1.906, 3.136], [2.108, 0.777, 1.024, 0.49, 0.432, 1.736], [1.804, -1.161, 1.159, 0.579, 2.431, 2.741], [-0.075, -2.215, 1.141, 4.022, 0.647, 1.726], [-1.259, -0.097, 0.765, 0.259, 4.315, 1.492], [0.085, 2.397, 1.377, 2.831, 0.531, 2.459]]\nD: [[1.757, 1.207, 1.277, 0.171, 1.443, 2.662], [1.938, 0.553, 0.792, 0.372, 0.083, 1.699], [2.057, -0.732, 1.221, 0.308, 2.678, 2.532], [0.254, -2.161, 1.253, 3.68, 0.191, 2.014], [-1.595, -0.042, 0.831, 0.273, 4.363, 1.747], [0.19, 2.052, 1.297, 3.302, 0.408, 2.639]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_48_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_48_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[-0.935878, -0.161972, 0.312885], [-0.352322, 0.433116, -0.829627], [-0.001139, -0.886666, -0.46241]]; the translation vector: [1.123681, 2.231354, 1.408983], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.668, 1.082, 1.323, 0.017, 1.605, 2.936], [2.048, 0.314, 0.42, 0.03, 0.539, 1.761], [1.696, -0.749, 1.568, 0.626, 3.055, 2.333], [0.245, -2.087, 0.863, 3.306, 0.237, 1.624], [-1.623, -0.389, 0.569, -0.197, 4.462, 2.242], [-0.209, 2.531, 1.246, 3.173, 0.694, 2.668]]\nB: [[2.245, 1.07, 1.564, -0.254, 1.675, 2.343], [1.954, 0.142, 1.271, 0.081, 0.135, 1.547], [1.76, -0.992, 1.136, -0.068, 2.332, 2.454], [-0.223, -2.118, 0.902, 3.53, 0.211, 2.156], [-1.973, 0.007, 0.511, -0.091, 4.007, 2.11], [0.095, 1.842, 1.661, 2.856, 0.289, 2.599]]\nC: [[1.954, 0.955, 1.134, 0.469, 1.906, 3.136], [2.108, 0.777, 1.024, 0.49, 0.432, 1.736], [1.804, -1.161, 1.159, 0.579, 2.431, 2.741], [-0.075, -2.215, 1.141, 4.022, 0.647, 1.726], [-1.259, -0.097, 0.765, 0.259, 4.315, 1.492], [0.085, 2.397, 1.377, 2.831, 0.531, 2.459]]\nD: [[1.757, 1.207, 1.277, 0.171, 1.443, 2.662], [1.938, 0.553, 0.792, 0.372, 0.083, 1.699], [2.057, -0.732, 1.221, 0.308, 2.678, 2.532], [0.254, -2.161, 1.253, 3.68, 0.191, 2.014], [-1.595, -0.042, 0.831, 0.273, 4.363, 1.747], [0.19, 2.052, 1.297, 3.302, 0.408, 2.639]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.874, 0.432, 0.675, 0.547, 4.466, 2.765], [2.077, 1.025, 0.96, 0.435, 5.53, 2.428], [-0.302, -2.355, 0.907, 2.255, -0.132, 2.065], [1.309, 2.97, 0.649, 2.105, 0.601, 1.706], [1.394, -2.794, 0.572, 0.929, 0.444, 0.269]]\nB: [[-1.774, -0.336, 1.363, 0.137, 4.327, 2.118], [2.024, 0.331, 0.678, 0.299, 6.038, 2.411], [-0.973, -2.453, 1.173, 2.209, -0.12, 1.889], [0.907, 3.079, 0.375, 1.445, 0.297, 1.527], [1.457, -2.684, 0.632, 0.896, -0.39, 0.289]]\nC: [[-2.285, -0.2, 1.099, -0.248, 4.908, 2.313], [2.096, 0.355, 1.235, 0.363, 5.974, 2.044], [-1.085, -2.082, 0.91, 2.454, 0.239, 1.438], [0.732, 3.157, 0.493, 1.665, 0.182, 1.592], [1.088, -2.467, -0.003, 0.673, 0.233, 0.167]]\nD: [[-1.815, -0.066, 1.137, 0.19, 4.502, 2.283], [1.738, 0.547, 0.94, 0.42, 5.701, 2.065], [-0.777, -2.286, 1.047, 2.091, 0.123, 1.885], [1.023, 3.389, 0.735, 1.699, 0.123, 1.528], [1.495, -2.301, 0.226, 0.722, 0.028, 0.613]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_49_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_49_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[0.934222, -0.219071, 0.281493], [-0.356558, -0.595286, 0.72007], [0.009823, -0.773073, -0.634241]]; the translation vector: [0.331108, 1.989283, 1.551545], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.874, 0.432, 0.675, 0.547, 4.466, 2.765], [2.077, 1.025, 0.96, 0.435, 5.53, 2.428], [-0.302, -2.355, 0.907, 2.255, -0.132, 2.065], [1.309, 2.97, 0.649, 2.105, 0.601, 1.706], [1.394, -2.794, 0.572, 0.929, 0.444, 0.269]]\nB: [[-1.774, -0.336, 1.363, 0.137, 4.327, 2.118], [2.024, 0.331, 0.678, 0.299, 6.038, 2.411], [-0.973, -2.453, 1.173, 2.209, -0.12, 1.889], [0.907, 3.079, 0.375, 1.445, 0.297, 1.527], [1.457, -2.684, 0.632, 0.896, -0.39, 0.289]]\nC: [[-2.285, -0.2, 1.099, -0.248, 4.908, 2.313], [2.096, 0.355, 1.235, 0.363, 5.974, 2.044], [-1.085, -2.082, 0.91, 2.454, 0.239, 1.438], [0.732, 3.157, 0.493, 1.665, 0.182, 1.592], [1.088, -2.467, -0.003, 0.673, 0.233, 0.167]]\nD: [[-1.815, -0.066, 1.137, 0.19, 4.502, 2.283], [1.738, 0.547, 0.94, 0.42, 5.701, 2.065], [-0.777, -2.286, 1.047, 2.091, 0.123, 1.885], [1.023, 3.389, 0.735, 1.699, 0.123, 1.528], [1.495, -2.301, 0.226, 0.722, 0.028, 0.613]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.355, 0.849, 0.484, 0.583, 0.026, -0.166]]\nB: [[-0.954, 0.48, 0.115, 0.22, 0.221, 0.246]]\nC: [[-0.886, 0.23, -0.323, 0.388, 0.524, 0.544]]\nD: [[-0.877, -0.009, -0.082, -0.196, 0.347, 0.57]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_50_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_50_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the trash can in the scene. The camera pose information includes: the rotation matrix: [[-0.986418, -0.051155, 0.156087], [-0.152905, 0.633099, -0.758819], [-0.060001, -0.772379, -0.632322]]; the translation vector: [2.055195, 1.600374, 1.268236], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.355, 0.849, 0.484, 0.583, 0.026, -0.166]]\nB: [[-0.954, 0.48, 0.115, 0.22, 0.221, 0.246]]\nC: [[-0.886, 0.23, -0.323, 0.388, 0.524, 0.544]]\nD: [[-0.877, -0.009, -0.082, -0.196, 0.347, 0.57]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.231, -1.891, 1.007, 2.627, 2.266, 2.036], [-0.307, -0.367, 0.926, 1.513, 1.063, 1.867]]\nB: [[0.718, -2.089, 0.687, 2.342, 2.265, 1.579], [-0.634, -0.345, 1.176, 1.11, 1.202, 2.075]]\nC: [[0.464, -1.663, 1.056, 2.135, 2.464, 2.098], [-0.781, -0.219, 1.071, 1.18, 1.361, 1.522]]\nD: [[-0.112, -2.192, 0.852, 2.525, 1.965, 2.377], [0.128, -0.805, 0.888, 1.396, 1.418, 2.338]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_51_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_51_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the bathroom stall in the scene. The camera pose information includes: the rotation matrix: [[-0.255252, -0.433184, 0.864406], [-0.966562, 0.137073, -0.216725], [-0.024605, -0.890821, -0.453687]]; the translation vector: [1.468232, 3.881342, 1.432686], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.231, -1.891, 1.007, 2.627, 2.266, 2.036], [-0.307, -0.367, 0.926, 1.513, 1.063, 1.867]]\nB: [[0.718, -2.089, 0.687, 2.342, 2.265, 1.579], [-0.634, -0.345, 1.176, 1.11, 1.202, 2.075]]\nC: [[0.464, -1.663, 1.056, 2.135, 2.464, 2.098], [-0.781, -0.219, 1.071, 1.18, 1.361, 1.522]]\nD: [[-0.112, -2.192, 0.852, 2.525, 1.965, 2.377], [0.128, -0.805, 0.888, 1.396, 1.418, 2.338]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-2.293, -1.301, 1.261, 0.557, 0.076, 0.181]]\nB: [[-2.3, -0.603, 0.539, 0.144, 0.291, 0.744]]\nC: [[-2.289, -1.004, 0.913, 0.094, 0.463, 0.318]]\nD: [[-2.447, -0.778, 0.56, -0.086, 0.586, 0.687]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_52_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_52_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the object in the scene. The camera pose information includes: the rotation matrix: [[0.140295, 0.625342, -0.767636], [0.990108, -0.090149, 0.107516], [-0.001967, -0.775126, -0.631804]]; the translation vector: [3.410891, 3.073526, 1.198756], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-2.293, -1.301, 1.261, 0.557, 0.076, 0.181]]\nB: [[-2.3, -0.603, 0.539, 0.144, 0.291, 0.744]]\nC: [[-2.289, -1.004, 0.913, 0.094, 0.463, 0.318]]\nD: [[-2.447, -0.778, 0.56, -0.086, 0.586, 0.687]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.354, 0.454, 0.921, -0.335, 0.498, 0.874], [0.185, -0.574, 0.751, 0.09, -0.38, 0.911], [0.667, 0.586, 2.143, 0.441, 0.23, 0.505]]\nB: [[-1.09, 0.059, 1.019, 0.117, 0.263, 0.377], [0.279, -1.061, 0.877, 0.477, 0.116, 0.622], [0.666, 0.093, 1.789, 0.132, 0.373, 0.347]]\nC: [[-1.434, -0.263, 0.532, 0.445, 0.024, 0.383], [-0.034, -1.535, 0.533, 0.655, 0.426, 0.876], [0.704, 0.231, 1.687, 0.279, -0.11, 0.575]]\nD: [[-0.897, -0.345, 1.454, 0.607, 0.705, 0.804], [0.146, -1.337, 0.587, 0.096, 0.382, 0.839], [0.567, -0.339, 1.673, 0.166, 0.534, 0.522]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_53_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_53_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the towel in the scene. The camera pose information includes: the rotation matrix: [[-0.221984, 0.421429, -0.879273], [0.97466, 0.121427, -0.187867], [0.027595, -0.898695, -0.437705]]; the translation vector: [3.155292, 0.483793, 1.35371], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.354, 0.454, 0.921, -0.335, 0.498, 0.874], [0.185, -0.574, 0.751, 0.09, -0.38, 0.911], [0.667, 0.586, 2.143, 0.441, 0.23, 0.505]]\nB: [[-1.09, 0.059, 1.019, 0.117, 0.263, 0.377], [0.279, -1.061, 0.877, 0.477, 0.116, 0.622], [0.666, 0.093, 1.789, 0.132, 0.373, 0.347]]\nC: [[-1.434, -0.263, 0.532, 0.445, 0.024, 0.383], [-0.034, -1.535, 0.533, 0.655, 0.426, 0.876], [0.704, 0.231, 1.687, 0.279, -0.11, 0.575]]\nD: [[-0.897, -0.345, 1.454, 0.607, 0.705, 0.804], [0.146, -1.337, 0.587, 0.096, 0.382, 0.839], [0.567, -0.339, 1.673, 0.166, 0.534, 0.522]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.872, -1.053, 1.714, -0.4, 0.547, -0.388]]\nB: [[-0.641, -0.865, 2.002, 0.06, 0.688, 0.05]]\nC: [[-0.24, -0.538, 2.349, -0.015, 0.604, 0.452]]\nD: [[-0.437, -0.89, 1.743, -0.382, 0.608, -0.394]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_54_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_54_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the shower curtain rod in the scene. The camera pose information includes: the rotation matrix: [[0.173351, 0.592298, -0.78685], [0.984858, -0.105806, 0.137329], [-0.001913, -0.798742, -0.601671]]; the translation vector: [3.264189, 1.940071, 1.28435], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.872, -1.053, 1.714, -0.4, 0.547, -0.388]]\nB: [[-0.641, -0.865, 2.002, 0.06, 0.688, 0.05]]\nC: [[-0.24, -0.538, 2.349, -0.015, 0.604, 0.452]]\nD: [[-0.437, -0.89, 1.743, -0.382, 0.608, -0.394]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.74, 0.949, 0.805, 2.053, 0.051, 1.667], [-1.281, -0.065, 0.899, 0.112, 2.004, 1.85], [0.446, -1.039, 0.627, 1.399, 0.094, 1.27], [1.134, -0.792, 0.678, 0.041, 0.539, 1.365], [-1.434, 2.505, 0.652, 0.518, 0.203, 1.213]]\nB: [[1.029, 0.71, 0.916, 2.029, -0.176, 1.869], [-1.683, -0.445, 1.099, -0.259, 2.235, 1.713], [0.848, -1.08, 0.506, 1.798, 0.259, 1.153], [1.268, -0.42, 0.271, 0.287, 0.751, 1.048], [-1.043, 2.825, 0.333, 0.321, -0.246, 1.582]]\nC: [[0.966, 1.169, 0.637, 2.193, -0.193, 1.801], [-0.869, -0.535, 1.386, 0.092, 1.727, 2.164], [0.169, -1.108, 0.224, 1.056, -0.222, 1.304], [0.91, -1.037, 1.17, -0.025, 0.5, 1.639], [-0.958, 2.714, 0.971, 0.285, -0.285, 1.316]]\nD: [[0.741, 1.382, 0.663, 1.864, -0.249, 2.055], [-1.139, 0.311, 1.207, -0.23, 2.288, 2.067], [0.431, -1.158, 0.998, 1.247, 0.194, 1.309], [0.658, -1.111, 1.067, 0.365, 0.642, 0.899], [-1.437, 2.999, 0.509, 0.702, 0.182, 1.021]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_55_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_55_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[0.660671, 0.426343, -0.617856], [0.749322, -0.423957, 0.508701], [-0.045063, -0.799057, -0.599565]]; the translation vector: [1.739014, 2.260029, 1.323145], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.74, 0.949, 0.805, 2.053, 0.051, 1.667], [-1.281, -0.065, 0.899, 0.112, 2.004, 1.85], [0.446, -1.039, 0.627, 1.399, 0.094, 1.27], [1.134, -0.792, 0.678, 0.041, 0.539, 1.365], [-1.434, 2.505, 0.652, 0.518, 0.203, 1.213]]\nB: [[1.029, 0.71, 0.916, 2.029, -0.176, 1.869], [-1.683, -0.445, 1.099, -0.259, 2.235, 1.713], [0.848, -1.08, 0.506, 1.798, 0.259, 1.153], [1.268, -0.42, 0.271, 0.287, 0.751, 1.048], [-1.043, 2.825, 0.333, 0.321, -0.246, 1.582]]\nC: [[0.966, 1.169, 0.637, 2.193, -0.193, 1.801], [-0.869, -0.535, 1.386, 0.092, 1.727, 2.164], [0.169, -1.108, 0.224, 1.056, -0.222, 1.304], [0.91, -1.037, 1.17, -0.025, 0.5, 1.639], [-0.958, 2.714, 0.971, 0.285, -0.285, 1.316]]\nD: [[0.741, 1.382, 0.663, 1.864, -0.249, 2.055], [-1.139, 0.311, 1.207, -0.23, 2.288, 2.067], [0.431, -1.158, 0.998, 1.247, 0.194, 1.309], [0.658, -1.111, 1.067, 0.365, 0.642, 0.899], [-1.437, 2.999, 0.509, 0.702, 0.182, 1.021]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[2.289, 1.091, 1.235, 0.312, 0.445, 0.181], [2.614, -0.282, 1.115, 0.396, 0.952, 0.37], [2.915, -1.131, 1.323, 0.416, 1.127, 0.582]]\nB: [[2.865, 1.27, 1.277, 0.662, 1.126, 0.413], [2.634, -0.253, 1.185, 0.725, 0.57, 0.723], [2.702, -0.759, 1.232, 0.075, 0.776, 0.187]]\nC: [[2.596, 1.198, 1.179, 0.402, 0.868, 0.166], [2.565, 0.04, 1.202, 0.364, 0.895, 0.33], [2.601, -1.116, 1.104, 0.457, 0.792, 0.155]]\nD: [[2.413, 1.176, 1.278, 0.589, 0.574, -0.073], [2.181, 0.298, 1.094, 0.783, 1.368, 0.634], [2.395, -1.077, 1.082, 0.598, 1.002, 0.39]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_56_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_56_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the windowsill in the scene. The camera pose information includes: the rotation matrix: [[0.606468, -0.360414, 0.70873], [-0.789578, -0.16805, 0.590192], [-0.093612, -0.91753, -0.386492]]; the translation vector: [2.373669, 6.226582, 1.48631], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[2.289, 1.091, 1.235, 0.312, 0.445, 0.181], [2.614, -0.282, 1.115, 0.396, 0.952, 0.37], [2.915, -1.131, 1.323, 0.416, 1.127, 0.582]]\nB: [[2.865, 1.27, 1.277, 0.662, 1.126, 0.413], [2.634, -0.253, 1.185, 0.725, 0.57, 0.723], [2.702, -0.759, 1.232, 0.075, 0.776, 0.187]]\nC: [[2.596, 1.198, 1.179, 0.402, 0.868, 0.166], [2.565, 0.04, 1.202, 0.364, 0.895, 0.33], [2.601, -1.116, 1.104, 0.457, 0.792, 0.155]]\nD: [[2.413, 1.176, 1.278, 0.589, 0.574, -0.073], [2.181, 0.298, 1.094, 0.783, 1.368, 0.634], [2.395, -1.077, 1.082, 0.598, 1.002, 0.39]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.001, 2.948, 0.696, 1.051, 0.653, 1.017], [-1.218, 2.566, 0.334, 0.65, 1.143, 0.576], [-1.049, 4.68, 0.409, 0.92, 0.545, 1.203], [-0.848, -3.875, 0.54, 0.615, 0.936, 1.037], [1.041, 2.41, 0.443, 0.89, 0.787, 0.94], [1.624, -1.213, 0.004, 1.481, 1.102, 0.478], [1.287, 1.232, 0.545, 1.204, 1.228, 0.841], [1.818, -0.113, 0.532, 0.874, 0.706, 1.086], [0.092, -5.089, 0.693, 0.961, 0.819, 0.322], [-0.468, -1.491, 0.774, 0.97, 1.2, 1.024]]\nB: [[-0.126, 2.459, 0.086, 0.932, 1.114, 1.123], [-0.966, 2.226, 0.359, 1.537, 0.757, 0.462], [-1.21, 4.954, 0.104, 1.239, 0.624, 0.543], [-0.516, -4.249, 0.544, 1.157, 1.197, 1.269], [1.294, 2.428, 0.861, 1.276, 0.579, 0.451], [1.569, -1.608, 0.36, 0.726, 1.508, 0.636], [0.656, 1.11, -0.004, 0.679, 1.224, 0.752], [0.999, -0.375, 0.707, 0.664, 1.131, 0.788], [0.529, -5.125, 0.2, 0.899, 0.951, 0.927], [-1.058, -1.898, 0.447, 0.976, 1.149, 0.369]]\nC: [[0.237, 2.908, 0.463, 0.898, 0.83, 0.718], [-0.876, 2.53, 0.52, 1.072, 0.924, 0.781], [-1.088, 4.721, 0.492, 0.991, 0.901, 0.767], [-0.583, -3.833, 0.327, 0.92, 0.918, 0.773], [1.47, 1.953, 0.456, 0.894, 0.96, 0.795], [1.829, -1.442, 0.405, 1.045, 1.024, 0.748], [1.035, 0.766, 0.48, 0.857, 0.923, 0.799], [1.416, -0.318, 0.434, 1.021, 0.961, 0.774], [0.375, -5.051, 0.244, 0.861, 0.856, 0.761], [-0.588, -1.854, 0.411, 0.932, 0.952, 0.73]]\nD: [[0.31, 2.967, 0.642, 1.326, 0.654, 0.284], [-1.165, 2.181, 0.237, 1.304, 0.639, 0.395], [-0.721, 4.769, 0.925, 1.219, 0.928, 0.661], [-1.026, -3.416, 0.149, 0.806, 0.901, 0.778], [1.652, 1.761, 0.169, 1.115, 0.472, 1.022], [2.158, -1.036, 0.663, 0.749, 0.724, 1.014], [0.591, 0.853, 0.97, 1.294, 0.724, 0.816], [1.34, 0.03, 0.19, 1.304, 0.703, 0.552], [0.387, -4.975, 0.689, 0.413, 1.29, 0.685], [-0.424, -1.902, 0.121, 1.041, 0.562, 0.86]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_57_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_57_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the armchair in the scene. The camera pose information includes: the rotation matrix: [[0.974605, -0.106498, 0.196986], [-0.223762, -0.428932, 0.875185], [-0.008712, -0.897037, -0.44187]]; the translation vector: [2.006689, 0.552817, 1.711334], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.001, 2.948, 0.696, 1.051, 0.653, 1.017], [-1.218, 2.566, 0.334, 0.65, 1.143, 0.576], [-1.049, 4.68, 0.409, 0.92, 0.545, 1.203], [-0.848, -3.875, 0.54, 0.615, 0.936, 1.037], [1.041, 2.41, 0.443, 0.89, 0.787, 0.94], [1.624, -1.213, 0.004, 1.481, 1.102, 0.478], [1.287, 1.232, 0.545, 1.204, 1.228, 0.841], [1.818, -0.113, 0.532, 0.874, 0.706, 1.086], [0.092, -5.089, 0.693, 0.961, 0.819, 0.322], [-0.468, -1.491, 0.774, 0.97, 1.2, 1.024]]\nB: [[-0.126, 2.459, 0.086, 0.932, 1.114, 1.123], [-0.966, 2.226, 0.359, 1.537, 0.757, 0.462], [-1.21, 4.954, 0.104, 1.239, 0.624, 0.543], [-0.516, -4.249, 0.544, 1.157, 1.197, 1.269], [1.294, 2.428, 0.861, 1.276, 0.579, 0.451], [1.569, -1.608, 0.36, 0.726, 1.508, 0.636], [0.656, 1.11, -0.004, 0.679, 1.224, 0.752], [0.999, -0.375, 0.707, 0.664, 1.131, 0.788], [0.529, -5.125, 0.2, 0.899, 0.951, 0.927], [-1.058, -1.898, 0.447, 0.976, 1.149, 0.369]]\nC: [[0.237, 2.908, 0.463, 0.898, 0.83, 0.718], [-0.876, 2.53, 0.52, 1.072, 0.924, 0.781], [-1.088, 4.721, 0.492, 0.991, 0.901, 0.767], [-0.583, -3.833, 0.327, 0.92, 0.918, 0.773], [1.47, 1.953, 0.456, 0.894, 0.96, 0.795], [1.829, -1.442, 0.405, 1.045, 1.024, 0.748], [1.035, 0.766, 0.48, 0.857, 0.923, 0.799], [1.416, -0.318, 0.434, 1.021, 0.961, 0.774], [0.375, -5.051, 0.244, 0.861, 0.856, 0.761], [-0.588, -1.854, 0.411, 0.932, 0.952, 0.73]]\nD: [[0.31, 2.967, 0.642, 1.326, 0.654, 0.284], [-1.165, 2.181, 0.237, 1.304, 0.639, 0.395], [-0.721, 4.769, 0.925, 1.219, 0.928, 0.661], [-1.026, -3.416, 0.149, 0.806, 0.901, 0.778], [1.652, 1.761, 0.169, 1.115, 0.472, 1.022], [2.158, -1.036, 0.663, 0.749, 0.724, 1.014], [0.591, 0.853, 0.97, 1.294, 0.724, 0.816], [1.34, 0.03, 0.19, 1.304, 0.703, 0.552], [0.387, -4.975, 0.689, 0.413, 1.29, 0.685], [-0.424, -1.902, 0.121, 1.041, 0.562, 0.86]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.945, -0.877, -0.123, 1.546, 1.347, 0.112]]\nB: [[0.857, -1.188, 0.118, 1.684, 1.025, 0.263]]\nC: [[0.995, -0.398, -0.499, 1.213, 1.119, -0.036]]\nD: [[0.539, -0.587, -0.275, 1.351, 1.1, -0.319]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_58_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_58_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the floor in the scene. The camera pose information includes: the rotation matrix: [[-0.693623, 0.392298, -0.604144], [0.720137, 0.397492, -0.568686], [0.017048, -0.82952, -0.558217]]; the translation vector: [2.706242, 2.586761, 1.453005], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.945, -0.877, -0.123, 1.546, 1.347, 0.112]]\nB: [[0.857, -1.188, 0.118, 1.684, 1.025, 0.263]]\nC: [[0.995, -0.398, -0.499, 1.213, 1.119, -0.036]]\nD: [[0.539, -0.587, -0.275, 1.351, 1.1, -0.319]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-2.143, 1.575, 0.04, 0.27, 0.312, 0.15], [-0.377, 3.615, 0.346, 0.295, 0.569, 0.473], [-1.45, 0.655, 0.569, 0.701, 0.954, 0.318], [2.369, -0.854, 0.716, 0.861, 0.372, 0.384], [3.488, -0.639, 0.515, 0.374, 0.717, 0.642], [3.31, -2.144, 0.849, 0.423, 1.039, 0.351], [3.753, -1.021, 0.778, 0.709, 0.641, 0.792], [-1.949, 2.854, 0.124, 0.704, 0.146, 0.084]]\nB: [[-1.76, 1.841, 0.53, 0.73, 0.674, 0.544], [-0.679, 3.307, 0.476, 0.669, 0.734, 0.506], [-1.7, 0.568, 0.465, 0.694, 0.62, 0.52], [2.474, -1.195, 0.409, 0.606, 0.509, 0.689], [3.174, -0.614, 0.339, 0.542, 0.599, 0.782], [3.186, -2.158, 0.546, 0.503, 0.633, 0.516], [3.901, -1.236, 0.485, 0.592, 0.545, 0.635], [-1.787, 2.437, 0.508, 0.713, 0.589, 0.468]]\nC: [[-2.143, 1.685, 0.995, 0.615, 0.904, 0.263], [-1.005, 3.628, 0.394, 0.466, 0.405, 0.998], [-2.179, 0.615, 0.333, 0.233, 0.298, 0.889], [2.014, -1.057, 0.599, 0.68, 0.338, 0.974], [2.918, -0.471, 0.1, 0.575, 0.71, 0.376], [3.127, -2.436, 0.498, 0.497, 0.327, 0.902], [3.486, -1.558, 0.63, 0.593, 0.23, 0.81], [-1.407, 2.857, 0.881, 0.499, 1.07, 0.68]]\nD: [[-1.261, 2.229, 0.998, 1.215, 1.048, 0.703], [-1.092, 3.457, -0.005, 0.668, 1.114, 0.663], [-1.477, 0.865, 0.817, 0.301, 0.363, 0.292], [2.93, -1.308, 0.561, 1.073, 0.232, 1.069], [3.634, -0.503, -0.085, 0.796, 0.476, 0.342], [3.396, -2.322, 0.932, 0.945, 0.812, 0.616], [4.075, -1.495, 0.312, 0.703, 0.562, 0.973], [-2.275, 2.728, 0.786, 0.449, 0.77, 0.134]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_59_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_59_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the chair in the scene. The camera pose information includes: the rotation matrix: [[-0.891251, 0.378307, -0.25011], [0.443048, 0.608538, -0.658323], [-0.096846, -0.697542, -0.709969]]; the translation vector: [4.935522, 3.588868, 1.45033], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-2.143, 1.575, 0.04, 0.27, 0.312, 0.15], [-0.377, 3.615, 0.346, 0.295, 0.569, 0.473], [-1.45, 0.655, 0.569, 0.701, 0.954, 0.318], [2.369, -0.854, 0.716, 0.861, 0.372, 0.384], [3.488, -0.639, 0.515, 0.374, 0.717, 0.642], [3.31, -2.144, 0.849, 0.423, 1.039, 0.351], [3.753, -1.021, 0.778, 0.709, 0.641, 0.792], [-1.949, 2.854, 0.124, 0.704, 0.146, 0.084]]\nB: [[-1.76, 1.841, 0.53, 0.73, 0.674, 0.544], [-0.679, 3.307, 0.476, 0.669, 0.734, 0.506], [-1.7, 0.568, 0.465, 0.694, 0.62, 0.52], [2.474, -1.195, 0.409, 0.606, 0.509, 0.689], [3.174, -0.614, 0.339, 0.542, 0.599, 0.782], [3.186, -2.158, 0.546, 0.503, 0.633, 0.516], [3.901, -1.236, 0.485, 0.592, 0.545, 0.635], [-1.787, 2.437, 0.508, 0.713, 0.589, 0.468]]\nC: [[-2.143, 1.685, 0.995, 0.615, 0.904, 0.263], [-1.005, 3.628, 0.394, 0.466, 0.405, 0.998], [-2.179, 0.615, 0.333, 0.233, 0.298, 0.889], [2.014, -1.057, 0.599, 0.68, 0.338, 0.974], [2.918, -0.471, 0.1, 0.575, 0.71, 0.376], [3.127, -2.436, 0.498, 0.497, 0.327, 0.902], [3.486, -1.558, 0.63, 0.593, 0.23, 0.81], [-1.407, 2.857, 0.881, 0.499, 1.07, 0.68]]\nD: [[-1.261, 2.229, 0.998, 1.215, 1.048, 0.703], [-1.092, 3.457, -0.005, 0.668, 1.114, 0.663], [-1.477, 0.865, 0.817, 0.301, 0.363, 0.292], [2.93, -1.308, 0.561, 1.073, 0.232, 1.069], [3.634, -0.503, -0.085, 0.796, 0.476, 0.342], [3.396, -2.322, 0.932, 0.945, 0.812, 0.616], [4.075, -1.495, 0.312, 0.703, 0.562, 0.973], [-2.275, 2.728, 0.786, 0.449, 0.77, 0.134]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.205, 1.797, 1.094, 1.154, 0.654, 1.112], [0.658, 1.295, 1.132, 1.277, 0.037, 0.601]]\nB: [[-0.63, 1.531, 1.06, 1.175, 0.329, 0.727], [0.734, 1.578, 0.984, 1.15, 0.266, 0.361]]\nC: [[-0.726, 1.106, 1.434, 1.522, 0.658, 0.308], [1.201, 1.481, 1.246, 0.828, 0.067, 0.371]]\nD: [[-0.719, 1.086, 1.264, 0.78, 0.793, 0.35], [0.868, 1.98, 0.75, 1.049, 0.201, 0.363]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_60_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_60_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the window in the scene. The camera pose information includes: the rotation matrix: [[0.081815, 0.638296, -0.765431], [0.996577, -0.061545, 0.055199], [-0.011875, -0.767327, -0.641146]]; the translation vector: [3.004073, 1.570726, 1.431248], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.205, 1.797, 1.094, 1.154, 0.654, 1.112], [0.658, 1.295, 1.132, 1.277, 0.037, 0.601]]\nB: [[-0.63, 1.531, 1.06, 1.175, 0.329, 0.727], [0.734, 1.578, 0.984, 1.15, 0.266, 0.361]]\nC: [[-0.726, 1.106, 1.434, 1.522, 0.658, 0.308], [1.201, 1.481, 1.246, 0.828, 0.067, 0.371]]\nD: [[-0.719, 1.086, 1.264, 0.78, 0.793, 0.35], [0.868, 1.98, 0.75, 1.049, 0.201, 0.363]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.288, 3.663, 0.885, 1.742, 0.266, 1.508], [-1.19, -3.017, 0.715, 0.179, 0.346, 1.183], [-2.568, -0.991, 0.862, 0.362, 2.842, 1.652], [-2.356, 0.313, 1.087, 0.573, 0.323, 1.151], [-2.078, 0.891, 0.947, 0.102, 1.17, 1.498]]\nB: [[1.699, 3.879, 0.807, 1.466, 0.26, 1.658], [-1.338, -3.016, 0.481, -0.091, 0.125, 1.346], [-2.791, -0.651, 0.722, 0.588, 2.782, 1.444], [-2.133, -0.174, 1.179, 0.831, 0.459, 1.476], [-2.564, 1.303, 0.485, 0.444, 1.6, 1.79]]\nC: [[1.384, 3.837, 1.191, 2.116, 0.64, 1.217], [-1.185, -3.083, 1.042, 0.674, 0.205, 0.788], [-2.424, -0.728, 0.743, -0.005, 2.436, 1.937], [-2.645, -0.046, 0.933, 0.095, 0.125, 1.323], [-2.483, 0.961, 0.887, 0.154, 0.979, 1.595]]\nD: [[1.755, 3.461, 0.788, 1.786, 0.256, 1.208], [-1.596, -3.184, 0.789, 0.372, -0.041, 1.319], [-2.923, -1.052, 1.266, 0.216, 3.322, 1.837], [-2.525, 0.237, 1.346, 0.938, 0.473, 0.759], [-2.569, 1.257, 0.568, 0.003, 1.424, 1.337]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_61_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_61_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[-0.963317, 0.154363, -0.219528], [0.260086, 0.335369, -0.905474], [-0.066149, -0.929355, -0.363214]]; the translation vector: [5.972451, 2.818726, 1.468896], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.288, 3.663, 0.885, 1.742, 0.266, 1.508], [-1.19, -3.017, 0.715, 0.179, 0.346, 1.183], [-2.568, -0.991, 0.862, 0.362, 2.842, 1.652], [-2.356, 0.313, 1.087, 0.573, 0.323, 1.151], [-2.078, 0.891, 0.947, 0.102, 1.17, 1.498]]\nB: [[1.699, 3.879, 0.807, 1.466, 0.26, 1.658], [-1.338, -3.016, 0.481, -0.091, 0.125, 1.346], [-2.791, -0.651, 0.722, 0.588, 2.782, 1.444], [-2.133, -0.174, 1.179, 0.831, 0.459, 1.476], [-2.564, 1.303, 0.485, 0.444, 1.6, 1.79]]\nC: [[1.384, 3.837, 1.191, 2.116, 0.64, 1.217], [-1.185, -3.083, 1.042, 0.674, 0.205, 0.788], [-2.424, -0.728, 0.743, -0.005, 2.436, 1.937], [-2.645, -0.046, 0.933, 0.095, 0.125, 1.323], [-2.483, 0.961, 0.887, 0.154, 0.979, 1.595]]\nD: [[1.755, 3.461, 0.788, 1.786, 0.256, 1.208], [-1.596, -3.184, 0.789, 0.372, -0.041, 1.319], [-2.923, -1.052, 1.266, 0.216, 3.322, 1.837], [-2.525, 0.237, 1.346, 0.938, 0.473, 0.759], [-2.569, 1.257, 0.568, 0.003, 1.424, 1.337]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.195, 2.616, 0.764, 0.381, 0.904, 1.179], [1.178, 2.791, 1.06, 0.523, 1.876, 0.795], [2.137, -1.926, -0.065, 1.185, 1.084, 0.312], [-0.599, -1.923, 0.519, 0.294, 0.992, 1.206]]\nB: [[-1.068, 2.261, 1.292, 0.971, 1.029, 0.824], [1.489, 3.189, 0.594, 0.774, 1.161, 1.156], [1.843, -2.018, 0.792, 0.473, 1.372, 0.616], [-0.424, -2.012, 0.649, 0.681, 1.809, 0.928]]\nC: [[-0.884, 2.735, 0.809, 0.721, 1.274, 0.906], [1.496, 2.941, 0.628, 0.833, 1.571, 0.871], [1.868, -1.949, 0.395, 0.878, 0.892, 0.788], [-0.793, -2.3, 0.359, 0.741, 1.335, 0.757]]\nD: [[-1.225, 2.279, 0.349, 0.295, 0.789, 0.542], [1.131, 2.464, 0.4, 0.503, 1.911, 0.903], [1.57, -1.598, -0.016, 1.245, 1.391, 0.466], [-0.41, -2.691, 0.26, 1.21, 1.681, 0.98]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_62_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_62_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the couch in the scene. The camera pose information includes: the rotation matrix: [[-0.824719, -0.175736, 0.537546], [-0.564369, 0.316962, -0.762249], [-0.036427, -0.932015, -0.360584]]; the translation vector: [4.397487, 4.054199, 1.411764], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.195, 2.616, 0.764, 0.381, 0.904, 1.179], [1.178, 2.791, 1.06, 0.523, 1.876, 0.795], [2.137, -1.926, -0.065, 1.185, 1.084, 0.312], [-0.599, -1.923, 0.519, 0.294, 0.992, 1.206]]\nB: [[-1.068, 2.261, 1.292, 0.971, 1.029, 0.824], [1.489, 3.189, 0.594, 0.774, 1.161, 1.156], [1.843, -2.018, 0.792, 0.473, 1.372, 0.616], [-0.424, -2.012, 0.649, 0.681, 1.809, 0.928]]\nC: [[-0.884, 2.735, 0.809, 0.721, 1.274, 0.906], [1.496, 2.941, 0.628, 0.833, 1.571, 0.871], [1.868, -1.949, 0.395, 0.878, 0.892, 0.788], [-0.793, -2.3, 0.359, 0.741, 1.335, 0.757]]\nD: [[-1.225, 2.279, 0.349, 0.295, 0.789, 0.542], [1.131, 2.464, 0.4, 0.503, 1.911, 0.903], [1.57, -1.598, -0.016, 1.245, 1.391, 0.466], [-0.41, -2.691, 0.26, 1.21, 1.681, 0.98]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.115, -1.562, 0.911, 0.99, 0.176, 0.93], [0.903, -1.409, 1.128, 0.969, 0.316, 0.989]]\nB: [[0.419, -1.51, 1.351, 0.838, 0.104, 1.371], [0.797, -1.27, 0.95, 0.885, 0.56, 0.709]]\nC: [[-0.056, -1.325, 0.584, 1.397, 0.105, 0.436], [0.94, -1.633, 1.178, 0.648, 0.434, 1.044]]\nD: [[0.609, -1.088, 0.429, 1.463, 0.186, 0.54], [0.51, -1.323, 0.699, 1.115, 0.814, 1.432]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_63_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_63_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the window in the scene. The camera pose information includes: the rotation matrix: [[0.993805, -0.057016, 0.095394], [-0.110597, -0.423109, 0.899304], [-0.010913, -0.904283, -0.426794]]; the translation vector: [3.282054, 2.568905, 1.512321], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.115, -1.562, 0.911, 0.99, 0.176, 0.93], [0.903, -1.409, 1.128, 0.969, 0.316, 0.989]]\nB: [[0.419, -1.51, 1.351, 0.838, 0.104, 1.371], [0.797, -1.27, 0.95, 0.885, 0.56, 0.709]]\nC: [[-0.056, -1.325, 0.584, 1.397, 0.105, 0.436], [0.94, -1.633, 1.178, 0.648, 0.434, 1.044]]\nD: [[0.609, -1.088, 0.429, 1.463, 0.186, 0.54], [0.51, -1.323, 0.699, 1.115, 0.814, 1.432]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.753, 0.465, 1.403, 0.46, 4.996, 2.959], [-1.738, -1.218, 1.272, 1.062, 1.528, 2.501], [-0.405, 2.797, 1.433, 4.292, 0.332, 2.875], [-2.525, 2.379, 1.355, 0.074, 0.839, 1.664], [-2.109, 0.693, 1.971, 0.227, 2.364, 1.533], [0.282, -2.054, 1.197, 3.118, 0.28, 2.272], [0.151, -2.857, 1.262, 0.294, 1.776, 2.355]]\nB: [[1.644, 0.604, 1.06, 0.766, 5.332, 3.344], [-2.097, -1.683, 0.861, 1.264, 1.832, 2.762], [-0.249, 2.988, 1.171, 4.734, 0.777, 3.234], [-2.915, 2.214, 1.5, 0.285, 1.098, 1.997], [-1.7, 0.54, 1.692, 0.479, 2.794, 1.178], [0.193, -1.942, 1.679, 3.173, -0.143, 2.182], [0.278, -3.151, 1.749, -0.197, 1.898, 2.594]]\nC: [[1.329, 0.268, 1.849, 0.784, 4.719, 2.961], [-2.126, -1.458, 1.073, 0.788, 1.484, 2.789], [0.005, 2.714, 1.367, 3.948, 0.242, 2.522], [-2.545, 2.463, 1.604, 0.21, 1.144, 1.521], [-1.811, 0.332, 2.299, -0.123, 1.943, 1.085], [0.387, -2.373, 0.727, 2.861, -0.215, 2.059], [0.369, -3.057, 1.007, 0.316, 1.439, 1.965]]\nD: [[2.224, 0.601, 1.81, 0.297, 5.34, 2.544], [-1.441, -1.038, 1.648, 1.209, 1.768, 2.642], [-0.455, 2.785, 1.909, 4.119, 0.083, 3.179], [-2.32, 2.048, 1.417, -0.178, 0.398, 1.998], [-1.992, 0.619, 1.973, 0.251, 2.119, 1.3], [0.593, -1.72, 1.138, 2.733, 0.423, 2.378], [0.595, -2.424, 1.148, 0.122, 2.12, 2.512]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_64_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_64_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[0.994136, 0.036629, -0.101745], [0.107123, -0.462198, 0.880283], [-0.014782, -0.88602, -0.463411]]; the translation vector: [3.8191, 1.340951, 1.354002], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.753, 0.465, 1.403, 0.46, 4.996, 2.959], [-1.738, -1.218, 1.272, 1.062, 1.528, 2.501], [-0.405, 2.797, 1.433, 4.292, 0.332, 2.875], [-2.525, 2.379, 1.355, 0.074, 0.839, 1.664], [-2.109, 0.693, 1.971, 0.227, 2.364, 1.533], [0.282, -2.054, 1.197, 3.118, 0.28, 2.272], [0.151, -2.857, 1.262, 0.294, 1.776, 2.355]]\nB: [[1.644, 0.604, 1.06, 0.766, 5.332, 3.344], [-2.097, -1.683, 0.861, 1.264, 1.832, 2.762], [-0.249, 2.988, 1.171, 4.734, 0.777, 3.234], [-2.915, 2.214, 1.5, 0.285, 1.098, 1.997], [-1.7, 0.54, 1.692, 0.479, 2.794, 1.178], [0.193, -1.942, 1.679, 3.173, -0.143, 2.182], [0.278, -3.151, 1.749, -0.197, 1.898, 2.594]]\nC: [[1.329, 0.268, 1.849, 0.784, 4.719, 2.961], [-2.126, -1.458, 1.073, 0.788, 1.484, 2.789], [0.005, 2.714, 1.367, 3.948, 0.242, 2.522], [-2.545, 2.463, 1.604, 0.21, 1.144, 1.521], [-1.811, 0.332, 2.299, -0.123, 1.943, 1.085], [0.387, -2.373, 0.727, 2.861, -0.215, 2.059], [0.369, -3.057, 1.007, 0.316, 1.439, 1.965]]\nD: [[2.224, 0.601, 1.81, 0.297, 5.34, 2.544], [-1.441, -1.038, 1.648, 1.209, 1.768, 2.642], [-0.455, 2.785, 1.909, 4.119, 0.083, 3.179], [-2.32, 2.048, 1.417, -0.178, 0.398, 1.998], [-1.992, 0.619, 1.973, 0.251, 2.119, 1.3], [0.593, -1.72, 1.138, 2.733, 0.423, 2.378], [0.595, -2.424, 1.148, 0.122, 2.12, 2.512]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-2.229, -0.625, 1.789, 0.384, 0.619, 0.577], [-0.619, -2.375, 0.661, 0.567, 0.451, 0.111], [1.272, -2.43, 0.132, 0.447, 0.727, 0.3], [1.644, -2.684, 0.788, 0.577, 0.322, 0.308], [-0.576, -2.651, 0.078, 0.434, 0.523, 0.246], [0.194, -2.629, 0.081, 0.411, 0.494, 0.232], [0.495, -2.465, 0.021, 0.42, 0.459, 0.089], [-0.19, -2.648, 0.019, 0.384, 0.512, 0.116], [0.653, -2.701, 0.729, 0.282, 0.339, 0.17], [0.952, -2.696, 0.744, 0.349, 0.322, 0.22], [1.255, -2.766, 0.79, 0.368, 0.486, 0.32], [0.1, -2.746, 0.715, 0.314, 0.34, 0.156], [0.399, -2.748, 0.688, 0.296, 0.348, 0.103], [-0.127, -2.741, 0.687, 0.255, 0.368, 0.104], [-0.41, -2.745, 0.703, 0.341, 0.369, 0.132], [-1.782, -2.695, 0.512, 0.572, 0.485, 0.241], [-1.365, -2.686, 0.5, 0.492, 0.488, 0.277], [-1.027, -2.616, 0.39, 0.417, 0.378, 0.292], [-2.221, -0.682, 1.308, 0.347, 0.518, 0.497]]\nB: [[-2.177, -0.167, 1.791, 0.429, 0.305, 0.461], [-0.533, -2.428, 0.376, 0.625, 0.83, -0.181], [0.833, -2.571, -0.115, 0.273, 1.148, 0.126], [1.611, -2.253, 0.787, 0.359, 0.551, -0.134], [-1.058, -2.229, -0.315, 0.638, 0.268, -0.067], [0.333, -2.804, -0.071, 0.337, 0.161, 0.002], [0.886, -2.763, 0.464, 0.54, 0.824, 0.171], [0.083, -2.871, 0.059, 0.444, 0.352, 0.054], [0.665, -2.763, 0.558, 0.057, 0.308, 0.039], [0.563, -2.607, 1.101, 0.044, -0.169, 0.664], [1.085, -2.593, 0.464, 0.42, 0.951, 0.013], [-0.365, -2.365, 0.619, 0.59, 0.077, 0.369], [0.543, -2.864, 0.581, 0.554, 0.644, -0.05], [0.36, -3.102, 0.746, 0.301, -0.13, -0.221], [-0.22, -2.771, 1.165, 0.154, 0.295, 0.195], [-1.434, -2.444, 0.547, 0.734, 0.246, -0.108], [-0.997, -2.269, 0.094, 0.441, 0.845, 0.283], [-1.137, -2.213, 0.312, 0.148, 0.309, 0.772], [-2.498, -0.603, 1.369, 0.752, 0.555, 0.615]]\nC: [[-2.33, -1.056, 1.723, -0.065, 0.432, 0.415], [-0.968, -1.986, 0.569, 0.909, 0.497, 0.486], [1.32, -2.346, -0.114, 0.554, 0.588, 0.715], [1.949, -3.024, 0.857, 1.07, 0.018, 0.558], [-0.719, -2.255, 0.515, 0.899, 0.995, 0.643], [0.265, -2.28, -0.308, 0.384, 0.12, 0.468], [0.651, -2.056, -0.288, 0.45, 0.167, 0.402], [-0.058, -2.555, -0.352, 0.064, 0.242, 0.36], [0.516, -2.537, 1.033, 0.148, 0.192, 0.352], [0.983, -2.457, 0.904, -0.004, -0.102, -0.046], [1.601, -2.407, 0.354, 0.85, 0.773, 0.225], [0.09, -3.129, 0.278, 0.778, 0.065, 0.089], [0.498, -3.096, 0.49, 0.127, 0.025, 0.421], [0.282, -2.893, 0.585, 0.538, -0.078, 0.192], [-0.775, -2.875, 0.541, 0.822, 0.042, 0.614], [-1.444, -2.829, 0.956, 0.56, 0.015, 0.186], [-1.857, -2.941, 0.896, 0.404, 0.313, 0.437], [-1.23, -2.427, -0.01, 0.121, 0.029, 0.052], [-2.105, -0.861, 1.621, 0.843, 0.939, 0.137]]\nD: [[-2.187, -0.629, 2.131, 0.702, 0.488, 0.299], [-1.084, -2.454, 0.389, 0.263, 0.376, -0.0], [0.958, -2.794, -0.355, 0.189, 0.618, 0.078], [2.015, -2.977, 0.616, 0.785, -0.119, 0.807], [-0.732, -2.52, -0.405, 0.133, 0.556, -0.136], [0.099, -2.242, 0.21, 0.448, 0.703, 0.555], [0.296, -2.758, -0.175, 0.146, 0.559, 0.119], [0.107, -2.903, 0.259, 0.508, 0.683, 0.189], [0.807, -2.213, 0.988, -0.022, 0.827, 0.39], [1.137, -2.436, 0.849, 0.615, -0.156, -0.078], [1.291, -2.816, 0.462, 0.333, 0.002, 0.188], [-0.057, -2.486, 0.271, 0.707, 0.496, -0.343], [0.312, -2.462, 0.382, 0.486, 0.393, -0.299], [-0.367, -3.213, 1.027, 0.397, 0.32, -0.33], [-0.12, -2.591, 0.295, 0.767, -0.13, -0.295], [-1.934, -2.605, 0.653, 0.958, 0.354, 0.257], [-1.101, -2.538, 0.202, 0.148, 0.769, 0.141], [-0.928, -2.714, 0.387, 0.917, 0.787, 0.443], [-1.94, -0.799, 1.262, 0.381, 0.02, 0.723]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_65_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_65_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the box in the scene. The camera pose information includes: the rotation matrix: [[0.983299, 0.047874, -0.175588], [0.180439, -0.382417, 0.9062], [-0.023764, -0.922749, -0.384668]]; the translation vector: [2.208684, 3.483128, 1.468268], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-2.229, -0.625, 1.789, 0.384, 0.619, 0.577], [-0.619, -2.375, 0.661, 0.567, 0.451, 0.111], [1.272, -2.43, 0.132, 0.447, 0.727, 0.3], [1.644, -2.684, 0.788, 0.577, 0.322, 0.308], [-0.576, -2.651, 0.078, 0.434, 0.523, 0.246], [0.194, -2.629, 0.081, 0.411, 0.494, 0.232], [0.495, -2.465, 0.021, 0.42, 0.459, 0.089], [-0.19, -2.648, 0.019, 0.384, 0.512, 0.116], [0.653, -2.701, 0.729, 0.282, 0.339, 0.17], [0.952, -2.696, 0.744, 0.349, 0.322, 0.22], [1.255, -2.766, 0.79, 0.368, 0.486, 0.32], [0.1, -2.746, 0.715, 0.314, 0.34, 0.156], [0.399, -2.748, 0.688, 0.296, 0.348, 0.103], [-0.127, -2.741, 0.687, 0.255, 0.368, 0.104], [-0.41, -2.745, 0.703, 0.341, 0.369, 0.132], [-1.782, -2.695, 0.512, 0.572, 0.485, 0.241], [-1.365, -2.686, 0.5, 0.492, 0.488, 0.277], [-1.027, -2.616, 0.39, 0.417, 0.378, 0.292], [-2.221, -0.682, 1.308, 0.347, 0.518, 0.497]]\nB: [[-2.177, -0.167, 1.791, 0.429, 0.305, 0.461], [-0.533, -2.428, 0.376, 0.625, 0.83, -0.181], [0.833, -2.571, -0.115, 0.273, 1.148, 0.126], [1.611, -2.253, 0.787, 0.359, 0.551, -0.134], [-1.058, -2.229, -0.315, 0.638, 0.268, -0.067], [0.333, -2.804, -0.071, 0.337, 0.161, 0.002], [0.886, -2.763, 0.464, 0.54, 0.824, 0.171], [0.083, -2.871, 0.059, 0.444, 0.352, 0.054], [0.665, -2.763, 0.558, 0.057, 0.308, 0.039], [0.563, -2.607, 1.101, 0.044, -0.169, 0.664], [1.085, -2.593, 0.464, 0.42, 0.951, 0.013], [-0.365, -2.365, 0.619, 0.59, 0.077, 0.369], [0.543, -2.864, 0.581, 0.554, 0.644, -0.05], [0.36, -3.102, 0.746, 0.301, -0.13, -0.221], [-0.22, -2.771, 1.165, 0.154, 0.295, 0.195], [-1.434, -2.444, 0.547, 0.734, 0.246, -0.108], [-0.997, -2.269, 0.094, 0.441, 0.845, 0.283], [-1.137, -2.213, 0.312, 0.148, 0.309, 0.772], [-2.498, -0.603, 1.369, 0.752, 0.555, 0.615]]\nC: [[-2.33, -1.056, 1.723, -0.065, 0.432, 0.415], [-0.968, -1.986, 0.569, 0.909, 0.497, 0.486], [1.32, -2.346, -0.114, 0.554, 0.588, 0.715], [1.949, -3.024, 0.857, 1.07, 0.018, 0.558], [-0.719, -2.255, 0.515, 0.899, 0.995, 0.643], [0.265, -2.28, -0.308, 0.384, 0.12, 0.468], [0.651, -2.056, -0.288, 0.45, 0.167, 0.402], [-0.058, -2.555, -0.352, 0.064, 0.242, 0.36], [0.516, -2.537, 1.033, 0.148, 0.192, 0.352], [0.983, -2.457, 0.904, -0.004, -0.102, -0.046], [1.601, -2.407, 0.354, 0.85, 0.773, 0.225], [0.09, -3.129, 0.278, 0.778, 0.065, 0.089], [0.498, -3.096, 0.49, 0.127, 0.025, 0.421], [0.282, -2.893, 0.585, 0.538, -0.078, 0.192], [-0.775, -2.875, 0.541, 0.822, 0.042, 0.614], [-1.444, -2.829, 0.956, 0.56, 0.015, 0.186], [-1.857, -2.941, 0.896, 0.404, 0.313, 0.437], [-1.23, -2.427, -0.01, 0.121, 0.029, 0.052], [-2.105, -0.861, 1.621, 0.843, 0.939, 0.137]]\nD: [[-2.187, -0.629, 2.131, 0.702, 0.488, 0.299], [-1.084, -2.454, 0.389, 0.263, 0.376, -0.0], [0.958, -2.794, -0.355, 0.189, 0.618, 0.078], [2.015, -2.977, 0.616, 0.785, -0.119, 0.807], [-0.732, -2.52, -0.405, 0.133, 0.556, -0.136], [0.099, -2.242, 0.21, 0.448, 0.703, 0.555], [0.296, -2.758, -0.175, 0.146, 0.559, 0.119], [0.107, -2.903, 0.259, 0.508, 0.683, 0.189], [0.807, -2.213, 0.988, -0.022, 0.827, 0.39], [1.137, -2.436, 0.849, 0.615, -0.156, -0.078], [1.291, -2.816, 0.462, 0.333, 0.002, 0.188], [-0.057, -2.486, 0.271, 0.707, 0.496, -0.343], [0.312, -2.462, 0.382, 0.486, 0.393, -0.299], [-0.367, -3.213, 1.027, 0.397, 0.32, -0.33], [-0.12, -2.591, 0.295, 0.767, -0.13, -0.295], [-1.934, -2.605, 0.653, 0.958, 0.354, 0.257], [-1.101, -2.538, 0.202, 0.148, 0.769, 0.141], [-0.928, -2.714, 0.387, 0.917, 0.787, 0.443], [-1.94, -0.799, 1.262, 0.381, 0.02, 0.723]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.897, 0.522, 0.459, 3.876, 6.999, 0.483]]\nB: [[-1.103, 0.265, -0.086, 3.353, 6.924, 0.299]]\nC: [[-1.473, 0.764, 0.085, 3.499, 6.843, 0.726]]\nD: [[-1.038, 0.389, 0.109, 3.778, 6.648, 0.286]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_66_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_66_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the floor in the scene. The camera pose information includes: the rotation matrix: [[0.643628, -0.362528, 0.674031], [-0.765241, -0.290748, 0.574345], [-0.012243, -0.88546, -0.464555]]; the translation vector: [2.632762, 2.243425, 1.452714], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.897, 0.522, 0.459, 3.876, 6.999, 0.483]]\nB: [[-1.103, 0.265, -0.086, 3.353, 6.924, 0.299]]\nC: [[-1.473, 0.764, 0.085, 3.499, 6.843, 0.726]]\nD: [[-1.038, 0.389, 0.109, 3.778, 6.648, 0.286]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.591, 1.483, 1.058, 1.607, 0.601, 2.492], [-2.097, -1.408, 0.835, 0.5, 0.336, 2.389]]\nB: [[0.134, 2.153, 0.957, 1.663, 0.233, 2.443], [-2.254, -1.53, 0.609, 0.554, 0.988, 1.584]]\nC: [[-0.108, 1.926, 1.025, 1.195, 0.255, 2.095], [-1.989, -1.419, 0.985, 0.159, 0.822, 1.991]]\nD: [[0.21, 1.976, 1.369, 1.051, 0.491, 1.606], [-2.131, -1.497, 0.9, 0.432, 0.96, 1.514]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_67_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_67_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the door in the scene. The camera pose information includes: the rotation matrix: [[-0.925351, 0.122106, -0.358909], [0.376741, 0.190476, -0.906524], [-0.042329, -0.974068, -0.222259]]; the translation vector: [4.735593, 2.732706, 1.21643], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.591, 1.483, 1.058, 1.607, 0.601, 2.492], [-2.097, -1.408, 0.835, 0.5, 0.336, 2.389]]\nB: [[0.134, 2.153, 0.957, 1.663, 0.233, 2.443], [-2.254, -1.53, 0.609, 0.554, 0.988, 1.584]]\nC: [[-0.108, 1.926, 1.025, 1.195, 0.255, 2.095], [-1.989, -1.419, 0.985, 0.159, 0.822, 1.991]]\nD: [[0.21, 1.976, 1.369, 1.051, 0.491, 1.606], [-2.131, -1.497, 0.9, 0.432, 0.96, 1.514]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.347, 0.112, 0.25, 1.296, 0.747, 0.377], [-0.83, 0.341, 0.317, 1.198, 1.401, 0.615], [-0.794, -1.292, 0.479, 1.485, 1.035, 1.271], [0.127, 1.653, 0.718, 0.98, 0.518, 0.445]]\nB: [[1.529, 0.501, 0.301, 0.944, 1.585, 0.652], [-1.117, 0.064, 0.625, 0.722, 0.832, 1.296], [-1.406, -0.586, 0.491, 0.928, 1.591, 0.802], [0.516, 1.562, 0.345, 0.823, 1.417, 0.468]]\nC: [[1.382, -0.298, 0.162, 0.586, 1.271, 1.153], [-1.729, -0.043, 0.911, 1.507, 1.118, 1.281], [-0.888, -0.525, -0.057, 1.572, 1.192, 0.468], [-0.205, 1.524, 0.606, 0.689, 0.914, 0.382]]\nD: [[1.322, 0.194, 0.453, 1.016, 1.117, 0.863], [-1.253, 0.172, 0.421, 1.029, 1.045, 0.876], [-1.049, -0.979, 0.44, 1.12, 1.131, 0.861], [0.221, 1.294, 0.424, 0.876, 0.92, 0.832]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_68_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_68_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the armchair in the scene. The camera pose information includes: the rotation matrix: [[0.748873, -0.374013, 0.547087], [-0.662404, -0.447673, 0.600675], [0.020256, -0.812221, -0.582998]]; the translation vector: [3.709567, 4.406117, 1.261793], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.347, 0.112, 0.25, 1.296, 0.747, 0.377], [-0.83, 0.341, 0.317, 1.198, 1.401, 0.615], [-0.794, -1.292, 0.479, 1.485, 1.035, 1.271], [0.127, 1.653, 0.718, 0.98, 0.518, 0.445]]\nB: [[1.529, 0.501, 0.301, 0.944, 1.585, 0.652], [-1.117, 0.064, 0.625, 0.722, 0.832, 1.296], [-1.406, -0.586, 0.491, 0.928, 1.591, 0.802], [0.516, 1.562, 0.345, 0.823, 1.417, 0.468]]\nC: [[1.382, -0.298, 0.162, 0.586, 1.271, 1.153], [-1.729, -0.043, 0.911, 1.507, 1.118, 1.281], [-0.888, -0.525, -0.057, 1.572, 1.192, 0.468], [-0.205, 1.524, 0.606, 0.689, 0.914, 0.382]]\nD: [[1.322, 0.194, 0.453, 1.016, 1.117, 0.863], [-1.253, 0.172, 0.421, 1.029, 1.045, 0.876], [-1.049, -0.979, 0.44, 1.12, 1.131, 0.861], [0.221, 1.294, 0.424, 0.876, 0.92, 0.832]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.579, -0.488, 0.759, 0.356, 0.729, 0.206], [-1.432, 0.41, 0.224, 0.816, -0.16, 0.054], [-1.128, 1.211, 0.876, 0.072, 0.472, -0.431], [-0.056, 1.335, 1.059, 0.219, -0.158, 0.294], [0.39, 0.373, 0.895, 0.659, 0.538, 0.377], [-1.237, 2.65, 0.314, 0.655, 0.335, -0.177]]\nB: [[-1.898, -0.166, 1.244, 0.693, 0.01, 0.135], [-2.054, 0.428, 0.961, 0.919, 0.356, 0.407], [-1.294, 1.065, 0.511, 0.811, -0.08, -0.323], [0.085, 0.558, 1.04, 0.703, -0.22, -0.384], [1.147, 0.956, 0.305, 0.157, 0.461, -0.367], [-1.796, 2.739, 0.408, 0.015, 0.305, -0.245]]\nC: [[-1.472, -0.634, 0.769, 0.41, 0.312, 0.075], [-1.766, 0.861, 0.684, 0.449, 0.16, 0.051], [-0.868, 0.879, 0.668, 0.414, 0.211, 0.046], [-0.148, 0.874, 0.644, 0.427, 0.151, 0.056], [0.744, 0.838, 0.607, 0.528, 0.174, 0.072], [-1.369, 2.612, 0.558, 0.426, 0.186, 0.029]]\nD: [[-1.326, -0.492, 0.759, 0.773, 0.113, -0.399], [-1.742, 0.884, 0.249, 0.825, 0.051, -0.219], [-0.59, 0.654, 0.814, 0.491, -0.041, -0.171], [-0.618, 1.322, 0.366, 0.807, 0.377, 0.225], [1.165, 1.152, 0.365, 0.032, 0.059, 0.012], [-1.206, 2.669, 0.552, 0.305, 0.052, 0.19]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_69_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_69_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the keyboard in the scene. The camera pose information includes: the rotation matrix: [[0.053762, 0.423971, -0.904079], [0.99709, -0.071809, 0.025618], [-0.05406, -0.902825, -0.426597]]; the translation vector: [3.696534, 7.381392, 1.65485], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.579, -0.488, 0.759, 0.356, 0.729, 0.206], [-1.432, 0.41, 0.224, 0.816, -0.16, 0.054], [-1.128, 1.211, 0.876, 0.072, 0.472, -0.431], [-0.056, 1.335, 1.059, 0.219, -0.158, 0.294], [0.39, 0.373, 0.895, 0.659, 0.538, 0.377], [-1.237, 2.65, 0.314, 0.655, 0.335, -0.177]]\nB: [[-1.898, -0.166, 1.244, 0.693, 0.01, 0.135], [-2.054, 0.428, 0.961, 0.919, 0.356, 0.407], [-1.294, 1.065, 0.511, 0.811, -0.08, -0.323], [0.085, 0.558, 1.04, 0.703, -0.22, -0.384], [1.147, 0.956, 0.305, 0.157, 0.461, -0.367], [-1.796, 2.739, 0.408, 0.015, 0.305, -0.245]]\nC: [[-1.472, -0.634, 0.769, 0.41, 0.312, 0.075], [-1.766, 0.861, 0.684, 0.449, 0.16, 0.051], [-0.868, 0.879, 0.668, 0.414, 0.211, 0.046], [-0.148, 0.874, 0.644, 0.427, 0.151, 0.056], [0.744, 0.838, 0.607, 0.528, 0.174, 0.072], [-1.369, 2.612, 0.558, 0.426, 0.186, 0.029]]\nD: [[-1.326, -0.492, 0.759, 0.773, 0.113, -0.399], [-1.742, 0.884, 0.249, 0.825, 0.051, -0.219], [-0.59, 0.654, 0.814, 0.491, -0.041, -0.171], [-0.618, 1.322, 0.366, 0.807, 0.377, 0.225], [1.165, 1.152, 0.365, 0.032, 0.059, 0.012], [-1.206, 2.669, 0.552, 0.305, 0.052, 0.19]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.062, 0.255, 0.974, 0.478, 0.305, 1.9]]\nB: [[0.289, 0.114, 0.997, 0.421, 0.269, 2.332]]\nC: [[-0.529, -0.167, 1.248, 0.711, 0.631, 1.869]]\nD: [[-0.117, 0.693, 1.129, 0.484, 0.656, 2.156]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_70_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_70_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the shower curtain in the scene. The camera pose information includes: the rotation matrix: [[-0.95695, -0.100486, 0.272304], [-0.288986, 0.24231, -0.92616], [0.027085, -0.964981, -0.260918]]; the translation vector: [1.227478, 4.879099, 1.55452], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.062, 0.255, 0.974, 0.478, 0.305, 1.9]]\nB: [[0.289, 0.114, 0.997, 0.421, 0.269, 2.332]]\nC: [[-0.529, -0.167, 1.248, 0.711, 0.631, 1.869]]\nD: [[-0.117, 0.693, 1.129, 0.484, 0.656, 2.156]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.525, -2.231, 0.892, 0.349, 0.481, 0.091]]\nB: [[1.636, -2.317, 0.937, 0.292, 0.774, -0.26]]\nC: [[1.735, -2.218, 1.132, -0.039, 0.012, 0.228]]\nD: [[1.335, -2.53, 1.027, 0.634, 0.978, -0.278]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_71_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_71_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the book in the scene. The camera pose information includes: the rotation matrix: [[-0.863619, -0.252896, 0.436126], [-0.502889, 0.371124, -0.780621], [0.03556, -0.893482, -0.447688]]; the translation vector: [2.007098, 3.82416, 1.536992], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.525, -2.231, 0.892, 0.349, 0.481, 0.091]]\nB: [[1.636, -2.317, 0.937, 0.292, 0.774, -0.26]]\nC: [[1.735, -2.218, 1.132, -0.039, 0.012, 0.228]]\nD: [[1.335, -2.53, 1.027, 0.634, 0.978, -0.278]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-3.713, -2.322, 1.093, 0.437, 3.072, 2.045], [-1.081, -3.837, 1.495, 4.867, 0.501, 2.558], [2.258, -2.553, 1.174, 1.342, 1.564, 2.568], [3.141, 1.147, 1.716, 0.254, 5.221, 3.492], [1.44, -2.565, 1.73, 0.493, 2.338, 2.511], [1.459, -1.994, 0.755, 0.967, 0.884, 1.183], [1.27, 3.225, 1.429, 3.362, 0.06, 2.461], [2.687, -1.112, 0.928, 2.314, 0.606, 3.137], [3.573, 2.12, 0.945, -0.323, 1.165, 0.653]]\nB: [[-3.835, -1.629, 1.168, -0.265, 2.747, 2.333], [-1.318, -2.989, 1.688, 4.412, 0.48, 2.388], [2.689, -2.933, 1.545, 1.676, 2.18, 2.201], [3.228, 1.403, 1.452, 0.635, 4.562, 3.257], [1.389, -2.608, 0.976, 1.337, 2.222, 2.449], [1.683, -1.57, 0.448, 0.488, 1.125, 1.219], [1.286, 3.78, 1.634, 2.717, 0.735, 2.673], [2.077, -1.004, 0.831, 1.778, 0.571, 2.523], [3.367, 1.994, 0.998, 0.165, 1.01, 0.878]]\nC: [[-3.518, -1.854, 1.546, 0.215, 3.24, 2.228], [-1.249, -3.369, 1.199, 4.514, 0.422, 2.472], [2.581, -2.461, 1.261, 1.576, 1.946, 2.535], [3.098, 1.012, 1.522, 0.435, 4.946, 2.999], [1.343, -2.44, 1.234, 0.869, 1.985, 2.527], [1.357, -2.033, 0.708, 0.777, 1.087, 1.434], [1.727, 3.433, 1.218, 3.174, 0.459, 2.415], [2.388, -1.448, 1.321, 1.857, 0.151, 2.689], [3.207, 2.39, 1.139, 0.116, 1.457, 0.447]]\nD: [[-3.315, -1.725, 1.076, -0.072, 3.369, 2.316], [-1.509, -2.948, 1.263, 4.588, 0.454, 2.009], [2.958, -2.942, 0.867, 1.911, 2.392, 2.127], [3.566, 0.671, 1.618, 0.253, 5.112, 3.1], [1.816, -2.011, 1.094, 0.402, 1.679, 2.148], [0.957, -1.668, 0.579, 1.105, 0.683, 1.586], [1.676, 3.716, 1.075, 3.204, 0.902, 2.406], [2.655, -1.717, 0.827, 1.883, 0.155, 2.358], [3.511, 2.562, 1.175, -0.348, 1.486, 0.553]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_72_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_72_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[-0.831143, 0.312948, -0.459636], [0.555586, 0.43327, -0.709649], [-0.022937, -0.845187, -0.533978]]; the translation vector: [2.360292, 3.05803, 1.315354], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-3.713, -2.322, 1.093, 0.437, 3.072, 2.045], [-1.081, -3.837, 1.495, 4.867, 0.501, 2.558], [2.258, -2.553, 1.174, 1.342, 1.564, 2.568], [3.141, 1.147, 1.716, 0.254, 5.221, 3.492], [1.44, -2.565, 1.73, 0.493, 2.338, 2.511], [1.459, -1.994, 0.755, 0.967, 0.884, 1.183], [1.27, 3.225, 1.429, 3.362, 0.06, 2.461], [2.687, -1.112, 0.928, 2.314, 0.606, 3.137], [3.573, 2.12, 0.945, -0.323, 1.165, 0.653]]\nB: [[-3.835, -1.629, 1.168, -0.265, 2.747, 2.333], [-1.318, -2.989, 1.688, 4.412, 0.48, 2.388], [2.689, -2.933, 1.545, 1.676, 2.18, 2.201], [3.228, 1.403, 1.452, 0.635, 4.562, 3.257], [1.389, -2.608, 0.976, 1.337, 2.222, 2.449], [1.683, -1.57, 0.448, 0.488, 1.125, 1.219], [1.286, 3.78, 1.634, 2.717, 0.735, 2.673], [2.077, -1.004, 0.831, 1.778, 0.571, 2.523], [3.367, 1.994, 0.998, 0.165, 1.01, 0.878]]\nC: [[-3.518, -1.854, 1.546, 0.215, 3.24, 2.228], [-1.249, -3.369, 1.199, 4.514, 0.422, 2.472], [2.581, -2.461, 1.261, 1.576, 1.946, 2.535], [3.098, 1.012, 1.522, 0.435, 4.946, 2.999], [1.343, -2.44, 1.234, 0.869, 1.985, 2.527], [1.357, -2.033, 0.708, 0.777, 1.087, 1.434], [1.727, 3.433, 1.218, 3.174, 0.459, 2.415], [2.388, -1.448, 1.321, 1.857, 0.151, 2.689], [3.207, 2.39, 1.139, 0.116, 1.457, 0.447]]\nD: [[-3.315, -1.725, 1.076, -0.072, 3.369, 2.316], [-1.509, -2.948, 1.263, 4.588, 0.454, 2.009], [2.958, -2.942, 0.867, 1.911, 2.392, 2.127], [3.566, 0.671, 1.618, 0.253, 5.112, 3.1], [1.816, -2.011, 1.094, 0.402, 1.679, 2.148], [0.957, -1.668, 0.579, 1.105, 0.683, 1.586], [1.676, 3.716, 1.075, 3.204, 0.902, 2.406], [2.655, -1.717, 0.827, 1.883, 0.155, 2.358], [3.511, 2.562, 1.175, -0.348, 1.486, 0.553]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.046, -0.307, 0.362, 0.784, -0.024, 0.785], [1.165, -2.351, 1.138, 0.213, 0.736, 0.353], [1.15, -2.093, 0.722, 0.4, 0.33, 0.205], [1.084, -0.85, 1.131, 0.451, -0.085, 0.317], [1.331, -1.435, 0.691, 0.675, 0.723, 0.254], [-1.236, 0.563, -0.088, 0.27, -0.102, 0.794]]\nB: [[1.265, -0.056, 0.282, 0.326, 0.027, 0.886], [1.533, -2.203, 0.449, 0.341, 0.914, 0.835], [0.973, -1.818, 0.452, -0.205, -0.0, 0.557], [1.212, -0.809, 0.364, 0.233, 0.14, 0.279], [0.952, -0.74, 0.435, -0.133, 0.174, 0.554], [-1.162, 0.16, 0.691, 0.327, -0.202, 0.736]]\nC: [[1.057, -0.394, 0.235, 0.507, 0.4, 0.47], [1.152, -1.942, 0.923, 0.249, 0.43, 0.441], [1.185, -1.67, 0.793, 0.195, 0.105, 0.183], [0.815, -0.905, 0.823, 0.231, 0.165, 0.244], [0.988, -0.991, 0.818, 0.253, 0.25, 0.209], [-1.265, 0.61, 0.238, 0.204, 0.16, 0.435]]\nD: [[1.051, -0.65, -0.171, 0.578, 0.483, 0.109], [0.936, -1.859, 0.474, -0.087, 0.06, 0.148], [1.334, -2.107, 0.81, 0.465, 0.412, 0.633], [0.554, -0.966, 0.763, 0.354, 0.344, 0.116], [1.173, -0.543, 0.619, 0.486, 0.296, 0.039], [-1.019, 0.12, 0.267, -0.232, -0.155, 0.735]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_73_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_73_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the object in the scene. The camera pose information includes: the rotation matrix: [[0.264492, -0.222038, 0.938479], [-0.962334, 0.002714, 0.271857], [-0.062909, -0.975034, -0.212957]]; the translation vector: [0.925816, 4.784833, 1.497389], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.046, -0.307, 0.362, 0.784, -0.024, 0.785], [1.165, -2.351, 1.138, 0.213, 0.736, 0.353], [1.15, -2.093, 0.722, 0.4, 0.33, 0.205], [1.084, -0.85, 1.131, 0.451, -0.085, 0.317], [1.331, -1.435, 0.691, 0.675, 0.723, 0.254], [-1.236, 0.563, -0.088, 0.27, -0.102, 0.794]]\nB: [[1.265, -0.056, 0.282, 0.326, 0.027, 0.886], [1.533, -2.203, 0.449, 0.341, 0.914, 0.835], [0.973, -1.818, 0.452, -0.205, -0.0, 0.557], [1.212, -0.809, 0.364, 0.233, 0.14, 0.279], [0.952, -0.74, 0.435, -0.133, 0.174, 0.554], [-1.162, 0.16, 0.691, 0.327, -0.202, 0.736]]\nC: [[1.057, -0.394, 0.235, 0.507, 0.4, 0.47], [1.152, -1.942, 0.923, 0.249, 0.43, 0.441], [1.185, -1.67, 0.793, 0.195, 0.105, 0.183], [0.815, -0.905, 0.823, 0.231, 0.165, 0.244], [0.988, -0.991, 0.818, 0.253, 0.25, 0.209], [-1.265, 0.61, 0.238, 0.204, 0.16, 0.435]]\nD: [[1.051, -0.65, -0.171, 0.578, 0.483, 0.109], [0.936, -1.859, 0.474, -0.087, 0.06, 0.148], [1.334, -2.107, 0.81, 0.465, 0.412, 0.633], [0.554, -0.966, 0.763, 0.354, 0.344, 0.116], [1.173, -0.543, 0.619, 0.486, 0.296, 0.039], [-1.019, 0.12, 0.267, -0.232, -0.155, 0.735]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.085, -0.215, 0.983, 0.671, 0.944, 0.637]]\nB: [[-1.195, -0.19, 1.175, 0.471, 1.343, 0.221]]\nC: [[-1.17, -0.298, 0.934, 0.962, 1.213, 0.413]]\nD: [[-1.39, -0.221, 0.693, 0.182, 1.277, 0.167]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_74_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_74_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the sink in the scene. The camera pose information includes: the rotation matrix: [[-0.409087, -0.112571, 0.905525], [-0.910894, 0.109148, -0.397943], [-0.05404, -0.987631, -0.147191]]; the translation vector: [4.421403, 3.579741, 1.526424], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.085, -0.215, 0.983, 0.671, 0.944, 0.637]]\nB: [[-1.195, -0.19, 1.175, 0.471, 1.343, 0.221]]\nC: [[-1.17, -0.298, 0.934, 0.962, 1.213, 0.413]]\nD: [[-1.39, -0.221, 0.693, 0.182, 1.277, 0.167]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.095, 1.592, 1.222, 1.568, 0.744, 2.142]]\nB: [[-0.877, 2.359, 1.301, 1.758, 0.807, 2.272]]\nC: [[-0.883, 2.133, 0.636, 0.867, 0.763, 2.547]]\nD: [[-1.101, 1.96, 1.128, 1.33, 0.454, 2.075]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_75_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_75_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the mirror doors in the scene. The camera pose information includes: the rotation matrix: [[-0.998134, -0.025826, -0.055325], [0.04389, 0.326427, -0.944203], [0.042444, -0.94487, -0.324684]]; the translation vector: [2.355182, 2.984659, 1.395898], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.095, 1.592, 1.222, 1.568, 0.744, 2.142]]\nB: [[-0.877, 2.359, 1.301, 1.758, 0.807, 2.272]]\nC: [[-0.883, 2.133, 0.636, 0.867, 0.763, 2.547]]\nD: [[-1.101, 1.96, 1.128, 1.33, 0.454, 2.075]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.917, 0.769, 0.393, 0.162, 0.916, 0.83], [2.158, 0.091, 1.885, 0.64, 0.369, 0.373]]\nB: [[1.7, 0.645, 0.863, 0.067, 1.221, 0.849], [2.328, 0.352, 2.246, 0.627, 0.498, 0.253]]\nC: [[1.798, 1.202, -0.093, 0.135, 0.516, 1.131], [2.029, 0.523, 2.037, 0.813, 0.35, 0.6]]\nD: [[1.675, 0.61, 0.316, -0.227, 0.481, 0.35], [2.253, 0.494, 1.51, 1.013, 0.177, 0.842]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_76_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_76_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the kitchen cabinet in the scene. The camera pose information includes: the rotation matrix: [[-0.399387, 0.327689, -0.856218], [0.9115, 0.041819, -0.409169], [-0.098274, -0.94386, -0.315391]]; the translation vector: [4.88233, 2.963563, 1.403722], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.917, 0.769, 0.393, 0.162, 0.916, 0.83], [2.158, 0.091, 1.885, 0.64, 0.369, 0.373]]\nB: [[1.7, 0.645, 0.863, 0.067, 1.221, 0.849], [2.328, 0.352, 2.246, 0.627, 0.498, 0.253]]\nC: [[1.798, 1.202, -0.093, 0.135, 0.516, 1.131], [2.029, 0.523, 2.037, 0.813, 0.35, 0.6]]\nD: [[1.675, 0.61, 0.316, -0.227, 0.481, 0.35], [2.253, 0.494, 1.51, 1.013, 0.177, 0.842]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.494, 1.559, 0.938, 0.656, 5.217, 2.076], [2.053, 1.519, 1.142, 0.022, 3.126, 1.696], [1.526, 0.314, 1.467, 0.388, 0.432, 1.965], [1.119, -0.324, 1.442, 0.427, 0.845, 2.198], [1.576, -0.035, 0.321, 0.045, 0.534, 1.117], [1.692, -0.958, 0.006, 0.205, 2.737, 0.651], [2.137, -2.631, 1.077, 0.184, 0.904, 1.508], [1.333, -3.255, 1.466, 0.791, -0.082, 1.662], [1.459, -3.425, 1.79, -0.348, -0.024, 0.359], [0.387, -3.416, 1.314, 3.646, -0.097, 1.995], [-1.825, -3.194, 1.168, 0.422, 1.404, 1.529], [-0.304, 4.179, 0.452, 3.264, -0.007, 1.066], [1.999, 3.872, 0.716, 0.498, 0.487, 1.358]]\nB: [[-1.693, 1.424, 1.03, 0.376, 5.083, 2.034], [1.765, 1.957, 1.138, 0.161, 3.199, 2.18], [1.589, 0.333, 0.987, 0.355, 0.095, 1.877], [1.425, 0.157, 1.015, 0.112, 0.477, 1.967], [1.63, -0.081, 0.672, 0.331, 0.259, 1.339], [1.705, -1.447, 0.484, 0.238, 2.779, 0.873], [1.951, -2.837, 1.012, 0.146, 0.69, 1.445], [1.797, -3.186, 1.022, 0.444, 0.092, 1.424], [1.591, -3.334, 1.384, 0.106, 0.324, 0.652], [-0.022, -3.519, 0.892, 3.311, 0.275, 1.699], [-1.705, -2.728, 0.676, 0.126, 1.402, 1.204], [-0.01, 3.839, 0.745, 3.147, 0.481, 1.347], [1.63, 3.568, 0.892, 0.411, 0.327, 1.532]]\nC: [[-1.26, 1.503, 0.893, 0.629, 5.544, 1.914], [2.175, 1.47, 1.47, 0.109, 3.382, 1.686], [1.982, -0.011, 0.916, 0.426, -0.326, 1.566], [1.181, 0.067, 1.21, 0.067, 0.005, 2.351], [1.524, 0.001, 0.471, 0.286, 0.408, 1.265], [1.238, -1.52, 0.419, 0.599, 3.184, 1.176], [1.553, -3.177, 0.653, 0.32, 0.427, 1.885], [1.383, -3.363, 1.432, 0.865, -0.009, 1.444], [1.288, -3.498, 1.769, -0.257, 0.218, 1.054], [0.393, -3.522, 1.337, 3.619, 0.242, 1.594], [-1.576, -3.113, 0.753, 0.379, 1.777, 1.195], [-0.268, 3.894, 0.852, 2.983, 0.721, 1.393], [1.465, 3.133, 0.435, 0.617, 0.63, 1.96]]\nD: [[-1.946, 1.454, 1.304, 0.285, 4.759, 1.584], [1.735, 2.118, 1.431, 0.5, 3.38, 2.198], [2.01, 0.269, 1.406, 0.118, -0.362, 2.255], [1.665, -0.294, 0.623, -0.295, 0.208, 2.363], [1.918, 0.112, 1.078, 0.599, 0.597, 0.896], [1.655, -1.698, 0.75, 0.063, 2.896, 0.441], [2.382, -2.981, 1.161, 0.203, 0.379, 1.162], [1.828, -2.97, 0.979, 0.706, -0.194, 1.801], [1.717, -3.159, 1.188, 0.204, 0.385, 0.448], [0.303, -3.389, 1.008, 3.649, 0.715, 1.331], [-1.467, -2.443, 0.641, 0.545, 0.903, 1.371], [-0.151, 3.761, 0.508, 3.288, 0.802, 1.225], [1.797, 3.579, 1.179, 0.009, 0.008, 1.708]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_77_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_77_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[-0.810147, -0.229725, 0.539341], [-0.586224, 0.314131, -0.746769], [0.002128, -0.921167, -0.389162]]; the translation vector: [3.108561, 2.950706, 1.466118], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.494, 1.559, 0.938, 0.656, 5.217, 2.076], [2.053, 1.519, 1.142, 0.022, 3.126, 1.696], [1.526, 0.314, 1.467, 0.388, 0.432, 1.965], [1.119, -0.324, 1.442, 0.427, 0.845, 2.198], [1.576, -0.035, 0.321, 0.045, 0.534, 1.117], [1.692, -0.958, 0.006, 0.205, 2.737, 0.651], [2.137, -2.631, 1.077, 0.184, 0.904, 1.508], [1.333, -3.255, 1.466, 0.791, -0.082, 1.662], [1.459, -3.425, 1.79, -0.348, -0.024, 0.359], [0.387, -3.416, 1.314, 3.646, -0.097, 1.995], [-1.825, -3.194, 1.168, 0.422, 1.404, 1.529], [-0.304, 4.179, 0.452, 3.264, -0.007, 1.066], [1.999, 3.872, 0.716, 0.498, 0.487, 1.358]]\nB: [[-1.693, 1.424, 1.03, 0.376, 5.083, 2.034], [1.765, 1.957, 1.138, 0.161, 3.199, 2.18], [1.589, 0.333, 0.987, 0.355, 0.095, 1.877], [1.425, 0.157, 1.015, 0.112, 0.477, 1.967], [1.63, -0.081, 0.672, 0.331, 0.259, 1.339], [1.705, -1.447, 0.484, 0.238, 2.779, 0.873], [1.951, -2.837, 1.012, 0.146, 0.69, 1.445], [1.797, -3.186, 1.022, 0.444, 0.092, 1.424], [1.591, -3.334, 1.384, 0.106, 0.324, 0.652], [-0.022, -3.519, 0.892, 3.311, 0.275, 1.699], [-1.705, -2.728, 0.676, 0.126, 1.402, 1.204], [-0.01, 3.839, 0.745, 3.147, 0.481, 1.347], [1.63, 3.568, 0.892, 0.411, 0.327, 1.532]]\nC: [[-1.26, 1.503, 0.893, 0.629, 5.544, 1.914], [2.175, 1.47, 1.47, 0.109, 3.382, 1.686], [1.982, -0.011, 0.916, 0.426, -0.326, 1.566], [1.181, 0.067, 1.21, 0.067, 0.005, 2.351], [1.524, 0.001, 0.471, 0.286, 0.408, 1.265], [1.238, -1.52, 0.419, 0.599, 3.184, 1.176], [1.553, -3.177, 0.653, 0.32, 0.427, 1.885], [1.383, -3.363, 1.432, 0.865, -0.009, 1.444], [1.288, -3.498, 1.769, -0.257, 0.218, 1.054], [0.393, -3.522, 1.337, 3.619, 0.242, 1.594], [-1.576, -3.113, 0.753, 0.379, 1.777, 1.195], [-0.268, 3.894, 0.852, 2.983, 0.721, 1.393], [1.465, 3.133, 0.435, 0.617, 0.63, 1.96]]\nD: [[-1.946, 1.454, 1.304, 0.285, 4.759, 1.584], [1.735, 2.118, 1.431, 0.5, 3.38, 2.198], [2.01, 0.269, 1.406, 0.118, -0.362, 2.255], [1.665, -0.294, 0.623, -0.295, 0.208, 2.363], [1.918, 0.112, 1.078, 0.599, 0.597, 0.896], [1.655, -1.698, 0.75, 0.063, 2.896, 0.441], [2.382, -2.981, 1.161, 0.203, 0.379, 1.162], [1.828, -2.97, 0.979, 0.706, -0.194, 1.801], [1.717, -3.159, 1.188, 0.204, 0.385, 0.448], [0.303, -3.389, 1.008, 3.649, 0.715, 1.331], [-1.467, -2.443, 0.641, 0.545, 0.903, 1.371], [-0.151, 3.761, 0.508, 3.288, 0.802, 1.225], [1.797, 3.579, 1.179, 0.009, 0.008, 1.708]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.793, 1.247, 0.29, 0.296, 0.279, -0.014], [1.019, 0.024, 1.569, 0.553, 0.236, 0.679]]\nB: [[-0.837, 1.73, 0.172, 0.311, 0.446, 0.446], [0.579, -0.45, 1.284, 0.394, 0.372, 0.858]]\nC: [[-0.983, 2.19, 0.493, -0.03, 0.329, 0.928], [0.864, -0.587, 1.773, 0.118, 0.794, 0.799]]\nD: [[-0.553, 2.216, 0.459, 0.267, 0.459, 0.522], [0.806, 0.026, 1.267, 0.403, 0.702, 0.558]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_78_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_78_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the clothes in the scene. The camera pose information includes: the rotation matrix: [[-0.187285, -0.627824, 0.755488], [-0.982305, 0.118515, -0.145025], [0.001514, -0.76928, -0.63891]]; the translation vector: [1.001752, 1.17634, 1.437838], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.793, 1.247, 0.29, 0.296, 0.279, -0.014], [1.019, 0.024, 1.569, 0.553, 0.236, 0.679]]\nB: [[-0.837, 1.73, 0.172, 0.311, 0.446, 0.446], [0.579, -0.45, 1.284, 0.394, 0.372, 0.858]]\nC: [[-0.983, 2.19, 0.493, -0.03, 0.329, 0.928], [0.864, -0.587, 1.773, 0.118, 0.794, 0.799]]\nD: [[-0.553, 2.216, 0.459, 0.267, 0.459, 0.522], [0.806, 0.026, 1.267, 0.403, 0.702, 0.558]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-2.858, -1.05, -0.049, 0.631, 1.092, 1.022], [0.969, 2.457, 0.703, 0.33, 0.355, 0.535], [1.292, 0.687, 0.943, 0.724, 0.324, 1.126], [1.537, -0.024, 0.37, 0.738, 0.769, 0.806], [2.91, -1.195, 1.375, 0.242, 1.166, 0.582], [2.799, -1.708, 0.863, 0.877, 0.364, 0.812], [2.158, -1.992, 0.634, 0.411, 0.065, 1.19], [-2.861, 0.973, 1.098, 0.744, 0.232, 0.595], [-3.055, 1.702, 0.901, 0.639, 0.173, 0.718], [3.451, -0.934, 1.096, 0.502, 0.89, 0.387]]\nB: [[-2.77, -0.712, 0.41, 0.782, 0.713, 0.859], [1.367, 2.116, 0.842, 0.257, 0.504, 0.248], [1.716, 0.519, 0.519, 0.661, 0.573, 0.903], [1.577, -0.324, 0.811, 0.462, 0.54, 0.431], [3.037, -1.452, 0.953, 0.581, 0.687, 0.531], [2.669, -1.872, 0.986, 0.552, 0.48, 0.568], [2.211, -1.887, 0.725, 0.677, 0.554, 1.018], [-2.956, 0.672, 0.826, 0.436, 0.319, 0.465], [-2.626, 1.651, 0.53, 0.537, 0.47, 0.924], [2.995, -0.435, 0.615, 0.566, 0.706, 0.886]]\nC: [[-2.925, -0.243, 0.295, 0.519, 0.44, 0.711], [1.485, 1.766, 1.018, 0.081, 0.848, 0.483], [1.717, 0.68, 0.214, 0.236, 1.037, 0.434], [1.205, -0.323, 1.125, 0.097, 0.642, 0.242], [3.189, -1.068, 0.599, 0.36, 1.144, 0.939], [2.418, -1.941, 1.167, 0.598, 0.698, 0.702], [1.723, -2.159, 0.821, 0.484, 0.884, 0.696], [-3.03, 0.47, 1.025, 0.789, 0.045, 0.278], [-2.913, 1.461, 0.819, 0.202, 0.085, 1.03], [2.826, -0.221, 0.951, 0.339, 0.752, 1.266]]\nD: [[-3.135, -0.575, -0.082, 0.411, 0.399, 1.112], [1.76, 1.636, 0.661, -0.118, 0.316, 0.196], [2.067, 0.976, 0.67, 0.22, 0.315, 1.158], [1.439, -0.283, 0.584, 0.087, 0.218, 0.206], [2.848, -1.357, 1.295, 0.653, 0.266, 0.059], [2.99, -1.86, 1.333, 0.578, 0.108, 0.112], [2.118, -1.567, 1.178, 0.323, 0.289, 0.96], [-3.43, 1.005, 1.071, 0.331, 0.71, 0.959], [-3.114, 1.972, 0.571, 0.075, 0.864, 0.441], [2.987, 0.022, 0.923, 0.173, 0.274, 0.482]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_79_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_79_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the chair in the scene. The camera pose information includes: the rotation matrix: [[0.515401, -0.339121, 0.786994], [-0.847541, -0.337435, 0.40965], [0.126638, -0.878143, -0.461333]]; the translation vector: [4.776819, 1.138867, 1.280463], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-2.858, -1.05, -0.049, 0.631, 1.092, 1.022], [0.969, 2.457, 0.703, 0.33, 0.355, 0.535], [1.292, 0.687, 0.943, 0.724, 0.324, 1.126], [1.537, -0.024, 0.37, 0.738, 0.769, 0.806], [2.91, -1.195, 1.375, 0.242, 1.166, 0.582], [2.799, -1.708, 0.863, 0.877, 0.364, 0.812], [2.158, -1.992, 0.634, 0.411, 0.065, 1.19], [-2.861, 0.973, 1.098, 0.744, 0.232, 0.595], [-3.055, 1.702, 0.901, 0.639, 0.173, 0.718], [3.451, -0.934, 1.096, 0.502, 0.89, 0.387]]\nB: [[-2.77, -0.712, 0.41, 0.782, 0.713, 0.859], [1.367, 2.116, 0.842, 0.257, 0.504, 0.248], [1.716, 0.519, 0.519, 0.661, 0.573, 0.903], [1.577, -0.324, 0.811, 0.462, 0.54, 0.431], [3.037, -1.452, 0.953, 0.581, 0.687, 0.531], [2.669, -1.872, 0.986, 0.552, 0.48, 0.568], [2.211, -1.887, 0.725, 0.677, 0.554, 1.018], [-2.956, 0.672, 0.826, 0.436, 0.319, 0.465], [-2.626, 1.651, 0.53, 0.537, 0.47, 0.924], [2.995, -0.435, 0.615, 0.566, 0.706, 0.886]]\nC: [[-2.925, -0.243, 0.295, 0.519, 0.44, 0.711], [1.485, 1.766, 1.018, 0.081, 0.848, 0.483], [1.717, 0.68, 0.214, 0.236, 1.037, 0.434], [1.205, -0.323, 1.125, 0.097, 0.642, 0.242], [3.189, -1.068, 0.599, 0.36, 1.144, 0.939], [2.418, -1.941, 1.167, 0.598, 0.698, 0.702], [1.723, -2.159, 0.821, 0.484, 0.884, 0.696], [-3.03, 0.47, 1.025, 0.789, 0.045, 0.278], [-2.913, 1.461, 0.819, 0.202, 0.085, 1.03], [2.826, -0.221, 0.951, 0.339, 0.752, 1.266]]\nD: [[-3.135, -0.575, -0.082, 0.411, 0.399, 1.112], [1.76, 1.636, 0.661, -0.118, 0.316, 0.196], [2.067, 0.976, 0.67, 0.22, 0.315, 1.158], [1.439, -0.283, 0.584, 0.087, 0.218, 0.206], [2.848, -1.357, 1.295, 0.653, 0.266, 0.059], [2.99, -1.86, 1.333, 0.578, 0.108, 0.112], [2.118, -1.567, 1.178, 0.323, 0.289, 0.96], [-3.43, 1.005, 1.071, 0.331, 0.71, 0.959], [-3.114, 1.972, 0.571, 0.075, 0.864, 0.441], [2.987, 0.022, 0.923, 0.173, 0.274, 0.482]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.456, -1.689, 0.986, 1.238, 0.639, 1.143], [-1.189, -1.791, 0.864, 0.611, 1.379, 1.148]]\nB: [[1.709, -1.624, 1.232, 0.531, 0.409, 1.263], [-0.537, -2.035, 0.965, 0.162, 1.273, 1.399]]\nC: [[1.92, -1.614, 0.415, 0.301, 0.956, 1.133], [-0.648, -1.783, 0.191, 0.47, 1.3, 1.09]]\nD: [[1.863, -1.557, 0.74, 0.792, 0.462, 1.459], [-0.873, -1.717, 0.611, 0.169, 1.157, 1.341]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_80_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_80_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the door in the scene. The camera pose information includes: the rotation matrix: [[0.348231, 0.123124, -0.929288], [0.936413, -1.6e-05, 0.350899], [0.043189, -0.992391, -0.1153]]; the translation vector: [2.712005, 2.075202, 1.464169], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.456, -1.689, 0.986, 1.238, 0.639, 1.143], [-1.189, -1.791, 0.864, 0.611, 1.379, 1.148]]\nB: [[1.709, -1.624, 1.232, 0.531, 0.409, 1.263], [-0.537, -2.035, 0.965, 0.162, 1.273, 1.399]]\nC: [[1.92, -1.614, 0.415, 0.301, 0.956, 1.133], [-0.648, -1.783, 0.191, 0.47, 1.3, 1.09]]\nD: [[1.863, -1.557, 0.74, 0.792, 0.462, 1.459], [-0.873, -1.717, 0.611, 0.169, 1.157, 1.341]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.91, 0.435, 1.317, 0.162, -0.028, 0.372], [-1.612, 0.781, 1.119, -0.027, 0.477, 0.779], [-0.879, 0.442, 1.028, 0.015, 0.023, 0.191], [-1.689, 1.721, 1.33, 0.202, 0.203, 0.899]]\nB: [[-1.22, 0.565, 1.527, 0.13, 0.316, 0.334], [-1.214, 0.573, 1.041, 0.138, 0.311, 0.395], [-1.241, 0.926, 1.496, 0.134, 0.334, 0.376], [-1.254, 1.276, 1.499, 0.14, 0.375, 0.407]]\nC: [[-0.897, 0.321, 1.25, -0.192, -0.085, 0.628], [-1.027, 0.54, 0.746, 0.155, 0.593, 0.872], [-1.661, 1.141, 1.852, 0.038, 0.687, 0.36], [-1.716, 1.739, 1.744, 0.171, 0.366, 0.735]]\nD: [[-0.881, 0.818, 1.879, -0.183, 0.463, 0.205], [-0.767, 0.607, 0.616, 0.203, 0.246, 0.191], [-0.822, 0.77, 1.534, -0.248, 0.163, 0.71], [-1.508, 0.961, 1.625, -0.148, 0.39, 0.839]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_81_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_81_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the rack in the scene. The camera pose information includes: the rotation matrix: [[-0.937403, 0.174354, -0.301457], [0.34768, 0.517889, -0.781607], [0.019845, -0.837491, -0.54609]]; the translation vector: [1.513881, 1.499843, 1.388066], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.91, 0.435, 1.317, 0.162, -0.028, 0.372], [-1.612, 0.781, 1.119, -0.027, 0.477, 0.779], [-0.879, 0.442, 1.028, 0.015, 0.023, 0.191], [-1.689, 1.721, 1.33, 0.202, 0.203, 0.899]]\nB: [[-1.22, 0.565, 1.527, 0.13, 0.316, 0.334], [-1.214, 0.573, 1.041, 0.138, 0.311, 0.395], [-1.241, 0.926, 1.496, 0.134, 0.334, 0.376], [-1.254, 1.276, 1.499, 0.14, 0.375, 0.407]]\nC: [[-0.897, 0.321, 1.25, -0.192, -0.085, 0.628], [-1.027, 0.54, 0.746, 0.155, 0.593, 0.872], [-1.661, 1.141, 1.852, 0.038, 0.687, 0.36], [-1.716, 1.739, 1.744, 0.171, 0.366, 0.735]]\nD: [[-0.881, 0.818, 1.879, -0.183, 0.463, 0.205], [-0.767, 0.607, 0.616, 0.203, 0.246, 0.191], [-0.822, 0.77, 1.534, -0.248, 0.163, 0.71], [-1.508, 0.961, 1.625, -0.148, 0.39, 0.839]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.79, -0.98, 1.163, 0.352, 0.978, 2.049]]\nB: [[1.303, -0.943, 0.81, 0.085, 1.431, 2.157]]\nC: [[0.918, -1.038, 0.78, -0.022, 1.276, 1.887]]\nD: [[1.132, -1.26, 0.803, 0.268, 1.192, 2.17]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_82_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_82_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the door in the scene. The camera pose information includes: the rotation matrix: [[-0.15851, 0.420096, -0.893529], [0.981106, -0.034663, -0.190342], [-0.110934, -0.906817, -0.406664]]; the translation vector: [4.004256, 0.910349, 2.578562], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.79, -0.98, 1.163, 0.352, 0.978, 2.049]]\nB: [[1.303, -0.943, 0.81, 0.085, 1.431, 2.157]]\nC: [[0.918, -1.038, 0.78, -0.022, 1.276, 1.887]]\nD: [[1.132, -1.26, 0.803, 0.268, 1.192, 2.17]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-2.027, 0.959, 0.116, 0.065, 0.01, 0.668], [-1.502, 1.757, 0.887, 0.168, -0.298, 0.404], [-1.464, 1.693, 1.349, 0.508, -0.033, 0.751], [-1.515, 1.819, 1.174, 0.619, -0.056, 0.931], [-1.32, 1.579, 1.138, 0.221, -0.036, 0.586]]\nB: [[-1.555, 1.321, -0.005, -0.086, -0.066, 0.68], [-1.503, 1.647, 1.497, 0.094, 0.629, 0.772], [-1.545, 2.057, 0.682, 0.091, -0.365, -0.177], [-1.817, 2.125, 0.639, 0.421, 0.176, 0.148], [-2.148, 2.167, 0.268, 0.654, -0.085, 0.81]]\nC: [[-1.921, 0.926, 0.476, 0.205, 0.401, 1.004], [-1.317, 1.461, 1.183, 0.482, -0.087, -0.114], [-0.981, 1.858, 0.937, -0.085, -0.01, 0.117], [-1.804, 1.654, 1.126, 0.091, 0.345, 0.125], [-2.134, 1.498, 0.297, 0.016, 0.463, 0.232]]\nD: [[-2.011, 1.284, 0.385, 0.186, 0.39, 0.566], [-1.266, 1.943, 1.101, 0.313, 0.196, 0.371], [-1.224, 1.994, 0.869, 0.351, 0.116, 0.277], [-1.583, 1.923, 1.035, 0.381, 0.288, 0.498], [-1.707, 1.925, 0.764, 0.426, 0.259, 0.583]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_83_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_83_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the bag in the scene. The camera pose information includes: the rotation matrix: [[0.82141, -0.124481, 0.556588], [-0.562763, -0.33543, 0.755503], [0.092651, -0.933805, -0.345579]]; the translation vector: [1.795382, 2.457259, 1.379582], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-2.027, 0.959, 0.116, 0.065, 0.01, 0.668], [-1.502, 1.757, 0.887, 0.168, -0.298, 0.404], [-1.464, 1.693, 1.349, 0.508, -0.033, 0.751], [-1.515, 1.819, 1.174, 0.619, -0.056, 0.931], [-1.32, 1.579, 1.138, 0.221, -0.036, 0.586]]\nB: [[-1.555, 1.321, -0.005, -0.086, -0.066, 0.68], [-1.503, 1.647, 1.497, 0.094, 0.629, 0.772], [-1.545, 2.057, 0.682, 0.091, -0.365, -0.177], [-1.817, 2.125, 0.639, 0.421, 0.176, 0.148], [-2.148, 2.167, 0.268, 0.654, -0.085, 0.81]]\nC: [[-1.921, 0.926, 0.476, 0.205, 0.401, 1.004], [-1.317, 1.461, 1.183, 0.482, -0.087, -0.114], [-0.981, 1.858, 0.937, -0.085, -0.01, 0.117], [-1.804, 1.654, 1.126, 0.091, 0.345, 0.125], [-2.134, 1.498, 0.297, 0.016, 0.463, 0.232]]\nD: [[-2.011, 1.284, 0.385, 0.186, 0.39, 0.566], [-1.266, 1.943, 1.101, 0.313, 0.196, 0.371], [-1.224, 1.994, 0.869, 0.351, 0.116, 0.277], [-1.583, 1.923, 1.035, 0.381, 0.288, 0.498], [-1.707, 1.925, 0.764, 0.426, 0.259, 0.583]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-2.036, 1.866, 1.489, 0.307, 0.157, 2.451], [-1.162, -0.721, 0.524, 0.061, 0.505, 0.591], [-1.692, -0.087, 1.909, 0.08, 0.301, 0.1], [-1.275, -0.78, -0.299, 0.662, 0.631, -0.319]]\nB: [[-1.306, 1.944, 1.27, 0.242, 0.415, 1.919], [-1.846, -0.095, 0.652, 0.668, -0.011, -0.065], [-1.708, -0.182, 1.324, -0.259, 0.382, 0.757], [-0.989, -0.521, 0.267, 0.114, 0.569, -0.144]]\nC: [[-1.606, 1.5, 1.094, 0.082, 0.444, 2.163], [-1.349, -0.456, 0.266, 0.226, 0.434, 0.139], [-1.295, -0.266, 1.634, 0.118, 0.05, 0.32], [-1.418, -0.408, 0.197, 0.3, 0.329, 0.161]]\nD: [[-1.696, 1.738, 0.967, 0.285, -0.051, 2.413], [-0.922, -0.569, 0.642, 0.33, 0.259, -0.242], [-0.853, -0.408, 2.052, 0.046, 0.488, 0.615], [-1.165, -0.273, 0.19, 0.107, 0.57, 0.605]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_84_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_84_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the book in the scene. The camera pose information includes: the rotation matrix: [[0.954506, 0.05554, -0.292973], [0.288831, -0.41644, 0.862064], [-0.074127, -0.907465, -0.413536]]; the translation vector: [2.66447, 1.005586, 1.476015], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-2.036, 1.866, 1.489, 0.307, 0.157, 2.451], [-1.162, -0.721, 0.524, 0.061, 0.505, 0.591], [-1.692, -0.087, 1.909, 0.08, 0.301, 0.1], [-1.275, -0.78, -0.299, 0.662, 0.631, -0.319]]\nB: [[-1.306, 1.944, 1.27, 0.242, 0.415, 1.919], [-1.846, -0.095, 0.652, 0.668, -0.011, -0.065], [-1.708, -0.182, 1.324, -0.259, 0.382, 0.757], [-0.989, -0.521, 0.267, 0.114, 0.569, -0.144]]\nC: [[-1.606, 1.5, 1.094, 0.082, 0.444, 2.163], [-1.349, -0.456, 0.266, 0.226, 0.434, 0.139], [-1.295, -0.266, 1.634, 0.118, 0.05, 0.32], [-1.418, -0.408, 0.197, 0.3, 0.329, 0.161]]\nD: [[-1.696, 1.738, 0.967, 0.285, -0.051, 2.413], [-0.922, -0.569, 0.642, 0.33, 0.259, -0.242], [-0.853, -0.408, 2.052, 0.046, 0.488, 0.615], [-1.165, -0.273, 0.19, 0.107, 0.57, 0.605]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.105, -2.287, 1.298, 5.216, 0.87, 2.807], [1.522, -1.359, 1.295, 0.692, 3.211, 2.519], [-1.482, 0.95, 0.954, -0.118, 3.651, 2.351], [2.186, 1.699, 1.104, -0.162, 3.237, 1.812], [-2.278, -2.05, 0.889, 0.84, 1.577, 2.045], [1.673, 0.416, 0.493, 2.003, 0.505, 2.036], [0.961, 0.497, 0.688, -0.227, 0.745, 1.241], [-2.744, -1.281, 0.568, 1.033, 0.219, 1.748], [-1.203, 3.13, 0.749, 0.354, 1.039, 2.281], [0.453, 3.938, 1.358, 3.143, -0.207, 1.101], [1.577, -0.17, 0.647, 1.504, 0.197, 0.91], [0.55, 0.958, 0.74, -0.022, 0.508, 1.915], [-0.28, -2.346, 2.125, 4.551, 0.291, 0.411], [-2.245, 3.374, 2.167, 0.315, 0.57, 1.021], [-1.883, 4.031, 0.791, 0.575, 0.114, 1.338]]\nB: [[-0.045, -2.933, 0.729, 5.273, 0.38, 1.87], [1.815, -0.872, 1.2, 0.381, 3.199, 2.451], [-1.835, 0.525, 0.883, 0.663, 4.217, 2.299], [1.852, 1.563, 0.117, 0.236, 3.143, 0.945], [-2.89, -2.063, 0.836, 0.206, 1.672, 2.238], [1.326, 0.326, 0.98, 1.535, 0.601, 1.665], [0.245, 0.603, 0.825, -0.004, 1.064, 1.817], [-1.862, -0.49, 1.467, 1.026, 0.012, 1.363], [-1.379, 3.112, 1.213, 0.486, 0.543, 1.682], [0.858, 3.952, 1.318, 3.11, 0.53, 1.733], [1.684, 0.251, 1.226, 1.531, 0.586, 0.576], [0.354, 1.015, 0.82, 0.415, 0.222, 1.857], [-0.273, -2.214, 2.258, 4.248, 0.77, 0.29], [-2.467, 2.65, 1.797, 0.149, 0.618, 1.025], [-2.164, 4.048, 1.03, 0.675, 0.141, 1.166]]\nC: [[-0.372, -2.705, 1.171, 4.784, 0.513, 2.321], [1.95, -1.245, 1.075, 0.31, 2.969, 2.221], [-1.736, 0.974, 1.065, 0.251, 4.086, 2.141], [2.079, 1.895, 0.614, 0.176, 3.361, 1.364], [-2.712, -1.857, 1.256, 0.344, 1.764, 2.405], [1.315, 0.187, 0.814, 1.511, 0.109, 1.639], [0.561, 0.619, 0.751, 0.075, 0.858, 1.522], [-2.331, -0.947, 0.996, 1.029, 0.105, 1.863], [-0.884, 3.244, 0.946, 0.263, 0.884, 1.941], [0.617, 3.626, 1.612, 2.853, 0.244, 1.318], [1.37, 0.273, 0.995, 1.377, 0.117, 0.425], [0.697, 0.781, 1.082, 0.286, 0.193, 2.222], [-0.516, -2.505, 2.299, 4.488, 0.335, 0.203], [-2.543, 2.889, 1.67, 0.173, 0.883, 0.685], [-1.977, 3.626, 1.246, 0.551, 0.106, 1.503]]\nD: [[0.035, -2.86, 0.861, 4.728, 0.233, 1.918], [1.546, -1.395, 0.841, 0.548, 3.249, 1.737], [-1.897, 0.52, 1.01, -0.225, 4.45, 2.412], [1.773, 2.047, 0.256, 0.066, 3.328, 1.231], [-3.131, -2.108, 0.842, 0.6, 1.535, 2.741], [1.218, -0.29, 0.461, 1.245, -0.153, 2.098], [0.922, 0.65, 1.084, -0.181, 0.59, 1.506], [-2.276, -0.909, 0.599, 1.207, -0.285, 1.54], [-0.665, 3.431, 1.123, 0.223, 0.621, 1.641], [0.797, 3.806, 2.013, 2.472, 0.677, 1.495], [1.111, 0.293, 1.457, 1.431, 0.551, 0.85], [0.877, 1.185, 1.451, 0.625, -0.09, 2.43], [-0.138, -2.632, 2.484, 4.711, -0.137, 0.648], [-3.024, 2.792, 1.538, -0.201, 1.018, 0.323], [-2.319, 3.937, 1.522, 0.199, 0.289, 1.095]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_85_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_85_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[0.99336, -0.011945, -0.114427], [0.103059, -0.349694, 0.931178], [-0.051137, -0.936788, -0.346141]]; the translation vector: [2.948285, 4.432959, 1.460427], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.105, -2.287, 1.298, 5.216, 0.87, 2.807], [1.522, -1.359, 1.295, 0.692, 3.211, 2.519], [-1.482, 0.95, 0.954, -0.118, 3.651, 2.351], [2.186, 1.699, 1.104, -0.162, 3.237, 1.812], [-2.278, -2.05, 0.889, 0.84, 1.577, 2.045], [1.673, 0.416, 0.493, 2.003, 0.505, 2.036], [0.961, 0.497, 0.688, -0.227, 0.745, 1.241], [-2.744, -1.281, 0.568, 1.033, 0.219, 1.748], [-1.203, 3.13, 0.749, 0.354, 1.039, 2.281], [0.453, 3.938, 1.358, 3.143, -0.207, 1.101], [1.577, -0.17, 0.647, 1.504, 0.197, 0.91], [0.55, 0.958, 0.74, -0.022, 0.508, 1.915], [-0.28, -2.346, 2.125, 4.551, 0.291, 0.411], [-2.245, 3.374, 2.167, 0.315, 0.57, 1.021], [-1.883, 4.031, 0.791, 0.575, 0.114, 1.338]]\nB: [[-0.045, -2.933, 0.729, 5.273, 0.38, 1.87], [1.815, -0.872, 1.2, 0.381, 3.199, 2.451], [-1.835, 0.525, 0.883, 0.663, 4.217, 2.299], [1.852, 1.563, 0.117, 0.236, 3.143, 0.945], [-2.89, -2.063, 0.836, 0.206, 1.672, 2.238], [1.326, 0.326, 0.98, 1.535, 0.601, 1.665], [0.245, 0.603, 0.825, -0.004, 1.064, 1.817], [-1.862, -0.49, 1.467, 1.026, 0.012, 1.363], [-1.379, 3.112, 1.213, 0.486, 0.543, 1.682], [0.858, 3.952, 1.318, 3.11, 0.53, 1.733], [1.684, 0.251, 1.226, 1.531, 0.586, 0.576], [0.354, 1.015, 0.82, 0.415, 0.222, 1.857], [-0.273, -2.214, 2.258, 4.248, 0.77, 0.29], [-2.467, 2.65, 1.797, 0.149, 0.618, 1.025], [-2.164, 4.048, 1.03, 0.675, 0.141, 1.166]]\nC: [[-0.372, -2.705, 1.171, 4.784, 0.513, 2.321], [1.95, -1.245, 1.075, 0.31, 2.969, 2.221], [-1.736, 0.974, 1.065, 0.251, 4.086, 2.141], [2.079, 1.895, 0.614, 0.176, 3.361, 1.364], [-2.712, -1.857, 1.256, 0.344, 1.764, 2.405], [1.315, 0.187, 0.814, 1.511, 0.109, 1.639], [0.561, 0.619, 0.751, 0.075, 0.858, 1.522], [-2.331, -0.947, 0.996, 1.029, 0.105, 1.863], [-0.884, 3.244, 0.946, 0.263, 0.884, 1.941], [0.617, 3.626, 1.612, 2.853, 0.244, 1.318], [1.37, 0.273, 0.995, 1.377, 0.117, 0.425], [0.697, 0.781, 1.082, 0.286, 0.193, 2.222], [-0.516, -2.505, 2.299, 4.488, 0.335, 0.203], [-2.543, 2.889, 1.67, 0.173, 0.883, 0.685], [-1.977, 3.626, 1.246, 0.551, 0.106, 1.503]]\nD: [[0.035, -2.86, 0.861, 4.728, 0.233, 1.918], [1.546, -1.395, 0.841, 0.548, 3.249, 1.737], [-1.897, 0.52, 1.01, -0.225, 4.45, 2.412], [1.773, 2.047, 0.256, 0.066, 3.328, 1.231], [-3.131, -2.108, 0.842, 0.6, 1.535, 2.741], [1.218, -0.29, 0.461, 1.245, -0.153, 2.098], [0.922, 0.65, 1.084, -0.181, 0.59, 1.506], [-2.276, -0.909, 0.599, 1.207, -0.285, 1.54], [-0.665, 3.431, 1.123, 0.223, 0.621, 1.641], [0.797, 3.806, 2.013, 2.472, 0.677, 1.495], [1.111, 0.293, 1.457, 1.431, 0.551, 0.85], [0.877, 1.185, 1.451, 0.625, -0.09, 2.43], [-0.138, -2.632, 2.484, 4.711, -0.137, 0.648], [-3.024, 2.792, 1.538, -0.201, 1.018, 0.323], [-2.319, 3.937, 1.522, 0.199, 0.289, 1.095]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-2.057, -0.804, 1.454, 0.442, 9.194, 2.993], [-0.24, 3.939, 1.662, 3.88, 0.819, 2.915], [1.686, 1.778, 1.614, 0.375, 4.14, 2.879], [1.518, -0.292, 1.39, 0.502, 0.183, 1.29], [1.407, -0.606, 1.045, 0.392, 0.791, 2.018], [1.569, -2.479, 1.01, 0.478, 3.37, 1.883]]\nB: [[-1.712, -0.852, 0.991, 0.707, 9.653, 3.103], [0.145, 4.4, 1.88, 4.062, 1.231, 2.667], [1.473, 2.151, 1.876, 0.37, 4.413, 3.184], [1.75, -0.649, 1.384, 0.602, -0.213, 1.435], [1.139, -0.573, 1.304, 0.885, 0.718, 2.242], [1.077, -2.453, 0.735, 0.583, 3.786, 1.438]]\nC: [[-1.586, -0.802, 1.264, 0.785, 8.752, 2.813], [-0.226, 4.305, 1.323, 3.698, 1.086, 3.015], [1.969, 1.342, 1.623, -0.075, 3.888, 3.299], [1.213, -0.465, 1.751, 0.015, 0.594, 1.001], [0.993, -0.822, 1.254, 0.504, 1.181, 1.943], [1.069, -2.03, 1.336, 0.651, 3.224, 1.602]]\nD: [[-2.191, -0.396, 1.663, 0.009, 8.751, 3.114], [0.038, 3.888, 1.488, 4.056, 0.477, 3.26], [2.082, 1.991, 1.998, -0.123, 3.891, 2.467], [1.903, -0.079, 0.895, 0.439, 0.291, 0.791], [1.022, -0.776, 0.73, 0.121, 0.449, 1.843], [1.7, -2.034, 1.291, 0.089, 3.481, 2.087]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_86_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_86_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[-0.908726, 0.150598, -0.389277], [0.406624, 0.108936, -0.907078], [-0.094198, -0.982575, -0.16023]]; the translation vector: [8.822721, 3.830595, 1.476402], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-2.057, -0.804, 1.454, 0.442, 9.194, 2.993], [-0.24, 3.939, 1.662, 3.88, 0.819, 2.915], [1.686, 1.778, 1.614, 0.375, 4.14, 2.879], [1.518, -0.292, 1.39, 0.502, 0.183, 1.29], [1.407, -0.606, 1.045, 0.392, 0.791, 2.018], [1.569, -2.479, 1.01, 0.478, 3.37, 1.883]]\nB: [[-1.712, -0.852, 0.991, 0.707, 9.653, 3.103], [0.145, 4.4, 1.88, 4.062, 1.231, 2.667], [1.473, 2.151, 1.876, 0.37, 4.413, 3.184], [1.75, -0.649, 1.384, 0.602, -0.213, 1.435], [1.139, -0.573, 1.304, 0.885, 0.718, 2.242], [1.077, -2.453, 0.735, 0.583, 3.786, 1.438]]\nC: [[-1.586, -0.802, 1.264, 0.785, 8.752, 2.813], [-0.226, 4.305, 1.323, 3.698, 1.086, 3.015], [1.969, 1.342, 1.623, -0.075, 3.888, 3.299], [1.213, -0.465, 1.751, 0.015, 0.594, 1.001], [0.993, -0.822, 1.254, 0.504, 1.181, 1.943], [1.069, -2.03, 1.336, 0.651, 3.224, 1.602]]\nD: [[-2.191, -0.396, 1.663, 0.009, 8.751, 3.114], [0.038, 3.888, 1.488, 4.056, 0.477, 3.26], [2.082, 1.991, 1.998, -0.123, 3.891, 2.467], [1.903, -0.079, 0.895, 0.439, 0.291, 0.791], [1.022, -0.776, 0.73, 0.121, 0.449, 1.843], [1.7, -2.034, 1.291, 0.089, 3.481, 2.087]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.406, -0.499, 0.127, 1.547, 0.014, 1.403], [1.954, 0.044, 0.911, 0.502, 4.499, 1.21], [0.82, -1.82, 0.463, 3.057, 0.123, 1.62], [-1.403, -1.396, 1.129, 0.78, 1.058, 1.608], [-1.077, 2.261, 0.337, 0.558, -0.028, 0.985]]\nB: [[-1.494, -0.876, 0.44, 1.936, 0.339, 1.286], [1.687, 0.61, 0.241, 0.363, 4.812, 0.869], [0.73, -1.681, 0.677, 2.541, -0.283, 1.252], [-1.274, -1.409, 0.377, 0.698, 1.296, 0.85], [-1.137, 2.544, 0.383, 0.033, 0.761, 1.018]]\nC: [[-2.268, -0.745, 0.912, 1.628, 0.264, 0.904], [1.958, 0.486, 0.503, -0.211, 4.549, 1.566], [-0.072, -2.097, 0.667, 2.893, 0.559, 1.549], [-0.724, -1.085, 0.723, 0.553, 1.77, 1.227], [-0.926, 2.697, 1.076, 0.821, 0.34, 1.204]]\nD: [[-1.791, -0.394, 0.511, 1.684, 0.11, 0.995], [1.786, 0.422, 0.664, 0.168, 4.577, 1.321], [0.388, -1.877, 0.715, 2.729, 0.147, 1.176], [-1.044, -1.126, 0.648, 0.431, 1.546, 1.277], [-1.081, 2.203, 0.66, 0.386, 0.403, 0.882]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_87_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_87_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[-0.997112, 0.02462, 0.071841], [-0.04661, 0.548461, -0.834876], [-0.059957, -0.835814, -0.545729]]; the translation vector: [4.834615, 3.436689, 1.398379], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.406, -0.499, 0.127, 1.547, 0.014, 1.403], [1.954, 0.044, 0.911, 0.502, 4.499, 1.21], [0.82, -1.82, 0.463, 3.057, 0.123, 1.62], [-1.403, -1.396, 1.129, 0.78, 1.058, 1.608], [-1.077, 2.261, 0.337, 0.558, -0.028, 0.985]]\nB: [[-1.494, -0.876, 0.44, 1.936, 0.339, 1.286], [1.687, 0.61, 0.241, 0.363, 4.812, 0.869], [0.73, -1.681, 0.677, 2.541, -0.283, 1.252], [-1.274, -1.409, 0.377, 0.698, 1.296, 0.85], [-1.137, 2.544, 0.383, 0.033, 0.761, 1.018]]\nC: [[-2.268, -0.745, 0.912, 1.628, 0.264, 0.904], [1.958, 0.486, 0.503, -0.211, 4.549, 1.566], [-0.072, -2.097, 0.667, 2.893, 0.559, 1.549], [-0.724, -1.085, 0.723, 0.553, 1.77, 1.227], [-0.926, 2.697, 1.076, 0.821, 0.34, 1.204]]\nD: [[-1.791, -0.394, 0.511, 1.684, 0.11, 0.995], [1.786, 0.422, 0.664, 0.168, 4.577, 1.321], [0.388, -1.877, 0.715, 2.729, 0.147, 1.176], [-1.044, -1.126, 0.648, 0.431, 1.546, 1.277], [-1.081, 2.203, 0.66, 0.386, 0.403, 0.882]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.113, 0.087, 0.564, 0.343, 0.527, 0.305], [0.507, 0.467, 0.458, 0.596, 0.504, 0.317], [0.58, 0.988, 0.644, 0.601, 0.651, 0.477], [0.182, 1.04, 0.677, 0.777, 0.505, 0.512], [1.732, 0.733, 0.527, 0.634, 0.573, 0.263], [1.609, 1.049, 0.659, 0.686, 0.387, 0.426]]\nB: [[0.129, 0.521, 0.187, 0.313, 0.856, 0.592], [0.981, 0.918, 0.313, 0.429, 0.812, 0.551], [0.233, 0.816, 0.228, 0.26, 0.574, 0.165], [-0.257, 0.76, 1.031, 0.337, 0.304, 1.005], [1.703, 1.1, 0.991, 1.058, 0.84, 0.596], [1.167, 0.943, 0.538, 0.487, 0.187, 0.143]]\nC: [[0.577, 0.356, 0.8, 0.107, 0.25, -0.032], [0.156, 0.937, 0.399, 0.676, 0.726, 0.633], [0.215, 0.658, 0.629, 0.763, 0.937, 0.472], [0.377, 0.594, 0.698, 1.038, 0.047, 0.378], [1.421, 1.109, 0.213, 0.954, 0.857, -0.124], [1.144, 1.512, 0.746, 0.326, 0.254, -0.001]]\nD: [[-0.375, 0.568, 0.757, 0.525, 0.71, 0.684], [0.596, 0.141, 0.679, 0.896, 0.714, 0.623], [0.506, 1.007, 0.844, 0.63, 0.899, 0.696], [-0.281, 1.187, 1.15, 1.186, 0.539, 1.005], [1.823, 0.702, 0.5, 0.724, 0.202, 0.553], [1.882, 1.516, 0.881, 1.085, 0.712, 0.444]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_88_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_88_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the pillow in the scene. The camera pose information includes: the rotation matrix: [[-0.971613, -0.06682, 0.226943], [-0.235147, 0.378036, -0.89543], [-0.02596, -0.923376, -0.383017]]; the translation vector: [2.775299, 4.618156, 1.427592], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.113, 0.087, 0.564, 0.343, 0.527, 0.305], [0.507, 0.467, 0.458, 0.596, 0.504, 0.317], [0.58, 0.988, 0.644, 0.601, 0.651, 0.477], [0.182, 1.04, 0.677, 0.777, 0.505, 0.512], [1.732, 0.733, 0.527, 0.634, 0.573, 0.263], [1.609, 1.049, 0.659, 0.686, 0.387, 0.426]]\nB: [[0.129, 0.521, 0.187, 0.313, 0.856, 0.592], [0.981, 0.918, 0.313, 0.429, 0.812, 0.551], [0.233, 0.816, 0.228, 0.26, 0.574, 0.165], [-0.257, 0.76, 1.031, 0.337, 0.304, 1.005], [1.703, 1.1, 0.991, 1.058, 0.84, 0.596], [1.167, 0.943, 0.538, 0.487, 0.187, 0.143]]\nC: [[0.577, 0.356, 0.8, 0.107, 0.25, -0.032], [0.156, 0.937, 0.399, 0.676, 0.726, 0.633], [0.215, 0.658, 0.629, 0.763, 0.937, 0.472], [0.377, 0.594, 0.698, 1.038, 0.047, 0.378], [1.421, 1.109, 0.213, 0.954, 0.857, -0.124], [1.144, 1.512, 0.746, 0.326, 0.254, -0.001]]\nD: [[-0.375, 0.568, 0.757, 0.525, 0.71, 0.684], [0.596, 0.141, 0.679, 0.896, 0.714, 0.623], [0.506, 1.007, 0.844, 0.63, 0.899, 0.696], [-0.281, 1.187, 1.15, 1.186, 0.539, 1.005], [1.823, 0.702, 0.5, 0.724, 0.202, 0.553], [1.882, 1.516, 0.881, 1.085, 0.712, 0.444]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.081, -2.379, 1.113, 0.296, 0.447, 1.93], [-2.179, -2.328, 1.113, 1.155, -0.055, 2.191], [0.187, -2.593, 1.0, 1.525, -0.011, 1.61]]\nB: [[0.156, -1.688, 0.672, 1.099, 0.512, 1.787], [-1.601, -2.386, 1.059, 0.494, 0.257, 2.331], [1.089, -2.9, 1.408, 0.896, 0.19, 1.392]]\nC: [[-0.153, -1.917, 0.934, 0.637, 0.572, 1.999], [-2.071, -2.511, 0.942, 0.893, 0.199, 2.089], [0.673, -2.564, 1.392, 1.046, 0.131, 1.552]]\nD: [[0.141, -1.904, 0.579, 0.681, 0.731, 2.01], [-1.907, -2.369, 0.924, 0.512, 0.574, 2.053], [0.733, -2.632, 1.326, 0.995, 0.386, 1.64]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_89_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_89_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the door in the scene. The camera pose information includes: the rotation matrix: [[-0.086843, 0.425015, -0.901011], [0.995696, 0.066429, -0.064634], [0.032383, -0.902745, -0.428955]]; the translation vector: [4.261571, 5.85756, 1.66629], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.081, -2.379, 1.113, 0.296, 0.447, 1.93], [-2.179, -2.328, 1.113, 1.155, -0.055, 2.191], [0.187, -2.593, 1.0, 1.525, -0.011, 1.61]]\nB: [[0.156, -1.688, 0.672, 1.099, 0.512, 1.787], [-1.601, -2.386, 1.059, 0.494, 0.257, 2.331], [1.089, -2.9, 1.408, 0.896, 0.19, 1.392]]\nC: [[-0.153, -1.917, 0.934, 0.637, 0.572, 1.999], [-2.071, -2.511, 0.942, 0.893, 0.199, 2.089], [0.673, -2.564, 1.392, 1.046, 0.131, 1.552]]\nD: [[0.141, -1.904, 0.579, 0.681, 0.731, 2.01], [-1.907, -2.369, 0.924, 0.512, 0.574, 2.053], [0.733, -2.632, 1.326, 0.995, 0.386, 1.64]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.066, -4.092, 0.322, 1.809, 0.144, 0.711], [-0.452, -3.998, 0.399, -0.022, -0.207, 0.313]]\nB: [[0.967, -4.137, 0.415, 1.862, 0.896, 0.809], [-0.541, -3.922, 0.752, 0.892, 0.695, 1.151]]\nC: [[0.859, -4.189, 1.178, 1.424, -0.037, 1.276], [-0.399, -4.209, 0.397, 0.399, 0.232, 1.02]]\nD: [[0.733, -4.146, 0.771, 1.808, 0.42, 0.818], [-0.752, -4.266, 0.836, 0.396, 0.285, 0.778]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_90_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_90_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the window in the scene. The camera pose information includes: the rotation matrix: [[0.504428, 0.479717, -0.717931], [0.860003, -0.204862, 0.467362], [0.077124, -0.853173, -0.515896]]; the translation vector: [4.973708, 0.412451, 1.573636], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.066, -4.092, 0.322, 1.809, 0.144, 0.711], [-0.452, -3.998, 0.399, -0.022, -0.207, 0.313]]\nB: [[0.967, -4.137, 0.415, 1.862, 0.896, 0.809], [-0.541, -3.922, 0.752, 0.892, 0.695, 1.151]]\nC: [[0.859, -4.189, 1.178, 1.424, -0.037, 1.276], [-0.399, -4.209, 0.397, 0.399, 0.232, 1.02]]\nD: [[0.733, -4.146, 0.771, 1.808, 0.42, 0.818], [-0.752, -4.266, 0.836, 0.396, 0.285, 0.778]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-2.356, -1.033, 0.487, 1.053, 0.829, 1.337]]\nB: [[-1.861, -0.729, 0.172, 1.066, 1.25, 1.068]]\nC: [[-2.075, -0.604, 0.467, 1.418, 0.63, 1.288]]\nD: [[-2.244, -1.03, 0.539, 1.266, 0.775, 0.934]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_91_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_91_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the cabinet in the scene. The camera pose information includes: the rotation matrix: [[-0.132001, -0.567775, 0.812532], [-0.991224, 0.069667, -0.112349], [0.007182, -0.820231, -0.571988]]; the translation vector: [2.407685, 4.450429, 1.359714], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-2.356, -1.033, 0.487, 1.053, 0.829, 1.337]]\nB: [[-1.861, -0.729, 0.172, 1.066, 1.25, 1.068]]\nC: [[-2.075, -0.604, 0.467, 1.418, 0.63, 1.288]]\nD: [[-2.244, -1.03, 0.539, 1.266, 0.775, 0.934]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.569, 0.211, 0.319, 0.687, 0.401, 0.55], [-0.378, 2.451, 0.757, 1.108, 0.785, 1.152], [-0.442, -3.047, 0.599, 0.595, 0.53, 0.698], [-0.671, -2.103, 0.492, 0.589, 0.785, 1.436], [-0.536, -2.312, 0.381, 0.676, 0.927, 0.8], [0.694, -2.162, -0.024, 0.318, 0.238, 1.069], [0.8, -2.531, 0.157, 0.887, 0.472, 0.605], [-0.017, 0.764, 0.766, 0.464, 0.143, 1.084]]\nB: [[-0.14, -0.504, 0.958, 0.996, 0.333, 0.616], [-0.523, 2.406, 0.116, 1.014, 1.032, 0.584], [-1.041, -3.534, 0.221, 1.124, 0.509, 0.64], [-1.178, -1.955, 0.316, 0.454, 0.967, 0.762], [-0.074, -2.655, 0.057, 0.407, 0.341, 0.817], [0.498, -1.8, 0.525, 0.171, 1.003, 0.793], [0.349, -2.636, 0.785, 0.651, 0.822, 0.565], [-0.067, 1.46, 0.267, 0.865, 0.829, 0.524]]\nC: [[0.244, -0.138, 0.489, 0.688, 0.662, 1.02], [-0.663, 2.462, 0.398, 0.618, 0.647, 0.654], [-0.762, -3.211, 0.433, 0.631, 0.73, 0.899], [-0.866, -2.412, 0.459, 0.652, 0.663, 0.995], [-0.182, -2.73, 0.386, 0.664, 0.667, 0.841], [0.386, -2.023, 0.44, 0.586, 0.689, 0.943], [0.543, -2.581, 0.583, 0.445, 0.548, 0.641], [0.339, 1.261, 0.575, 0.571, 0.572, 0.783]]\nD: [[0.09, 0.046, 0.862, 0.335, 0.771, 1.401], [-0.263, 2.607, 0.862, 0.364, 1.092, 0.886], [-1.02, -3.334, 0.931, 1.001, 0.759, 0.875], [-0.888, -2.153, 0.017, 0.223, 0.261, 0.633], [-0.543, -2.555, 0.32, 1.086, 0.816, 0.575], [0.862, -2.2, 0.258, 0.465, 0.987, 0.866], [0.065, -2.865, 0.495, 0.697, 0.945, 0.331], [0.317, 1.592, 1.019, 0.326, 0.876, 0.791]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_92_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_92_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the office chair in the scene. The camera pose information includes: the rotation matrix: [[0.672393, -0.274439, 0.687438], [-0.739855, -0.221079, 0.635404], [-0.022402, -0.935846, -0.351697]]; the translation vector: [3.802358, 2.110255, 1.494557], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.569, 0.211, 0.319, 0.687, 0.401, 0.55], [-0.378, 2.451, 0.757, 1.108, 0.785, 1.152], [-0.442, -3.047, 0.599, 0.595, 0.53, 0.698], [-0.671, -2.103, 0.492, 0.589, 0.785, 1.436], [-0.536, -2.312, 0.381, 0.676, 0.927, 0.8], [0.694, -2.162, -0.024, 0.318, 0.238, 1.069], [0.8, -2.531, 0.157, 0.887, 0.472, 0.605], [-0.017, 0.764, 0.766, 0.464, 0.143, 1.084]]\nB: [[-0.14, -0.504, 0.958, 0.996, 0.333, 0.616], [-0.523, 2.406, 0.116, 1.014, 1.032, 0.584], [-1.041, -3.534, 0.221, 1.124, 0.509, 0.64], [-1.178, -1.955, 0.316, 0.454, 0.967, 0.762], [-0.074, -2.655, 0.057, 0.407, 0.341, 0.817], [0.498, -1.8, 0.525, 0.171, 1.003, 0.793], [0.349, -2.636, 0.785, 0.651, 0.822, 0.565], [-0.067, 1.46, 0.267, 0.865, 0.829, 0.524]]\nC: [[0.244, -0.138, 0.489, 0.688, 0.662, 1.02], [-0.663, 2.462, 0.398, 0.618, 0.647, 0.654], [-0.762, -3.211, 0.433, 0.631, 0.73, 0.899], [-0.866, -2.412, 0.459, 0.652, 0.663, 0.995], [-0.182, -2.73, 0.386, 0.664, 0.667, 0.841], [0.386, -2.023, 0.44, 0.586, 0.689, 0.943], [0.543, -2.581, 0.583, 0.445, 0.548, 0.641], [0.339, 1.261, 0.575, 0.571, 0.572, 0.783]]\nD: [[0.09, 0.046, 0.862, 0.335, 0.771, 1.401], [-0.263, 2.607, 0.862, 0.364, 1.092, 0.886], [-1.02, -3.334, 0.931, 1.001, 0.759, 0.875], [-0.888, -2.153, 0.017, 0.223, 0.261, 0.633], [-0.543, -2.555, 0.32, 1.086, 0.816, 0.575], [0.862, -2.2, 0.258, 0.465, 0.987, 0.866], [0.065, -2.865, 0.495, 0.697, 0.945, 0.331], [0.317, 1.592, 1.019, 0.326, 0.876, 0.791]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.126, -1.376, 0.347, 0.441, 1.044, 0.747]]\nB: [[-0.707, -1.056, 0.436, 0.481, 0.775, 0.862]]\nC: [[-1.072, -0.581, 0.729, 0.634, 0.411, 0.815]]\nD: [[-1.2, -0.714, 0.073, 0.598, 1.239, 1.356]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_93_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_93_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the toilet in the scene. The camera pose information includes: the rotation matrix: [[-0.943065, -0.17817, 0.280864], [-0.332105, 0.550897, -0.765649], [-0.018311, -0.815333, -0.578703]]; the translation vector: [2.74599, 1.673222, 1.294065], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.126, -1.376, 0.347, 0.441, 1.044, 0.747]]\nB: [[-0.707, -1.056, 0.436, 0.481, 0.775, 0.862]]\nC: [[-1.072, -0.581, 0.729, 0.634, 0.411, 0.815]]\nD: [[-1.2, -0.714, 0.073, 0.598, 1.239, 1.356]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.746, -0.676, 1.548, 0.354, 0.507, 0.554], [1.278, -0.21, 2.039, 0.253, 0.159, 0.277], [1.354, -0.174, 2.085, 0.187, 0.25, 0.284], [1.365, 0.302, 2.07, 0.178, 0.146, 0.195], [1.395, 1.775, 0.709, 0.116, 0.082, 0.239], [0.108, -1.232, 0.61, 0.37, 0.243, 0.232]]\nB: [[-2.116, -0.405, 1.974, 0.197, 0.992, 0.793], [1.595, -0.115, 1.898, 0.53, -0.095, 0.207], [1.74, -0.462, 1.811, 0.459, 0.366, 0.195], [1.756, -0.03, 2.139, 0.506, -0.218, -0.14], [1.496, 1.894, 0.22, -0.344, -0.274, 0.329], [0.12, -1.361, 0.247, 0.677, 0.431, 0.41]]\nC: [[-2.099, -0.677, 1.826, 0.111, 0.048, 0.88], [1.179, -0.084, 2.064, 0.353, -0.335, 0.047], [1.283, -0.017, 2.251, 0.548, 0.539, -0.139], [1.054, -0.131, 1.995, -0.052, 0.135, -0.266], [1.813, 1.809, 0.298, 0.268, -0.092, 0.575], [0.507, -1.135, 0.122, 0.102, 0.682, -0.107]]\nD: [[-2.013, -0.781, 2.031, 0.552, 0.053, 0.962], [1.49, 0.048, 1.694, 0.076, -0.303, 0.184], [1.646, 0.043, 2.403, 0.082, 0.014, 0.773], [1.068, 0.187, 2.309, 0.672, -0.201, 0.291], [1.861, 1.412, 0.913, 0.343, -0.022, 0.312], [-0.111, -1.095, 0.386, 0.723, 0.064, 0.108]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_94_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_94_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the object in the scene. The camera pose information includes: the rotation matrix: [[0.493838, -0.420518, 0.76111], [-0.864926, -0.147366, 0.479777], [-0.089593, -0.895236, -0.436493]]; the translation vector: [0.736944, 2.108944, 1.402726], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.746, -0.676, 1.548, 0.354, 0.507, 0.554], [1.278, -0.21, 2.039, 0.253, 0.159, 0.277], [1.354, -0.174, 2.085, 0.187, 0.25, 0.284], [1.365, 0.302, 2.07, 0.178, 0.146, 0.195], [1.395, 1.775, 0.709, 0.116, 0.082, 0.239], [0.108, -1.232, 0.61, 0.37, 0.243, 0.232]]\nB: [[-2.116, -0.405, 1.974, 0.197, 0.992, 0.793], [1.595, -0.115, 1.898, 0.53, -0.095, 0.207], [1.74, -0.462, 1.811, 0.459, 0.366, 0.195], [1.756, -0.03, 2.139, 0.506, -0.218, -0.14], [1.496, 1.894, 0.22, -0.344, -0.274, 0.329], [0.12, -1.361, 0.247, 0.677, 0.431, 0.41]]\nC: [[-2.099, -0.677, 1.826, 0.111, 0.048, 0.88], [1.179, -0.084, 2.064, 0.353, -0.335, 0.047], [1.283, -0.017, 2.251, 0.548, 0.539, -0.139], [1.054, -0.131, 1.995, -0.052, 0.135, -0.266], [1.813, 1.809, 0.298, 0.268, -0.092, 0.575], [0.507, -1.135, 0.122, 0.102, 0.682, -0.107]]\nD: [[-2.013, -0.781, 2.031, 0.552, 0.053, 0.962], [1.49, 0.048, 1.694, 0.076, -0.303, 0.184], [1.646, 0.043, 2.403, 0.082, 0.014, 0.773], [1.068, 0.187, 2.309, 0.672, -0.201, 0.291], [1.861, 1.412, 0.913, 0.343, -0.022, 0.312], [-0.111, -1.095, 0.386, 0.723, 0.064, 0.108]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.095, 0.369, 0.896, 1.864, 0.389, -0.037]]\nB: [[0.821, 1.024, 0.461, 1.589, 1.059, 0.417]]\nC: [[0.235, 0.419, 0.494, 1.232, 0.977, 0.5]]\nD: [[0.531, 0.805, 0.846, 1.569, 0.745, 0.229]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_95_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_95_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the counter in the scene. The camera pose information includes: the rotation matrix: [[0.882784, 0.25224, -0.396318], [0.469583, -0.498211, 0.728888], [-0.013595, -0.829554, -0.55826]]; the translation vector: [3.463734, 1.394934, 1.262723], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.095, 0.369, 0.896, 1.864, 0.389, -0.037]]\nB: [[0.821, 1.024, 0.461, 1.589, 1.059, 0.417]]\nC: [[0.235, 0.419, 0.494, 1.232, 0.977, 0.5]]\nD: [[0.531, 0.805, 0.846, 1.569, 0.745, 0.229]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.71, -0.427, 1.41, -0.084, 0.707, -0.208]]\nB: [[-1.108, -0.854, 1.201, 0.423, 0.471, 0.68]]\nC: [[-1.305, -0.718, 1.12, 0.437, 0.021, 0.653]]\nD: [[-1.106, -0.393, 0.937, 0.241, 0.317, 0.242]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_96_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_96_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the tray in the scene. The camera pose information includes: the rotation matrix: [[-0.998162, -0.007354, -0.06016], [0.055338, 0.294228, -0.954132], [0.024717, -0.955707, -0.293281]]; the translation vector: [1.687981, 4.43329, 1.569003], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.71, -0.427, 1.41, -0.084, 0.707, -0.208]]\nB: [[-1.108, -0.854, 1.201, 0.423, 0.471, 0.68]]\nC: [[-1.305, -0.718, 1.12, 0.437, 0.021, 0.653]]\nD: [[-1.106, -0.393, 0.937, 0.241, 0.317, 0.242]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.882, 1.56, 0.388, 0.537, 1.676, 0.722], [-0.93, 1.385, 0.286, 0.589, 0.589, 0.521], [-0.937, -1.858, 0.442, 0.583, 0.58, 0.542]]\nB: [[1.943, 1.267, 0.682, 0.711, 1.577, 0.374], [-1.208, 1.812, -0.196, 1.059, 0.169, 0.521], [-1.321, -1.601, 0.071, 0.85, 0.083, 0.59]]\nC: [[2.195, 1.182, 0.758, 0.43, 1.952, 0.35], [-1.23, 1.71, 0.54, 0.173, 0.389, 0.39], [-0.765, -1.788, 0.133, 0.882, 0.65, 0.803]]\nD: [[1.615, 1.264, -0.077, 0.87, 1.187, 0.662], [-0.905, 1.561, 0.641, 0.894, 0.612, 0.112], [-0.628, -2.319, 0.352, 0.102, 0.924, 0.919]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_97_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_97_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the table in the scene. The camera pose information includes: the rotation matrix: [[-0.530794, 0.426739, -0.732224], [0.841151, 0.159702, -0.516681], [-0.10355, -0.890162, -0.443721]]; the translation vector: [5.418979, 4.373359, 1.385162], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.882, 1.56, 0.388, 0.537, 1.676, 0.722], [-0.93, 1.385, 0.286, 0.589, 0.589, 0.521], [-0.937, -1.858, 0.442, 0.583, 0.58, 0.542]]\nB: [[1.943, 1.267, 0.682, 0.711, 1.577, 0.374], [-1.208, 1.812, -0.196, 1.059, 0.169, 0.521], [-1.321, -1.601, 0.071, 0.85, 0.083, 0.59]]\nC: [[2.195, 1.182, 0.758, 0.43, 1.952, 0.35], [-1.23, 1.71, 0.54, 0.173, 0.389, 0.39], [-0.765, -1.788, 0.133, 0.882, 0.65, 0.803]]\nD: [[1.615, 1.264, -0.077, 0.87, 1.187, 0.662], [-0.905, 1.561, 0.641, 0.894, 0.612, 0.112], [-0.628, -2.319, 0.352, 0.102, 0.924, 0.919]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.419, -1.385, 0.468, 0.603, 0.548, -0.002]]\nB: [[0.568, -0.742, 0.118, 0.677, 0.387, 0.514]]\nC: [[0.186, -1.693, 0.012, 1.09, 0.395, 0.456]]\nD: [[0.461, -1.208, 0.23, 0.711, 0.358, 0.459]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_98_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_98_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the toilet in the scene. The camera pose information includes: the rotation matrix: [[0.695296, -0.421579, 0.582095], [-0.717067, -0.351947, 0.601622], [-0.048765, -0.835707, -0.547007]]; the translation vector: [2.470866, 0.652559, 1.473924], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.419, -1.385, 0.468, 0.603, 0.548, -0.002]]\nB: [[0.568, -0.742, 0.118, 0.677, 0.387, 0.514]]\nC: [[0.186, -1.693, 0.012, 1.09, 0.395, 0.456]]\nD: [[0.461, -1.208, 0.23, 0.711, 0.358, 0.459]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.786, 0.016, 0.222, 1.217, 0.653, 0.431]]\nB: [[-1.037, -0.227, 0.31, 1.564, 0.876, 0.857]]\nC: [[-1.111, -0.46, 0.292, 1.65, 0.975, 0.105]]\nD: [[-0.725, -0.136, -0.167, 0.877, 0.479, 0.631]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_99_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_99_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the coffee table in the scene. The camera pose information includes: the rotation matrix: [[0.408988, -0.323891, 0.853126], [-0.912443, -0.158736, 0.37716], [0.013263, -0.932683, -0.360453]]; the translation vector: [3.672612, 2.990265, 1.494339], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.786, 0.016, 0.222, 1.217, 0.653, 0.431]]\nB: [[-1.037, -0.227, 0.31, 1.564, 0.876, 0.857]]\nC: [[-1.111, -0.46, 0.292, 1.65, 0.975, 0.105]]\nD: [[-0.725, -0.136, -0.167, 0.877, 0.479, 0.631]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.78, -0.369, 0.924, 0.56, 5.207, 1.466], [-1.469, 1.84, 1.529, 0.1, 3.46, 1.026], [1.603, 3.517, 0.975, 0.924, 0.045, 0.875], [-1.453, 3.239, 1.664, 0.75, -0.019, 1.939], [-1.132, -0.282, 1.01, 0.6, 1.619, 1.743], [-0.943, -1.737, 1.065, 0.938, -0.129, 1.932], [-0.462, -1.272, 0.976, 0.13, 0.263, 2.111], [-0.647, -3.37, 0.86, -0.005, 1.127, 1.632], [0.759, -3.788, 0.905, 0.472, 0.723, 1.787], [1.365, -2.765, 1.105, 0.336, 0.467, 1.277]]\nB: [[1.074, -0.516, 1.118, -0.086, 5.725, 2.158], [-1.396, 2.343, 1.47, -0.008, 3.692, 1.57], [1.315, 3.398, 1.101, 1.035, 0.612, 0.867], [-0.97, 3.198, 1.01, 0.853, 0.483, 1.503], [-1.961, -0.579, 0.799, 0.47, 0.959, 1.354], [-0.792, -1.093, 0.831, 0.98, 0.15, 1.422], [-0.764, -1.052, 0.538, 0.169, -0.099, 1.83], [-0.948, -3.534, 0.813, 0.512, 1.974, 2.262], [1.309, -3.86, 1.13, 0.074, 1.177, 0.95], [0.842, -2.685, 1.111, 0.225, 0.622, 1.342]]\nC: [[1.398, -0.078, 0.847, 0.238, 5.699, 1.741], [-1.453, 1.912, 1.74, 0.206, 3.243, 1.354], [1.514, 3.636, 0.972, 1.079, 0.266, 0.762], [-1.064, 3.584, 1.382, 0.689, 0.248, 1.654], [-1.552, -0.739, 0.879, 0.227, 1.257, 1.692], [-1.211, -1.342, 0.86, 0.655, 0.096, 1.73], [-0.902, -1.484, 0.9, 0.087, 0.331, 1.816], [-0.874, -3.114, 1.006, 0.184, 1.508, 2.084], [0.921, -3.404, 0.668, 0.136, 1.137, 1.434], [1.157, -2.863, 0.703, 0.531, 0.128, 1.521]]\nD: [[1.025, -0.536, 0.699, 0.592, 5.958, 2.064], [-1.605, 1.792, 2.153, -0.235, 3.185, 1.084], [1.02, 3.68, 1.082, 1.526, 0.082, 0.582], [-1.08, 3.95, 0.986, 0.299, -0.139, 1.856], [-1.893, -0.998, 0.689, 0.259, 1.727, 1.918], [-1.034, -1.551, 0.605, 0.948, 0.46, 1.541], [-1.095, -1.908, 1.355, 0.164, 0.298, 1.555], [-0.914, -3.165, 0.928, -0.077, 1.779, 1.639], [0.568, -3.209, 0.575, 0.598, 1.246, 1.226], [1.226, -3.252, 0.43, 0.831, 0.263, 1.38]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_100_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_100_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[-0.52463, -0.231347, 0.819293], [-0.850589, 0.102279, -0.515789], [0.03553, -0.96748, -0.25044]]; the translation vector: [5.897326, 2.792535, 1.553822], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.78, -0.369, 0.924, 0.56, 5.207, 1.466], [-1.469, 1.84, 1.529, 0.1, 3.46, 1.026], [1.603, 3.517, 0.975, 0.924, 0.045, 0.875], [-1.453, 3.239, 1.664, 0.75, -0.019, 1.939], [-1.132, -0.282, 1.01, 0.6, 1.619, 1.743], [-0.943, -1.737, 1.065, 0.938, -0.129, 1.932], [-0.462, -1.272, 0.976, 0.13, 0.263, 2.111], [-0.647, -3.37, 0.86, -0.005, 1.127, 1.632], [0.759, -3.788, 0.905, 0.472, 0.723, 1.787], [1.365, -2.765, 1.105, 0.336, 0.467, 1.277]]\nB: [[1.074, -0.516, 1.118, -0.086, 5.725, 2.158], [-1.396, 2.343, 1.47, -0.008, 3.692, 1.57], [1.315, 3.398, 1.101, 1.035, 0.612, 0.867], [-0.97, 3.198, 1.01, 0.853, 0.483, 1.503], [-1.961, -0.579, 0.799, 0.47, 0.959, 1.354], [-0.792, -1.093, 0.831, 0.98, 0.15, 1.422], [-0.764, -1.052, 0.538, 0.169, -0.099, 1.83], [-0.948, -3.534, 0.813, 0.512, 1.974, 2.262], [1.309, -3.86, 1.13, 0.074, 1.177, 0.95], [0.842, -2.685, 1.111, 0.225, 0.622, 1.342]]\nC: [[1.398, -0.078, 0.847, 0.238, 5.699, 1.741], [-1.453, 1.912, 1.74, 0.206, 3.243, 1.354], [1.514, 3.636, 0.972, 1.079, 0.266, 0.762], [-1.064, 3.584, 1.382, 0.689, 0.248, 1.654], [-1.552, -0.739, 0.879, 0.227, 1.257, 1.692], [-1.211, -1.342, 0.86, 0.655, 0.096, 1.73], [-0.902, -1.484, 0.9, 0.087, 0.331, 1.816], [-0.874, -3.114, 1.006, 0.184, 1.508, 2.084], [0.921, -3.404, 0.668, 0.136, 1.137, 1.434], [1.157, -2.863, 0.703, 0.531, 0.128, 1.521]]\nD: [[1.025, -0.536, 0.699, 0.592, 5.958, 2.064], [-1.605, 1.792, 2.153, -0.235, 3.185, 1.084], [1.02, 3.68, 1.082, 1.526, 0.082, 0.582], [-1.08, 3.95, 0.986, 0.299, -0.139, 1.856], [-1.893, -0.998, 0.689, 0.259, 1.727, 1.918], [-1.034, -1.551, 0.605, 0.948, 0.46, 1.541], [-1.095, -1.908, 1.355, 0.164, 0.298, 1.555], [-0.914, -3.165, 0.928, -0.077, 1.779, 1.639], [0.568, -3.209, 0.575, 0.598, 1.246, 1.226], [1.226, -3.252, 0.43, 0.831, 0.263, 1.38]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.346, -1.632, 0.468, 0.228, 0.435, 0.463], [1.166, -1.379, 0.353, 0.04, 0.901, -0.25], [1.058, -1.308, -0.427, 0.416, 0.148, -0.261], [1.588, -1.671, -0.302, 0.296, 0.611, 0.478], [1.29, -1.513, 0.294, 0.468, 0.683, 0.487]]\nB: [[1.331, -1.83, 0.338, 0.317, 0.297, 0.192], [1.086, -1.365, 0.034, 0.38, 0.508, 0.129], [1.22, -1.567, 0.058, 0.382, 0.375, 0.145], [1.153, -2.04, 0.055, 0.29, 0.371, 0.11], [1.391, -1.481, 0.041, 0.386, 0.621, 0.13]]\nC: [[1.118, -1.374, 0.329, -0.089, 0.113, 0.27], [1.322, -1.418, -0.243, 0.677, 0.961, -0.031], [1.042, -1.495, -0.402, 0.189, 0.317, 0.229], [1.027, -2.005, 0.379, 0.337, 0.077, -0.062], [1.617, -1.294, 0.41, -0.08, 0.836, 0.171]]\nD: [[1.601, -1.491, 0.468, 0.181, 0.51, -0.093], [0.965, -1.654, 0.463, 0.875, 0.478, 0.252], [1.604, -1.87, -0.185, 0.098, 0.676, 0.612], [1.637, -2.272, -0.12, 0.307, 0.185, 0.124], [1.563, -1.727, 0.204, 0.781, 0.373, 0.021]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_101_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_101_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the shoes in the scene. The camera pose information includes: the rotation matrix: [[-0.079656, -0.319192, 0.944337], [-0.994012, 0.096527, -0.051219], [-0.074805, -0.942762, -0.324969]]; the translation vector: [4.3352, 2.935251, 1.464921], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.346, -1.632, 0.468, 0.228, 0.435, 0.463], [1.166, -1.379, 0.353, 0.04, 0.901, -0.25], [1.058, -1.308, -0.427, 0.416, 0.148, -0.261], [1.588, -1.671, -0.302, 0.296, 0.611, 0.478], [1.29, -1.513, 0.294, 0.468, 0.683, 0.487]]\nB: [[1.331, -1.83, 0.338, 0.317, 0.297, 0.192], [1.086, -1.365, 0.034, 0.38, 0.508, 0.129], [1.22, -1.567, 0.058, 0.382, 0.375, 0.145], [1.153, -2.04, 0.055, 0.29, 0.371, 0.11], [1.391, -1.481, 0.041, 0.386, 0.621, 0.13]]\nC: [[1.118, -1.374, 0.329, -0.089, 0.113, 0.27], [1.322, -1.418, -0.243, 0.677, 0.961, -0.031], [1.042, -1.495, -0.402, 0.189, 0.317, 0.229], [1.027, -2.005, 0.379, 0.337, 0.077, -0.062], [1.617, -1.294, 0.41, -0.08, 0.836, 0.171]]\nD: [[1.601, -1.491, 0.468, 0.181, 0.51, -0.093], [0.965, -1.654, 0.463, 0.875, 0.478, 0.252], [1.604, -1.87, -0.185, 0.098, 0.676, 0.612], [1.637, -2.272, -0.12, 0.307, 0.185, 0.124], [1.563, -1.727, 0.204, 0.781, 0.373, 0.021]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.756, -0.319, 1.042, 0.429, 0.322, 0.448]]\nB: [[-0.968, 0.035, 0.911, 0.64, 0.607, 0.13]]\nC: [[-0.447, -0.667, 1.37, -0.048, 0.547, 0.66]]\nD: [[-0.868, -0.191, 0.853, 0.715, 0.451, 0.897]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_102_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_102_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the coffee maker in the scene. The camera pose information includes: the rotation matrix: [[-0.848489, -0.131122, 0.512712], [-0.527579, 0.133483, -0.838954], [0.041567, -0.982339, -0.182436]]; the translation vector: [2.702568, 1.718074, 1.602473], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.756, -0.319, 1.042, 0.429, 0.322, 0.448]]\nB: [[-0.968, 0.035, 0.911, 0.64, 0.607, 0.13]]\nC: [[-0.447, -0.667, 1.37, -0.048, 0.547, 0.66]]\nD: [[-0.868, -0.191, 0.853, 0.715, 0.451, 0.897]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.912, -2.332, 1.905, 0.812, 1.477, 1.176], [1.567, 2.82, 1.32, 0.327, 1.345, 2.178]]\nB: [[1.7, -2.606, 1.565, 0.678, 1.073, 1.573], [1.645, 3.122, 1.233, 0.724, 1.059, 2.428]]\nC: [[2.101, -2.524, 1.207, 0.883, 0.819, 1.727], [1.696, 3.351, 1.474, 0.479, 1.235, 2.058]]\nD: [[1.681, -2.688, 1.507, 0.221, 0.833, 1.776], [1.4, 2.653, 1.693, 1.075, 1.288, 2.071]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_103_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_103_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the cabinet in the scene. The camera pose information includes: the rotation matrix: [[0.606497, 0.359513, -0.709163], [0.793947, -0.321582, 0.515978], [-0.042553, -0.875977, -0.480473]]; the translation vector: [5.898605, 1.464963, 1.329018], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.912, -2.332, 1.905, 0.812, 1.477, 1.176], [1.567, 2.82, 1.32, 0.327, 1.345, 2.178]]\nB: [[1.7, -2.606, 1.565, 0.678, 1.073, 1.573], [1.645, 3.122, 1.233, 0.724, 1.059, 2.428]]\nC: [[2.101, -2.524, 1.207, 0.883, 0.819, 1.727], [1.696, 3.351, 1.474, 0.479, 1.235, 2.058]]\nD: [[1.681, -2.688, 1.507, 0.221, 0.833, 1.776], [1.4, 2.653, 1.693, 1.075, 1.288, 2.071]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.693, -1.201, 1.187, 0.828, 0.813, 1.996]]\nB: [[-1.283, -1.49, 1.157, 1.223, 0.635, 2.337]]\nC: [[-1.607, -1.608, 0.733, 1.415, 0.912, 2.422]]\nD: [[-1.367, -1.969, 1.373, 1.253, 1.096, 1.909]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_104_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_104_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the cabinets in the scene. The camera pose information includes: the rotation matrix: [[0.349467, 0.022881, -0.936669], [0.936944, -0.011774, 0.349282], [-0.003037, -0.999669, -0.025553]]; the translation vector: [3.08553, 2.787215, 1.609269], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.693, -1.201, 1.187, 0.828, 0.813, 1.996]]\nB: [[-1.283, -1.49, 1.157, 1.223, 0.635, 2.337]]\nC: [[-1.607, -1.608, 0.733, 1.415, 0.912, 2.422]]\nD: [[-1.367, -1.969, 1.373, 1.253, 1.096, 1.909]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.858, -0.632, 0.828, 0.126, 1.643, 1.687], [-1.33, 0.028, 0.915, 0.226, 2.888, 1.864], [-0.174, -1.42, 0.865, 2.224, 0.121, 1.722], [0.61, 1.413, 0.874, 4.003, 0.17, 1.77], [2.563, 1.11, 0.788, 0.118, 0.484, 1.649]]\nB: [[1.405, -0.208, 0.598, -0.114, 2.093, 1.602], [-1.061, 0.394, 1.019, -0.16, 3.193, 1.369], [-0.359, -0.986, 0.414, 1.802, -0.111, 1.429], [1.035, 1.154, 1.154, 3.812, 0.204, 2.113], [2.12, 1.579, 1.171, -0.054, 0.234, 1.478]]\nC: [[1.89, -0.153, 0.406, 0.028, 1.816, 1.93], [-1.451, -0.417, 1.393, -0.113, 3.307, 1.683], [-0.295, -1.25, 0.577, 1.985, -0.098, 1.447], [0.348, 1.382, 0.753, 3.885, 0.441, 1.993], [2.183, 0.625, 0.617, 0.117, 0.723, 1.324]]\nD: [[2.301, -0.62, 1.122, 0.26, 2.124, 2.126], [-0.834, -0.412, 1.071, -0.118, 2.484, 1.498], [-0.094, -1.494, 0.531, 2.098, -0.018, 2.208], [0.226, 1.164, 1.047, 4.422, 0.121, 1.595], [2.644, 1.556, 0.635, 0.354, 0.125, 1.662]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_105_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_105_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[0.991592, 0.052224, -0.118397], [0.1292, -0.348306, 0.928435], [0.007248, -0.935925, -0.352124]]; the translation vector: [2.177373, 2.142725, 1.46728], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.858, -0.632, 0.828, 0.126, 1.643, 1.687], [-1.33, 0.028, 0.915, 0.226, 2.888, 1.864], [-0.174, -1.42, 0.865, 2.224, 0.121, 1.722], [0.61, 1.413, 0.874, 4.003, 0.17, 1.77], [2.563, 1.11, 0.788, 0.118, 0.484, 1.649]]\nB: [[1.405, -0.208, 0.598, -0.114, 2.093, 1.602], [-1.061, 0.394, 1.019, -0.16, 3.193, 1.369], [-0.359, -0.986, 0.414, 1.802, -0.111, 1.429], [1.035, 1.154, 1.154, 3.812, 0.204, 2.113], [2.12, 1.579, 1.171, -0.054, 0.234, 1.478]]\nC: [[1.89, -0.153, 0.406, 0.028, 1.816, 1.93], [-1.451, -0.417, 1.393, -0.113, 3.307, 1.683], [-0.295, -1.25, 0.577, 1.985, -0.098, 1.447], [0.348, 1.382, 0.753, 3.885, 0.441, 1.993], [2.183, 0.625, 0.617, 0.117, 0.723, 1.324]]\nD: [[2.301, -0.62, 1.122, 0.26, 2.124, 2.126], [-0.834, -0.412, 1.071, -0.118, 2.484, 1.498], [-0.094, -1.494, 0.531, 2.098, -0.018, 2.208], [0.226, 1.164, 1.047, 4.422, 0.121, 1.595], [2.644, 1.556, 0.635, 0.354, 0.125, 1.662]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.401, -1.054, 0.005, 0.193, -0.189, 0.608], [-1.764, -0.727, 0.562, 0.549, 0.36, 0.374], [-2.181, 0.328, -0.167, 0.351, 0.064, 0.119]]\nB: [[1.152, -0.296, 0.418, 0.864, 0.385, 0.356], [-2.324, -0.32, 0.424, 0.485, 0.66, -0.082], [-1.955, 0.121, 0.148, 0.369, 0.415, 0.131]]\nC: [[1.282, -0.743, 0.129, 0.493, 0.257, 0.293], [-1.968, -0.763, 0.156, 0.467, 0.241, 0.31], [-1.95, 0.267, 0.16, 0.231, 0.318, 0.302]]\nD: [[1.109, -0.73, -0.038, 0.564, 0.587, 0.172], [-2.259, -0.589, 0.46, 0.771, -0.144, -0.09], [-1.478, 0.494, 0.535, 0.374, 0.223, 0.643]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_106_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_106_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the trash can in the scene. The camera pose information includes: the rotation matrix: [[-0.789457, 0.162095, -0.592016], [0.613764, 0.197318, -0.764434], [-0.007096, -0.966846, -0.255262]]; the translation vector: [5.114759, 3.17533, 1.386193], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.401, -1.054, 0.005, 0.193, -0.189, 0.608], [-1.764, -0.727, 0.562, 0.549, 0.36, 0.374], [-2.181, 0.328, -0.167, 0.351, 0.064, 0.119]]\nB: [[1.152, -0.296, 0.418, 0.864, 0.385, 0.356], [-2.324, -0.32, 0.424, 0.485, 0.66, -0.082], [-1.955, 0.121, 0.148, 0.369, 0.415, 0.131]]\nC: [[1.282, -0.743, 0.129, 0.493, 0.257, 0.293], [-1.968, -0.763, 0.156, 0.467, 0.241, 0.31], [-1.95, 0.267, 0.16, 0.231, 0.318, 0.302]]\nD: [[1.109, -0.73, -0.038, 0.564, 0.587, 0.172], [-2.259, -0.589, 0.46, 0.771, -0.144, -0.09], [-1.478, 0.494, 0.535, 0.374, 0.223, 0.643]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.628, -0.574, 0.244, 0.629, 0.377, 0.613]]\nB: [[-0.255, -0.118, 0.331, 1.064, 0.829, 0.169]]\nC: [[-0.907, -0.799, 0.595, 1.106, -0.043, 0.376]]\nD: [[-0.149, -0.775, 0.103, 0.329, 0.393, 1.004]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_107_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_107_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the toilet in the scene. The camera pose information includes: the rotation matrix: [[-0.881415, -0.308012, 0.3581], [-0.47008, 0.646119, -0.601294], [-0.046169, -0.698325, -0.71429]]; the translation vector: [3.147524, 1.689608, 1.273114], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.628, -0.574, 0.244, 0.629, 0.377, 0.613]]\nB: [[-0.255, -0.118, 0.331, 1.064, 0.829, 0.169]]\nC: [[-0.907, -0.799, 0.595, 1.106, -0.043, 0.376]]\nD: [[-0.149, -0.775, 0.103, 0.329, 0.393, 1.004]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.984, -0.791, 0.71, -0.025, 0.146, 1.95], [-2.845, 0.826, 0.79, -0.018, 2.045, 2.096], [-3.127, 1.767, 1.058, 0.668, 0.751, 1.034], [-2.598, 2.204, 1.456, 0.337, 0.226, 0.622], [-1.681, 2.399, 0.33, 0.897, -0.155, 1.345], [-3.032, -0.879, 1.701, 0.543, 0.324, 1.619], [-2.871, -1.012, 1.112, 0.372, 0.525, 1.953], [-1.989, -1.505, 1.05, 1.013, 0.57, 2.119], [-2.342, -1.032, 1.573, 0.099, 0.665, 2.113], [-1.812, -1.549, 0.936, 0.03, 0.702, 1.331], [-0.897, -1.334, 1.032, -0.375, 0.838, 1.222], [1.073, -1.243, 1.222, 0.074, 0.103, 1.889], [0.684, -1.361, 0.842, 0.81, 0.134, 2.122], [1.681, -0.985, 0.915, -0.15, 0.046, 2.017], [1.499, -1.143, 1.225, 1.125, 0.255, 2.053], [2.518, -0.611, 1.251, 0.147, 0.376, 1.463], [2.78, -0.555, 1.623, 0.321, 0.5, 1.453], [2.607, 0.422, 0.93, 0.428, 2.768, 1.865], [2.929, 2.246, 1.615, 0.791, 0.45, 0.84], [2.894, 2.607, 0.679, 0.418, 0.185, 1.771], [1.91, 1.95, 0.631, 1.792, 0.498, 2.141], [0.968, 2.657, -0.02, 0.142, 0.513, 1.049], [2.739, 1.468, 0.752, 0.297, 1.124, 0.649], [1.999, -0.528, 0.795, 0.19, 0.625, 0.528]]\nB: [[-1.697, -1.101, 1.32, 0.519, 0.607, 2.31], [-2.793, 0.346, 1.419, 0.299, 1.423, 2.149], [-2.764, 1.638, 1.178, 0.604, 0.448, 0.518], [-2.94, 2.09, 1.372, -0.13, -0.272, 0.296], [-1.734, 2.804, 0.582, 1.396, 0.541, 0.939], [-2.549, -0.196, 1.12, 0.785, 0.411, 1.926], [-2.871, -1.014, 0.799, 0.56, 0.597, 1.935], [-2.659, -0.762, 1.356, 0.825, 0.021, 2.649], [-1.977, -1.011, 1.131, 0.465, 0.035, 2.324], [-1.526, -1.598, 1.392, 0.441, -0.118, 2.102], [-1.353, -0.868, 0.591, 0.125, 0.493, 1.476], [1.173, -1.254, 0.599, -0.335, 0.938, 1.499], [1.444, -1.618, 1.332, 0.376, 0.369, 1.68], [1.582, -1.255, 0.456, -0.034, -0.048, 2.138], [2.452, -1.152, 1.16, 0.41, -0.305, 2.162], [2.246, -1.101, 0.993, 0.065, 0.725, 2.256], [2.414, -0.99, 1.12, 0.836, 0.744, 1.026], [2.607, 0.594, 0.728, -0.103, 2.445, 1.796], [2.075, 1.78, 1.433, 0.826, 1.27, 1.569], [2.842, 2.47, 1.179, 0.437, 0.717, 1.714], [2.073, 1.959, 0.513, 1.293, -0.057, 1.28], [0.684, 2.546, 0.647, 0.281, 0.423, 0.403], [1.985, 2.256, 0.609, 0.323, 0.304, 0.186], [1.904, -0.439, 0.116, 0.205, 0.913, 1.076]]\nC: [[-0.882, -0.996, 0.828, 0.066, -0.03, 2.259], [-2.906, 0.486, 0.584, 0.338, 1.448, 2.228], [-2.335, 1.79, 1.402, 0.799, 0.604, 0.979], [-2.492, 2.696, 0.852, 0.385, -0.119, 0.551], [-2.113, 2.369, 0.634, 1.634, -0.378, 1.33], [-2.9, -0.382, 1.544, 0.229, 0.561, 1.896], [-2.46, -0.938, 0.92, 0.562, 0.836, 1.812], [-2.236, -1.122, 1.385, 0.806, -0.301, 1.756], [-1.859, -1.439, 0.978, -0.087, 0.007, 2.232], [-1.477, -1.605, 1.119, -0.203, 0.225, 1.352], [-0.558, -1.702, 0.427, 0.133, 0.668, 1.46], [0.818, -0.885, 1.161, 0.455, 0.101, 1.667], [0.552, -1.308, 0.707, 0.978, 0.615, 1.676], [2.109, -1.305, 1.008, -0.007, 0.224, 2.013], [2.016, -1.577, 1.004, 0.572, 0.061, 2.141], [1.754, -1.027, 1.286, 0.147, 0.165, 1.509], [2.849, -0.613, 0.987, 0.617, 1.099, 1.162], [2.281, 0.428, 1.287, 0.612, 2.792, 1.8], [2.1, 1.909, 1.627, 0.042, 0.641, 1.338], [2.025, 1.994, 0.97, 0.816, 0.372, 1.93], [1.678, 2.705, 1.241, 1.93, -0.063, 1.837], [0.582, 2.314, 0.279, 0.554, 0.013, 1.151], [2.245, 1.504, 0.631, 0.05, 1.008, 1.066], [2.09, -0.514, 0.622, -0.006, 1.061, 1.06]]\nD: [[-1.212, -1.13, 1.017, 0.465, 0.161, 2.011], [-2.56, 0.64, 0.971, 0.201, 1.804, 1.935], [-2.744, 1.914, 1.197, 0.349, 0.771, 0.66], [-2.606, 2.363, 1.087, 0.038, 0.219, 0.424], [-1.931, 2.472, 0.667, 1.366, 0.094, 1.255], [-2.729, -0.603, 1.38, 0.39, 0.792, 1.541], [-2.531, -0.93, 1.084, 0.175, 0.507, 2.172], [-2.227, -1.13, 1.087, 0.723, 0.142, 2.167], [-1.887, -1.279, 1.074, 0.181, 0.413, 2.133], [-1.395, -1.301, 1.124, 0.117, 0.289, 1.814], [-0.99, -1.313, 0.763, 0.122, 0.477, 1.511], [0.768, -1.372, 0.865, 0.144, 0.573, 1.696], [0.958, -1.124, 0.866, 0.51, 0.163, 1.704], [1.687, -1.284, 0.89, 0.172, 0.422, 1.772], [1.97, -1.137, 0.897, 0.705, 0.139, 1.81], [2.237, -1.017, 0.895, 0.302, 0.335, 1.807], [2.506, -0.615, 1.189, 0.456, 0.783, 1.228], [2.295, 0.463, 0.865, 0.248, 2.384, 1.746], [2.549, 1.9, 1.178, 0.43, 0.874, 1.13], [2.396, 2.329, 0.87, 0.323, 0.269, 1.739], [1.621, 2.45, 0.875, 1.651, 0.189, 1.735], [0.789, 2.563, 0.425, 0.113, 0.177, 0.782], [2.336, 1.911, 0.338, 0.211, 0.688, 0.678], [2.287, -0.576, 0.338, 0.14, 0.728, 0.71]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_108_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_108_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[-0.731293, 0.384445, -0.563394], [0.682011, 0.401944, -0.610984], [-0.008437, -0.831049, -0.556135]]; the translation vector: [5.176627, 2.209938, 1.427488], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.984, -0.791, 0.71, -0.025, 0.146, 1.95], [-2.845, 0.826, 0.79, -0.018, 2.045, 2.096], [-3.127, 1.767, 1.058, 0.668, 0.751, 1.034], [-2.598, 2.204, 1.456, 0.337, 0.226, 0.622], [-1.681, 2.399, 0.33, 0.897, -0.155, 1.345], [-3.032, -0.879, 1.701, 0.543, 0.324, 1.619], [-2.871, -1.012, 1.112, 0.372, 0.525, 1.953], [-1.989, -1.505, 1.05, 1.013, 0.57, 2.119], [-2.342, -1.032, 1.573, 0.099, 0.665, 2.113], [-1.812, -1.549, 0.936, 0.03, 0.702, 1.331], [-0.897, -1.334, 1.032, -0.375, 0.838, 1.222], [1.073, -1.243, 1.222, 0.074, 0.103, 1.889], [0.684, -1.361, 0.842, 0.81, 0.134, 2.122], [1.681, -0.985, 0.915, -0.15, 0.046, 2.017], [1.499, -1.143, 1.225, 1.125, 0.255, 2.053], [2.518, -0.611, 1.251, 0.147, 0.376, 1.463], [2.78, -0.555, 1.623, 0.321, 0.5, 1.453], [2.607, 0.422, 0.93, 0.428, 2.768, 1.865], [2.929, 2.246, 1.615, 0.791, 0.45, 0.84], [2.894, 2.607, 0.679, 0.418, 0.185, 1.771], [1.91, 1.95, 0.631, 1.792, 0.498, 2.141], [0.968, 2.657, -0.02, 0.142, 0.513, 1.049], [2.739, 1.468, 0.752, 0.297, 1.124, 0.649], [1.999, -0.528, 0.795, 0.19, 0.625, 0.528]]\nB: [[-1.697, -1.101, 1.32, 0.519, 0.607, 2.31], [-2.793, 0.346, 1.419, 0.299, 1.423, 2.149], [-2.764, 1.638, 1.178, 0.604, 0.448, 0.518], [-2.94, 2.09, 1.372, -0.13, -0.272, 0.296], [-1.734, 2.804, 0.582, 1.396, 0.541, 0.939], [-2.549, -0.196, 1.12, 0.785, 0.411, 1.926], [-2.871, -1.014, 0.799, 0.56, 0.597, 1.935], [-2.659, -0.762, 1.356, 0.825, 0.021, 2.649], [-1.977, -1.011, 1.131, 0.465, 0.035, 2.324], [-1.526, -1.598, 1.392, 0.441, -0.118, 2.102], [-1.353, -0.868, 0.591, 0.125, 0.493, 1.476], [1.173, -1.254, 0.599, -0.335, 0.938, 1.499], [1.444, -1.618, 1.332, 0.376, 0.369, 1.68], [1.582, -1.255, 0.456, -0.034, -0.048, 2.138], [2.452, -1.152, 1.16, 0.41, -0.305, 2.162], [2.246, -1.101, 0.993, 0.065, 0.725, 2.256], [2.414, -0.99, 1.12, 0.836, 0.744, 1.026], [2.607, 0.594, 0.728, -0.103, 2.445, 1.796], [2.075, 1.78, 1.433, 0.826, 1.27, 1.569], [2.842, 2.47, 1.179, 0.437, 0.717, 1.714], [2.073, 1.959, 0.513, 1.293, -0.057, 1.28], [0.684, 2.546, 0.647, 0.281, 0.423, 0.403], [1.985, 2.256, 0.609, 0.323, 0.304, 0.186], [1.904, -0.439, 0.116, 0.205, 0.913, 1.076]]\nC: [[-0.882, -0.996, 0.828, 0.066, -0.03, 2.259], [-2.906, 0.486, 0.584, 0.338, 1.448, 2.228], [-2.335, 1.79, 1.402, 0.799, 0.604, 0.979], [-2.492, 2.696, 0.852, 0.385, -0.119, 0.551], [-2.113, 2.369, 0.634, 1.634, -0.378, 1.33], [-2.9, -0.382, 1.544, 0.229, 0.561, 1.896], [-2.46, -0.938, 0.92, 0.562, 0.836, 1.812], [-2.236, -1.122, 1.385, 0.806, -0.301, 1.756], [-1.859, -1.439, 0.978, -0.087, 0.007, 2.232], [-1.477, -1.605, 1.119, -0.203, 0.225, 1.352], [-0.558, -1.702, 0.427, 0.133, 0.668, 1.46], [0.818, -0.885, 1.161, 0.455, 0.101, 1.667], [0.552, -1.308, 0.707, 0.978, 0.615, 1.676], [2.109, -1.305, 1.008, -0.007, 0.224, 2.013], [2.016, -1.577, 1.004, 0.572, 0.061, 2.141], [1.754, -1.027, 1.286, 0.147, 0.165, 1.509], [2.849, -0.613, 0.987, 0.617, 1.099, 1.162], [2.281, 0.428, 1.287, 0.612, 2.792, 1.8], [2.1, 1.909, 1.627, 0.042, 0.641, 1.338], [2.025, 1.994, 0.97, 0.816, 0.372, 1.93], [1.678, 2.705, 1.241, 1.93, -0.063, 1.837], [0.582, 2.314, 0.279, 0.554, 0.013, 1.151], [2.245, 1.504, 0.631, 0.05, 1.008, 1.066], [2.09, -0.514, 0.622, -0.006, 1.061, 1.06]]\nD: [[-1.212, -1.13, 1.017, 0.465, 0.161, 2.011], [-2.56, 0.64, 0.971, 0.201, 1.804, 1.935], [-2.744, 1.914, 1.197, 0.349, 0.771, 0.66], [-2.606, 2.363, 1.087, 0.038, 0.219, 0.424], [-1.931, 2.472, 0.667, 1.366, 0.094, 1.255], [-2.729, -0.603, 1.38, 0.39, 0.792, 1.541], [-2.531, -0.93, 1.084, 0.175, 0.507, 2.172], [-2.227, -1.13, 1.087, 0.723, 0.142, 2.167], [-1.887, -1.279, 1.074, 0.181, 0.413, 2.133], [-1.395, -1.301, 1.124, 0.117, 0.289, 1.814], [-0.99, -1.313, 0.763, 0.122, 0.477, 1.511], [0.768, -1.372, 0.865, 0.144, 0.573, 1.696], [0.958, -1.124, 0.866, 0.51, 0.163, 1.704], [1.687, -1.284, 0.89, 0.172, 0.422, 1.772], [1.97, -1.137, 0.897, 0.705, 0.139, 1.81], [2.237, -1.017, 0.895, 0.302, 0.335, 1.807], [2.506, -0.615, 1.189, 0.456, 0.783, 1.228], [2.295, 0.463, 0.865, 0.248, 2.384, 1.746], [2.549, 1.9, 1.178, 0.43, 0.874, 1.13], [2.396, 2.329, 0.87, 0.323, 0.269, 1.739], [1.621, 2.45, 0.875, 1.651, 0.189, 1.735], [0.789, 2.563, 0.425, 0.113, 0.177, 0.782], [2.336, 1.911, 0.338, 0.211, 0.688, 0.678], [2.287, -0.576, 0.338, 0.14, 0.728, 0.71]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.196, -0.211, 0.68, 0.711, 0.576, 2.155]]\nB: [[-0.409, 0.533, 1.267, -0.113, 0.263, 1.631]]\nC: [[-0.799, 0.234, 0.962, 0.275, 0.234, 1.923]]\nD: [[-1.167, 0.457, 0.799, -0.179, 0.573, 2.357]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_109_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_109_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the shower curtain in the scene. The camera pose information includes: the rotation matrix: [[-0.506976, -0.449046, 0.735753], [-0.861802, 0.247713, -0.442646], [0.016513, -0.858485, -0.512574]]; the translation vector: [1.568574, 4.423309, 1.333385], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.196, -0.211, 0.68, 0.711, 0.576, 2.155]]\nB: [[-0.409, 0.533, 1.267, -0.113, 0.263, 1.631]]\nC: [[-0.799, 0.234, 0.962, 0.275, 0.234, 1.923]]\nD: [[-1.167, 0.457, 0.799, -0.179, 0.573, 2.357]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.94, 1.68, 0.837, 0.663, 0.508, 0.307]]\nB: [[-1.567, 0.924, 0.596, -0.078, 0.24, 0.881]]\nC: [[-1.847, 1.274, 0.842, 0.196, 0.441, 0.778]]\nD: [[-2.041, 1.755, 1.288, 0.168, 0.884, 0.741]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_110_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_110_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the object in the scene. The camera pose information includes: the rotation matrix: [[0.233902, -0.58763, 0.774584], [-0.967246, -0.059828, 0.246692], [-0.098622, -0.806915, -0.582377]]; the translation vector: [0.860343, 3.117731, 1.418568], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.94, 1.68, 0.837, 0.663, 0.508, 0.307]]\nB: [[-1.567, 0.924, 0.596, -0.078, 0.24, 0.881]]\nC: [[-1.847, 1.274, 0.842, 0.196, 0.441, 0.778]]\nD: [[-2.041, 1.755, 1.288, 0.168, 0.884, 0.741]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.505, -0.116, 0.747, 0.409, 0.695, 0.297], [-1.441, 0.909, 0.606, 0.695, 0.528, 0.24], [1.536, 0.64, 0.715, 0.483, 0.851, 0.175], [1.546, -0.374, 0.796, 0.374, 0.77, 0.35], [-1.45, 0.754, 0.484, 0.85, 0.766, 0.215]]\nB: [[1.607, 0.304, 0.83, 0.898, 0.58, 0.697], [-1.406, 0.619, 0.763, 0.933, 0.149, 0.108], [1.448, 0.861, 0.699, 0.254, 0.441, 0.026], [1.945, -0.851, 0.97, 0.08, 1.051, 0.781], [-1.319, 0.842, 0.31, 1.314, 0.811, 0.161]]\nC: [[1.451, -0.224, 1.202, 0.474, 0.259, 0.177], [-1.303, 1.145, 0.291, 1.141, 0.346, 0.272], [1.763, 0.401, 0.944, 0.92, 1.062, -0.044], [1.663, -0.056, 0.805, 0.848, 1.189, 0.211], [-1.93, 0.603, 0.76, 0.741, 0.586, -0.206]]\nD: [[1.888, 0.164, 1.08, 0.295, 0.332, 0.729], [-1.781, 1.348, 0.164, 0.674, 0.738, 0.722], [1.997, 0.742, 0.991, 0.029, 0.449, -0.1], [1.487, 0.076, 0.6, 0.156, 0.445, 0.145], [-1.75, 1.16, 0.275, 0.799, 1.235, 0.304]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_111_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_111_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the pillow in the scene. The camera pose information includes: the rotation matrix: [[0.484778, 0.389748, -0.782998], [0.874059, -0.248441, 0.417491], [-0.031813, -0.886777, -0.461102]]; the translation vector: [2.948564, 2.712566, 1.480667], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.505, -0.116, 0.747, 0.409, 0.695, 0.297], [-1.441, 0.909, 0.606, 0.695, 0.528, 0.24], [1.536, 0.64, 0.715, 0.483, 0.851, 0.175], [1.546, -0.374, 0.796, 0.374, 0.77, 0.35], [-1.45, 0.754, 0.484, 0.85, 0.766, 0.215]]\nB: [[1.607, 0.304, 0.83, 0.898, 0.58, 0.697], [-1.406, 0.619, 0.763, 0.933, 0.149, 0.108], [1.448, 0.861, 0.699, 0.254, 0.441, 0.026], [1.945, -0.851, 0.97, 0.08, 1.051, 0.781], [-1.319, 0.842, 0.31, 1.314, 0.811, 0.161]]\nC: [[1.451, -0.224, 1.202, 0.474, 0.259, 0.177], [-1.303, 1.145, 0.291, 1.141, 0.346, 0.272], [1.763, 0.401, 0.944, 0.92, 1.062, -0.044], [1.663, -0.056, 0.805, 0.848, 1.189, 0.211], [-1.93, 0.603, 0.76, 0.741, 0.586, -0.206]]\nD: [[1.888, 0.164, 1.08, 0.295, 0.332, 0.729], [-1.781, 1.348, 0.164, 0.674, 0.738, 0.722], [1.997, 0.742, 0.991, 0.029, 0.449, -0.1], [1.487, 0.076, 0.6, 0.156, 0.445, 0.145], [-1.75, 1.16, 0.275, 0.799, 1.235, 0.304]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.148, -1.819, 0.681, 1.73, 0.9, 0.465], [-1.44, 2.208, 0.821, 0.893, 2.303, 0.634], [0.765, 1.362, 0.255, 2.131, 1.052, 0.327], [-1.998, -1.691, 0.062, 1.757, 1.835, 0.718]]\nB: [[1.542, -1.233, 0.854, 2.268, 1.021, 0.755], [-2.098, 1.815, 0.076, 0.977, 1.531, 0.579], [1.499, 1.894, 0.799, 1.364, 1.243, 0.606], [-1.591, -1.777, -0.089, 1.375, 2.302, 0.818]]\nC: [[1.019, -1.513, 0.012, 1.939, 1.04, 0.603], [-1.397, 1.894, 0.192, 1.788, 2.263, 0.963], [0.794, 1.72, 0.728, 1.503, 1.344, 0.994], [-1.899, -1.035, 0.107, 1.802, 1.941, 0.705]]\nD: [[1.181, -1.566, 0.434, 1.91, 1.342, 0.847], [-1.636, 1.86, 0.387, 1.322, 1.894, 0.782], [1.234, 1.651, 0.4, 1.847, 1.393, 0.784], [-1.767, -1.535, 0.407, 1.331, 1.981, 0.802]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_112_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_112_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the table in the scene. The camera pose information includes: the rotation matrix: [[0.996822, -0.027813, -0.074656], [0.056495, -0.413943, 0.908548], [-0.056173, -0.909878, -0.411056]]; the translation vector: [4.405487, 5.403347, 1.494535], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.148, -1.819, 0.681, 1.73, 0.9, 0.465], [-1.44, 2.208, 0.821, 0.893, 2.303, 0.634], [0.765, 1.362, 0.255, 2.131, 1.052, 0.327], [-1.998, -1.691, 0.062, 1.757, 1.835, 0.718]]\nB: [[1.542, -1.233, 0.854, 2.268, 1.021, 0.755], [-2.098, 1.815, 0.076, 0.977, 1.531, 0.579], [1.499, 1.894, 0.799, 1.364, 1.243, 0.606], [-1.591, -1.777, -0.089, 1.375, 2.302, 0.818]]\nC: [[1.019, -1.513, 0.012, 1.939, 1.04, 0.603], [-1.397, 1.894, 0.192, 1.788, 2.263, 0.963], [0.794, 1.72, 0.728, 1.503, 1.344, 0.994], [-1.899, -1.035, 0.107, 1.802, 1.941, 0.705]]\nD: [[1.181, -1.566, 0.434, 1.91, 1.342, 0.847], [-1.636, 1.86, 0.387, 1.322, 1.894, 0.782], [1.234, 1.651, 0.4, 1.847, 1.393, 0.784], [-1.767, -1.535, 0.407, 1.331, 1.981, 0.802]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[2.632, 2.861, 0.973, 0.851, 0.88, 0.553]]\nB: [[2.217, 3.039, 0.859, 0.578, 0.679, 0.811]]\nC: [[2.372, 2.508, 1.395, 0.466, 0.758, 0.941]]\nD: [[2.418, 3.313, 1.363, 0.462, 1.217, 0.869]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_113_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_113_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the tv in the scene. The camera pose information includes: the rotation matrix: [[-0.869565, 0.231948, -0.435955], [0.492522, 0.471291, -0.731647], [0.035758, -0.850932, -0.524058]]; the translation vector: [2.750575, 3.154689, 1.290553], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[2.632, 2.861, 0.973, 0.851, 0.88, 0.553]]\nB: [[2.217, 3.039, 0.859, 0.578, 0.679, 0.811]]\nC: [[2.372, 2.508, 1.395, 0.466, 0.758, 0.941]]\nD: [[2.418, 3.313, 1.363, 0.462, 1.217, 0.869]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-2.523, -0.73, 1.669, 0.473, 3.389, 1.19]]\nB: [[-2.737, -0.956, 1.441, 0.102, 2.891, 0.9]]\nC: [[-2.415, -1.042, 1.71, -0.167, 2.518, 1.307]]\nD: [[-3.121, -1.319, 1.73, 0.166, 2.406, 0.532]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_114_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_114_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the board in the scene. The camera pose information includes: the rotation matrix: [[0.896132, -0.052356, 0.440688], [-0.436974, -0.277444, 0.855616], [0.07747, -0.959314, -0.271505]]; the translation vector: [3.211431, 3.110947, 1.584554], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-2.523, -0.73, 1.669, 0.473, 3.389, 1.19]]\nB: [[-2.737, -0.956, 1.441, 0.102, 2.891, 0.9]]\nC: [[-2.415, -1.042, 1.71, -0.167, 2.518, 1.307]]\nD: [[-3.121, -1.319, 1.73, 0.166, 2.406, 0.532]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.919, 2.881, 0.5, 1.076, 0.198, 0.512], [-0.387, 3.021, 0.763, 1.206, 0.18, 1.044]]\nB: [[0.967, 3.235, 0.454, 1.103, -0.268, 0.912], [-0.093, 2.837, 0.491, 1.606, 0.643, 1.265]]\nC: [[1.146, 2.813, 0.895, 1.333, -0.231, 0.884], [-0.108, 2.697, 0.646, 1.144, -0.245, 0.801]]\nD: [[1.405, 2.769, 0.583, 0.816, -0.053, 0.839], [-0.646, 2.953, 0.434, 1.464, 0.436, 0.68]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_115_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_115_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the mirror in the scene. The camera pose information includes: the rotation matrix: [[-0.880278, -0.246293, 0.405524], [-0.473973, 0.417832, -0.775091], [0.021459, -0.874503, -0.484545]]; the translation vector: [3.281806, 2.754624, 1.352781], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.919, 2.881, 0.5, 1.076, 0.198, 0.512], [-0.387, 3.021, 0.763, 1.206, 0.18, 1.044]]\nB: [[0.967, 3.235, 0.454, 1.103, -0.268, 0.912], [-0.093, 2.837, 0.491, 1.606, 0.643, 1.265]]\nC: [[1.146, 2.813, 0.895, 1.333, -0.231, 0.884], [-0.108, 2.697, 0.646, 1.144, -0.245, 0.801]]\nD: [[1.405, 2.769, 0.583, 0.816, -0.053, 0.839], [-0.646, 2.953, 0.434, 1.464, 0.436, 0.68]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.099, -1.623, 0.8, 1.091, 0.185, 1.674]]\nB: [[0.028, -1.324, 1.283, 0.847, -0.251, 1.976]]\nC: [[0.008, -1.165, 1.014, 1.132, -0.028, 1.19]]\nD: [[0.219, -1.325, 0.313, 1.01, 0.321, 1.757]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_116_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_116_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the doorframe in the scene. The camera pose information includes: the rotation matrix: [[-0.874867, -0.0675, 0.479638], [-0.482919, 0.197999, -0.852987], [-0.037391, -0.977875, -0.205819]]; the translation vector: [2.397274, 1.722858, 1.486845], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.099, -1.623, 0.8, 1.091, 0.185, 1.674]]\nB: [[0.028, -1.324, 1.283, 0.847, -0.251, 1.976]]\nC: [[0.008, -1.165, 1.014, 1.132, -0.028, 1.19]]\nD: [[0.219, -1.325, 0.313, 1.01, 0.321, 1.757]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.712, -1.245, 0.91, 1.048, 1.199, 2.013]]\nB: [[0.626, -1.611, 1.221, 1.09, 1.245, 2.069]]\nC: [[1.138, -1.446, 0.77, 0.846, 1.373, 1.96]]\nD: [[0.371, -1.441, 0.499, 0.655, 1.441, 2.321]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_117_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_117_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the shower in the scene. The camera pose information includes: the rotation matrix: [[-0.612656, -0.411508, 0.674769], [-0.789543, 0.280105, -0.546043], [0.035694, -0.867296, -0.496511]]; the translation vector: [1.897828, 2.372103, 1.388776], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.712, -1.245, 0.91, 1.048, 1.199, 2.013]]\nB: [[0.626, -1.611, 1.221, 1.09, 1.245, 2.069]]\nC: [[1.138, -1.446, 0.77, 0.846, 1.373, 1.96]]\nD: [[0.371, -1.441, 0.499, 0.655, 1.441, 2.321]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.851, -0.281, 1.012, 0.232, 0.838, 2.123]]\nB: [[-0.647, 0.167, 1.047, -0.111, 0.572, 1.688]]\nC: [[-0.968, -0.496, 1.046, -0.014, 1.192, 1.751]]\nD: [[-0.616, -0.07, 1.075, 0.231, 1.203, 1.991]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_118_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_118_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the doorframe in the scene. The camera pose information includes: the rotation matrix: [[-0.48142, 0.335029, -0.809933], [0.872625, 0.096524, -0.478757], [-0.08222, -0.937251, -0.338823]]; the translation vector: [4.429162, 2.287411, 1.464776], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.851, -0.281, 1.012, 0.232, 0.838, 2.123]]\nB: [[-0.647, 0.167, 1.047, -0.111, 0.572, 1.688]]\nC: [[-0.968, -0.496, 1.046, -0.014, 1.192, 1.751]]\nD: [[-0.616, -0.07, 1.075, 0.231, 1.203, 1.991]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.76, 1.613, 0.501, 0.748, 1.477, 2.283], [-1.256, 0.486, 0.695, 0.261, -0.004, 1.392]]\nB: [[1.66, 0.843, 1.041, 1.024, 1.548, 1.575], [-0.68, 1.177, 0.879, 0.467, 0.635, 2.319]]\nC: [[1.906, 1.059, 1.056, 0.263, 1.047, 1.4], [-0.793, 1.238, 0.654, 0.903, 0.438, 1.901]]\nD: [[1.788, 1.153, 0.954, 0.56, 1.154, 1.881], [-0.939, 0.896, 0.911, 0.636, 0.225, 1.837]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_119_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_119_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the door in the scene. The camera pose information includes: the rotation matrix: [[-0.414473, -0.491559, 0.765887], [-0.909569, 0.196057, -0.366396], [0.029948, -0.848488, -0.528367]]; the translation vector: [0.955419, 3.497842, 1.497559], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.76, 1.613, 0.501, 0.748, 1.477, 2.283], [-1.256, 0.486, 0.695, 0.261, -0.004, 1.392]]\nB: [[1.66, 0.843, 1.041, 1.024, 1.548, 1.575], [-0.68, 1.177, 0.879, 0.467, 0.635, 2.319]]\nC: [[1.906, 1.059, 1.056, 0.263, 1.047, 1.4], [-0.793, 1.238, 0.654, 0.903, 0.438, 1.901]]\nD: [[1.788, 1.153, 0.954, 0.56, 1.154, 1.881], [-0.939, 0.896, 0.911, 0.636, 0.225, 1.837]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.054, 1.184, 0.861, 1.846, 0.937, 1.341]]\nB: [[0.486, 0.802, 0.412, 1.751, 1.322, 0.856]]\nC: [[0.138, 0.31, 0.136, 1.361, 1.636, 1.27]]\nD: [[0.461, 1.003, 0.863, 1.591, 0.946, 0.97]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_120_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_120_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the bed in the scene. The camera pose information includes: the rotation matrix: [[-0.778266, 0.076502, -0.623257], [0.626532, 0.028295, -0.778882], [-0.041951, -0.996668, -0.069952]]; the translation vector: [4.354075, 2.27787, 1.510689], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.054, 1.184, 0.861, 1.846, 0.937, 1.341]]\nB: [[0.486, 0.802, 0.412, 1.751, 1.322, 0.856]]\nC: [[0.138, 0.31, 0.136, 1.361, 1.636, 1.27]]\nD: [[0.461, 1.003, 0.863, 1.591, 0.946, 0.97]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.119, 2.382, -1.353, 2.688, 3.135, 0.067], [0.13, -2.518, 2.241, 3.948, 1.36, 0.679], [-0.552, 1.97, 3.469, 0.872, 1.36, 0.237]]\nB: [[1.56, 2.895, -0.877, 2.03, 3.162, 0.481], [-0.012, -2.383, 2.434, 3.863, 1.73, 0.8], [-1.053, 2.303, 3.432, 0.863, 1.12, -0.287]]\nC: [[1.156, 2.743, -1.086, 2.211, 3.278, 0.076], [-0.143, -2.063, 2.035, 4.283, 1.757, 0.379], [-1.038, 2.35, 3.4, 1.326, 1.515, 0.161]]\nD: [[1.559, 2.394, -0.855, 1.997, 3.635, -0.357], [-0.381, -2.532, 1.718, 3.949, 1.906, 0.055], [-0.752, 2.698, 2.911, 0.92, 1.137, -0.299]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_121_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_121_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the floor in the scene. The camera pose information includes: the rotation matrix: [[0.485844, -0.617081, 0.619005], [-0.873216, -0.311825, 0.374512], [-0.038083, -0.722479, -0.690343]]; the translation vector: [-0.164865, 3.073333, 1.323993], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.119, 2.382, -1.353, 2.688, 3.135, 0.067], [0.13, -2.518, 2.241, 3.948, 1.36, 0.679], [-0.552, 1.97, 3.469, 0.872, 1.36, 0.237]]\nB: [[1.56, 2.895, -0.877, 2.03, 3.162, 0.481], [-0.012, -2.383, 2.434, 3.863, 1.73, 0.8], [-1.053, 2.303, 3.432, 0.863, 1.12, -0.287]]\nC: [[1.156, 2.743, -1.086, 2.211, 3.278, 0.076], [-0.143, -2.063, 2.035, 4.283, 1.757, 0.379], [-1.038, 2.35, 3.4, 1.326, 1.515, 0.161]]\nD: [[1.559, 2.394, -0.855, 1.997, 3.635, -0.357], [-0.381, -2.532, 1.718, 3.949, 1.906, 0.055], [-0.752, 2.698, 2.911, 0.92, 1.137, -0.299]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.806, 0.963, 2.18, -0.15, 0.284, 0.747], [1.781, 1.911, 0.25, 0.639, -0.36, 0.423], [0.587, 2.601, 0.863, 0.066, -0.232, 0.753], [-0.114, 0.242, -0.467, -0.049, 0.569, 0.595], [1.888, 2.229, 0.499, -0.382, 0.046, 0.309], [1.509, 1.846, 0.444, -0.228, 0.075, -0.285]]\nB: [[2.196, 0.809, 1.96, 0.418, -0.322, 0.279], [1.469, 1.583, 0.002, 0.664, -0.01, 0.038], [-0.066, 2.119, 1.533, 0.754, 0.595, 0.72], [0.503, 0.542, -0.003, 0.788, 0.94, -0.045], [2.066, 1.491, 0.9, -0.225, 0.433, 0.456], [1.952, 1.903, 0.373, -0.138, 0.52, 0.69]]\nC: [[2.185, 1.438, 1.612, -0.033, 0.189, 0.171], [2.033, 1.77, 0.709, 0.481, 0.536, -0.285], [-0.228, 2.34, 1.714, 0.595, 0.3, -0.06], [-0.139, 0.192, -0.291, 0.431, 0.48, -0.343], [2.39, 1.84, 0.691, -0.012, 0.252, 0.48], [1.891, 1.81, 0.417, -0.052, -0.296, 0.438]]\nD: [[2.211, 1.285, 1.775, 0.127, 0.174, 0.292], [1.829, 1.683, 0.248, 0.278, 0.134, 0.131], [0.255, 2.241, 1.304, 0.333, 0.221, 0.253], [0.094, 0.321, -0.047, 0.34, 0.473, 0.108], [1.975, 1.944, 0.507, 0.101, 0.048, 0.175], [1.799, 1.959, 0.282, 0.261, 0.114, 0.195]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_122_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_122_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the object in the scene. The camera pose information includes: the rotation matrix: [[-0.877021, 0.121711, -0.464779], [0.46491, 0.459041, -0.75706], [0.12121, -0.880038, -0.459173]]; the translation vector: [3.922419, 3.230202, 1.747047], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.806, 0.963, 2.18, -0.15, 0.284, 0.747], [1.781, 1.911, 0.25, 0.639, -0.36, 0.423], [0.587, 2.601, 0.863, 0.066, -0.232, 0.753], [-0.114, 0.242, -0.467, -0.049, 0.569, 0.595], [1.888, 2.229, 0.499, -0.382, 0.046, 0.309], [1.509, 1.846, 0.444, -0.228, 0.075, -0.285]]\nB: [[2.196, 0.809, 1.96, 0.418, -0.322, 0.279], [1.469, 1.583, 0.002, 0.664, -0.01, 0.038], [-0.066, 2.119, 1.533, 0.754, 0.595, 0.72], [0.503, 0.542, -0.003, 0.788, 0.94, -0.045], [2.066, 1.491, 0.9, -0.225, 0.433, 0.456], [1.952, 1.903, 0.373, -0.138, 0.52, 0.69]]\nC: [[2.185, 1.438, 1.612, -0.033, 0.189, 0.171], [2.033, 1.77, 0.709, 0.481, 0.536, -0.285], [-0.228, 2.34, 1.714, 0.595, 0.3, -0.06], [-0.139, 0.192, -0.291, 0.431, 0.48, -0.343], [2.39, 1.84, 0.691, -0.012, 0.252, 0.48], [1.891, 1.81, 0.417, -0.052, -0.296, 0.438]]\nD: [[2.211, 1.285, 1.775, 0.127, 0.174, 0.292], [1.829, 1.683, 0.248, 0.278, 0.134, 0.131], [0.255, 2.241, 1.304, 0.333, 0.221, 0.253], [0.094, 0.321, -0.047, 0.34, 0.473, 0.108], [1.975, 1.944, 0.507, 0.101, 0.048, 0.175], [1.799, 1.959, 0.282, 0.261, 0.114, 0.195]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.687, 1.332, 0.035, 0.175, 2.444, 0.931], [-0.771, -0.087, 1.874, 0.351, 2.708, 1.076], [1.073, -0.054, 0.17, 0.668, 1.99, 0.53], [0.962, 0.659, 2.221, 0.281, 1.867, 1.287]]\nB: [[-0.793, 1.344, 0.264, -0.144, 2.319, 0.303], [-0.892, -0.228, 1.276, 0.428, 2.505, 1.37], [0.859, 0.126, 0.332, 0.439, 1.529, 0.603], [0.425, 0.012, 2.016, 0.908, 2.008, 0.841]]\nC: [[-1.133, 0.424, 0.86, -0.054, 2.382, 0.943], [-1.282, -0.466, 1.739, 0.288, 2.29, 1.182], [0.76, 0.578, 0.124, 0.797, 1.631, 0.597], [0.974, 0.003, 1.857, 0.274, 1.983, 0.737]]\nD: [[-0.66, 0.92, 0.369, 0.068, 2.758, 0.803], [-0.938, -0.063, 1.743, 0.134, 2.421, 0.981], [0.672, 0.378, 0.36, 0.646, 1.681, 0.828], [0.776, 0.348, 1.743, 0.449, 1.71, 0.968]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_123_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_123_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the kitchen cabinets in the scene. The camera pose information includes: the rotation matrix: [[0.815869, 0.244354, -0.524069], [0.578211, -0.336271, 0.743367], [0.005416, -0.909513, -0.415641]]; the translation vector: [2.358014, 1.230078, 1.369842], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.687, 1.332, 0.035, 0.175, 2.444, 0.931], [-0.771, -0.087, 1.874, 0.351, 2.708, 1.076], [1.073, -0.054, 0.17, 0.668, 1.99, 0.53], [0.962, 0.659, 2.221, 0.281, 1.867, 1.287]]\nB: [[-0.793, 1.344, 0.264, -0.144, 2.319, 0.303], [-0.892, -0.228, 1.276, 0.428, 2.505, 1.37], [0.859, 0.126, 0.332, 0.439, 1.529, 0.603], [0.425, 0.012, 2.016, 0.908, 2.008, 0.841]]\nC: [[-1.133, 0.424, 0.86, -0.054, 2.382, 0.943], [-1.282, -0.466, 1.739, 0.288, 2.29, 1.182], [0.76, 0.578, 0.124, 0.797, 1.631, 0.597], [0.974, 0.003, 1.857, 0.274, 1.983, 0.737]]\nD: [[-0.66, 0.92, 0.369, 0.068, 2.758, 0.803], [-0.938, -0.063, 1.743, 0.134, 2.421, 0.981], [0.672, 0.378, 0.36, 0.646, 1.681, 0.828], [0.776, 0.348, 1.743, 0.449, 1.71, 0.968]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.177, -0.077, 0.773, 0.974, 8.45, 1.181]]\nB: [[1.408, -0.085, 0.96, 1.256, 8.826, 1.391]]\nC: [[1.29, 0.138, 0.989, 1.682, 8.854, 1.495]]\nD: [[1.087, -0.264, 0.505, 1.705, 9.131, 0.904]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_124_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_124_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the blinds in the scene. The camera pose information includes: the rotation matrix: [[0.117057, -0.769276, 0.628102], [-0.987232, -0.021336, 0.157855], [-0.108033, -0.638561, -0.761951]]; the translation vector: [1.032686, 1.226834, 2.186959], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.177, -0.077, 0.773, 0.974, 8.45, 1.181]]\nB: [[1.408, -0.085, 0.96, 1.256, 8.826, 1.391]]\nC: [[1.29, 0.138, 0.989, 1.682, 8.854, 1.495]]\nD: [[1.087, -0.264, 0.505, 1.705, 9.131, 0.904]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.333, 1.449, 0.466, 0.575, 0.885, 0.579], [-0.819, 0.179, 1.256, -0.187, 0.08, 0.261], [-0.881, -0.764, 1.817, 0.04, 0.55, 0.119], [-0.782, -0.821, 1.039, -0.465, -0.079, -0.041]]\nB: [[0.913, 1.406, 0.914, 0.154, 0.729, 0.951], [-0.918, 0.236, 1.614, 0.027, 0.343, 0.415], [-0.932, -0.471, 1.376, 0.043, 0.42, 0.318], [-0.937, -1.266, 1.202, 0.021, 0.397, 0.404]]\nC: [[0.638, 1.511, 1.273, 0.574, 0.958, 0.746], [-1.165, 0.389, 1.897, 0.474, -0.02, 0.527], [-0.474, 0.021, 1.802, 0.289, 0.006, -0.062], [-1.35, -1.672, 1.153, 0.07, 0.246, 0.557]]\nD: [[0.615, 1.775, 1.082, 0.394, 0.94, 1.366], [-0.883, -0.231, 1.634, -0.385, 0.134, 0.914], [-0.757, -0.827, 1.097, 0.253, 0.741, 0.546], [-1.013, -1.459, 1.475, -0.37, 0.862, 0.783]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_125_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_125_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the picture in the scene. The camera pose information includes: the rotation matrix: [[-0.042655, 0.409797, -0.911179], [0.998036, -0.024411, -0.0577], [-0.045888, -0.91185, -0.40795]]; the translation vector: [2.423933, 1.356295, 3.282493], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.333, 1.449, 0.466, 0.575, 0.885, 0.579], [-0.819, 0.179, 1.256, -0.187, 0.08, 0.261], [-0.881, -0.764, 1.817, 0.04, 0.55, 0.119], [-0.782, -0.821, 1.039, -0.465, -0.079, -0.041]]\nB: [[0.913, 1.406, 0.914, 0.154, 0.729, 0.951], [-0.918, 0.236, 1.614, 0.027, 0.343, 0.415], [-0.932, -0.471, 1.376, 0.043, 0.42, 0.318], [-0.937, -1.266, 1.202, 0.021, 0.397, 0.404]]\nC: [[0.638, 1.511, 1.273, 0.574, 0.958, 0.746], [-1.165, 0.389, 1.897, 0.474, -0.02, 0.527], [-0.474, 0.021, 1.802, 0.289, 0.006, -0.062], [-1.35, -1.672, 1.153, 0.07, 0.246, 0.557]]\nD: [[0.615, 1.775, 1.082, 0.394, 0.94, 1.366], [-0.883, -0.231, 1.634, -0.385, 0.134, 0.914], [-0.757, -0.827, 1.097, 0.253, 0.741, 0.546], [-1.013, -1.459, 1.475, -0.37, 0.862, 0.783]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.696, 2.84, 0.243, 0.913, 0.14, 0.965], [-2.524, -1.89, 1.517, 0.263, 1.169, 1.097]]\nB: [[-2.032, 3.081, 0.673, 0.874, 0.207, 1.282], [-2.435, -2.167, 1.207, 0.214, 0.953, 0.8]]\nC: [[-2.083, 2.817, 0.915, 0.407, -0.083, 1.119], [-2.185, -1.778, 0.77, 0.561, 0.888, 0.902]]\nD: [[-1.79, 3.485, 0.577, 0.547, 0.315, 1.286], [-2.516, -2.509, 1.071, 0.577, 1.197, 0.616]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_126_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_126_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the window in the scene. The camera pose information includes: the rotation matrix: [[0.299058, 0.37418, -0.877812], [0.95368, -0.085842, 0.288314], [0.032528, -0.923375, -0.38252]]; the translation vector: [3.908031, 4.993837, 1.41318], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.696, 2.84, 0.243, 0.913, 0.14, 0.965], [-2.524, -1.89, 1.517, 0.263, 1.169, 1.097]]\nB: [[-2.032, 3.081, 0.673, 0.874, 0.207, 1.282], [-2.435, -2.167, 1.207, 0.214, 0.953, 0.8]]\nC: [[-2.083, 2.817, 0.915, 0.407, -0.083, 1.119], [-2.185, -1.778, 0.77, 0.561, 0.888, 0.902]]\nD: [[-1.79, 3.485, 0.577, 0.547, 0.315, 1.286], [-2.516, -2.509, 1.071, 0.577, 1.197, 0.616]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.147, 0.119, 0.251, 0.463, 0.502, 0.493], [1.142, -0.546, 0.997, 0.457, 0.597, 0.473], [1.198, 0.632, 0.925, 0.452, 0.473, 0.432], [1.163, 0.092, 1.069, 0.44, 0.432, 0.506]]\nB: [[0.939, -0.362, 0.676, 0.67, 0.041, 0.58], [0.766, -0.402, 0.786, 0.189, 1.052, 0.915], [1.684, 0.428, 1.283, 0.635, 0.353, 0.864], [1.275, -0.104, 1.385, 0.008, 0.054, 0.956]]\nC: [[1.248, 0.165, 0.549, 0.255, 0.722, 0.454], [1.139, -0.967, 1.065, 0.247, 0.425, 0.531], [0.839, 1.106, 1.224, 0.271, 0.846, 0.671], [0.954, 0.329, 1.422, 0.774, 0.624, 0.313]]\nD: [[1.328, 0.233, 0.409, 0.859, 0.672, 0.071], [1.492, -0.434, 0.743, 0.731, 0.907, 0.382], [1.626, 0.478, 0.601, 0.312, 0.631, 0.904], [1.629, 0.385, 0.684, 0.845, 0.492, 0.801]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_127_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_127_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the printer in the scene. The camera pose information includes: the rotation matrix: [[0.985254, -0.134646, 0.105573], [-0.142287, -0.302097, 0.942599], [-0.095024, -0.94372, -0.3168]]; the translation vector: [1.134605, 1.549487, 1.505245], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.147, 0.119, 0.251, 0.463, 0.502, 0.493], [1.142, -0.546, 0.997, 0.457, 0.597, 0.473], [1.198, 0.632, 0.925, 0.452, 0.473, 0.432], [1.163, 0.092, 1.069, 0.44, 0.432, 0.506]]\nB: [[0.939, -0.362, 0.676, 0.67, 0.041, 0.58], [0.766, -0.402, 0.786, 0.189, 1.052, 0.915], [1.684, 0.428, 1.283, 0.635, 0.353, 0.864], [1.275, -0.104, 1.385, 0.008, 0.054, 0.956]]\nC: [[1.248, 0.165, 0.549, 0.255, 0.722, 0.454], [1.139, -0.967, 1.065, 0.247, 0.425, 0.531], [0.839, 1.106, 1.224, 0.271, 0.846, 0.671], [0.954, 0.329, 1.422, 0.774, 0.624, 0.313]]\nD: [[1.328, 0.233, 0.409, 0.859, 0.672, 0.071], [1.492, -0.434, 0.743, 0.731, 0.907, 0.382], [1.626, 0.478, 0.601, 0.312, 0.631, 0.904], [1.629, 0.385, 0.684, 0.845, 0.492, 0.801]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.978, 2.218, 0.88, 0.413, 0.1, 0.702], [-1.917, 2.1, 1.145, 0.538, 0.288, 0.643]]\nB: [[-1.584, 2.193, 0.205, 0.199, 0.268, 0.839], [-1.535, 2.333, 0.994, 0.342, 0.187, 0.134]]\nC: [[-1.966, 2.066, 0.622, 0.287, 0.189, 0.88], [-1.737, 2.041, 0.848, 0.173, 0.149, 0.382]]\nD: [[-1.998, 2.157, 0.963, 0.629, -0.078, 1.235], [-1.653, 2.214, 0.646, 0.156, 0.285, 0.243]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_128_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_128_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the towel in the scene. The camera pose information includes: the rotation matrix: [[0.686341, -0.358824, 0.632599], [-0.727213, -0.35045, 0.590209], [0.009912, -0.865119, -0.50147]]; the translation vector: [2.486494, 4.601647, 1.455454], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.978, 2.218, 0.88, 0.413, 0.1, 0.702], [-1.917, 2.1, 1.145, 0.538, 0.288, 0.643]]\nB: [[-1.584, 2.193, 0.205, 0.199, 0.268, 0.839], [-1.535, 2.333, 0.994, 0.342, 0.187, 0.134]]\nC: [[-1.966, 2.066, 0.622, 0.287, 0.189, 0.88], [-1.737, 2.041, 0.848, 0.173, 0.149, 0.382]]\nD: [[-1.998, 2.157, 0.963, 0.629, -0.078, 1.235], [-1.653, 2.214, 0.646, 0.156, 0.285, 0.243]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.047, -0.588, -0.114, 0.759, 2.976, 0.961]]\nB: [[-1.511, -0.608, 0.081, 1.102, 2.98, 1.011]]\nC: [[-1.203, -0.385, 0.359, 0.756, 2.647, 0.817]]\nD: [[-1.37, -0.358, 0.323, 0.77, 2.437, 0.409]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_129_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_129_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the desk in the scene. The camera pose information includes: the rotation matrix: [[-0.802837, 0.056561, -0.593509], [0.596192, 0.071654, -0.799638], [-0.002701, -0.995825, -0.091248]]; the translation vector: [2.583219, 4.008804, 1.439254], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.047, -0.588, -0.114, 0.759, 2.976, 0.961]]\nB: [[-1.511, -0.608, 0.081, 1.102, 2.98, 1.011]]\nC: [[-1.203, -0.385, 0.359, 0.756, 2.647, 0.817]]\nD: [[-1.37, -0.358, 0.323, 0.77, 2.437, 0.409]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.904, -0.732, 0.092, 0.243, 0.59, 0.859], [-1.501, -0.76, 0.757, 1.132, 0.498, 0.756]]\nB: [[1.126, -0.366, 0.392, 0.688, 0.942, 0.802], [-1.375, -0.274, 0.471, 1.076, 0.886, 0.947]]\nC: [[0.868, -0.772, 0.151, 0.633, 1.223, 0.791], [-1.775, -0.718, 0.331, 1.093, 0.846, 1.4]]\nD: [[1.114, -0.309, 0.254, 0.953, 0.846, 0.427], [-1.752, 0.101, 0.877, 0.811, 1.045, 0.651]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_130_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_130_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the dresser in the scene. The camera pose information includes: the rotation matrix: [[-0.442667, -0.46733, 0.765277], [-0.896368, 0.253361, -0.363776], [-0.023888, -0.847001, -0.531054]]; the translation vector: [2.453469, 1.905797, 1.451684], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.904, -0.732, 0.092, 0.243, 0.59, 0.859], [-1.501, -0.76, 0.757, 1.132, 0.498, 0.756]]\nB: [[1.126, -0.366, 0.392, 0.688, 0.942, 0.802], [-1.375, -0.274, 0.471, 1.076, 0.886, 0.947]]\nC: [[0.868, -0.772, 0.151, 0.633, 1.223, 0.791], [-1.775, -0.718, 0.331, 1.093, 0.846, 1.4]]\nD: [[1.114, -0.309, 0.254, 0.953, 0.846, 0.427], [-1.752, 0.101, 0.877, 0.811, 1.045, 0.651]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.61, -0.414, 0.408, 4.655, 4.102, -0.244]]\nB: [[0.311, -0.524, 0.039, 4.829, 4.569, 0.162]]\nC: [[0.203, -0.323, 0.325, 5.217, 4.229, 0.65]]\nD: [[0.089, -0.712, 0.114, 5.287, 4.148, 0.629]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_131_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_131_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the floor in the scene. The camera pose information includes: the rotation matrix: [[0.633294, -0.360819, 0.684652], [-0.773758, -0.312806, 0.550863], [0.015401, -0.878613, -0.477285]]; the translation vector: [3.241882, 3.386626, 1.367882], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.61, -0.414, 0.408, 4.655, 4.102, -0.244]]\nB: [[0.311, -0.524, 0.039, 4.829, 4.569, 0.162]]\nC: [[0.203, -0.323, 0.325, 5.217, 4.229, 0.65]]\nD: [[0.089, -0.712, 0.114, 5.287, 4.148, 0.629]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[2.917, -0.639, 0.621, 0.336, 6.104, 1.183], [0.361, -2.884, 0.637, 5.668, -0.024, 1.879], [-2.761, -1.433, 0.573, -0.228, 0.551, 1.578], [-3.018, -2.023, 1.21, 0.696, 0.033, 1.511], [-2.944, 0.173, 0.693, 0.375, 4.326, 1.889]]\nB: [[2.88, 0.258, 0.921, 0.635, 5.466, 1.974], [-0.061, -2.646, 0.552, 6.114, -0.006, 1.775], [-3.069, -1.6, 0.804, 0.521, 0.433, 1.489], [-3.084, -1.953, 1.232, 0.742, 0.11, 1.43], [-2.84, 1.121, 0.562, 0.204, 4.902, 1.824]]\nC: [[3.129, -0.248, 1.092, 0.28, 6.006, 1.69], [0.277, -3.248, 1.229, 5.639, 0.457, 1.83], [-2.943, -1.702, 1.206, 0.61, 0.818, 1.511], [-2.632, -1.423, 0.42, 0.373, 0.138, 1.635], [-3.02, 0.349, 0.427, 0.566, 4.15, 1.781]]\nD: [[3.003, -0.173, 0.772, 0.324, 5.743, 1.505], [-0.052, -3.097, 0.827, 6.005, 0.286, 1.553], [-3.164, -1.839, 0.77, 0.192, 0.577, 1.362], [-2.872, -1.562, 0.743, 0.498, 0.153, 1.361], [-2.619, 0.636, 0.832, 0.279, 4.454, 1.688]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_132_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_132_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[-0.924593, 0.219455, -0.311397], [0.371095, 0.334047, -0.86643], [-0.086121, -0.916653, -0.390296]]; the translation vector: [7.650298, 2.745242, 1.444521], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[2.917, -0.639, 0.621, 0.336, 6.104, 1.183], [0.361, -2.884, 0.637, 5.668, -0.024, 1.879], [-2.761, -1.433, 0.573, -0.228, 0.551, 1.578], [-3.018, -2.023, 1.21, 0.696, 0.033, 1.511], [-2.944, 0.173, 0.693, 0.375, 4.326, 1.889]]\nB: [[2.88, 0.258, 0.921, 0.635, 5.466, 1.974], [-0.061, -2.646, 0.552, 6.114, -0.006, 1.775], [-3.069, -1.6, 0.804, 0.521, 0.433, 1.489], [-3.084, -1.953, 1.232, 0.742, 0.11, 1.43], [-2.84, 1.121, 0.562, 0.204, 4.902, 1.824]]\nC: [[3.129, -0.248, 1.092, 0.28, 6.006, 1.69], [0.277, -3.248, 1.229, 5.639, 0.457, 1.83], [-2.943, -1.702, 1.206, 0.61, 0.818, 1.511], [-2.632, -1.423, 0.42, 0.373, 0.138, 1.635], [-3.02, 0.349, 0.427, 0.566, 4.15, 1.781]]\nD: [[3.003, -0.173, 0.772, 0.324, 5.743, 1.505], [-0.052, -3.097, 0.827, 6.005, 0.286, 1.553], [-3.164, -1.839, 0.77, 0.192, 0.577, 1.362], [-2.872, -1.562, 0.743, 0.498, 0.153, 1.361], [-2.619, 0.636, 0.832, 0.279, 4.454, 1.688]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.133, 0.902, 0.422, 0.039, 0.22, 0.632]]\nB: [[-0.076, 0.973, 0.415, -0.004, 1.174, 1.248]]\nC: [[0.144, 0.321, 0.705, -0.021, 0.284, 1.035]]\nD: [[0.355, 0.535, 0.346, 0.07, 0.677, 0.805]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_133_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_133_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the dishwasher in the scene. The camera pose information includes: the rotation matrix: [[0.975982, 0.033782, -0.215214], [0.215389, -0.297687, 0.930048], [-0.032648, -0.954066, -0.297814]]; the translation vector: [2.838751, 1.414222, 1.664536], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.133, 0.902, 0.422, 0.039, 0.22, 0.632]]\nB: [[-0.076, 0.973, 0.415, -0.004, 1.174, 1.248]]\nC: [[0.144, 0.321, 0.705, -0.021, 0.284, 1.035]]\nD: [[0.355, 0.535, 0.346, 0.07, 0.677, 0.805]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.578, -0.219, 1.033, 0.257, 3.748, 1.935], [2.209, 0.671, 0.788, -0.095, 3.689, 2.508], [0.223, -2.291, 0.584, 0.625, 0.246, 1.596], [0.409, -2.777, 1.049, -0.283, 0.131, 1.81]]\nB: [[-2.04, 0.586, 0.772, 0.304, 3.812, 1.848], [1.619, 0.488, 0.655, 0.555, 3.765, 1.94], [0.355, -2.984, 1.136, -0.107, 0.055, 1.74], [0.752, -2.78, 0.749, 0.33, 0.188, 1.815]]\nC: [[-1.581, 0.188, 1.09, 0.283, 3.526, 2.183], [1.935, 0.185, 1.045, 0.157, 3.57, 2.128], [0.384, -2.556, 0.863, 0.244, 0.135, 1.758], [0.278, -2.37, 1.022, 0.1, 0.539, 2.045]]\nD: [[-1.492, -0.235, 1.434, 0.171, 3.146, 1.819], [2.128, 0.651, 1.233, 0.526, 3.819, 1.664], [0.295, -2.822, 1.218, -0.087, 0.184, 1.532], [0.45, -1.956, 1.009, 0.299, 0.644, 2.242]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_134_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_134_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[-0.037281, 0.595041, -0.80283], [0.998378, -0.012419, -0.055566], [-0.043034, -0.803599, -0.593613]]; the translation vector: [3.95675, 2.244474, 1.442954], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.578, -0.219, 1.033, 0.257, 3.748, 1.935], [2.209, 0.671, 0.788, -0.095, 3.689, 2.508], [0.223, -2.291, 0.584, 0.625, 0.246, 1.596], [0.409, -2.777, 1.049, -0.283, 0.131, 1.81]]\nB: [[-2.04, 0.586, 0.772, 0.304, 3.812, 1.848], [1.619, 0.488, 0.655, 0.555, 3.765, 1.94], [0.355, -2.984, 1.136, -0.107, 0.055, 1.74], [0.752, -2.78, 0.749, 0.33, 0.188, 1.815]]\nC: [[-1.581, 0.188, 1.09, 0.283, 3.526, 2.183], [1.935, 0.185, 1.045, 0.157, 3.57, 2.128], [0.384, -2.556, 0.863, 0.244, 0.135, 1.758], [0.278, -2.37, 1.022, 0.1, 0.539, 2.045]]\nD: [[-1.492, -0.235, 1.434, 0.171, 3.146, 1.819], [2.128, 0.651, 1.233, 0.526, 3.819, 1.664], [0.295, -2.822, 1.218, -0.087, 0.184, 1.532], [0.45, -1.956, 1.009, 0.299, 0.644, 2.242]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.199, 1.125, 0.399, 0.214, 0.05, 0.589]]\nB: [[0.02, 1.322, 0.476, 0.689, 0.454, 0.768]]\nC: [[0.504, 0.831, 0.74, 0.202, 0.254, 0.39]]\nD: [[0.93, 1.224, 1.103, 0.115, -0.143, 0.862]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_135_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_135_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the shelf in the scene. The camera pose information includes: the rotation matrix: [[0.994446, -0.078697, 0.06988], [-0.104992, -0.787844, 0.606859], [0.007297, -0.610826, -0.791731]]; the translation vector: [1.305105, 0.510448, 1.183315], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.199, 1.125, 0.399, 0.214, 0.05, 0.589]]\nB: [[0.02, 1.322, 0.476, 0.689, 0.454, 0.768]]\nC: [[0.504, 0.831, 0.74, 0.202, 0.254, 0.39]]\nD: [[0.93, 1.224, 1.103, 0.115, -0.143, 0.862]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.403, 0.709, 0.086, 0.284, 0.032, 0.061]]\nB: [[1.358, 0.357, -0.003, 0.163, 0.142, 0.021]]\nC: [[1.451, 0.553, 0.13, 0.387, 0.236, 0.338]]\nD: [[1.592, 0.722, 0.492, 0.54, 0.067, 0.402]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_136_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_136_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the trash can in the scene. The camera pose information includes: the rotation matrix: [[-0.573389, -0.355745, 0.738018], [-0.818965, 0.223754, -0.528424], [0.02285, -0.907403, -0.419641]]; the translation vector: [2.061407, 3.857203, 1.382209], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.403, 0.709, 0.086, 0.284, 0.032, 0.061]]\nB: [[1.358, 0.357, -0.003, 0.163, 0.142, 0.021]]\nC: [[1.451, 0.553, 0.13, 0.387, 0.236, 0.338]]\nD: [[1.592, 0.722, 0.492, 0.54, 0.067, 0.402]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[2.019, 1.716, -0.199, 0.133, 0.443, 0.08]]\nB: [[1.539, 1.317, 0.169, 1.021, 0.789, 0.672]]\nC: [[1.691, 1.543, 0.248, 0.524, 0.565, 0.475]]\nD: [[1.676, 1.663, -0.114, 0.76, 0.881, 0.004]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_137_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_137_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the footrest in the scene. The camera pose information includes: the rotation matrix: [[-0.752388, 0.33007, -0.570058], [0.655329, 0.287372, -0.698542], [-0.066749, -0.89915, -0.43252]]; the translation vector: [3.814293, 2.583141, 1.394159], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[2.019, 1.716, -0.199, 0.133, 0.443, 0.08]]\nB: [[1.539, 1.317, 0.169, 1.021, 0.789, 0.672]]\nC: [[1.691, 1.543, 0.248, 0.524, 0.565, 0.475]]\nD: [[1.676, 1.663, -0.114, 0.76, 0.881, 0.004]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[2.123, 1.117, 1.321, 0.743, 0.381, 0.635], [2.682, 1.29, 0.828, 0.463, 1.156, 0.705], [2.834, 1.547, 0.399, 0.032, 0.368, 0.16], [3.096, 0.047, 0.87, -0.078, 0.326, -0.125], [2.563, 0.993, 1.356, 0.811, 0.73, 0.229], [2.143, 0.969, 1.037, 0.642, 1.052, 0.055], [2.659, -0.615, 0.836, 0.248, 1.054, 0.022], [3.223, -0.649, 1.168, 0.253, 1.288, 0.671], [2.454, -0.393, 0.682, 0.657, 1.137, 0.691], [-3.644, 1.213, 1.46, 0.605, 1.274, 0.706], [-3.657, -0.185, 0.669, 0.323, 1.16, 0.8], [-3.228, -0.103, 1.329, 0.441, 0.997, 0.754], [-3.305, 0.306, 0.543, 0.056, 1.942, 0.326], [-3.554, -0.503, 0.414, 0.642, 0.665, 0.745], [-2.947, -0.695, 0.368, 0.59, 0.436, 0.372], [-3.593, -0.106, 0.806, 0.216, 0.592, 0.301]]\nB: [[2.989, 1.126, 0.794, -0.179, 0.245, 0.369], [2.962, 1.061, 0.623, -0.057, 0.36, 0.431], [2.845, 1.185, 0.945, 0.308, 0.535, 0.574], [2.424, 0.962, 1.637, -0.272, 0.494, 0.77], [3.085, 0.394, 0.93, 0.245, 0.901, 0.482], [2.87, 0.321, 0.254, 0.308, 0.264, 0.679], [2.834, -0.509, 1.34, 0.641, 0.49, 0.271], [2.993, -0.295, 0.769, -0.075, 1.002, 0.589], [3.132, -0.129, 0.78, 0.069, 1.025, 0.007], [-2.917, 1.638, 1.353, 0.35, 0.736, 0.591], [-2.828, -0.168, 1.186, 0.057, 1.347, 0.51], [-3.297, -0.456, 0.362, 0.307, 0.654, 0.781], [-3.301, 0.612, 0.703, 0.328, 1.414, 0.306], [-2.89, -0.213, 0.298, -0.086, 1.058, 0.488], [-2.855, -0.016, -0.219, -0.168, 0.422, -0.035], [-3.555, 0.252, 0.516, -0.109, 1.029, 0.664]]\nC: [[2.568, 1.418, 1.271, 0.257, 0.709, 0.306], [2.646, 1.448, 0.95, 0.305, 0.76, 0.302], [2.592, 1.461, 0.636, 0.212, 0.718, 0.28], [2.65, 0.514, 1.213, 0.222, 0.814, 0.309], [2.738, 0.497, 0.888, 0.381, 0.863, 0.308], [2.639, 0.563, 0.627, 0.305, 0.736, 0.188], [2.693, -0.392, 1.14, 0.281, 0.891, 0.334], [2.727, -0.372, 0.833, 0.29, 0.926, 0.3], [2.691, -0.383, 0.563, 0.264, 0.854, 0.201], [-3.22, 1.231, 1.017, 0.313, 0.915, 0.346], [-3.273, 0.289, 0.923, 0.23, 1.204, 0.355], [-3.222, -0.487, 0.833, 0.334, 0.747, 0.368], [-3.341, 0.627, 0.626, 0.449, 1.466, 0.437], [-3.265, -0.411, 0.526, 0.337, 0.641, 0.343], [-3.203, -0.328, 0.27, 0.175, 0.592, 0.204], [-3.277, 0.365, 0.338, 0.332, 0.934, 0.242]]\nD: [[2.244, 1.249, 1.196, 0.59, 0.671, 0.591], [3.002, 1.584, 0.459, 0.732, 0.625, -0.064], [2.803, 1.399, 0.195, 0.554, 0.24, -0.185], [2.948, 0.428, 1.564, 0.649, 0.642, 0.076], [2.502, 0.944, 1.279, 0.724, 1.079, 0.788], [3.063, 0.247, 0.912, 0.247, 0.578, 0.126], [2.848, -0.809, 0.778, 0.441, 1.15, 0.263], [2.483, -0.756, 0.605, 0.63, 1.407, 0.292], [2.369, -0.586, 0.732, 0.348, 0.461, 0.12], [-3.238, 0.78, 0.778, 0.212, 1.143, -0.102], [-3.116, 0.426, 0.879, 0.248, 1.646, 0.306], [-2.875, -0.393, 1.087, 0.035, 1.245, 0.038], [-3.308, 0.845, 1.118, 0.472, 1.582, 0.109], [-3.33, -0.848, 0.583, 0.088, 1.108, -0.004], [-3.371, -0.081, 0.236, -0.02, 0.647, 0.543], [-3.267, -0.114, -0.13, -0.134, 1.197, -0.109]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_138_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_138_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the books in the scene. The camera pose information includes: the rotation matrix: [[0.892065, -0.360019, 0.273141], [-0.443019, -0.577417, 0.685801], [-0.089185, -0.732786, -0.674589]]; the translation vector: [2.898737, 2.45906, 1.649541], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[2.123, 1.117, 1.321, 0.743, 0.381, 0.635], [2.682, 1.29, 0.828, 0.463, 1.156, 0.705], [2.834, 1.547, 0.399, 0.032, 0.368, 0.16], [3.096, 0.047, 0.87, -0.078, 0.326, -0.125], [2.563, 0.993, 1.356, 0.811, 0.73, 0.229], [2.143, 0.969, 1.037, 0.642, 1.052, 0.055], [2.659, -0.615, 0.836, 0.248, 1.054, 0.022], [3.223, -0.649, 1.168, 0.253, 1.288, 0.671], [2.454, -0.393, 0.682, 0.657, 1.137, 0.691], [-3.644, 1.213, 1.46, 0.605, 1.274, 0.706], [-3.657, -0.185, 0.669, 0.323, 1.16, 0.8], [-3.228, -0.103, 1.329, 0.441, 0.997, 0.754], [-3.305, 0.306, 0.543, 0.056, 1.942, 0.326], [-3.554, -0.503, 0.414, 0.642, 0.665, 0.745], [-2.947, -0.695, 0.368, 0.59, 0.436, 0.372], [-3.593, -0.106, 0.806, 0.216, 0.592, 0.301]]\nB: [[2.989, 1.126, 0.794, -0.179, 0.245, 0.369], [2.962, 1.061, 0.623, -0.057, 0.36, 0.431], [2.845, 1.185, 0.945, 0.308, 0.535, 0.574], [2.424, 0.962, 1.637, -0.272, 0.494, 0.77], [3.085, 0.394, 0.93, 0.245, 0.901, 0.482], [2.87, 0.321, 0.254, 0.308, 0.264, 0.679], [2.834, -0.509, 1.34, 0.641, 0.49, 0.271], [2.993, -0.295, 0.769, -0.075, 1.002, 0.589], [3.132, -0.129, 0.78, 0.069, 1.025, 0.007], [-2.917, 1.638, 1.353, 0.35, 0.736, 0.591], [-2.828, -0.168, 1.186, 0.057, 1.347, 0.51], [-3.297, -0.456, 0.362, 0.307, 0.654, 0.781], [-3.301, 0.612, 0.703, 0.328, 1.414, 0.306], [-2.89, -0.213, 0.298, -0.086, 1.058, 0.488], [-2.855, -0.016, -0.219, -0.168, 0.422, -0.035], [-3.555, 0.252, 0.516, -0.109, 1.029, 0.664]]\nC: [[2.568, 1.418, 1.271, 0.257, 0.709, 0.306], [2.646, 1.448, 0.95, 0.305, 0.76, 0.302], [2.592, 1.461, 0.636, 0.212, 0.718, 0.28], [2.65, 0.514, 1.213, 0.222, 0.814, 0.309], [2.738, 0.497, 0.888, 0.381, 0.863, 0.308], [2.639, 0.563, 0.627, 0.305, 0.736, 0.188], [2.693, -0.392, 1.14, 0.281, 0.891, 0.334], [2.727, -0.372, 0.833, 0.29, 0.926, 0.3], [2.691, -0.383, 0.563, 0.264, 0.854, 0.201], [-3.22, 1.231, 1.017, 0.313, 0.915, 0.346], [-3.273, 0.289, 0.923, 0.23, 1.204, 0.355], [-3.222, -0.487, 0.833, 0.334, 0.747, 0.368], [-3.341, 0.627, 0.626, 0.449, 1.466, 0.437], [-3.265, -0.411, 0.526, 0.337, 0.641, 0.343], [-3.203, -0.328, 0.27, 0.175, 0.592, 0.204], [-3.277, 0.365, 0.338, 0.332, 0.934, 0.242]]\nD: [[2.244, 1.249, 1.196, 0.59, 0.671, 0.591], [3.002, 1.584, 0.459, 0.732, 0.625, -0.064], [2.803, 1.399, 0.195, 0.554, 0.24, -0.185], [2.948, 0.428, 1.564, 0.649, 0.642, 0.076], [2.502, 0.944, 1.279, 0.724, 1.079, 0.788], [3.063, 0.247, 0.912, 0.247, 0.578, 0.126], [2.848, -0.809, 0.778, 0.441, 1.15, 0.263], [2.483, -0.756, 0.605, 0.63, 1.407, 0.292], [2.369, -0.586, 0.732, 0.348, 0.461, 0.12], [-3.238, 0.78, 0.778, 0.212, 1.143, -0.102], [-3.116, 0.426, 0.879, 0.248, 1.646, 0.306], [-2.875, -0.393, 1.087, 0.035, 1.245, 0.038], [-3.308, 0.845, 1.118, 0.472, 1.582, 0.109], [-3.33, -0.848, 0.583, 0.088, 1.108, -0.004], [-3.371, -0.081, 0.236, -0.02, 0.647, 0.543], [-3.267, -0.114, -0.13, -0.134, 1.197, -0.109]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.568, 1.594, 2.336, 3.002, 0.215, 1.78], [-1.527, -0.451, 1.258, 0.103, 4.121, 1.756], [-1.386, -2.636, 1.043, -0.207, -0.22, 1.193], [1.834, 0.934, 1.595, 0.321, 1.764, 2.84], [1.018, -0.319, 0.583, 1.01, 0.681, 1.687]]\nB: [[0.072, 1.537, 1.845, 2.689, 0.191, 1.622], [-1.273, -0.316, 0.956, 0.156, 3.767, 1.891], [-1.14, -2.18, 0.679, 0.246, 0.067, 1.34], [1.381, 0.651, 1.354, 0.135, 1.692, 2.602], [0.889, -0.737, 0.87, 1.059, 1.122, 1.773]]\nC: [[0.21, 1.662, 1.825, 2.75, -0.252, 2.024], [-1.56, -0.058, 0.561, 0.054, 3.741, 2.333], [-1.055, -2.665, 0.535, 0.196, 0.05, 1.825], [1.164, 0.58, 1.628, 0.045, 1.482, 2.195], [1.198, -0.291, 1.331, 0.727, 1.34, 1.309]]\nD: [[-0.147, 1.793, 1.85, 3.103, 0.596, 1.69], [-1.538, -0.388, 0.463, 0.445, 3.441, 1.475], [-1.625, -1.946, 0.934, 0.072, -0.182, 1.409], [1.247, 1.123, 0.994, 0.033, 1.379, 2.521], [0.847, -0.38, 0.424, 0.888, 1.469, 2.148]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_139_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_139_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[0.721847, -0.019511, -0.691778], [0.690918, -0.036893, 0.721991], [-0.039608, -0.999129, -0.013151]]; the translation vector: [1.871862, 0.815296, 1.594356], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.568, 1.594, 2.336, 3.002, 0.215, 1.78], [-1.527, -0.451, 1.258, 0.103, 4.121, 1.756], [-1.386, -2.636, 1.043, -0.207, -0.22, 1.193], [1.834, 0.934, 1.595, 0.321, 1.764, 2.84], [1.018, -0.319, 0.583, 1.01, 0.681, 1.687]]\nB: [[0.072, 1.537, 1.845, 2.689, 0.191, 1.622], [-1.273, -0.316, 0.956, 0.156, 3.767, 1.891], [-1.14, -2.18, 0.679, 0.246, 0.067, 1.34], [1.381, 0.651, 1.354, 0.135, 1.692, 2.602], [0.889, -0.737, 0.87, 1.059, 1.122, 1.773]]\nC: [[0.21, 1.662, 1.825, 2.75, -0.252, 2.024], [-1.56, -0.058, 0.561, 0.054, 3.741, 2.333], [-1.055, -2.665, 0.535, 0.196, 0.05, 1.825], [1.164, 0.58, 1.628, 0.045, 1.482, 2.195], [1.198, -0.291, 1.331, 0.727, 1.34, 1.309]]\nD: [[-0.147, 1.793, 1.85, 3.103, 0.596, 1.69], [-1.538, -0.388, 0.463, 0.445, 3.441, 1.475], [-1.625, -1.946, 0.934, 0.072, -0.182, 1.409], [1.247, 1.123, 0.994, 0.033, 1.379, 2.521], [0.847, -0.38, 0.424, 0.888, 1.469, 2.148]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.013, -1.238, 0.461, 0.493, 0.288, 0.575], [-1.147, 3.348, 0.377, 0.564, 1.212, 0.508], [0.233, -3.522, 0.086, 0.938, 1.233, 0.371], [1.742, -2.531, 0.357, 1.04, 1.008, 0.183], [-0.823, -2.335, 0.1, 1.256, 0.934, 0.241], [-1.592, 0.953, 0.372, 1.131, 0.478, 0.788], [-0.027, 4.368, 1.235, 0.272, -0.107, 0.356], [2.853, 3.344, 0.339, 0.665, 0.157, 0.567], [2.027, 4.048, 1.116, 0.515, 0.345, 0.52], [0.87, 3.839, 0.8, 0.696, -0.287, 0.501], [1.369, 2.326, 0.538, 0.245, 0.786, 0.243], [0.357, 3.043, 0.662, 0.778, 0.111, 0.513], [1.447, 2.656, 0.359, 0.141, 0.33, 0.84]]\nB: [[0.068, -1.042, 0.544, 0.886, 0.779, 0.545], [-1.479, 3.034, 0.552, 0.898, 0.801, 0.497], [-0.06, -3.112, 0.543, 0.84, 0.784, 0.511], [1.274, -2.138, 0.543, 0.738, 0.855, 0.547], [-0.786, -2.2, 0.536, 0.806, 0.879, 0.474], [-1.39, 1.148, 0.549, 0.822, 0.745, 0.54], [0.444, 4.003, 0.791, 0.485, 0.139, 0.082], [2.511, 3.843, 0.762, 0.448, 0.131, 0.083], [1.884, 3.916, 0.775, 0.46, 0.149, 0.083], [1.153, 3.946, 0.791, 0.453, 0.166, 0.098], [1.053, 2.651, 0.606, 0.523, 0.61, 0.485], [0.449, 2.899, 0.606, 0.476, 0.557, 0.467], [1.688, 2.596, 0.605, 0.503, 0.592, 0.451]]\nC: [[0.102, -0.947, 0.484, 1.245, 0.79, 0.775], [-1.118, 3.375, 0.842, 0.401, 1.069, 0.196], [0.407, -2.782, 0.934, 1.07, 0.467, 0.067], [1.541, -2.237, 0.403, 0.888, 1.246, 0.245], [-0.917, -1.889, 0.628, 0.956, 1.204, 0.523], [-1.021, 1.176, 0.814, 0.368, 0.456, 0.678], [0.573, 4.084, 1.228, 0.815, 0.355, 0.385], [2.848, 3.659, 0.488, 0.047, 0.047, 0.092], [1.907, 4.123, 0.733, 0.026, 0.33, -0.009], [1.212, 4.443, 1.139, 0.078, -0.234, 0.21], [0.892, 2.632, 1.105, 0.392, 1.061, 0.435], [0.166, 3.349, 0.352, 0.282, 0.481, 0.755], [1.529, 2.634, 0.397, 0.324, 0.54, 0.072]]\nD: [[-0.194, -1.122, 0.104, 1.378, 1.12, 0.253], [-1.005, 3.518, 0.745, 0.428, 0.792, 0.08], [0.214, -2.901, 0.412, 0.728, 0.43, 0.91], [1.573, -2.219, 0.557, 0.934, 1.13, 0.876], [-0.782, -2.154, 0.858, 0.543, 1.135, 0.108], [-1.448, 1.097, 0.92, 1.197, 0.497, 0.181], [0.045, 3.571, 0.423, 0.736, -0.143, -0.417], [2.244, 4.297, 0.746, 0.101, 0.473, -0.26], [1.879, 3.692, 0.375, 0.596, -0.051, -0.206], [1.372, 4.096, 0.929, 0.827, -0.125, 0.334], [1.326, 2.984, 0.19, 0.493, 0.248, 0.576], [0.74, 2.996, 0.477, 0.655, 0.254, 0.849], [2.003, 3.037, 0.818, 0.844, 0.675, 0.272]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_140_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_140_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the chair in the scene. The camera pose information includes: the rotation matrix: [[0.853196, -0.330732, 0.403328], [-0.517406, -0.438892, 0.734619], [-0.065945, -0.835458, -0.545584]]; the translation vector: [2.734716, 6.775187, 1.412962], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.013, -1.238, 0.461, 0.493, 0.288, 0.575], [-1.147, 3.348, 0.377, 0.564, 1.212, 0.508], [0.233, -3.522, 0.086, 0.938, 1.233, 0.371], [1.742, -2.531, 0.357, 1.04, 1.008, 0.183], [-0.823, -2.335, 0.1, 1.256, 0.934, 0.241], [-1.592, 0.953, 0.372, 1.131, 0.478, 0.788], [-0.027, 4.368, 1.235, 0.272, -0.107, 0.356], [2.853, 3.344, 0.339, 0.665, 0.157, 0.567], [2.027, 4.048, 1.116, 0.515, 0.345, 0.52], [0.87, 3.839, 0.8, 0.696, -0.287, 0.501], [1.369, 2.326, 0.538, 0.245, 0.786, 0.243], [0.357, 3.043, 0.662, 0.778, 0.111, 0.513], [1.447, 2.656, 0.359, 0.141, 0.33, 0.84]]\nB: [[0.068, -1.042, 0.544, 0.886, 0.779, 0.545], [-1.479, 3.034, 0.552, 0.898, 0.801, 0.497], [-0.06, -3.112, 0.543, 0.84, 0.784, 0.511], [1.274, -2.138, 0.543, 0.738, 0.855, 0.547], [-0.786, -2.2, 0.536, 0.806, 0.879, 0.474], [-1.39, 1.148, 0.549, 0.822, 0.745, 0.54], [0.444, 4.003, 0.791, 0.485, 0.139, 0.082], [2.511, 3.843, 0.762, 0.448, 0.131, 0.083], [1.884, 3.916, 0.775, 0.46, 0.149, 0.083], [1.153, 3.946, 0.791, 0.453, 0.166, 0.098], [1.053, 2.651, 0.606, 0.523, 0.61, 0.485], [0.449, 2.899, 0.606, 0.476, 0.557, 0.467], [1.688, 2.596, 0.605, 0.503, 0.592, 0.451]]\nC: [[0.102, -0.947, 0.484, 1.245, 0.79, 0.775], [-1.118, 3.375, 0.842, 0.401, 1.069, 0.196], [0.407, -2.782, 0.934, 1.07, 0.467, 0.067], [1.541, -2.237, 0.403, 0.888, 1.246, 0.245], [-0.917, -1.889, 0.628, 0.956, 1.204, 0.523], [-1.021, 1.176, 0.814, 0.368, 0.456, 0.678], [0.573, 4.084, 1.228, 0.815, 0.355, 0.385], [2.848, 3.659, 0.488, 0.047, 0.047, 0.092], [1.907, 4.123, 0.733, 0.026, 0.33, -0.009], [1.212, 4.443, 1.139, 0.078, -0.234, 0.21], [0.892, 2.632, 1.105, 0.392, 1.061, 0.435], [0.166, 3.349, 0.352, 0.282, 0.481, 0.755], [1.529, 2.634, 0.397, 0.324, 0.54, 0.072]]\nD: [[-0.194, -1.122, 0.104, 1.378, 1.12, 0.253], [-1.005, 3.518, 0.745, 0.428, 0.792, 0.08], [0.214, -2.901, 0.412, 0.728, 0.43, 0.91], [1.573, -2.219, 0.557, 0.934, 1.13, 0.876], [-0.782, -2.154, 0.858, 0.543, 1.135, 0.108], [-1.448, 1.097, 0.92, 1.197, 0.497, 0.181], [0.045, 3.571, 0.423, 0.736, -0.143, -0.417], [2.244, 4.297, 0.746, 0.101, 0.473, -0.26], [1.879, 3.692, 0.375, 0.596, -0.051, -0.206], [1.372, 4.096, 0.929, 0.827, -0.125, 0.334], [1.326, 2.984, 0.19, 0.493, 0.248, 0.576], [0.74, 2.996, 0.477, 0.655, 0.254, 0.849], [2.003, 3.037, 0.818, 0.844, 0.675, 0.272]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.478, -1.621, 1.471, 0.04, 0.607, 0.77], [-0.622, -0.28, 0.778, 0.596, 0.791, 0.172], [0.68, -2.333, 1.441, 0.527, 0.774, 0.878], [0.47, -3.455, 1.236, 0.145, 0.605, 0.702], [-1.07, -2.607, 1.289, 0.421, 0.201, 0.117], [-0.819, -3.811, 1.501, 0.378, 0.459, 0.305], [-0.289, -1.598, 0.306, 0.193, 0.374, 1.351], [-0.144, -0.28, 1.064, 0.516, 0.462, 1.314], [-0.472, 1.134, 0.95, 0.612, 0.425, 0.242], [0.292, 1.559, -0.0, 1.024, 0.739, 0.637], [1.632, 1.532, 0.377, 0.961, 0.147, 0.54], [1.253, 1.503, 0.223, 0.356, 0.173, 0.917], [2.079, 0.639, 0.524, 0.497, 0.63, 1.101], [1.452, -0.032, 0.35, 1.029, 0.429, 0.469], [1.964, -1.067, 0.351, 1.202, 1.067, 0.649], [1.915, -1.339, 0.962, 0.392, 0.481, -0.02]]\nB: [[-1.05, -1.003, 1.329, 0.32, 0.076, 0.616], [-0.594, -0.426, 0.767, 0.622, 0.307, 0.007], [0.602, -2.305, 1.043, 0.218, 0.243, 0.681], [0.924, -3.409, 0.98, 0.773, 0.471, 1.089], [-0.329, -2.354, 0.789, 0.408, 0.875, 0.623], [-0.349, -3.787, 1.449, 0.31, 0.976, 0.266], [0.652, -1.018, 1.006, 0.796, 0.883, 0.697], [0.628, -0.604, 0.772, 0.114, 0.996, 0.953], [-1.118, 1.128, 0.061, 0.216, 0.338, 0.764], [0.65, 1.585, 0.323, 0.699, 0.859, 0.499], [1.631, 1.493, 0.088, 1.244, 0.636, 1.121], [1.187, 0.927, 0.824, 0.22, 0.275, 0.894], [1.693, 0.178, 0.2, 0.357, 0.96, 0.555], [1.798, -0.426, 0.556, 0.111, 1.016, 0.592], [1.891, -0.692, 0.467, 0.91, 1.42, 0.916], [1.538, -2.029, 0.941, 0.82, 1.037, 0.527]]\nC: [[-0.797, -1.314, 1.076, 0.174, 0.538, 0.297], [-0.804, -0.643, 0.993, 0.18, 0.483, 0.317], [0.265, -2.771, 0.976, 0.564, 0.483, 0.724], [0.443, -3.263, 1.105, 0.404, 0.755, 0.654], [-0.786, -2.701, 1.224, 0.235, 0.623, 0.423], [-0.579, -3.467, 1.386, 0.149, 0.491, 0.284], [0.195, -1.173, 0.617, 0.439, 0.594, 0.981], [0.152, -0.693, 0.576, 0.363, 0.648, 0.901], [-0.836, 1.438, 0.551, 0.438, 0.598, 0.552], [0.258, 1.345, 0.466, 0.561, 0.507, 0.736], [1.246, 1.609, 0.396, 0.752, 0.566, 0.883], [1.646, 1.19, 0.575, 0.611, 0.592, 0.619], [1.73, 0.493, 0.521, 0.445, 0.583, 0.771], [1.766, -0.179, 0.551, 0.536, 0.58, 0.774], [1.864, -0.697, 0.533, 0.816, 1.199, 0.994], [1.74, -1.667, 0.652, 0.516, 0.607, 0.36]]\nD: [[-0.49, -1.289, 0.9, 0.491, 0.951, 0.59], [-1.107, -1.021, 1.479, 0.523, 0.505, 0.09], [-0.233, -2.971, 1.208, 0.309, 0.946, 0.617], [0.587, -2.842, 0.811, 0.828, 0.821, 0.621], [-0.674, -2.976, 1.257, -0.139, 0.206, 0.639], [-0.269, -3.606, 1.299, -0.169, 0.133, 0.486], [0.033, -0.697, 1.063, 0.567, 1.022, 1.265], [0.252, -0.714, 0.426, 0.514, 0.322, 1.359], [-1.161, 1.486, 0.647, 0.683, 0.314, 0.187], [-0.11, 1.173, 0.725, 0.462, 0.264, 1.138], [1.341, 1.682, 0.277, 0.312, 0.356, 0.94], [1.815, 1.188, 0.624, 1.015, 0.174, 0.508], [1.714, 0.423, 0.79, 0.889, 0.659, 0.533], [1.648, -0.367, 0.718, 0.468, 1.049, 0.941], [2.335, -0.44, 0.71, 1.148, 1.407, 0.783], [1.632, -1.945, 0.223, 0.453, 0.239, 0.703]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_141_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_141_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the chair in the scene. The camera pose information includes: the rotation matrix: [[-0.476704, 0.41796, -0.773345], [0.878176, 0.186897, -0.440314], [-0.039498, -0.889033, -0.456137]]; the translation vector: [2.405627, 4.675593, 1.276166], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.478, -1.621, 1.471, 0.04, 0.607, 0.77], [-0.622, -0.28, 0.778, 0.596, 0.791, 0.172], [0.68, -2.333, 1.441, 0.527, 0.774, 0.878], [0.47, -3.455, 1.236, 0.145, 0.605, 0.702], [-1.07, -2.607, 1.289, 0.421, 0.201, 0.117], [-0.819, -3.811, 1.501, 0.378, 0.459, 0.305], [-0.289, -1.598, 0.306, 0.193, 0.374, 1.351], [-0.144, -0.28, 1.064, 0.516, 0.462, 1.314], [-0.472, 1.134, 0.95, 0.612, 0.425, 0.242], [0.292, 1.559, -0.0, 1.024, 0.739, 0.637], [1.632, 1.532, 0.377, 0.961, 0.147, 0.54], [1.253, 1.503, 0.223, 0.356, 0.173, 0.917], [2.079, 0.639, 0.524, 0.497, 0.63, 1.101], [1.452, -0.032, 0.35, 1.029, 0.429, 0.469], [1.964, -1.067, 0.351, 1.202, 1.067, 0.649], [1.915, -1.339, 0.962, 0.392, 0.481, -0.02]]\nB: [[-1.05, -1.003, 1.329, 0.32, 0.076, 0.616], [-0.594, -0.426, 0.767, 0.622, 0.307, 0.007], [0.602, -2.305, 1.043, 0.218, 0.243, 0.681], [0.924, -3.409, 0.98, 0.773, 0.471, 1.089], [-0.329, -2.354, 0.789, 0.408, 0.875, 0.623], [-0.349, -3.787, 1.449, 0.31, 0.976, 0.266], [0.652, -1.018, 1.006, 0.796, 0.883, 0.697], [0.628, -0.604, 0.772, 0.114, 0.996, 0.953], [-1.118, 1.128, 0.061, 0.216, 0.338, 0.764], [0.65, 1.585, 0.323, 0.699, 0.859, 0.499], [1.631, 1.493, 0.088, 1.244, 0.636, 1.121], [1.187, 0.927, 0.824, 0.22, 0.275, 0.894], [1.693, 0.178, 0.2, 0.357, 0.96, 0.555], [1.798, -0.426, 0.556, 0.111, 1.016, 0.592], [1.891, -0.692, 0.467, 0.91, 1.42, 0.916], [1.538, -2.029, 0.941, 0.82, 1.037, 0.527]]\nC: [[-0.797, -1.314, 1.076, 0.174, 0.538, 0.297], [-0.804, -0.643, 0.993, 0.18, 0.483, 0.317], [0.265, -2.771, 0.976, 0.564, 0.483, 0.724], [0.443, -3.263, 1.105, 0.404, 0.755, 0.654], [-0.786, -2.701, 1.224, 0.235, 0.623, 0.423], [-0.579, -3.467, 1.386, 0.149, 0.491, 0.284], [0.195, -1.173, 0.617, 0.439, 0.594, 0.981], [0.152, -0.693, 0.576, 0.363, 0.648, 0.901], [-0.836, 1.438, 0.551, 0.438, 0.598, 0.552], [0.258, 1.345, 0.466, 0.561, 0.507, 0.736], [1.246, 1.609, 0.396, 0.752, 0.566, 0.883], [1.646, 1.19, 0.575, 0.611, 0.592, 0.619], [1.73, 0.493, 0.521, 0.445, 0.583, 0.771], [1.766, -0.179, 0.551, 0.536, 0.58, 0.774], [1.864, -0.697, 0.533, 0.816, 1.199, 0.994], [1.74, -1.667, 0.652, 0.516, 0.607, 0.36]]\nD: [[-0.49, -1.289, 0.9, 0.491, 0.951, 0.59], [-1.107, -1.021, 1.479, 0.523, 0.505, 0.09], [-0.233, -2.971, 1.208, 0.309, 0.946, 0.617], [0.587, -2.842, 0.811, 0.828, 0.821, 0.621], [-0.674, -2.976, 1.257, -0.139, 0.206, 0.639], [-0.269, -3.606, 1.299, -0.169, 0.133, 0.486], [0.033, -0.697, 1.063, 0.567, 1.022, 1.265], [0.252, -0.714, 0.426, 0.514, 0.322, 1.359], [-1.161, 1.486, 0.647, 0.683, 0.314, 0.187], [-0.11, 1.173, 0.725, 0.462, 0.264, 1.138], [1.341, 1.682, 0.277, 0.312, 0.356, 0.94], [1.815, 1.188, 0.624, 1.015, 0.174, 0.508], [1.714, 0.423, 0.79, 0.889, 0.659, 0.533], [1.648, -0.367, 0.718, 0.468, 1.049, 0.941], [2.335, -0.44, 0.71, 1.148, 1.407, 0.783], [1.632, -1.945, 0.223, 0.453, 0.239, 0.703]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.214, 2.51, 1.365, 3.041, 0.194, 2.765], [-0.05, -2.478, 0.301, 2.986, 0.3, 0.641], [-1.526, -0.161, 1.336, 0.225, 4.64, 2.734]]\nB: [[0.048, 2.151, 1.156, 2.76, 0.655, 2.821], [0.225, -2.827, 0.677, 3.049, -0.043, 0.254], [-1.759, -0.568, 1.729, -0.249, 5.02, 2.969]]\nC: [[0.558, 2.736, 1.619, 3.45, -0.161, 2.854], [-0.367, -2.102, 0.777, 2.594, 0.161, 0.236], [-1.277, -0.254, 1.397, -0.136, 4.615, 2.411]]\nD: [[0.699, 2.21, 1.721, 3.445, -0.097, 2.767], [0.274, -2.743, -0.017, 2.983, 0.564, 0.816], [-1.467, -0.193, 1.628, 0.718, 4.962, 2.711]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_142_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_142_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[-0.207785, -0.462455, 0.861952], [-0.977184, 0.13779, -0.161637], [-0.044019, -0.875871, -0.480534]]; the translation vector: [2.720584, 1.654419, 1.522448], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.214, 2.51, 1.365, 3.041, 0.194, 2.765], [-0.05, -2.478, 0.301, 2.986, 0.3, 0.641], [-1.526, -0.161, 1.336, 0.225, 4.64, 2.734]]\nB: [[0.048, 2.151, 1.156, 2.76, 0.655, 2.821], [0.225, -2.827, 0.677, 3.049, -0.043, 0.254], [-1.759, -0.568, 1.729, -0.249, 5.02, 2.969]]\nC: [[0.558, 2.736, 1.619, 3.45, -0.161, 2.854], [-0.367, -2.102, 0.777, 2.594, 0.161, 0.236], [-1.277, -0.254, 1.397, -0.136, 4.615, 2.411]]\nD: [[0.699, 2.21, 1.721, 3.445, -0.097, 2.767], [0.274, -2.743, -0.017, 2.983, 0.564, 0.816], [-1.467, -0.193, 1.628, 0.718, 4.962, 2.711]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.781, -0.092, 1.437, 0.297, 5.42, 2.838], [-0.225, -2.203, -0.028, 3.04, -0.15, 0.159], [0.563, 2.457, 1.86, 3.628, 0.174, 3.621], [1.294, -0.516, 1.217, 0.088, 5.292, 2.913], [-1.437, -2.905, 0.867, 0.166, -0.17, 0.831]]\nB: [[-1.712, -0.169, 1.937, -0.166, 5.172, 3.249], [0.409, -2.556, 0.634, 3.096, 0.671, 0.11], [-0.287, 2.175, 1.704, 3.703, 0.15, 2.806], [2.158, 0.248, 1.0, 0.669, 5.195, 2.453], [-1.117, -2.267, 1.561, 0.31, -0.422, 1.139]]\nC: [[-1.796, -0.26, 1.071, 0.363, 4.986, 2.747], [-0.333, -2.47, 0.362, 3.532, -0.124, 0.597], [0.208, 2.122, 1.319, 3.656, -0.186, 2.723], [1.521, -0.537, 0.986, 0.704, 5.101, 2.943], [-1.457, -2.856, 0.86, 0.281, 0.313, 0.878]]\nD: [[-1.474, 0.024, 1.526, 0.216, 4.974, 3.09], [0.118, -2.408, 0.332, 3.201, 0.275, 0.54], [0.144, 2.522, 1.535, 3.347, 0.23, 3.137], [1.788, -0.144, 1.382, 0.213, 5.326, 2.779], [-1.437, -2.464, 1.35, 0.243, 0.036, 0.743]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_143_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_143_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[-0.45377, -0.425062, 0.783208], [-0.891046, 0.227634, -0.392708], [-0.01136, -0.876074, -0.482043]]; the translation vector: [2.25004, 3.862298, 1.519108], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.781, -0.092, 1.437, 0.297, 5.42, 2.838], [-0.225, -2.203, -0.028, 3.04, -0.15, 0.159], [0.563, 2.457, 1.86, 3.628, 0.174, 3.621], [1.294, -0.516, 1.217, 0.088, 5.292, 2.913], [-1.437, -2.905, 0.867, 0.166, -0.17, 0.831]]\nB: [[-1.712, -0.169, 1.937, -0.166, 5.172, 3.249], [0.409, -2.556, 0.634, 3.096, 0.671, 0.11], [-0.287, 2.175, 1.704, 3.703, 0.15, 2.806], [2.158, 0.248, 1.0, 0.669, 5.195, 2.453], [-1.117, -2.267, 1.561, 0.31, -0.422, 1.139]]\nC: [[-1.796, -0.26, 1.071, 0.363, 4.986, 2.747], [-0.333, -2.47, 0.362, 3.532, -0.124, 0.597], [0.208, 2.122, 1.319, 3.656, -0.186, 2.723], [1.521, -0.537, 0.986, 0.704, 5.101, 2.943], [-1.457, -2.856, 0.86, 0.281, 0.313, 0.878]]\nD: [[-1.474, 0.024, 1.526, 0.216, 4.974, 3.09], [0.118, -2.408, 0.332, 3.201, 0.275, 0.54], [0.144, 2.522, 1.535, 3.347, 0.23, 3.137], [1.788, -0.144, 1.382, 0.213, 5.326, 2.779], [-1.437, -2.464, 1.35, 0.243, 0.036, 0.743]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[2.29, -0.316, 1.432, 0.063, 4.92, 2.21], [-1.382, -1.33, 2.175, 0.695, 0.538, 0.2], [-1.806, -2.363, 0.83, 0.352, 1.114, 1.836], [-1.306, -1.788, 0.815, 0.84, 0.3, 1.933], [-2.082, -0.191, 1.078, 0.269, 3.774, 1.876], [-1.331, 2.183, 1.747, 0.179, -0.216, 1.553], [-1.305, 2.378, 1.485, 0.225, 1.117, 1.988], [0.552, 2.732, 1.097, 2.615, 0.213, 2.449]]\nB: [[2.019, 0.108, 1.002, 0.215, 5.208, 2.059], [-1.022, -1.729, 2.165, 0.645, 0.146, 0.247], [-1.383, -1.998, 1.17, 0.215, 0.925, 2.24], [-1.526, -1.582, 1.263, 0.348, 0.152, 2.156], [-1.694, 0.207, 1.164, 0.178, 3.686, 2.357], [-1.644, 1.973, 1.343, 0.176, 0.151, 1.146], [-1.605, 2.692, 1.055, 0.124, 1.358, 1.982], [0.625, 2.804, 0.995, 2.8, 0.361, 2.1]]\nC: [[1.702, 0.103, 1.118, 0.347, 5.169, 2.205], [-0.755, -1.506, 2.319, 1.022, 0.542, -0.064], [-1.248, -1.952, 1.27, 0.08, 1.199, 2.239], [-1.042, -1.657, 1.027, 0.155, -0.197, 2.421], [-1.513, 0.045, 1.167, -0.103, 3.723, 2.465], [-1.23, 1.582, 1.115, -0.014, -0.31, 1.511], [-1.196, 2.213, 1.364, -0.205, 1.046, 1.714], [0.962, 2.867, 0.955, 2.429, 0.313, 2.593]]\nD: [[2.083, 0.385, 1.347, 0.273, 5.186, 1.86], [-0.546, -1.555, 1.851, 0.975, 0.412, 0.638], [-1.077, -1.883, 1.417, -0.014, 0.602, 2.249], [-1.395, -1.99, 1.177, -0.094, -0.079, 2.003], [-1.5, 0.548, 1.221, 0.453, 3.489, 2.126], [-2.081, 1.694, 1.43, -0.163, 0.443, 1.038], [-1.256, 2.343, 0.839, 0.584, 1.506, 1.621], [0.155, 3.04, 0.757, 2.991, 0.014, 2.136]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_144_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_144_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[0.804414, -0.195207, 0.561082], [-0.593456, -0.306943, 0.74404], [0.026978, -0.931494, -0.362756]]; the translation vector: [4.397897, 1.805397, 1.263968], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[2.29, -0.316, 1.432, 0.063, 4.92, 2.21], [-1.382, -1.33, 2.175, 0.695, 0.538, 0.2], [-1.806, -2.363, 0.83, 0.352, 1.114, 1.836], [-1.306, -1.788, 0.815, 0.84, 0.3, 1.933], [-2.082, -0.191, 1.078, 0.269, 3.774, 1.876], [-1.331, 2.183, 1.747, 0.179, -0.216, 1.553], [-1.305, 2.378, 1.485, 0.225, 1.117, 1.988], [0.552, 2.732, 1.097, 2.615, 0.213, 2.449]]\nB: [[2.019, 0.108, 1.002, 0.215, 5.208, 2.059], [-1.022, -1.729, 2.165, 0.645, 0.146, 0.247], [-1.383, -1.998, 1.17, 0.215, 0.925, 2.24], [-1.526, -1.582, 1.263, 0.348, 0.152, 2.156], [-1.694, 0.207, 1.164, 0.178, 3.686, 2.357], [-1.644, 1.973, 1.343, 0.176, 0.151, 1.146], [-1.605, 2.692, 1.055, 0.124, 1.358, 1.982], [0.625, 2.804, 0.995, 2.8, 0.361, 2.1]]\nC: [[1.702, 0.103, 1.118, 0.347, 5.169, 2.205], [-0.755, -1.506, 2.319, 1.022, 0.542, -0.064], [-1.248, -1.952, 1.27, 0.08, 1.199, 2.239], [-1.042, -1.657, 1.027, 0.155, -0.197, 2.421], [-1.513, 0.045, 1.167, -0.103, 3.723, 2.465], [-1.23, 1.582, 1.115, -0.014, -0.31, 1.511], [-1.196, 2.213, 1.364, -0.205, 1.046, 1.714], [0.962, 2.867, 0.955, 2.429, 0.313, 2.593]]\nD: [[2.083, 0.385, 1.347, 0.273, 5.186, 1.86], [-0.546, -1.555, 1.851, 0.975, 0.412, 0.638], [-1.077, -1.883, 1.417, -0.014, 0.602, 2.249], [-1.395, -1.99, 1.177, -0.094, -0.079, 2.003], [-1.5, 0.548, 1.221, 0.453, 3.489, 2.126], [-2.081, 1.694, 1.43, -0.163, 0.443, 1.038], [-1.256, 2.343, 0.839, 0.584, 1.506, 1.621], [0.155, 3.04, 0.757, 2.991, 0.014, 2.136]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.219, -0.964, 1.58, 0.354, 3.912, 2.347], [0.255, 0.996, 1.173, 3.495, 1.006, 2.248], [1.513, 0.137, 0.79, 0.63, 3.182, 2.432]]\nB: [[-1.818, -0.647, 1.066, 0.433, 4.095, 1.902], [0.12, 0.784, 1.447, 3.712, 0.386, 2.623], [1.292, -0.011, 0.89, 0.451, 3.017, 2.105]]\nC: [[-1.598, -0.539, 1.125, 0.503, 3.791, 2.392], [-0.019, 1.26, 1.209, 3.332, 0.548, 2.478], [1.708, -0.009, 1.196, 0.447, 2.783, 2.468]]\nD: [[-1.147, -0.143, 1.224, 0.476, 4.202, 2.039], [-0.033, 1.197, 1.039, 3.572, 0.489, 2.65], [1.648, -0.334, 1.403, 0.735, 3.031, 2.541]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_145_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_145_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[0.218501, -0.721835, 0.656667], [-0.97193, -0.10083, 0.212566], [-0.087226, -0.684681, -0.723605]]; the translation vector: [2.10902, 2.428258, 1.386435], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.219, -0.964, 1.58, 0.354, 3.912, 2.347], [0.255, 0.996, 1.173, 3.495, 1.006, 2.248], [1.513, 0.137, 0.79, 0.63, 3.182, 2.432]]\nB: [[-1.818, -0.647, 1.066, 0.433, 4.095, 1.902], [0.12, 0.784, 1.447, 3.712, 0.386, 2.623], [1.292, -0.011, 0.89, 0.451, 3.017, 2.105]]\nC: [[-1.598, -0.539, 1.125, 0.503, 3.791, 2.392], [-0.019, 1.26, 1.209, 3.332, 0.548, 2.478], [1.708, -0.009, 1.196, 0.447, 2.783, 2.468]]\nD: [[-1.147, -0.143, 1.224, 0.476, 4.202, 2.039], [-0.033, 1.197, 1.039, 3.572, 0.489, 2.65], [1.648, -0.334, 1.403, 0.735, 3.031, 2.541]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.089, 0.93, 0.906, 1.952, 6.847, 0.759], [2.364, 2.183, -0.461, 0.089, -0.064, -0.412], [0.126, -4.445, 0.264, 1.544, 0.593, 0.846], [1.593, -4.523, 0.942, 1.504, 1.198, 0.582]]\nB: [[0.288, 1.03, -0.052, 1.738, 7.022, 0.872], [3.315, 2.231, -0.328, 0.592, 0.336, -0.023], [0.311, -4.176, 1.057, 1.806, 0.812, 1.384], [1.759, -3.771, 0.974, 2.086, 0.713, 1.164]]\nC: [[0.167, 0.689, 0.442, 1.571, 6.663, 0.887], [2.849, 2.011, -0.011, 0.132, 0.183, 0.035], [-0.085, -4.074, 0.615, 1.543, 0.713, 0.958], [1.39, -4.168, 0.506, 1.716, 0.715, 0.966]]\nD: [[0.313, 0.252, 0.284, 1.649, 6.826, 1.244], [2.392, 1.917, -0.34, 0.488, -0.05, 0.218], [0.064, -3.679, 0.658, 2.001, 0.36, 1.007], [1.092, -4.59, 0.839, 1.267, 0.336, 1.034]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_146_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_146_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the table in the scene. The camera pose information includes: the rotation matrix: [[-0.241978, -0.427128, 0.871211], [-0.963615, 0.210861, -0.164264], [-0.113543, -0.879261, -0.462611]]; the translation vector: [2.164319, 10.11033, 1.716674], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.089, 0.93, 0.906, 1.952, 6.847, 0.759], [2.364, 2.183, -0.461, 0.089, -0.064, -0.412], [0.126, -4.445, 0.264, 1.544, 0.593, 0.846], [1.593, -4.523, 0.942, 1.504, 1.198, 0.582]]\nB: [[0.288, 1.03, -0.052, 1.738, 7.022, 0.872], [3.315, 2.231, -0.328, 0.592, 0.336, -0.023], [0.311, -4.176, 1.057, 1.806, 0.812, 1.384], [1.759, -3.771, 0.974, 2.086, 0.713, 1.164]]\nC: [[0.167, 0.689, 0.442, 1.571, 6.663, 0.887], [2.849, 2.011, -0.011, 0.132, 0.183, 0.035], [-0.085, -4.074, 0.615, 1.543, 0.713, 0.958], [1.39, -4.168, 0.506, 1.716, 0.715, 0.966]]\nD: [[0.313, 0.252, 0.284, 1.649, 6.826, 1.244], [2.392, 1.917, -0.34, 0.488, -0.05, 0.218], [0.064, -3.679, 0.658, 2.001, 0.36, 1.007], [1.092, -4.59, 0.839, 1.267, 0.336, 1.034]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.766, -1.392, 1.241, 0.359, 0.114, 0.509]]\nB: [[0.818, -0.933, 0.887, 0.454, 0.574, 0.13]]\nC: [[0.354, -0.503, 0.874, 0.511, 0.736, 0.517]]\nD: [[1.154, -1.214, 1.131, 0.407, 0.409, -0.18]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_147_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_147_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the paper cutter in the scene. The camera pose information includes: the rotation matrix: [[0.624751, -0.31057, 0.716403], [-0.780527, -0.273701, 0.562018], [0.021534, -0.910293, -0.413403]]; the translation vector: [-0.212106, 0.775797, 1.619325], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.766, -1.392, 1.241, 0.359, 0.114, 0.509]]\nB: [[0.818, -0.933, 0.887, 0.454, 0.574, 0.13]]\nC: [[0.354, -0.503, 0.874, 0.511, 0.736, 0.517]]\nD: [[1.154, -1.214, 1.131, 0.407, 0.409, -0.18]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.354, -1.662, 1.012, 0.018, 0.115, 0.103]]\nB: [[-0.792, -1.485, 1.441, 0.393, -0.105, 0.505]]\nC: [[-0.528, -1.745, 1.201, 0.1, 0.492, -0.087]]\nD: [[-0.815, -1.664, 1.36, -0.019, -0.178, -0.353]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_148_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_148_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the light switch in the scene. The camera pose information includes: the rotation matrix: [[-0.677945, 0.409221, -0.610679], [0.735109, 0.38004, -0.561413], [0.00234, -0.829523, -0.558468]]; the translation vector: [3.092599, 2.044437, 1.437429], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.354, -1.662, 1.012, 0.018, 0.115, 0.103]]\nB: [[-0.792, -1.485, 1.441, 0.393, -0.105, 0.505]]\nC: [[-0.528, -1.745, 1.201, 0.1, 0.492, -0.087]]\nD: [[-0.815, -1.664, 1.36, -0.019, -0.178, -0.353]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.747, -2.431, 0.458, 6.984, 5.717, 0.813], [-0.691, 2.68, 0.322, 9.392, 3.093, 0.827]]\nB: [[0.057, -2.429, 0.573, 7.86, 5.95, 0.072], [-0.235, 2.427, 0.641, 8.832, 2.983, 0.523]]\nC: [[0.397, -2.595, 0.294, 7.23, 6.005, 0.625], [-0.735, 2.197, 0.57, 9.4, 2.894, 0.932]]\nD: [[0.26, -2.542, 0.108, 7.4, 6.111, 0.419], [-0.69, 2.286, 0.483, 9.253, 2.675, 0.512]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_149_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_149_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the floor in the scene. The camera pose information includes: the rotation matrix: [[-0.928108, -0.125197, 0.35063], [-0.371823, 0.3599, -0.855699], [-0.019061, -0.924553, -0.380577]]; the translation vector: [5.296664, 4.137775, 1.856988], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.747, -2.431, 0.458, 6.984, 5.717, 0.813], [-0.691, 2.68, 0.322, 9.392, 3.093, 0.827]]\nB: [[0.057, -2.429, 0.573, 7.86, 5.95, 0.072], [-0.235, 2.427, 0.641, 8.832, 2.983, 0.523]]\nC: [[0.397, -2.595, 0.294, 7.23, 6.005, 0.625], [-0.735, 2.197, 0.57, 9.4, 2.894, 0.932]]\nD: [[0.26, -2.542, 0.108, 7.4, 6.111, 0.419], [-0.69, 2.286, 0.483, 9.253, 2.675, 0.512]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.374, -0.417, 0.072, 5.927, 4.746, 0.404], [1.639, 0.598, 0.366, 1.118, 4.293, 0.368], [2.9, -1.425, 0.632, 1.428, 0.28, 0.254]]\nB: [[0.799, -0.748, 0.531, 6.317, 4.867, 0.446], [1.703, 0.912, 0.069, 1.474, 3.826, 0.769], [3.325, -1.637, 0.524, 1.447, 0.08, -0.103]]\nC: [[0.109, -0.618, 0.303, 6.211, 4.572, 0.089], [2.121, 0.402, 0.274, 1.014, 4.79, 0.298], [2.929, -1.018, 0.279, 1.903, -0.107, 0.311]]\nD: [[-0.053, -0.73, 0.366, 5.716, 4.946, 0.696], [1.94, 0.414, 0.125, 0.997, 4.139, 0.213], [2.533, -1.383, 0.826, 1.711, 0.446, 0.207]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_150_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_150_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the floor in the scene. The camera pose information includes: the rotation matrix: [[-0.052123, 0.492225, -0.868906], [0.996177, 0.08671, -0.010637], [0.070107, -0.866138, -0.494863]]; the translation vector: [3.27549, 2.071379, 1.287401], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.374, -0.417, 0.072, 5.927, 4.746, 0.404], [1.639, 0.598, 0.366, 1.118, 4.293, 0.368], [2.9, -1.425, 0.632, 1.428, 0.28, 0.254]]\nB: [[0.799, -0.748, 0.531, 6.317, 4.867, 0.446], [1.703, 0.912, 0.069, 1.474, 3.826, 0.769], [3.325, -1.637, 0.524, 1.447, 0.08, -0.103]]\nC: [[0.109, -0.618, 0.303, 6.211, 4.572, 0.089], [2.121, 0.402, 0.274, 1.014, 4.79, 0.298], [2.929, -1.018, 0.279, 1.903, -0.107, 0.311]]\nD: [[-0.053, -0.73, 0.366, 5.716, 4.946, 0.696], [1.94, 0.414, 0.125, 0.997, 4.139, 0.213], [2.533, -1.383, 0.826, 1.711, 0.446, 0.207]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.627, -3.376, 0.855, 6.372, 0.045, 1.93], [-4.559, -0.814, 0.815, 0.23, 4.236, 2.315], [2.457, -1.253, 1.135, 0.502, 4.3, 1.849], [2.763, 1.048, 0.711, 0.538, 0.174, 2.307], [2.637, 1.438, 0.737, -0.26, 0.359, 1.655], [2.838, 1.209, 1.15, -0.136, 0.413, 2.018], [2.547, 3.388, 0.7, 0.133, 3.272, 2.033], [1.842, 5.509, 1.228, 1.639, 0.473, 2.533], [1.462, 4.688, 1.401, -0.073, 1.6, 2.078], [3.735, 2.121, 1.265, 0.57, 0.876, 2.223], [3.212, 2.741, 1.782, 1.502, 0.578, -0.004]]\nB: [[-0.903, -3.755, 0.874, 6.176, 0.003, 1.35], [-4.554, -0.741, 1.026, -0.065, 4.304, 1.597], [2.299, -1.131, 0.865, 0.391, 4.838, 2.495], [2.651, 0.847, 1.18, 0.317, 0.031, 1.522], [1.968, 0.985, 1.174, 0.018, 0.505, 1.538], [2.371, 1.973, 0.767, 0.103, 0.399, 1.514], [2.144, 3.832, 1.306, -0.158, 3.954, 2.582], [1.91, 5.239, 0.926, 1.148, 0.013, 2.526], [1.285, 4.859, 0.706, 0.551, 0.734, 2.356], [3.523, 2.358, 1.085, 0.08, 1.478, 2.236], [3.224, 3.037, 2.38, 1.03, -0.257, 0.188]]\nC: [[-1.266, -3.485, 0.564, 6.835, 0.324, 1.764], [-3.629, -0.962, 1.016, -0.055, 4.598, 2.313], [2.437, -1.124, 1.463, -0.109, 4.49, 2.527], [2.113, 1.183, 0.667, 0.701, -0.094, 1.699], [2.045, 1.707, 0.812, -0.196, 0.311, 1.762], [2.268, 1.659, 0.591, -0.094, 0.192, 1.734], [2.994, 3.302, 1.563, 0.269, 3.696, 2.084], [1.688, 4.818, 0.728, 1.225, 0.665, 2.09], [0.999, 4.388, 1.202, -0.003, 0.99, 2.125], [3.205, 2.357, 1.438, 0.088, 1.176, 2.548], [3.215, 2.712, 1.754, 0.977, -0.046, 0.843]]\nD: [[-0.786, -3.408, 0.812, 6.62, 0.23, 1.627], [-4.064, -0.926, 0.97, 0.26, 4.308, 1.916], [2.527, -1.13, 1.126, 0.243, 4.695, 2.21], [2.347, 1.178, 0.964, 0.317, 0.117, 1.88], [2.227, 1.442, 1.014, 0.145, 0.618, 2.004], [2.348, 1.638, 0.879, 0.351, 0.101, 1.748], [2.53, 3.466, 1.165, 0.288, 3.589, 2.389], [1.982, 5.141, 1.204, 1.32, 0.458, 2.309], [1.319, 4.76, 1.151, 0.233, 1.14, 2.044], [3.664, 2.514, 1.17, 0.338, 1.259, 2.387], [3.264, 3.152, 2.173, 1.061, 0.098, 0.435]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_151_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_151_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[0.688084, 0.423256, -0.589401], [0.725514, -0.415863, 0.54835], [-0.013017, -0.80493, -0.593227]]; the translation vector: [3.968163, 0.8771, 1.421607], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.627, -3.376, 0.855, 6.372, 0.045, 1.93], [-4.559, -0.814, 0.815, 0.23, 4.236, 2.315], [2.457, -1.253, 1.135, 0.502, 4.3, 1.849], [2.763, 1.048, 0.711, 0.538, 0.174, 2.307], [2.637, 1.438, 0.737, -0.26, 0.359, 1.655], [2.838, 1.209, 1.15, -0.136, 0.413, 2.018], [2.547, 3.388, 0.7, 0.133, 3.272, 2.033], [1.842, 5.509, 1.228, 1.639, 0.473, 2.533], [1.462, 4.688, 1.401, -0.073, 1.6, 2.078], [3.735, 2.121, 1.265, 0.57, 0.876, 2.223], [3.212, 2.741, 1.782, 1.502, 0.578, -0.004]]\nB: [[-0.903, -3.755, 0.874, 6.176, 0.003, 1.35], [-4.554, -0.741, 1.026, -0.065, 4.304, 1.597], [2.299, -1.131, 0.865, 0.391, 4.838, 2.495], [2.651, 0.847, 1.18, 0.317, 0.031, 1.522], [1.968, 0.985, 1.174, 0.018, 0.505, 1.538], [2.371, 1.973, 0.767, 0.103, 0.399, 1.514], [2.144, 3.832, 1.306, -0.158, 3.954, 2.582], [1.91, 5.239, 0.926, 1.148, 0.013, 2.526], [1.285, 4.859, 0.706, 0.551, 0.734, 2.356], [3.523, 2.358, 1.085, 0.08, 1.478, 2.236], [3.224, 3.037, 2.38, 1.03, -0.257, 0.188]]\nC: [[-1.266, -3.485, 0.564, 6.835, 0.324, 1.764], [-3.629, -0.962, 1.016, -0.055, 4.598, 2.313], [2.437, -1.124, 1.463, -0.109, 4.49, 2.527], [2.113, 1.183, 0.667, 0.701, -0.094, 1.699], [2.045, 1.707, 0.812, -0.196, 0.311, 1.762], [2.268, 1.659, 0.591, -0.094, 0.192, 1.734], [2.994, 3.302, 1.563, 0.269, 3.696, 2.084], [1.688, 4.818, 0.728, 1.225, 0.665, 2.09], [0.999, 4.388, 1.202, -0.003, 0.99, 2.125], [3.205, 2.357, 1.438, 0.088, 1.176, 2.548], [3.215, 2.712, 1.754, 0.977, -0.046, 0.843]]\nD: [[-0.786, -3.408, 0.812, 6.62, 0.23, 1.627], [-4.064, -0.926, 0.97, 0.26, 4.308, 1.916], [2.527, -1.13, 1.126, 0.243, 4.695, 2.21], [2.347, 1.178, 0.964, 0.317, 0.117, 1.88], [2.227, 1.442, 1.014, 0.145, 0.618, 2.004], [2.348, 1.638, 0.879, 0.351, 0.101, 1.748], [2.53, 3.466, 1.165, 0.288, 3.589, 2.389], [1.982, 5.141, 1.204, 1.32, 0.458, 2.309], [1.319, 4.76, 1.151, 0.233, 1.14, 2.044], [3.664, 2.514, 1.17, 0.338, 1.259, 2.387], [3.264, 3.152, 2.173, 1.061, 0.098, 0.435]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[2.24, 0.127, 1.561, 0.17, 6.452, 1.322]]\nB: [[1.808, 0.445, 1.097, -0.163, 6.206, 1.162]]\nC: [[2.076, -0.046, 1.133, 0.371, 6.595, 0.908]]\nD: [[2.152, 0.397, 1.838, 0.141, 6.038, 1.758]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_152_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_152_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the whiteboard in the scene. The camera pose information includes: the rotation matrix: [[-0.176261, -0.039155, 0.983564], [-0.983722, -0.028492, -0.177423], [0.03497, -0.998827, -0.033496]]; the translation vector: [3.054739, 2.437738, 1.503838], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[2.24, 0.127, 1.561, 0.17, 6.452, 1.322]]\nB: [[1.808, 0.445, 1.097, -0.163, 6.206, 1.162]]\nC: [[2.076, -0.046, 1.133, 0.371, 6.595, 0.908]]\nD: [[2.152, 0.397, 1.838, 0.141, 6.038, 1.758]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.377, 1.75, 0.313, 0.637, 1.084, 1.086], [-0.879, 2.594, 0.422, 0.742, 0.234, 0.85]]\nB: [[-0.13, 2.575, 0.337, 1.18, 0.166, 1.328], [-0.585, 2.455, 0.693, 0.879, 0.311, 1.309]]\nC: [[-0.219, 1.756, 0.406, 1.056, 0.511, 0.967], [-0.363, 1.945, 0.501, 1.166, 0.939, 0.804]]\nD: [[-0.109, 2.202, 0.796, 0.742, 0.65, 0.918], [-0.778, 2.232, 0.83, 0.777, 0.638, 0.953]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_153_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_153_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the sofa chair in the scene. The camera pose information includes: the rotation matrix: [[0.753053, 0.123809, -0.646206], [0.619922, -0.462608, 0.633791], [-0.220471, -0.877875, -0.42512]]; the translation vector: [4.259223, 3.769218, 1.505729], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.377, 1.75, 0.313, 0.637, 1.084, 1.086], [-0.879, 2.594, 0.422, 0.742, 0.234, 0.85]]\nB: [[-0.13, 2.575, 0.337, 1.18, 0.166, 1.328], [-0.585, 2.455, 0.693, 0.879, 0.311, 1.309]]\nC: [[-0.219, 1.756, 0.406, 1.056, 0.511, 0.967], [-0.363, 1.945, 0.501, 1.166, 0.939, 0.804]]\nD: [[-0.109, 2.202, 0.796, 0.742, 0.65, 0.918], [-0.778, 2.232, 0.83, 0.777, 0.638, 0.953]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.251, 0.156, -0.128, -0.051, 0.628, 0.239], [0.767, -0.47, 0.609, 0.494, 0.504, 0.166], [-0.094, 1.499, 1.301, 0.409, 0.637, -0.038], [-0.218, 1.599, 2.043, 0.222, -0.051, -0.084], [0.774, 1.201, 1.813, 0.251, -0.38, 0.063]]\nB: [[-0.408, 0.627, 0.343, 0.188, 0.542, 0.081], [0.501, -0.329, 0.635, 0.154, 0.177, 0.084], [0.343, 1.237, 1.788, 0.265, 0.262, 0.091], [0.216, 1.167, 1.709, 0.275, 0.094, 0.094], [0.467, 1.14, 1.723, 0.259, 0.069, 0.108]]\nC: [[-0.807, 0.141, 0.815, 0.53, 0.607, 0.51], [0.917, -0.099, 0.427, -0.321, -0.28, 0.334], [0.531, 1.399, 2.196, 0.43, 0.03, 0.076], [0.47, 0.735, 1.914, -0.093, 0.374, 0.55], [-0.032, 1.587, 2.029, 0.611, -0.009, -0.144]]\nD: [[-0.225, 0.433, 0.214, 0.523, 1.033, -0.125], [0.497, -0.466, 0.903, 0.572, 0.328, -0.033], [0.249, 0.868, 1.316, 0.58, 0.558, -0.337], [0.688, 0.673, 1.442, -0.064, -0.139, -0.391], [0.045, 1.256, 1.359, -0.021, 0.452, 0.403]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_154_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_154_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the towel in the scene. The camera pose information includes: the rotation matrix: [[0.956223, -0.170898, 0.237554], [-0.292595, -0.544035, 0.786393], [-0.005155, -0.821474, -0.570223]]; the translation vector: [1.275326, 2.834272, 1.3185], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.251, 0.156, -0.128, -0.051, 0.628, 0.239], [0.767, -0.47, 0.609, 0.494, 0.504, 0.166], [-0.094, 1.499, 1.301, 0.409, 0.637, -0.038], [-0.218, 1.599, 2.043, 0.222, -0.051, -0.084], [0.774, 1.201, 1.813, 0.251, -0.38, 0.063]]\nB: [[-0.408, 0.627, 0.343, 0.188, 0.542, 0.081], [0.501, -0.329, 0.635, 0.154, 0.177, 0.084], [0.343, 1.237, 1.788, 0.265, 0.262, 0.091], [0.216, 1.167, 1.709, 0.275, 0.094, 0.094], [0.467, 1.14, 1.723, 0.259, 0.069, 0.108]]\nC: [[-0.807, 0.141, 0.815, 0.53, 0.607, 0.51], [0.917, -0.099, 0.427, -0.321, -0.28, 0.334], [0.531, 1.399, 2.196, 0.43, 0.03, 0.076], [0.47, 0.735, 1.914, -0.093, 0.374, 0.55], [-0.032, 1.587, 2.029, 0.611, -0.009, -0.144]]\nD: [[-0.225, 0.433, 0.214, 0.523, 1.033, -0.125], [0.497, -0.466, 0.903, 0.572, 0.328, -0.033], [0.249, 0.868, 1.316, 0.58, 0.558, -0.337], [0.688, 0.673, 1.442, -0.064, -0.139, -0.391], [0.045, 1.256, 1.359, -0.021, 0.452, 0.403]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.306, -0.014, 1.979, 4.019, 7.414, 0.307]]\nB: [[0.103, 0.292, 1.906, 4.176, 7.558, 0.724]]\nC: [[0.489, 0.437, 1.928, 3.337, 7.327, 0.317]]\nD: [[0.278, 0.096, 1.983, 3.8, 7.07, 0.334]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_155_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_155_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the ceiling in the scene. The camera pose information includes: the rotation matrix: [[-0.443363, -0.325026, 0.835337], [-0.895367, 0.117125, -0.429651], [0.041809, -0.938424, -0.342946]]; the translation vector: [2.190343, 3.392878, 1.594635], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.306, -0.014, 1.979, 4.019, 7.414, 0.307]]\nB: [[0.103, 0.292, 1.906, 4.176, 7.558, 0.724]]\nC: [[0.489, 0.437, 1.928, 3.337, 7.327, 0.317]]\nD: [[0.278, 0.096, 1.983, 3.8, 7.07, 0.334]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.28, 0.304, -0.341, 2.294, 3.044, -0.02], [-1.331, 0.139, -0.157, 1.326, 1.929, 0.397]]\nB: [[0.062, -0.149, 0.038, 2.484, 2.88, 0.127], [-1.587, -0.328, 0.005, 1.461, 1.909, 0.087]]\nC: [[0.029, -0.482, -0.368, 2.94, 2.904, 0.128], [-1.213, -0.173, 0.109, 1.128, 1.645, 0.334]]\nD: [[0.293, -0.453, -0.316, 2.555, 2.944, -0.31], [-1.538, -0.329, -0.099, 1.121, 2.246, -0.19]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_156_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_156_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the floor in the scene. The camera pose information includes: the rotation matrix: [[0.59597, 0.482312, -0.642025], [0.802979, -0.35126, 0.4815], [0.006716, -0.802491, -0.596626]]; the translation vector: [3.449961, 1.112515, 1.412234], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.28, 0.304, -0.341, 2.294, 3.044, -0.02], [-1.331, 0.139, -0.157, 1.326, 1.929, 0.397]]\nB: [[0.062, -0.149, 0.038, 2.484, 2.88, 0.127], [-1.587, -0.328, 0.005, 1.461, 1.909, 0.087]]\nC: [[0.029, -0.482, -0.368, 2.94, 2.904, 0.128], [-1.213, -0.173, 0.109, 1.128, 1.645, 0.334]]\nD: [[0.293, -0.453, -0.316, 2.555, 2.944, -0.31], [-1.538, -0.329, -0.099, 1.121, 2.246, -0.19]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.985, 1.36, 0.323, 0.802, 0.423, -0.124], [2.422, 0.684, 0.754, 0.948, 0.198, 0.546], [-0.687, -2.501, -0.196, 0.73, 0.321, 0.703]]\nB: [[1.365, 1.983, 0.034, 0.504, 0.741, 0.248], [1.92, 1.004, 0.632, 0.401, 0.542, 0.139], [-0.839, -2.927, -0.163, 0.351, 0.752, 0.304]]\nC: [[1.454, 1.792, 0.377, 0.63, 0.637, 0.263], [2.367, 0.546, 0.29, 0.458, 0.434, 0.427], [-1.072, -2.953, 0.222, 0.398, 0.377, 0.406]]\nD: [[1.15, 1.795, -0.026, 0.476, 0.371, 0.563], [2.092, 0.112, 0.084, 0.025, 0.591, 0.3], [-1.071, -3.278, 0.072, 0.031, 0.342, 0.689]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_157_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_157_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the seat in the scene. The camera pose information includes: the rotation matrix: [[0.000188, -0.47362, 0.88073], [-0.997828, 0.057931, 0.031365], [-0.065877, -0.878822, -0.47258]]; the translation vector: [4.366519, 5.511691, 1.307889], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.985, 1.36, 0.323, 0.802, 0.423, -0.124], [2.422, 0.684, 0.754, 0.948, 0.198, 0.546], [-0.687, -2.501, -0.196, 0.73, 0.321, 0.703]]\nB: [[1.365, 1.983, 0.034, 0.504, 0.741, 0.248], [1.92, 1.004, 0.632, 0.401, 0.542, 0.139], [-0.839, -2.927, -0.163, 0.351, 0.752, 0.304]]\nC: [[1.454, 1.792, 0.377, 0.63, 0.637, 0.263], [2.367, 0.546, 0.29, 0.458, 0.434, 0.427], [-1.072, -2.953, 0.222, 0.398, 0.377, 0.406]]\nD: [[1.15, 1.795, -0.026, 0.476, 0.371, 0.563], [2.092, 0.112, 0.084, 0.025, 0.591, 0.3], [-1.071, -3.278, 0.072, 0.031, 0.342, 0.689]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.531, 1.811, 0.438, 0.96, -0.248, 1.075], [-1.41, -1.002, 0.77, 0.47, 1.246, 1.71]]\nB: [[-0.951, 1.545, 0.971, 1.428, 0.629, 1.104], [-2.05, -1.043, 0.695, 0.095, 1.11, 1.626]]\nC: [[-1.029, 1.273, 0.377, 1.0, 0.707, 1.651], [-1.265, -0.353, 1.355, -0.02, 0.917, 2.297]]\nD: [[-1.312, 1.674, 0.691, 1.103, 0.228, 1.421], [-1.753, -0.603, 0.956, 0.349, 1.091, 2.04]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_158_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_158_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the door in the scene. The camera pose information includes: the rotation matrix: [[0.927869, -0.125596, 0.351119], [-0.372891, -0.32108, 0.870551], [0.003399, -0.938687, -0.344754]]; the translation vector: [5.442723, 4.031985, 1.348893], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.531, 1.811, 0.438, 0.96, -0.248, 1.075], [-1.41, -1.002, 0.77, 0.47, 1.246, 1.71]]\nB: [[-0.951, 1.545, 0.971, 1.428, 0.629, 1.104], [-2.05, -1.043, 0.695, 0.095, 1.11, 1.626]]\nC: [[-1.029, 1.273, 0.377, 1.0, 0.707, 1.651], [-1.265, -0.353, 1.355, -0.02, 0.917, 2.297]]\nD: [[-1.312, 1.674, 0.691, 1.103, 0.228, 1.421], [-1.753, -0.603, 0.956, 0.349, 1.091, 2.04]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-2.1, -0.155, 0.488, 0.884, 0.762, 1.139]]\nB: [[-1.609, -0.239, 0.938, 0.096, 1.426, 1.078]]\nC: [[-1.861, -0.273, 0.81, 0.598, 0.82, 0.783]]\nD: [[-1.644, -0.605, 0.583, 0.402, 1.231, 1.185]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_159_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_159_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the shelf in the scene. The camera pose information includes: the rotation matrix: [[-0.070416, -0.411804, 0.908548], [-0.99671, 0.065705, -0.047468], [-0.040148, -0.908901, -0.415075]]; the translation vector: [2.214543, 1.806687, 1.391502], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-2.1, -0.155, 0.488, 0.884, 0.762, 1.139]]\nB: [[-1.609, -0.239, 0.938, 0.096, 1.426, 1.078]]\nC: [[-1.861, -0.273, 0.81, 0.598, 0.82, 0.783]]\nD: [[-1.644, -0.605, 0.583, 0.402, 1.231, 1.185]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.605, -0.075, 2.599, 6.78, 7.188, 0.753]]\nB: [[-0.136, -0.074, 2.664, 7.091, 7.331, 0.624]]\nC: [[-0.11, -0.067, 2.645, 6.713, 7.047, 0.627]]\nD: [[-0.59, -0.552, 3.048, 6.673, 7.52, 0.884]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_160_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_160_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the ceiling in the scene. The camera pose information includes: the rotation matrix: [[-0.955421, 0.119616, -0.269932], [0.295248, 0.388339, -0.872939], [0.000408, -0.91372, -0.406343]]; the translation vector: [2.65583, 2.981598, 1.368648], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.605, -0.075, 2.599, 6.78, 7.188, 0.753]]\nB: [[-0.136, -0.074, 2.664, 7.091, 7.331, 0.624]]\nC: [[-0.11, -0.067, 2.645, 6.713, 7.047, 0.627]]\nD: [[-0.59, -0.552, 3.048, 6.673, 7.52, 0.884]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.773, 0.999, 2.176, 3.762, 2.16, 0.713]]\nB: [[1.402, 0.542, 2.42, 3.544, 2.145, 0.268]]\nC: [[0.962, 0.894, 1.956, 3.984, 2.23, 0.213]]\nD: [[1.508, 0.544, 2.14, 3.898, 2.009, 0.701]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_161_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_161_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the ceiling in the scene. The camera pose information includes: the rotation matrix: [[-0.454685, 0.144673, -0.878824], [0.890085, 0.109034, -0.442562], [0.031795, -0.983454, -0.178347]]; the translation vector: [3.311996, 2.119304, 1.59409], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.773, 0.999, 2.176, 3.762, 2.16, 0.713]]\nB: [[1.402, 0.542, 2.42, 3.544, 2.145, 0.268]]\nC: [[0.962, 0.894, 1.956, 3.984, 2.23, 0.213]]\nD: [[1.508, 0.544, 2.14, 3.898, 2.009, 0.701]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.445, -1.591, 0.401, 1.208, 0.362, 0.709], [0.85, 1.846, 0.287, 0.495, 1.135, -0.015]]\nB: [[1.318, -1.383, 0.256, 0.782, 0.724, 0.542], [1.339, 2.155, 0.239, 0.765, 0.899, 0.445]]\nC: [[1.731, -1.727, 0.665, 0.715, 0.694, 0.718], [0.941, 2.531, -0.018, 1.235, 0.51, 0.14]]\nD: [[1.454, -1.414, -0.024, 0.443, 0.46, 0.088], [0.989, 2.555, 0.477, 1.003, 1.282, 0.286]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_162_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_162_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the coffee table in the scene. The camera pose information includes: the rotation matrix: [[0.990268, -0.101591, 0.095124], [-0.135934, -0.559426, 0.817658], [-0.029851, -0.822631, -0.567792]]; the translation vector: [6.679901, 2.488796, 1.402653], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.445, -1.591, 0.401, 1.208, 0.362, 0.709], [0.85, 1.846, 0.287, 0.495, 1.135, -0.015]]\nB: [[1.318, -1.383, 0.256, 0.782, 0.724, 0.542], [1.339, 2.155, 0.239, 0.765, 0.899, 0.445]]\nC: [[1.731, -1.727, 0.665, 0.715, 0.694, 0.718], [0.941, 2.531, -0.018, 1.235, 0.51, 0.14]]\nD: [[1.454, -1.414, -0.024, 0.443, 0.46, 0.088], [0.989, 2.555, 0.477, 1.003, 1.282, 0.286]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.849, -1.336, 0.075, 0.117, 0.119, 0.051]]\nB: [[1.779, -1.476, 0.442, 0.485, 0.615, 0.395]]\nC: [[1.904, -1.448, 0.152, 0.474, 0.108, -0.174]]\nD: [[1.427, -1.203, 0.391, 0.059, -0.193, -0.208]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_163_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_163_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the object in the scene. The camera pose information includes: the rotation matrix: [[0.246516, -0.470365, 0.847341], [-0.959136, 0.006886, 0.282862], [-0.138884, -0.882445, -0.449446]]; the translation vector: [3.043058, 2.955299, 1.551102], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.849, -1.336, 0.075, 0.117, 0.119, 0.051]]\nB: [[1.779, -1.476, 0.442, 0.485, 0.615, 0.395]]\nC: [[1.904, -1.448, 0.152, 0.474, 0.108, -0.174]]\nD: [[1.427, -1.203, 0.391, 0.059, -0.193, -0.208]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.487, 1.645, 0.382, 0.302, 0.482, 0.482], [0.998, 1.485, 0.258, 0.64, 0.279, 0.771], [0.516, 1.799, 0.05, 0.639, 0.719, 0.616], [0.027, 2.307, 0.334, 0.459, 0.957, 1.087], [-0.766, 2.114, 0.879, 0.637, 0.926, 1.186], [-1.637, 1.716, 0.195, 0.889, 0.178, 0.887], [-1.878, 1.498, 0.042, 1.014, 0.211, 0.465], [-2.168, 2.812, 0.748, 0.089, 0.133, 0.111], [-2.511, -0.128, 0.278, 0.262, 0.627, 1.122], [-3.252, -1.403, 0.351, 0.543, 0.875, 0.964], [-2.67, -1.518, 0.047, 0.142, 0.368, 0.87], [-0.679, -1.008, 0.86, 0.74, 0.76, 1.005], [-0.054, -1.776, 0.013, 0.602, 0.383, 0.483], [0.442, -1.702, 0.129, 0.294, 0.491, 1.264], [-0.906, -1.527, 0.588, 0.773, 1.129, 1.323], [1.797, -0.711, 0.306, 0.186, 0.995, 1.019], [1.694, -1.236, 0.46, 0.778, 1.151, 1.284], [1.24, -1.901, 0.667, 0.364, 1.023, 0.918], [2.398, -1.858, 0.981, 0.284, 0.726, 0.83], [3.224, -1.673, 0.285, 0.245, 0.491, 0.975], [1.768, 2.317, 0.9, 0.325, 1.027, 1.062], [1.496, 2.661, 0.93, -0.007, 0.819, 0.169]]\nB: [[1.146, 0.948, 0.122, 0.95, 1.005, 0.549], [0.748, 0.973, 0.155, 0.6, 0.484, 0.381], [0.549, 2.17, 0.091, 0.666, 0.717, 0.866], [0.554, 2.811, 0.815, 0.733, 0.125, 0.7], [-0.925, 2.187, 0.558, 0.622, 0.213, 0.874], [-1.744, 1.277, 0.001, 0.646, 0.973, 0.704], [-1.809, 2.353, 0.808, 0.048, 0.797, 0.7], [-1.256, 2.641, 1.036, 0.522, 0.609, 0.158], [-1.879, -0.087, 0.596, 0.81, 0.571, 0.463], [-3.345, -0.961, 0.298, 0.354, 0.59, 1.207], [-2.802, -1.895, 0.135, 0.976, 1.183, 0.764], [-0.847, -1.618, 0.508, 0.783, 0.348, 1.292], [-0.511, -1.056, 0.376, 0.73, 0.392, 1.159], [-0.024, -2.057, 0.759, 0.532, 0.455, 0.817], [-0.251, -2.214, 0.173, 1.127, 0.862, 0.708], [2.174, -0.228, 0.822, 0.364, 0.554, 0.827], [1.928, -1.877, 0.198, 0.653, 1.131, 1.053], [1.218, -2.319, 0.663, 0.163, 0.153, 0.793], [2.951, -1.156, 0.405, 1.011, 0.624, 0.772], [3.153, -1.986, 0.421, 0.263, 0.33, 0.7], [1.367, 2.28, 0.547, 1.058, 0.935, 1.287], [2.006, 2.966, 0.782, 0.332, 0.619, 0.04]]\nC: [[1.346, 1.054, 0.767, 0.951, 0.758, 0.769], [0.659, 1.706, 0.684, 0.913, 0.914, 1.319], [0.805, 2.288, 0.288, 0.155, 0.839, 0.635], [0.287, 2.236, 0.545, 0.587, 0.976, 0.783], [-1.118, 2.319, 0.772, 1.192, 0.851, 0.415], [-1.552, 1.463, 0.231, 0.636, 0.79, 0.457], [-1.992, 2.15, 0.851, 0.919, 1.11, 0.624], [-1.923, 2.253, 1.26, 0.407, 0.257, 0.58], [-2.064, -0.023, 0.196, 0.32, 0.999, 0.859], [-3.224, -1.369, 0.324, 1.046, 0.849, 0.941], [-2.953, -2.153, 0.953, 0.315, 0.426, 0.39], [-0.29, -1.189, 0.464, 0.368, 1.039, 1.28], [-0.098, -2.0, 0.391, 0.817, 0.212, 1.036], [0.365, -1.822, 0.164, 0.214, 0.365, 0.378], [-0.847, -2.191, 0.875, 0.968, 0.479, 0.553], [2.332, -0.438, 0.431, 0.138, 0.956, 1.041], [1.345, -2.004, 0.538, 0.439, 0.287, 0.73], [1.393, -1.64, 0.88, 0.322, 0.297, 1.16], [3.052, -1.259, 0.761, 0.943, 0.828, 0.5], [2.735, -2.476, 0.875, 0.335, 1.087, 0.495], [1.336, 2.088, 0.504, 0.673, 1.053, 0.469], [1.386, 2.116, 0.605, 0.191, 0.61, 0.101]]\nD: [[1.518, 1.271, 0.394, 0.605, 0.594, 0.849], [0.943, 1.353, 0.378, 0.619, 0.666, 0.828], [0.701, 1.955, 0.404, 0.648, 0.696, 0.84], [0.523, 2.479, 0.454, 0.541, 0.563, 0.792], [-1.051, 2.117, 0.448, 0.79, 0.709, 0.804], [-1.341, 1.248, 0.462, 0.57, 0.622, 0.853], [-1.574, 1.994, 0.519, 0.538, 0.675, 0.779], [-1.737, 2.403, 0.858, 0.16, 0.317, 0.168], [-2.078, -0.466, 0.495, 0.568, 0.586, 0.801], [-2.925, -1.082, 0.538, 0.66, 0.66, 0.803], [-3.037, -1.752, 0.519, 0.574, 0.705, 0.845], [-0.539, -1.191, 0.375, 0.64, 0.637, 0.843], [-0.068, -1.536, 0.384, 0.646, 0.641, 0.825], [-0.052, -2.09, 0.408, 0.661, 0.773, 0.824], [-0.669, -1.919, 0.395, 0.676, 0.647, 0.832], [2.151, -0.689, 0.438, 0.636, 0.62, 0.802], [1.695, -1.528, 0.421, 0.589, 0.733, 0.82], [1.703, -2.028, 0.457, 0.561, 0.65, 0.798], [2.65, -1.483, 0.534, 0.701, 0.712, 0.852], [2.844, -2.087, 0.588, 0.548, 0.714, 0.804], [1.775, 1.985, 0.459, 0.664, 0.67, 0.811], [1.768, 2.603, 0.602, 0.329, 0.514, 0.537]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_164_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_164_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the chair in the scene. The camera pose information includes: the rotation matrix: [[0.424269, -0.366439, 0.828081], [-0.894198, -0.025281, 0.446957], [-0.142848, -0.930098, -0.338395]]; the translation vector: [2.638367, 6.760901, 1.41712], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.487, 1.645, 0.382, 0.302, 0.482, 0.482], [0.998, 1.485, 0.258, 0.64, 0.279, 0.771], [0.516, 1.799, 0.05, 0.639, 0.719, 0.616], [0.027, 2.307, 0.334, 0.459, 0.957, 1.087], [-0.766, 2.114, 0.879, 0.637, 0.926, 1.186], [-1.637, 1.716, 0.195, 0.889, 0.178, 0.887], [-1.878, 1.498, 0.042, 1.014, 0.211, 0.465], [-2.168, 2.812, 0.748, 0.089, 0.133, 0.111], [-2.511, -0.128, 0.278, 0.262, 0.627, 1.122], [-3.252, -1.403, 0.351, 0.543, 0.875, 0.964], [-2.67, -1.518, 0.047, 0.142, 0.368, 0.87], [-0.679, -1.008, 0.86, 0.74, 0.76, 1.005], [-0.054, -1.776, 0.013, 0.602, 0.383, 0.483], [0.442, -1.702, 0.129, 0.294, 0.491, 1.264], [-0.906, -1.527, 0.588, 0.773, 1.129, 1.323], [1.797, -0.711, 0.306, 0.186, 0.995, 1.019], [1.694, -1.236, 0.46, 0.778, 1.151, 1.284], [1.24, -1.901, 0.667, 0.364, 1.023, 0.918], [2.398, -1.858, 0.981, 0.284, 0.726, 0.83], [3.224, -1.673, 0.285, 0.245, 0.491, 0.975], [1.768, 2.317, 0.9, 0.325, 1.027, 1.062], [1.496, 2.661, 0.93, -0.007, 0.819, 0.169]]\nB: [[1.146, 0.948, 0.122, 0.95, 1.005, 0.549], [0.748, 0.973, 0.155, 0.6, 0.484, 0.381], [0.549, 2.17, 0.091, 0.666, 0.717, 0.866], [0.554, 2.811, 0.815, 0.733, 0.125, 0.7], [-0.925, 2.187, 0.558, 0.622, 0.213, 0.874], [-1.744, 1.277, 0.001, 0.646, 0.973, 0.704], [-1.809, 2.353, 0.808, 0.048, 0.797, 0.7], [-1.256, 2.641, 1.036, 0.522, 0.609, 0.158], [-1.879, -0.087, 0.596, 0.81, 0.571, 0.463], [-3.345, -0.961, 0.298, 0.354, 0.59, 1.207], [-2.802, -1.895, 0.135, 0.976, 1.183, 0.764], [-0.847, -1.618, 0.508, 0.783, 0.348, 1.292], [-0.511, -1.056, 0.376, 0.73, 0.392, 1.159], [-0.024, -2.057, 0.759, 0.532, 0.455, 0.817], [-0.251, -2.214, 0.173, 1.127, 0.862, 0.708], [2.174, -0.228, 0.822, 0.364, 0.554, 0.827], [1.928, -1.877, 0.198, 0.653, 1.131, 1.053], [1.218, -2.319, 0.663, 0.163, 0.153, 0.793], [2.951, -1.156, 0.405, 1.011, 0.624, 0.772], [3.153, -1.986, 0.421, 0.263, 0.33, 0.7], [1.367, 2.28, 0.547, 1.058, 0.935, 1.287], [2.006, 2.966, 0.782, 0.332, 0.619, 0.04]]\nC: [[1.346, 1.054, 0.767, 0.951, 0.758, 0.769], [0.659, 1.706, 0.684, 0.913, 0.914, 1.319], [0.805, 2.288, 0.288, 0.155, 0.839, 0.635], [0.287, 2.236, 0.545, 0.587, 0.976, 0.783], [-1.118, 2.319, 0.772, 1.192, 0.851, 0.415], [-1.552, 1.463, 0.231, 0.636, 0.79, 0.457], [-1.992, 2.15, 0.851, 0.919, 1.11, 0.624], [-1.923, 2.253, 1.26, 0.407, 0.257, 0.58], [-2.064, -0.023, 0.196, 0.32, 0.999, 0.859], [-3.224, -1.369, 0.324, 1.046, 0.849, 0.941], [-2.953, -2.153, 0.953, 0.315, 0.426, 0.39], [-0.29, -1.189, 0.464, 0.368, 1.039, 1.28], [-0.098, -2.0, 0.391, 0.817, 0.212, 1.036], [0.365, -1.822, 0.164, 0.214, 0.365, 0.378], [-0.847, -2.191, 0.875, 0.968, 0.479, 0.553], [2.332, -0.438, 0.431, 0.138, 0.956, 1.041], [1.345, -2.004, 0.538, 0.439, 0.287, 0.73], [1.393, -1.64, 0.88, 0.322, 0.297, 1.16], [3.052, -1.259, 0.761, 0.943, 0.828, 0.5], [2.735, -2.476, 0.875, 0.335, 1.087, 0.495], [1.336, 2.088, 0.504, 0.673, 1.053, 0.469], [1.386, 2.116, 0.605, 0.191, 0.61, 0.101]]\nD: [[1.518, 1.271, 0.394, 0.605, 0.594, 0.849], [0.943, 1.353, 0.378, 0.619, 0.666, 0.828], [0.701, 1.955, 0.404, 0.648, 0.696, 0.84], [0.523, 2.479, 0.454, 0.541, 0.563, 0.792], [-1.051, 2.117, 0.448, 0.79, 0.709, 0.804], [-1.341, 1.248, 0.462, 0.57, 0.622, 0.853], [-1.574, 1.994, 0.519, 0.538, 0.675, 0.779], [-1.737, 2.403, 0.858, 0.16, 0.317, 0.168], [-2.078, -0.466, 0.495, 0.568, 0.586, 0.801], [-2.925, -1.082, 0.538, 0.66, 0.66, 0.803], [-3.037, -1.752, 0.519, 0.574, 0.705, 0.845], [-0.539, -1.191, 0.375, 0.64, 0.637, 0.843], [-0.068, -1.536, 0.384, 0.646, 0.641, 0.825], [-0.052, -2.09, 0.408, 0.661, 0.773, 0.824], [-0.669, -1.919, 0.395, 0.676, 0.647, 0.832], [2.151, -0.689, 0.438, 0.636, 0.62, 0.802], [1.695, -1.528, 0.421, 0.589, 0.733, 0.82], [1.703, -2.028, 0.457, 0.561, 0.65, 0.798], [2.65, -1.483, 0.534, 0.701, 0.712, 0.852], [2.844, -2.087, 0.588, 0.548, 0.714, 0.804], [1.775, 1.985, 0.459, 0.664, 0.67, 0.811], [1.768, 2.603, 0.602, 0.329, 0.514, 0.537]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[2.682, 0.363, 0.619, 1.02, 0.762, 0.226], [0.295, -1.101, 1.206, 0.33, 0.677, 0.052], [-2.902, 0.765, -0.248, 0.755, 0.487, 0.427]]\nB: [[2.599, 0.763, 0.355, 0.291, 0.253, 0.563], [0.364, -0.942, 0.366, 0.823, 0.285, 0.293], [-3.251, -0.039, 0.534, 0.204, 0.315, 0.125]]\nC: [[2.754, 0.716, 0.728, 0.739, 0.536, 0.095], [-0.308, -0.319, 1.147, 0.102, 0.805, 0.177], [-3.102, -0.022, 0.312, 0.658, 0.474, 0.358]]\nD: [[2.461, 0.569, 0.328, 0.546, 0.491, 0.37], [-0.048, -0.818, 0.757, 0.462, 0.439, 0.351], [-2.848, 0.285, 0.131, 0.472, 0.5, 0.37]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_165_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_165_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the box in the scene. The camera pose information includes: the rotation matrix: [[0.764638, 0.028658, -0.643823], [0.64431, -0.055554, 0.762744], [-0.013909, -0.998044, -0.060944]]; the translation vector: [3.061982, 3.98913, 1.495508], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[2.682, 0.363, 0.619, 1.02, 0.762, 0.226], [0.295, -1.101, 1.206, 0.33, 0.677, 0.052], [-2.902, 0.765, -0.248, 0.755, 0.487, 0.427]]\nB: [[2.599, 0.763, 0.355, 0.291, 0.253, 0.563], [0.364, -0.942, 0.366, 0.823, 0.285, 0.293], [-3.251, -0.039, 0.534, 0.204, 0.315, 0.125]]\nC: [[2.754, 0.716, 0.728, 0.739, 0.536, 0.095], [-0.308, -0.319, 1.147, 0.102, 0.805, 0.177], [-3.102, -0.022, 0.312, 0.658, 0.474, 0.358]]\nD: [[2.461, 0.569, 0.328, 0.546, 0.491, 0.37], [-0.048, -0.818, 0.757, 0.462, 0.439, 0.351], [-2.848, 0.285, 0.131, 0.472, 0.5, 0.37]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.116, -0.769, 0.665, 0.588, 1.197, 1.025], [-0.796, -1.178, 0.171, 0.576, 0.604, 0.431], [-0.822, 1.221, 0.066, 0.696, 1.356, 0.542], [0.425, 0.671, 0.344, 0.824, 1.179, 0.866]]\nB: [[0.608, -0.936, 0.413, 0.854, 0.8, 0.77], [-0.425, -0.856, 0.339, 0.897, 0.767, 0.762], [-0.451, 1.126, 0.358, 0.838, 0.91, 0.764], [0.774, 1.047, 0.416, 0.815, 0.841, 0.775]]\nC: [[0.288, -1.283, 0.655, 0.817, 0.674, 0.566], [-0.233, -0.57, 0.023, 0.569, 0.942, 1.169], [-0.037, 0.77, 0.308, 0.824, 1.383, 0.685], [0.662, 1.515, 0.896, 0.594, 0.416, 0.9]]\nD: [[1.018, -1.113, 0.375, 0.665, 0.803, 1.039], [-0.701, -1.19, 0.042, 0.611, 0.648, 0.566], [-0.236, 1.15, 0.63, 1.12, 1.165, 0.969], [0.285, 0.606, 0.443, 1.268, 0.881, 0.591]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_166_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_166_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the chair in the scene. The camera pose information includes: the rotation matrix: [[-0.711391, -0.463973, 0.527875], [-0.700286, 0.531398, -0.476672], [-0.059349, -0.708763, -0.702945]]; the translation vector: [2.53321, 4.394931, 1.530427], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.116, -0.769, 0.665, 0.588, 1.197, 1.025], [-0.796, -1.178, 0.171, 0.576, 0.604, 0.431], [-0.822, 1.221, 0.066, 0.696, 1.356, 0.542], [0.425, 0.671, 0.344, 0.824, 1.179, 0.866]]\nB: [[0.608, -0.936, 0.413, 0.854, 0.8, 0.77], [-0.425, -0.856, 0.339, 0.897, 0.767, 0.762], [-0.451, 1.126, 0.358, 0.838, 0.91, 0.764], [0.774, 1.047, 0.416, 0.815, 0.841, 0.775]]\nC: [[0.288, -1.283, 0.655, 0.817, 0.674, 0.566], [-0.233, -0.57, 0.023, 0.569, 0.942, 1.169], [-0.037, 0.77, 0.308, 0.824, 1.383, 0.685], [0.662, 1.515, 0.896, 0.594, 0.416, 0.9]]\nD: [[1.018, -1.113, 0.375, 0.665, 0.803, 1.039], [-0.701, -1.19, 0.042, 0.611, 0.648, 0.566], [-0.236, 1.15, 0.63, 1.12, 1.165, 0.969], [0.285, 0.606, 0.443, 1.268, 0.881, 0.591]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.097, 1.124, 0.669, 0.502, 0.516, 0.549], [-0.719, 0.622, 0.51, 0.696, 0.696, 1.008], [0.747, 0.329, 0.449, 0.568, 0.565, 0.934], [0.72, 0.839, 0.522, 0.626, 0.707, 0.997], [-0.373, -0.636, 0.467, 0.582, 0.551, 0.906]]\nB: [[0.297, 0.852, 0.7, 0.103, 0.44, 0.966], [-0.93, 0.904, 0.062, 0.986, 0.828, 0.767], [0.468, 0.69, 0.657, 0.758, 0.619, 1.108], [0.682, 0.702, 0.346, 0.75, 0.569, 0.847], [-0.423, -0.68, 0.291, 0.082, 0.385, 1.192]]\nC: [[0.512, 0.853, 0.312, 0.021, 0.921, 0.339], [-0.518, 0.57, 0.844, 1.067, 0.275, 1.347], [0.721, 0.423, 0.574, 0.387, 0.991, 1.286], [0.648, 0.46, 0.149, 0.657, 0.835, 0.53], [-0.541, -0.731, 0.203, 0.127, 0.654, 0.996]]\nD: [[0.168, 0.81, 1.159, 0.247, 0.182, 0.73], [-0.91, 0.423, 0.9, 0.946, 0.519, 0.547], [1.221, 0.571, 0.284, 0.571, 0.987, 1.376], [1.146, 0.534, 0.507, 0.778, 0.702, 1.372], [-0.13, -0.402, 0.492, 0.884, 0.774, 1.331]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_167_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_167_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the chair in the scene. The camera pose information includes: the rotation matrix: [[-0.236277, -0.452541, 0.859872], [-0.970097, 0.160455, -0.182119], [-0.055554, -0.877189, -0.47692]]; the translation vector: [1.575898, 1.961144, 1.314442], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.097, 1.124, 0.669, 0.502, 0.516, 0.549], [-0.719, 0.622, 0.51, 0.696, 0.696, 1.008], [0.747, 0.329, 0.449, 0.568, 0.565, 0.934], [0.72, 0.839, 0.522, 0.626, 0.707, 0.997], [-0.373, -0.636, 0.467, 0.582, 0.551, 0.906]]\nB: [[0.297, 0.852, 0.7, 0.103, 0.44, 0.966], [-0.93, 0.904, 0.062, 0.986, 0.828, 0.767], [0.468, 0.69, 0.657, 0.758, 0.619, 1.108], [0.682, 0.702, 0.346, 0.75, 0.569, 0.847], [-0.423, -0.68, 0.291, 0.082, 0.385, 1.192]]\nC: [[0.512, 0.853, 0.312, 0.021, 0.921, 0.339], [-0.518, 0.57, 0.844, 1.067, 0.275, 1.347], [0.721, 0.423, 0.574, 0.387, 0.991, 1.286], [0.648, 0.46, 0.149, 0.657, 0.835, 0.53], [-0.541, -0.731, 0.203, 0.127, 0.654, 0.996]]\nD: [[0.168, 0.81, 1.159, 0.247, 0.182, 0.73], [-0.91, 0.423, 0.9, 0.946, 0.519, 0.547], [1.221, 0.571, 0.284, 0.571, 0.987, 1.376], [1.146, 0.534, 0.507, 0.778, 0.702, 1.372], [-0.13, -0.402, 0.492, 0.884, 0.774, 1.331]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[2.094, 0.511, 1.124, 0.123, 2.188, 0.539]]\nB: [[2.081, 0.516, 0.947, 0.355, 2.545, 0.592]]\nC: [[1.732, 0.343, 0.947, 0.511, 2.586, 0.308]]\nD: [[1.989, 0.949, 0.649, -0.276, 2.128, 0.539]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_168_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_168_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the whiteboard in the scene. The camera pose information includes: the rotation matrix: [[-0.997074, 0.061747, -0.045056], [0.074474, 0.651998, -0.754554], [-0.017215, -0.755702, -0.654689]]; the translation vector: [1.815792, 5.369752, 1.288561], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[2.094, 0.511, 1.124, 0.123, 2.188, 0.539]]\nB: [[2.081, 0.516, 0.947, 0.355, 2.545, 0.592]]\nC: [[1.732, 0.343, 0.947, 0.511, 2.586, 0.308]]\nD: [[1.989, 0.949, 0.649, -0.276, 2.128, 0.539]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.228, -1.39, 0.131, 0.85, 0.551, 0.683]]\nB: [[-1.305, -1.508, 0.232, 0.822, 0.566, 0.435]]\nC: [[-0.824, -1.786, 0.652, 1.27, 0.727, -0.053]]\nD: [[-0.844, -1.175, 0.453, 0.328, 0.627, 0.359]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_169_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_169_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the piano bench in the scene. The camera pose information includes: the rotation matrix: [[-0.804945, -0.278842, 0.523748], [-0.593014, 0.407765, -0.694307], [-0.019964, -0.869468, -0.493585]]; the translation vector: [4.871809, 2.494869, 1.402737], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.228, -1.39, 0.131, 0.85, 0.551, 0.683]]\nB: [[-1.305, -1.508, 0.232, 0.822, 0.566, 0.435]]\nC: [[-0.824, -1.786, 0.652, 1.27, 0.727, -0.053]]\nD: [[-0.844, -1.175, 0.453, 0.328, 0.627, 0.359]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.141, 1.242, 1.15, 2.629, 0.737, 2.324], [-1.855, -0.469, 1.171, 0.539, 3.779, 2.772], [0.841, 0.114, 0.787, 0.691, 3.588, 2.223], [0.571, -1.772, 1.52, 1.679, 0.887, 2.594]]\nB: [[-0.097, 1.504, 1.106, 3.029, 0.358, 2.218], [-1.545, 0.258, 1.211, 0.132, 3.756, 2.16], [0.905, 0.283, 1.397, -0.093, 3.002, 2.004], [0.394, -1.669, 1.139, 2.247, 0.169, 2.208]]\nC: [[-0.253, 1.653, 1.522, 3.078, 0.478, 2.791], [-1.503, -0.37, 1.376, 0.691, 4.127, 2.703], [1.422, -0.022, 0.986, 0.339, 3.887, 2.497], [-0.134, -1.344, 0.891, 2.344, 0.714, 2.451]]\nD: [[-0.058, 1.533, 1.269, 2.876, 0.624, 2.668], [-1.389, 0.007, 1.251, 0.231, 3.638, 2.637], [1.275, 0.042, 1.086, 0.289, 3.412, 2.272], [0.358, -1.537, 1.122, 1.906, 0.425, 2.129]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_170_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_170_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[-0.032646, 0.194727, -0.980314], [0.998594, -0.034636, -0.040135], [-0.04177, -0.980246, -0.193322]]; the translation vector: [3.506056, 2.493951, 1.706783], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.141, 1.242, 1.15, 2.629, 0.737, 2.324], [-1.855, -0.469, 1.171, 0.539, 3.779, 2.772], [0.841, 0.114, 0.787, 0.691, 3.588, 2.223], [0.571, -1.772, 1.52, 1.679, 0.887, 2.594]]\nB: [[-0.097, 1.504, 1.106, 3.029, 0.358, 2.218], [-1.545, 0.258, 1.211, 0.132, 3.756, 2.16], [0.905, 0.283, 1.397, -0.093, 3.002, 2.004], [0.394, -1.669, 1.139, 2.247, 0.169, 2.208]]\nC: [[-0.253, 1.653, 1.522, 3.078, 0.478, 2.791], [-1.503, -0.37, 1.376, 0.691, 4.127, 2.703], [1.422, -0.022, 0.986, 0.339, 3.887, 2.497], [-0.134, -1.344, 0.891, 2.344, 0.714, 2.451]]\nD: [[-0.058, 1.533, 1.269, 2.876, 0.624, 2.668], [-1.389, 0.007, 1.251, 0.231, 3.638, 2.637], [1.275, 0.042, 1.086, 0.289, 3.412, 2.272], [0.358, -1.537, 1.122, 1.906, 0.425, 2.129]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-2.22, -0.005, 0.817, 1.09, 2.894, 0.662], [-2.657, -0.552, 1.11, 0.97, 1.155, 0.566]]\nB: [[-1.955, 0.127, 0.536, 1.492, 2.79, 1.348], [-2.155, 0.305, 0.66, 0.159, 1.455, 0.072]]\nC: [[-1.433, 0.186, 1.02, 1.626, 2.332, 1.534], [-2.448, -0.356, 0.853, 0.017, 1.445, 0.618]]\nD: [[-1.798, 0.428, 0.571, 1.201, 2.441, 1.114], [-2.518, -0.083, 1.081, 0.488, 1.535, 0.157]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_171_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_171_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the couch in the scene. The camera pose information includes: the rotation matrix: [[-0.205964, -0.505778, 0.837716], [-0.978495, 0.11627, -0.170378], [-0.011228, -0.854792, -0.518849]]; the translation vector: [2.901534, 4.292832, 1.280844], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-2.22, -0.005, 0.817, 1.09, 2.894, 0.662], [-2.657, -0.552, 1.11, 0.97, 1.155, 0.566]]\nB: [[-1.955, 0.127, 0.536, 1.492, 2.79, 1.348], [-2.155, 0.305, 0.66, 0.159, 1.455, 0.072]]\nC: [[-1.433, 0.186, 1.02, 1.626, 2.332, 1.534], [-2.448, -0.356, 0.853, 0.017, 1.445, 0.618]]\nD: [[-1.798, 0.428, 0.571, 1.201, 2.441, 1.114], [-2.518, -0.083, 1.081, 0.488, 1.535, 0.157]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.442, -1.133, 0.562, 0.636, 0.657, 0.49], [-0.931, -0.023, 0.592, 0.548, 0.635, 0.449], [1.185, -0.67, 0.523, 0.55, 0.618, 0.447], [-0.778, 1.905, 0.84, 0.606, 0.538, 0.514], [-0.723, -1.153, 0.514, 0.657, 0.632, 0.473], [-1.434, -0.489, 0.591, 0.567, 0.545, 0.458], [-1.479, -1.704, 0.547, 0.555, 0.643, 0.506], [-1.06, 0.579, 0.646, 0.554, 0.57, 0.426], [1.728, -0.095, 0.592, 0.547, 0.596, 0.473], [-1.358, 1.889, 0.774, 0.643, 0.662, 0.446], [2.187, 1.992, 0.739, 0.592, 0.503, 0.463], [-0.349, 1.313, 0.568, 0.481, 0.31, 0.827], [0.659, 1.035, 0.643, 0.561, 0.458, 0.449], [1.351, 1.116, 0.663, 0.567, 0.545, 0.469], [1.67, 0.521, 0.73, 0.179, 0.508, 0.285], [0.482, -0.974, 0.492, 0.592, 0.586, 0.475]]\nB: [[-1.049, -1.529, 1.034, 0.201, 0.822, 0.539], [-0.9, 0.339, 0.327, 0.273, 0.766, 0.553], [0.737, -1.05, 0.211, 0.082, 0.504, 0.933], [-1.047, 2.226, 0.838, 0.996, 0.859, 0.972], [-0.719, -0.678, 0.784, 0.49, 0.145, 0.261], [-1.882, -0.392, 0.818, 0.955, 0.143, 0.713], [-1.551, -2.013, 0.366, 0.53, 0.75, 0.368], [-1.315, 0.463, 0.891, 0.81, 0.604, 0.638], [2.147, -0.334, 0.803, 0.499, 0.844, 0.692], [-1.677, 2.042, 0.864, 0.402, 1.157, 0.639], [1.976, 2.077, 0.904, 0.918, 0.711, 0.254], [-0.187, 1.603, 0.781, 0.267, -0.088, 1.027], [0.26, 0.795, 0.514, 0.847, -0.04, 0.297], [1.756, 1.456, 0.644, 0.597, 0.817, 0.47], [1.242, 0.068, 0.373, 0.448, 0.149, 0.381], [0.319, -0.553, 0.655, 0.691, 0.359, 0.589]]\nC: [[-0.988, -1.282, 0.732, 0.336, 0.483, 0.927], [-0.442, -0.073, 0.808, 0.229, 0.772, 0.639], [1.548, -1.036, 0.108, 0.525, 0.245, 0.035], [-1.266, 1.685, 1.335, 0.956, 0.747, 0.267], [-1.079, -1.607, 1.01, 0.83, 1.062, 0.521], [-1.264, -0.925, 0.343, 1.047, 0.715, 0.269], [-1.458, -1.958, 0.337, 0.66, 0.161, 0.546], [-0.733, 0.312, 0.474, 0.521, 0.178, -0.061], [2.105, 0.263, 0.727, 0.39, 0.976, 0.108], [-1.707, 1.787, 0.496, 0.472, 1.062, 0.821], [2.45, 1.544, 0.321, 1.018, 0.15, 0.075], [-0.837, 1.59, 0.268, 0.538, 0.245, 0.497], [0.297, 1.19, 0.423, 0.185, 0.686, 0.323], [0.857, 1.058, 0.937, 0.887, 0.209, 0.519], [1.802, 0.184, 0.797, 0.22, 0.094, 0.637], [0.094, -0.987, 0.725, 0.553, 1.059, 0.036]]\nD: [[-1.227, -0.819, 0.642, 0.301, 0.736, 0.894], [-1.335, 0.35, 0.132, 0.881, 0.202, 0.441], [1.374, -0.345, 0.698, 0.363, 1.089, 0.667], [-0.963, 1.843, 0.91, 0.493, 0.498, 0.35], [-1.186, -1.506, 0.169, 0.581, 0.638, 0.951], [-1.772, -0.025, 0.967, 0.473, 0.884, -0.032], [-1.614, -1.94, 0.374, 0.725, 0.441, 0.512], [-1.408, 0.285, 1.05, 0.486, 0.297, 0.835], [2.021, -0.535, 0.654, 0.219, 0.759, 0.901], [-1.57, 2.203, 0.527, 0.16, 0.291, 0.718], [1.825, 2.298, 0.457, 1.052, 0.655, 0.73], [-0.153, 1.778, 0.354, 0.514, 0.609, 0.42], [0.512, 1.223, 0.597, 0.407, 0.628, 0.692], [1.022, 1.172, 0.206, 0.702, 0.301, 0.176], [1.64, 0.74, 0.55, 0.197, 0.956, 0.52], [0.38, -0.727, 0.278, 0.877, 0.781, 0.837]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_172_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_172_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the chair in the scene. The camera pose information includes: the rotation matrix: [[-0.830629, 0.239867, -0.502514], [0.556756, 0.37214, -0.742654], [0.008867, -0.896647, -0.442658]]; the translation vector: [4.849209, 2.614689, 1.447477], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.442, -1.133, 0.562, 0.636, 0.657, 0.49], [-0.931, -0.023, 0.592, 0.548, 0.635, 0.449], [1.185, -0.67, 0.523, 0.55, 0.618, 0.447], [-0.778, 1.905, 0.84, 0.606, 0.538, 0.514], [-0.723, -1.153, 0.514, 0.657, 0.632, 0.473], [-1.434, -0.489, 0.591, 0.567, 0.545, 0.458], [-1.479, -1.704, 0.547, 0.555, 0.643, 0.506], [-1.06, 0.579, 0.646, 0.554, 0.57, 0.426], [1.728, -0.095, 0.592, 0.547, 0.596, 0.473], [-1.358, 1.889, 0.774, 0.643, 0.662, 0.446], [2.187, 1.992, 0.739, 0.592, 0.503, 0.463], [-0.349, 1.313, 0.568, 0.481, 0.31, 0.827], [0.659, 1.035, 0.643, 0.561, 0.458, 0.449], [1.351, 1.116, 0.663, 0.567, 0.545, 0.469], [1.67, 0.521, 0.73, 0.179, 0.508, 0.285], [0.482, -0.974, 0.492, 0.592, 0.586, 0.475]]\nB: [[-1.049, -1.529, 1.034, 0.201, 0.822, 0.539], [-0.9, 0.339, 0.327, 0.273, 0.766, 0.553], [0.737, -1.05, 0.211, 0.082, 0.504, 0.933], [-1.047, 2.226, 0.838, 0.996, 0.859, 0.972], [-0.719, -0.678, 0.784, 0.49, 0.145, 0.261], [-1.882, -0.392, 0.818, 0.955, 0.143, 0.713], [-1.551, -2.013, 0.366, 0.53, 0.75, 0.368], [-1.315, 0.463, 0.891, 0.81, 0.604, 0.638], [2.147, -0.334, 0.803, 0.499, 0.844, 0.692], [-1.677, 2.042, 0.864, 0.402, 1.157, 0.639], [1.976, 2.077, 0.904, 0.918, 0.711, 0.254], [-0.187, 1.603, 0.781, 0.267, -0.088, 1.027], [0.26, 0.795, 0.514, 0.847, -0.04, 0.297], [1.756, 1.456, 0.644, 0.597, 0.817, 0.47], [1.242, 0.068, 0.373, 0.448, 0.149, 0.381], [0.319, -0.553, 0.655, 0.691, 0.359, 0.589]]\nC: [[-0.988, -1.282, 0.732, 0.336, 0.483, 0.927], [-0.442, -0.073, 0.808, 0.229, 0.772, 0.639], [1.548, -1.036, 0.108, 0.525, 0.245, 0.035], [-1.266, 1.685, 1.335, 0.956, 0.747, 0.267], [-1.079, -1.607, 1.01, 0.83, 1.062, 0.521], [-1.264, -0.925, 0.343, 1.047, 0.715, 0.269], [-1.458, -1.958, 0.337, 0.66, 0.161, 0.546], [-0.733, 0.312, 0.474, 0.521, 0.178, -0.061], [2.105, 0.263, 0.727, 0.39, 0.976, 0.108], [-1.707, 1.787, 0.496, 0.472, 1.062, 0.821], [2.45, 1.544, 0.321, 1.018, 0.15, 0.075], [-0.837, 1.59, 0.268, 0.538, 0.245, 0.497], [0.297, 1.19, 0.423, 0.185, 0.686, 0.323], [0.857, 1.058, 0.937, 0.887, 0.209, 0.519], [1.802, 0.184, 0.797, 0.22, 0.094, 0.637], [0.094, -0.987, 0.725, 0.553, 1.059, 0.036]]\nD: [[-1.227, -0.819, 0.642, 0.301, 0.736, 0.894], [-1.335, 0.35, 0.132, 0.881, 0.202, 0.441], [1.374, -0.345, 0.698, 0.363, 1.089, 0.667], [-0.963, 1.843, 0.91, 0.493, 0.498, 0.35], [-1.186, -1.506, 0.169, 0.581, 0.638, 0.951], [-1.772, -0.025, 0.967, 0.473, 0.884, -0.032], [-1.614, -1.94, 0.374, 0.725, 0.441, 0.512], [-1.408, 0.285, 1.05, 0.486, 0.297, 0.835], [2.021, -0.535, 0.654, 0.219, 0.759, 0.901], [-1.57, 2.203, 0.527, 0.16, 0.291, 0.718], [1.825, 2.298, 0.457, 1.052, 0.655, 0.73], [-0.153, 1.778, 0.354, 0.514, 0.609, 0.42], [0.512, 1.223, 0.597, 0.407, 0.628, 0.692], [1.022, 1.172, 0.206, 0.702, 0.301, 0.176], [1.64, 0.74, 0.55, 0.197, 0.956, 0.52], [0.38, -0.727, 0.278, 0.877, 0.781, 0.837]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.285, 2.094, 0.223, 0.8, -0.126, 0.725], [0.89, 2.46, 0.447, -0.137, 0.338, 0.037]]\nB: [[0.378, 1.664, -0.029, 0.245, 0.007, 0.518], [0.551, 2.153, -0.045, 0.073, 0.825, 0.641]]\nC: [[0.842, 1.796, 0.181, 0.339, 0.338, 0.37], [0.768, 2.073, 0.205, 0.294, 0.394, 0.403]]\nD: [[0.562, 2.17, 0.079, 0.501, 0.638, 0.525], [0.42, 1.956, 0.647, 0.731, 0.278, 0.487]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_173_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_173_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the bucket in the scene. The camera pose information includes: the rotation matrix: [[-0.819759, -0.274444, 0.502669], [-0.572709, 0.39303, -0.719397], [-0.00013, -0.877615, -0.479366]]; the translation vector: [2.765326, 1.370172, 1.355227], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.285, 2.094, 0.223, 0.8, -0.126, 0.725], [0.89, 2.46, 0.447, -0.137, 0.338, 0.037]]\nB: [[0.378, 1.664, -0.029, 0.245, 0.007, 0.518], [0.551, 2.153, -0.045, 0.073, 0.825, 0.641]]\nC: [[0.842, 1.796, 0.181, 0.339, 0.338, 0.37], [0.768, 2.073, 0.205, 0.294, 0.394, 0.403]]\nD: [[0.562, 2.17, 0.079, 0.501, 0.638, 0.525], [0.42, 1.956, 0.647, 0.731, 0.278, 0.487]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.351, 1.709, 0.416, 3.301, 3.462, -0.205]]\nB: [[0.748, 1.385, 0.703, 3.676, 3.587, 0.247]]\nC: [[0.285, 1.079, 0.707, 4.151, 3.525, -0.098]]\nD: [[0.437, 1.63, 0.992, 3.864, 3.856, 0.472]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_174_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_174_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the table in the scene. The camera pose information includes: the rotation matrix: [[-0.119369, -0.433868, 0.893034], [-0.990549, 0.113242, -0.077387], [-0.067553, -0.893832, -0.443285]]; the translation vector: [3.407035, 4.679209, 1.397058], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.351, 1.709, 0.416, 3.301, 3.462, -0.205]]\nB: [[0.748, 1.385, 0.703, 3.676, 3.587, 0.247]]\nC: [[0.285, 1.079, 0.707, 4.151, 3.525, -0.098]]\nD: [[0.437, 1.63, 0.992, 3.864, 3.856, 0.472]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-2.171, -0.049, 0.811, 0.067, 1.74, 1.931], [2.378, 0.912, 0.851, 0.596, 2.524, 1.349], [0.415, -1.4, 0.688, 3.856, 0.243, 1.685], [2.428, -1.301, 0.364, 0.307, 0.039, 1.588], [-1.851, -0.771, 1.131, 0.437, 0.879, 1.981]]\nB: [[-2.124, 0.402, 0.972, 0.336, 1.814, 2.055], [2.714, 0.714, 0.306, -0.022, 2.698, 1.287], [0.218, -0.935, 0.625, 3.775, 0.411, 1.982], [2.74, -0.719, 0.42, -0.08, 0.24, 0.945], [-2.083, -0.772, 1.329, 0.652, 0.37, 2.117]]\nC: [[-2.229, 0.152, 1.164, 0.205, 1.859, 2.109], [2.442, 0.667, 0.678, 0.238, 2.976, 1.311], [0.131, -1.186, 0.807, 4.198, 0.217, 1.596], [2.311, -0.918, 0.648, 0.343, 0.478, 1.211], [-2.036, -0.925, 1.234, 0.571, 0.559, 1.867]]\nD: [[-2.234, 0.572, 0.912, 0.309, 1.595, 2.084], [2.569, 0.682, 1.117, -0.182, 2.613, 1.651], [-0.058, -0.811, 0.697, 4.093, -0.122, 2.058], [2.792, -1.246, 0.764, 0.753, 0.799, 0.76], [-1.948, -0.836, 1.559, 0.97, 0.14, 2.126]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_175_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_175_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[-0.924746, 0.145405, -0.351715], [0.379908, 0.407811, -0.830277], [0.022707, -0.901414, -0.432362]]; the translation vector: [3.891577, 4.106122, 1.335216], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-2.171, -0.049, 0.811, 0.067, 1.74, 1.931], [2.378, 0.912, 0.851, 0.596, 2.524, 1.349], [0.415, -1.4, 0.688, 3.856, 0.243, 1.685], [2.428, -1.301, 0.364, 0.307, 0.039, 1.588], [-1.851, -0.771, 1.131, 0.437, 0.879, 1.981]]\nB: [[-2.124, 0.402, 0.972, 0.336, 1.814, 2.055], [2.714, 0.714, 0.306, -0.022, 2.698, 1.287], [0.218, -0.935, 0.625, 3.775, 0.411, 1.982], [2.74, -0.719, 0.42, -0.08, 0.24, 0.945], [-2.083, -0.772, 1.329, 0.652, 0.37, 2.117]]\nC: [[-2.229, 0.152, 1.164, 0.205, 1.859, 2.109], [2.442, 0.667, 0.678, 0.238, 2.976, 1.311], [0.131, -1.186, 0.807, 4.198, 0.217, 1.596], [2.311, -0.918, 0.648, 0.343, 0.478, 1.211], [-2.036, -0.925, 1.234, 0.571, 0.559, 1.867]]\nD: [[-2.234, 0.572, 0.912, 0.309, 1.595, 2.084], [2.569, 0.682, 1.117, -0.182, 2.613, 1.651], [-0.058, -0.811, 0.697, 4.093, -0.122, 2.058], [2.792, -1.246, 0.764, 0.753, 0.799, 0.76], [-1.948, -0.836, 1.559, 0.97, 0.14, 2.126]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.059, -1.275, 0.883, 0.298, 1.018, 2.01], [0.236, 1.462, 0.631, 0.873, 0.486, 1.281], [1.1, -1.001, 0.952, 1.349, 0.172, 2.338], [-0.839, 2.079, 0.96, 0.395, 0.842, 1.983], [1.955, -4.485, 1.036, 0.141, 0.98, 2.593], [-0.255, -0.481, 0.905, 0.161, 0.928, 1.969]]\nB: [[-0.954, -1.046, 0.462, 0.658, 0.618, 2.138], [-0.213, 1.899, 0.694, 0.708, 0.841, 1.686], [1.362, -1.133, 1.001, 1.465, -0.084, 2.501], [-0.862, 2.364, 0.854, 0.124, 0.853, 2.159], [2.413, -4.964, 0.774, -0.345, 1.16, 3.015], [0.156, -0.554, 0.434, -0.07, 0.695, 2.392]]\nC: [[-0.732, -1.166, 0.44, 0.739, 0.991, 1.593], [0.338, 1.95, 0.672, 0.941, 0.589, 1.757], [0.743, -0.963, 1.147, 1.448, -0.135, 2.517], [-1.129, 2.483, 1.375, 0.132, 1.054, 2.43], [1.587, -4.551, 0.847, 0.35, 0.965, 2.767], [-0.661, -0.507, 0.612, -0.243, 0.847, 1.515]]\nD: [[-0.907, -1.27, 0.42, -0.059, 1.138, 1.561], [0.626, 1.256, 1.105, 1.202, 0.216, 1.006], [0.877, -0.877, 1.149, 0.987, -0.045, 2.737], [-0.783, 1.691, 0.606, 0.081, 0.643, 2.205], [2.363, -4.049, 1.139, 0.229, 0.955, 2.439], [-0.196, -0.854, 0.721, 0.566, 0.583, 2.254]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_176_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_176_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the door in the scene. The camera pose information includes: the rotation matrix: [[-0.996429, -0.081152, -0.023325], [-0.01119, 0.400709, -0.916137], [0.083693, -0.912604, -0.400187]]; the translation vector: [7.365378, 2.610504, 1.343957], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.059, -1.275, 0.883, 0.298, 1.018, 2.01], [0.236, 1.462, 0.631, 0.873, 0.486, 1.281], [1.1, -1.001, 0.952, 1.349, 0.172, 2.338], [-0.839, 2.079, 0.96, 0.395, 0.842, 1.983], [1.955, -4.485, 1.036, 0.141, 0.98, 2.593], [-0.255, -0.481, 0.905, 0.161, 0.928, 1.969]]\nB: [[-0.954, -1.046, 0.462, 0.658, 0.618, 2.138], [-0.213, 1.899, 0.694, 0.708, 0.841, 1.686], [1.362, -1.133, 1.001, 1.465, -0.084, 2.501], [-0.862, 2.364, 0.854, 0.124, 0.853, 2.159], [2.413, -4.964, 0.774, -0.345, 1.16, 3.015], [0.156, -0.554, 0.434, -0.07, 0.695, 2.392]]\nC: [[-0.732, -1.166, 0.44, 0.739, 0.991, 1.593], [0.338, 1.95, 0.672, 0.941, 0.589, 1.757], [0.743, -0.963, 1.147, 1.448, -0.135, 2.517], [-1.129, 2.483, 1.375, 0.132, 1.054, 2.43], [1.587, -4.551, 0.847, 0.35, 0.965, 2.767], [-0.661, -0.507, 0.612, -0.243, 0.847, 1.515]]\nD: [[-0.907, -1.27, 0.42, -0.059, 1.138, 1.561], [0.626, 1.256, 1.105, 1.202, 0.216, 1.006], [0.877, -0.877, 1.149, 0.987, -0.045, 2.737], [-0.783, 1.691, 0.606, 0.081, 0.643, 2.205], [2.363, -4.049, 1.139, 0.229, 0.955, 2.439], [-0.196, -0.854, 0.721, 0.566, 0.583, 2.254]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.662, -1.551, 0.955, 1.174, 1.083, 1.423]]\nB: [[0.488, -1.177, 0.89, 1.089, 0.729, 1.751]]\nC: [[0.483, -0.736, 0.965, 0.958, 0.277, 1.886]]\nD: [[0.649, -1.283, 0.609, 1.143, 1.139, 2.193]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_177_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_177_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the desk in the scene. The camera pose information includes: the rotation matrix: [[0.51864, -0.44867, 0.727811], [-0.853934, -0.229463, 0.467059], [-0.04255, -0.863738, -0.502143]]; the translation vector: [1.002297, 1.98866, 1.344191], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.662, -1.551, 0.955, 1.174, 1.083, 1.423]]\nB: [[0.488, -1.177, 0.89, 1.089, 0.729, 1.751]]\nC: [[0.483, -0.736, 0.965, 0.958, 0.277, 1.886]]\nD: [[0.649, -1.283, 0.609, 1.143, 1.139, 2.193]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.285, -1.171, 0.463, 0.532, 0.611, 0.923], [1.223, 1.763, 0.56, 0.667, 0.631, 0.966], [-0.307, 1.833, 0.5, 0.619, 0.589, 0.922], [-0.406, -0.951, 0.39, 0.539, 0.611, 0.908], [0.655, 1.709, 0.525, 0.699, 0.634, 0.947], [1.269, -2.956, 0.836, 0.629, 0.557, 0.393], [1.192, 0.557, 0.457, 0.623, 0.615, 0.94], [0.416, -2.765, 0.677, 0.614, 0.452, 0.612], [-0.522, 0.635, 0.418, 0.585, 0.574, 0.905], [-0.363, -3.094, 0.495, 0.715, 0.612, 0.912], [0.336, 0.66, 0.438, 0.602, 0.623, 0.904], [-2.007, -0.347, 0.408, 0.521, 0.585, 0.891], [0.411, -1.036, 0.417, 0.682, 0.634, 0.922], [-2.039, -2.805, 0.495, 0.561, 0.631, 0.9], [-1.956, -1.834, 0.436, 0.597, 0.728, 0.922], [-2.754, 1.479, 0.509, 0.58, 0.603, 0.892]]\nB: [[0.94, -0.734, 0.86, 0.847, 0.174, 1.366], [1.047, 1.724, 0.337, 1.114, 0.725, 1.18], [-0.446, 1.839, 0.399, 1.0, 0.211, 0.928], [-0.224, -0.996, 0.671, 0.902, 0.396, 0.957], [0.648, 2.199, 0.865, 0.644, 0.899, 0.978], [1.601, -3.15, 1.071, 0.541, 0.264, 0.224], [0.709, 0.399, 0.396, 0.628, 0.643, 1.257], [0.103, -2.816, 0.184, 1.095, 0.871, 0.909], [-0.735, 1.113, 0.158, 0.968, 0.355, 1.244], [-0.793, -3.536, 0.957, 0.881, 0.306, 1.233], [-0.114, 0.863, 0.498, 0.236, 0.716, 1.116], [-1.845, -0.397, 0.53, 0.528, 0.958, 0.727], [0.156, -0.653, 0.083, 0.658, 1.129, 0.686], [-2.166, -2.74, 0.163, 0.166, 0.842, 0.447], [-2.421, -1.954, 0.206, 0.882, 0.734, 0.761], [-3.119, 1.809, 0.685, 0.543, 0.98, 1.284]]\nC: [[0.87, -1.386, 0.953, 0.148, 0.539, 1.241], [0.822, 1.276, 0.128, 0.239, 0.572, 1.227], [-0.508, 2.214, 0.373, 0.683, 0.2, 1.183], [-0.547, -1.349, -0.07, 0.231, 0.312, 1.389], [0.457, 1.367, 0.965, 0.768, 0.185, 1.088], [1.563, -2.649, 0.498, 0.756, 0.364, 0.362], [1.083, 0.345, 0.921, 0.769, 0.695, 1.386], [0.143, -3.095, 0.202, 0.278, 0.051, 0.502], [-0.474, 0.978, 0.872, 0.559, 0.082, 1.262], [-0.01, -3.401, 0.115, 1.005, 0.452, 1.143], [-0.106, 1.086, 0.284, 0.105, 0.131, 0.844], [-2.44, -0.304, -0.054, 0.667, 0.457, 0.703], [0.747, -1.031, -0.051, 0.551, 0.84, 0.909], [-2.101, -2.554, 0.473, 1.017, 0.994, 1.065], [-1.883, -2.033, 0.423, 0.644, 1.201, 0.726], [-3.109, 1.24, 0.812, 0.728, 1.099, 0.829]]\nD: [[1.585, -0.899, 0.099, 0.724, 0.912, 0.466], [0.799, 2.074, 0.967, 0.764, 0.821, 0.506], [-0.531, 1.393, 0.134, 0.737, 1.022, 1.024], [-0.008, -0.984, -0.095, 0.085, 0.528, 0.524], [0.362, 2.074, 0.189, 0.835, 0.387, 0.74], [1.446, -2.709, 0.927, 0.329, 0.916, 0.373], [1.078, 0.299, 0.482, 0.303, 0.612, 0.521], [0.439, -2.308, 0.3, 0.788, 0.517, 0.416], [-0.314, 0.386, 0.749, 0.588, 0.522, 1.244], [-0.739, -2.845, 0.766, 0.695, 1.017, 0.779], [-0.116, 0.704, 0.487, 0.148, 0.185, 0.776], [-1.607, 0.118, 0.862, 0.934, 0.609, 0.752], [-0.074, -0.593, 0.062, 0.851, 0.522, 0.762], [-2.188, -3.11, 0.134, 0.427, 0.414, 0.637], [-1.911, -1.906, 0.292, 0.873, 0.728, 0.955], [-2.793, 1.335, 0.084, 0.946, 0.494, 0.463]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_178_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_178_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the chair in the scene. The camera pose information includes: the rotation matrix: [[0.931668, 0.072515, -0.356001], [0.362912, -0.231685, 0.902561], [-0.017031, -0.970084, -0.24217]]; the translation vector: [5.886859, 3.543659, 1.354971], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.285, -1.171, 0.463, 0.532, 0.611, 0.923], [1.223, 1.763, 0.56, 0.667, 0.631, 0.966], [-0.307, 1.833, 0.5, 0.619, 0.589, 0.922], [-0.406, -0.951, 0.39, 0.539, 0.611, 0.908], [0.655, 1.709, 0.525, 0.699, 0.634, 0.947], [1.269, -2.956, 0.836, 0.629, 0.557, 0.393], [1.192, 0.557, 0.457, 0.623, 0.615, 0.94], [0.416, -2.765, 0.677, 0.614, 0.452, 0.612], [-0.522, 0.635, 0.418, 0.585, 0.574, 0.905], [-0.363, -3.094, 0.495, 0.715, 0.612, 0.912], [0.336, 0.66, 0.438, 0.602, 0.623, 0.904], [-2.007, -0.347, 0.408, 0.521, 0.585, 0.891], [0.411, -1.036, 0.417, 0.682, 0.634, 0.922], [-2.039, -2.805, 0.495, 0.561, 0.631, 0.9], [-1.956, -1.834, 0.436, 0.597, 0.728, 0.922], [-2.754, 1.479, 0.509, 0.58, 0.603, 0.892]]\nB: [[0.94, -0.734, 0.86, 0.847, 0.174, 1.366], [1.047, 1.724, 0.337, 1.114, 0.725, 1.18], [-0.446, 1.839, 0.399, 1.0, 0.211, 0.928], [-0.224, -0.996, 0.671, 0.902, 0.396, 0.957], [0.648, 2.199, 0.865, 0.644, 0.899, 0.978], [1.601, -3.15, 1.071, 0.541, 0.264, 0.224], [0.709, 0.399, 0.396, 0.628, 0.643, 1.257], [0.103, -2.816, 0.184, 1.095, 0.871, 0.909], [-0.735, 1.113, 0.158, 0.968, 0.355, 1.244], [-0.793, -3.536, 0.957, 0.881, 0.306, 1.233], [-0.114, 0.863, 0.498, 0.236, 0.716, 1.116], [-1.845, -0.397, 0.53, 0.528, 0.958, 0.727], [0.156, -0.653, 0.083, 0.658, 1.129, 0.686], [-2.166, -2.74, 0.163, 0.166, 0.842, 0.447], [-2.421, -1.954, 0.206, 0.882, 0.734, 0.761], [-3.119, 1.809, 0.685, 0.543, 0.98, 1.284]]\nC: [[0.87, -1.386, 0.953, 0.148, 0.539, 1.241], [0.822, 1.276, 0.128, 0.239, 0.572, 1.227], [-0.508, 2.214, 0.373, 0.683, 0.2, 1.183], [-0.547, -1.349, -0.07, 0.231, 0.312, 1.389], [0.457, 1.367, 0.965, 0.768, 0.185, 1.088], [1.563, -2.649, 0.498, 0.756, 0.364, 0.362], [1.083, 0.345, 0.921, 0.769, 0.695, 1.386], [0.143, -3.095, 0.202, 0.278, 0.051, 0.502], [-0.474, 0.978, 0.872, 0.559, 0.082, 1.262], [-0.01, -3.401, 0.115, 1.005, 0.452, 1.143], [-0.106, 1.086, 0.284, 0.105, 0.131, 0.844], [-2.44, -0.304, -0.054, 0.667, 0.457, 0.703], [0.747, -1.031, -0.051, 0.551, 0.84, 0.909], [-2.101, -2.554, 0.473, 1.017, 0.994, 1.065], [-1.883, -2.033, 0.423, 0.644, 1.201, 0.726], [-3.109, 1.24, 0.812, 0.728, 1.099, 0.829]]\nD: [[1.585, -0.899, 0.099, 0.724, 0.912, 0.466], [0.799, 2.074, 0.967, 0.764, 0.821, 0.506], [-0.531, 1.393, 0.134, 0.737, 1.022, 1.024], [-0.008, -0.984, -0.095, 0.085, 0.528, 0.524], [0.362, 2.074, 0.189, 0.835, 0.387, 0.74], [1.446, -2.709, 0.927, 0.329, 0.916, 0.373], [1.078, 0.299, 0.482, 0.303, 0.612, 0.521], [0.439, -2.308, 0.3, 0.788, 0.517, 0.416], [-0.314, 0.386, 0.749, 0.588, 0.522, 1.244], [-0.739, -2.845, 0.766, 0.695, 1.017, 0.779], [-0.116, 0.704, 0.487, 0.148, 0.185, 0.776], [-1.607, 0.118, 0.862, 0.934, 0.609, 0.752], [-0.074, -0.593, 0.062, 0.851, 0.522, 0.762], [-2.188, -3.11, 0.134, 0.427, 0.414, 0.637], [-1.911, -1.906, 0.292, 0.873, 0.728, 0.955], [-2.793, 1.335, 0.084, 0.946, 0.494, 0.463]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.185, -1.981, 0.71, 1.746, 1.931, 1.092]]\nB: [[0.263, -1.622, 0.402, 1.389, 1.64, 0.804]]\nC: [[0.151, -1.735, 0.574, 1.767, 1.715, 0.631]]\nD: [[0.262, -2.035, 0.645, 1.006, 2.054, 1.049]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_179_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_179_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the table in the scene. The camera pose information includes: the rotation matrix: [[0.987126, 0.106622, -0.119219], [0.159938, -0.652529, 0.740693], [0.00118, -0.750225, -0.661181]]; the translation vector: [4.64166, 4.052867, 1.404314], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.185, -1.981, 0.71, 1.746, 1.931, 1.092]]\nB: [[0.263, -1.622, 0.402, 1.389, 1.64, 0.804]]\nC: [[0.151, -1.735, 0.574, 1.767, 1.715, 0.631]]\nD: [[0.262, -2.035, 0.645, 1.006, 2.054, 1.049]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.648, -0.593, 0.364, 0.758, 0.748, 0.835], [-1.189, -0.998, 0.388, 0.711, 0.664, 0.751], [-0.106, -0.14, 0.366, 0.681, 0.668, 0.806], [-0.467, -1.537, 0.381, 0.682, 0.66, 0.781]]\nB: [[0.715, -1.041, 0.651, 0.471, 0.834, 0.809], [-1.555, -0.972, 0.209, 0.39, 0.675, 1.08], [0.331, 0.337, 0.451, 0.906, 1.083, 1.138], [-0.367, -1.309, -0.086, 0.84, 1.029, 0.958]]\nC: [[0.76, -0.428, 0.328, 0.718, 0.602, 0.917], [-1.301, -1.169, 0.677, 0.824, 0.61, 0.712], [0.1, -0.045, 0.084, 0.878, 0.367, 0.431], [-0.14, -1.88, 0.43, 0.418, 0.474, 0.77]]\nD: [[0.587, -1.036, 0.299, 1.076, 1.171, 0.475], [-1.011, -1.458, 0.499, 0.276, 1.067, 0.759], [-0.487, -0.498, 0.17, 1.114, 0.58, 1.041], [-0.116, -1.819, 0.569, 0.961, 0.364, 1.204]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_180_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_180_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the armchair in the scene. The camera pose information includes: the rotation matrix: [[0.68967, 0.288211, -0.664297], [0.724122, -0.27239, 0.633602], [0.001663, -0.918008, -0.396559]]; the translation vector: [2.530043, 2.005069, 1.437417], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.648, -0.593, 0.364, 0.758, 0.748, 0.835], [-1.189, -0.998, 0.388, 0.711, 0.664, 0.751], [-0.106, -0.14, 0.366, 0.681, 0.668, 0.806], [-0.467, -1.537, 0.381, 0.682, 0.66, 0.781]]\nB: [[0.715, -1.041, 0.651, 0.471, 0.834, 0.809], [-1.555, -0.972, 0.209, 0.39, 0.675, 1.08], [0.331, 0.337, 0.451, 0.906, 1.083, 1.138], [-0.367, -1.309, -0.086, 0.84, 1.029, 0.958]]\nC: [[0.76, -0.428, 0.328, 0.718, 0.602, 0.917], [-1.301, -1.169, 0.677, 0.824, 0.61, 0.712], [0.1, -0.045, 0.084, 0.878, 0.367, 0.431], [-0.14, -1.88, 0.43, 0.418, 0.474, 0.77]]\nD: [[0.587, -1.036, 0.299, 1.076, 1.171, 0.475], [-1.011, -1.458, 0.499, 0.276, 1.067, 0.759], [-0.487, -0.498, 0.17, 1.114, 0.58, 1.041], [-0.116, -1.819, 0.569, 0.961, 0.364, 1.204]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.678, -1.667, 1.218, 1.055, -0.26, 2.418], [-1.464, 1.094, 0.83, 1.262, -0.304, 1.673], [0.614, 2.399, 0.708, 1.662, -0.241, 1.035], [0.965, -0.058, 1.477, 0.773, 4.136, 2.578], [-1.154, 1.558, 1.248, -0.057, 1.091, 2.617], [-1.717, -0.255, 1.603, -0.126, 2.491, 0.5]]\nB: [[-1.352, -1.046, 1.599, 1.44, 0.136, 2.792], [-1.654, 0.816, 0.791, 1.207, 0.132, 1.881], [0.521, 2.259, 1.273, 1.597, -0.332, 0.736], [0.806, 0.159, 1.62, 0.393, 4.568, 2.678], [-1.081, 1.507, 1.378, -0.253, 1.151, 2.742], [-1.495, -0.107, 1.278, 0.325, 1.906, 1.086]]\nC: [[-1.166, -1.418, 1.14, 1.061, 0.184, 2.392], [-1.606, 0.642, 1.143, 0.781, 0.159, 2.172], [0.167, 2.007, 1.118, 1.797, 0.138, 0.569], [0.908, -0.132, 1.206, 0.513, 4.305, 2.258], [-1.326, 1.1, 1.19, 0.242, 0.968, 2.282], [-1.838, -0.447, 1.348, 0.372, 2.121, 0.908]]\nD: [[-0.864, -1.506, 1.526, 0.637, 0.64, 2.228], [-1.745, 0.647, 0.899, 0.933, -0.243, 2.211], [-0.21, 1.507, 1.578, 2.065, 0.587, 0.484], [1.157, 0.294, 0.85, 0.968, 4.125, 2.603], [-1.113, 0.941, 1.165, 0.239, 0.756, 2.423], [-2.32, -0.87, 1.844, 0.517, 2.303, 0.518]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_181_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_181_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[-0.964843, 0.186346, -0.185345], [0.252505, 0.461537, -0.850426], [-0.07293, -0.867329, -0.492364]]; the translation vector: [3.779865, 2.337391, 1.461827], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.678, -1.667, 1.218, 1.055, -0.26, 2.418], [-1.464, 1.094, 0.83, 1.262, -0.304, 1.673], [0.614, 2.399, 0.708, 1.662, -0.241, 1.035], [0.965, -0.058, 1.477, 0.773, 4.136, 2.578], [-1.154, 1.558, 1.248, -0.057, 1.091, 2.617], [-1.717, -0.255, 1.603, -0.126, 2.491, 0.5]]\nB: [[-1.352, -1.046, 1.599, 1.44, 0.136, 2.792], [-1.654, 0.816, 0.791, 1.207, 0.132, 1.881], [0.521, 2.259, 1.273, 1.597, -0.332, 0.736], [0.806, 0.159, 1.62, 0.393, 4.568, 2.678], [-1.081, 1.507, 1.378, -0.253, 1.151, 2.742], [-1.495, -0.107, 1.278, 0.325, 1.906, 1.086]]\nC: [[-1.166, -1.418, 1.14, 1.061, 0.184, 2.392], [-1.606, 0.642, 1.143, 0.781, 0.159, 2.172], [0.167, 2.007, 1.118, 1.797, 0.138, 0.569], [0.908, -0.132, 1.206, 0.513, 4.305, 2.258], [-1.326, 1.1, 1.19, 0.242, 0.968, 2.282], [-1.838, -0.447, 1.348, 0.372, 2.121, 0.908]]\nD: [[-0.864, -1.506, 1.526, 0.637, 0.64, 2.228], [-1.745, 0.647, 0.899, 0.933, -0.243, 2.211], [-0.21, 1.507, 1.578, 2.065, 0.587, 0.484], [1.157, 0.294, 0.85, 0.968, 4.125, 2.603], [-1.113, 0.941, 1.165, 0.239, 0.756, 2.423], [-2.32, -0.87, 1.844, 0.517, 2.303, 0.518]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.143, 1.32, 0.902, 0.946, 0.582, 0.814], [1.314, 2.961, 1.36, 1.125, 0.499, 2.359]]\nB: [[-1.164, 1.549, 1.101, 1.224, -0.166, 1.131], [1.215, 3.687, 1.039, 0.93, -0.333, 2.264]]\nC: [[-1.48, 1.652, 0.846, 0.755, 0.321, 1.167], [1.066, 3.327, 1.091, 1.04, 0.081, 1.998]]\nD: [[-1.81, 1.616, 0.892, 0.552, 0.779, 1.45], [1.382, 3.534, 1.284, 1.152, 0.521, 2.312]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_182_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_182_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the door in the scene. The camera pose information includes: the rotation matrix: [[-0.08083, -0.463089, 0.882618], [-0.994842, 0.091929, -0.042874], [-0.061284, -0.881531, -0.468131]]; the translation vector: [4.543997, 3.147744, 1.235262], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.143, 1.32, 0.902, 0.946, 0.582, 0.814], [1.314, 2.961, 1.36, 1.125, 0.499, 2.359]]\nB: [[-1.164, 1.549, 1.101, 1.224, -0.166, 1.131], [1.215, 3.687, 1.039, 0.93, -0.333, 2.264]]\nC: [[-1.48, 1.652, 0.846, 0.755, 0.321, 1.167], [1.066, 3.327, 1.091, 1.04, 0.081, 1.998]]\nD: [[-1.81, 1.616, 0.892, 0.552, 0.779, 1.45], [1.382, 3.534, 1.284, 1.152, 0.521, 2.312]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.277, 2.29, 0.603, 1.696, 0.522, 1.643], [-1.375, -0.321, 0.794, 0.343, 5.813, 1.671], [1.159, 0.472, 1.342, 0.486, 3.254, 0.972], [0.747, -2.391, 1.046, 0.652, 1.455, 1.87], [1.085, -1.961, 0.723, 1.174, -0.018, 1.576], [0.586, 1.92, 1.575, 0.646, -0.32, 2.439], [0.415, 2.748, 1.312, -0.384, 0.485, 2.051]]\nB: [[-0.351, 2.608, 0.955, 1.541, 0.097, 1.824], [-1.089, -0.096, 0.669, 0.099, 5.464, 1.395], [1.127, 0.133, 1.411, 0.212, 3.643, 0.932], [0.392, -2.442, 0.754, 0.163, 1.609, 1.541], [0.746, -1.664, 0.806, 0.833, 0.085, 1.637], [0.806, 1.971, 1.104, 0.829, 0.129, 2.13], [0.393, 2.271, 1.106, 0.064, 0.665, 2.126]]\nC: [[-0.013, 2.804, 0.64, 1.604, -0.241, 1.907], [-0.99, 0.257, 0.762, -0.167, 5.28, 1.868], [1.095, -0.318, 1.309, 0.698, 4.021, 0.652], [0.346, -2.805, 0.465, -0.167, 2.086, 1.213], [0.527, -1.307, 1.185, 0.733, -0.294, 1.468], [1.191, 1.911, 1.165, 0.69, 0.519, 1.853], [0.342, 2.498, 1.557, -0.047, 0.494, 2.435]]\nD: [[-0.612, 2.451, 1.013, 1.076, 0.146, 2.285], [-0.642, -0.043, 0.498, -0.353, 5.408, 1.585], [1.099, -0.043, 0.972, -0.204, 4.141, 1.05], [0.087, -2.832, 0.317, 0.167, 1.848, 1.113], [0.399, -1.498, 0.656, 1.117, 0.566, 1.989], [0.495, 2.449, 0.82, 0.411, 0.228, 2.522], [0.507, 2.378, 1.381, -0.184, 0.771, 1.769]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_183_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_183_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[0.286652, 0.220257, -0.932372], [0.958024, -0.061246, 0.28007], [0.004584, -0.973517, -0.228568]]; the translation vector: [3.76659, 1.676076, 1.452194], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.277, 2.29, 0.603, 1.696, 0.522, 1.643], [-1.375, -0.321, 0.794, 0.343, 5.813, 1.671], [1.159, 0.472, 1.342, 0.486, 3.254, 0.972], [0.747, -2.391, 1.046, 0.652, 1.455, 1.87], [1.085, -1.961, 0.723, 1.174, -0.018, 1.576], [0.586, 1.92, 1.575, 0.646, -0.32, 2.439], [0.415, 2.748, 1.312, -0.384, 0.485, 2.051]]\nB: [[-0.351, 2.608, 0.955, 1.541, 0.097, 1.824], [-1.089, -0.096, 0.669, 0.099, 5.464, 1.395], [1.127, 0.133, 1.411, 0.212, 3.643, 0.932], [0.392, -2.442, 0.754, 0.163, 1.609, 1.541], [0.746, -1.664, 0.806, 0.833, 0.085, 1.637], [0.806, 1.971, 1.104, 0.829, 0.129, 2.13], [0.393, 2.271, 1.106, 0.064, 0.665, 2.126]]\nC: [[-0.013, 2.804, 0.64, 1.604, -0.241, 1.907], [-0.99, 0.257, 0.762, -0.167, 5.28, 1.868], [1.095, -0.318, 1.309, 0.698, 4.021, 0.652], [0.346, -2.805, 0.465, -0.167, 2.086, 1.213], [0.527, -1.307, 1.185, 0.733, -0.294, 1.468], [1.191, 1.911, 1.165, 0.69, 0.519, 1.853], [0.342, 2.498, 1.557, -0.047, 0.494, 2.435]]\nD: [[-0.612, 2.451, 1.013, 1.076, 0.146, 2.285], [-0.642, -0.043, 0.498, -0.353, 5.408, 1.585], [1.099, -0.043, 0.972, -0.204, 4.141, 1.05], [0.087, -2.832, 0.317, 0.167, 1.848, 1.113], [0.399, -1.498, 0.656, 1.117, 0.566, 1.989], [0.495, 2.449, 0.82, 0.411, 0.228, 2.522], [0.507, 2.378, 1.381, -0.184, 0.771, 1.769]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.457, -0.683, 0.495, 0.679, 0.597, 0.903], [0.426, 0.843, 0.458, 0.566, 0.562, 0.949], [-0.336, 0.792, 0.461, 0.555, 0.539, 0.932], [0.926, -0.823, 0.62, 0.473, 0.568, 0.621], [-1.992, 0.348, 0.596, 0.635, 0.634, 0.647], [1.1, 0.858, 0.465, 0.529, 0.569, 0.952], [-0.253, -1.834, 0.689, 0.639, 0.561, 0.602], [-0.397, 2.119, 0.473, 0.759, 0.651, 0.94], [-1.254, -0.965, 0.657, 0.558, 0.592, 0.636], [-1.564, -0.168, 0.649, 0.462, 0.615, 0.611], [-0.169, -2.406, 0.711, 0.757, 0.669, 0.597], [1.375, -1.924, 0.508, 0.658, 0.509, 0.96], [0.214, -0.572, 0.651, 0.695, 0.494, 0.584], [-2.356, 2.053, 0.675, 0.673, 0.595, 0.536], [-0.799, -2.241, 0.541, 0.662, 0.673, 0.96], [1.941, -1.89, 0.718, 0.565, 0.56, 0.52], [2.571, -0.575, 0.472, 0.572, 0.595, 0.956], [-0.865, 2.028, 0.487, 0.583, 0.461, 0.128], [0.361, -2.459, 0.78, 0.536, 0.269, 0.489], [1.938, -1.474, 0.649, 0.57, 0.554, 0.6], [0.743, -2.15, 0.817, 0.526, 0.164, 0.344], [2.542, -1.129, 0.644, 0.598, 0.586, 0.612], [1.955, 0.145, 0.785, 0.141, 0.509, 0.304], [-1.685, 2.109, 0.449, 0.566, 0.486, 0.153], [-2.437, -1.918, 0.584, 0.515, 0.45, 0.203]]\nB: [[-0.004, -0.217, 0.058, 0.956, 0.104, 0.992], [0.634, 0.895, 0.282, 0.697, 0.893, 1.438], [-0.387, 0.349, 0.019, 0.239, 0.901, 0.96], [1.064, -1.168, 0.964, 0.374, 1.0, 0.253], [-1.606, 0.8, 0.112, 0.967, 0.862, 0.256], [1.288, 0.417, 0.225, 0.427, 0.112, 1.268], [-0.365, -1.988, 0.842, 0.932, 0.117, 0.21], [0.056, 2.617, 0.694, 0.602, 0.776, 0.848], [-1.173, -1.184, 0.2, 0.567, 0.839, 0.497], [-1.108, -0.485, 0.838, 0.382, 0.723, 1.057], [0.031, -2.18, 0.477, 1.078, 0.774, 0.574], [1.32, -1.614, 0.5, 0.512, 0.791, 1.227], [0.57, -1.002, 0.878, 0.861, 0.739, 0.347], [-2.072, 2.433, 1.143, 0.504, 1.054, 0.551], [-0.569, -2.64, 0.278, 0.616, 1.122, 1.078], [2.089, -1.691, 0.769, 0.97, 0.148, 0.992], [2.274, -0.687, 0.634, 0.56, 0.654, 0.811], [-1.223, 2.009, 0.495, 1.006, -0.028, 0.186], [0.145, -2.547, 0.54, 0.793, 0.387, 0.825], [1.744, -1.228, 0.533, 0.139, 0.886, 1.027], [1.123, -2.589, 1.183, 0.079, 0.187, 0.548], [2.235, -0.842, 0.485, 0.73, 0.575, 0.903], [1.694, -0.054, 1.249, 0.468, 0.557, 0.748], [-1.216, 2.107, 0.803, 0.764, 0.267, 0.274], [-2.623, -2.077, 1.01, 0.838, 0.106, -0.148]]\nC: [[-0.042, -0.277, 0.622, 0.349, 0.954, 1.11], [0.421, 0.801, 0.437, 0.094, 0.078, 1.2], [-0.436, 0.855, 0.625, 0.341, 0.737, 1.353], [0.599, -0.582, 0.28, 0.836, 0.717, 0.357], [-2.398, -0.135, 0.951, 0.429, 1.038, 0.502], [1.554, 0.709, 0.624, 0.144, 0.967, 1.304], [-0.666, -1.374, 0.422, 0.517, 0.122, 0.8], [-0.203, 1.908, 0.093, 1.027, 0.556, 0.76], [-1.532, -0.535, 0.437, 0.57, 0.41, 0.413], [-1.535, -0.307, 0.814, 0.936, 0.544, 1.082], [-0.39, -2.044, 0.309, 0.76, 0.801, 0.62], [1.044, -2.393, 0.932, 1.048, 0.287, 1.261], [0.664, -0.294, 1.14, 0.882, 0.176, 0.207], [-2.135, 2.211, 0.272, 0.963, 0.668, 0.76], [-1.028, -2.103, 1.016, 0.918, 0.609, 1.31], [1.579, -2.37, 0.458, 0.202, 0.159, 0.166], [2.079, -0.505, 0.945, 0.57, 0.86, 0.725], [-0.396, 2.379, 0.489, 0.77, 0.063, 0.52], [0.423, -2.492, 0.598, 0.788, 0.241, 0.406], [2.219, -1.548, 0.415, 0.429, 0.702, 0.329], [1.236, -1.961, 0.849, 0.371, 0.256, -0.039], [2.93, -1.099, 1.108, 0.393, 0.388, 0.187], [1.738, -0.099, 0.354, 0.013, 0.06, 0.667], [-1.711, 2.599, 0.36, 0.548, 0.69, -0.323], [-1.988, -1.796, 0.232, 0.609, 0.912, -0.043]]\nD: [[-0.117, -0.712, 0.165, 0.707, 0.749, 0.416], [0.663, 1.109, 0.92, 0.786, 0.382, 0.761], [-0.485, 1.276, -0.006, 0.122, 0.579, 0.562], [0.651, -1.033, 0.48, 0.012, 0.291, 0.281], [-1.67, 0.137, 0.785, 1.091, 0.142, 0.851], [1.44, 0.455, 0.476, 0.133, 0.572, 0.925], [-0.342, -1.74, 0.35, 0.646, 0.394, 0.443], [-0.793, 2.134, 0.146, 1.105, 0.456, 0.742], [-1.574, -0.65, 0.985, 0.2, 0.168, 1.102], [-1.526, 0.104, 0.427, 0.23, 0.555, 0.818], [-0.21, -2.447, 0.593, 1.166, 1.051, 0.465], [1.11, -2.085, 0.532, 0.952, 0.334, 0.936], [-0.231, -0.532, 0.895, 0.826, 0.523, 0.78], [-2.843, 1.728, 0.764, 0.92, 0.672, 0.101], [-0.845, -1.905, 0.458, 0.184, 0.635, 1.348], [1.844, -1.433, 1.033, 0.147, 0.968, 0.118], [2.166, -0.542, 0.733, 0.117, 0.957, 0.814], [-0.92, 1.743, 0.237, 0.993, 0.477, 0.227], [0.31, -2.458, 0.659, 0.782, 0.696, 0.669], [1.626, -1.353, 0.953, 0.579, 0.517, 0.513], [0.856, -2.414, 0.37, 0.927, 0.46, -0.04], [2.564, -1.512, 0.576, 0.167, 0.528, 0.323], [2.064, -0.007, 0.399, -0.022, 0.444, 0.68], [-1.281, 1.93, 0.706, 0.411, 0.266, -0.223], [-2.823, -2.037, 0.823, 0.649, 0.539, 0.078]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_184_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_184_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the chair in the scene. The camera pose information includes: the rotation matrix: [[-0.895509, 0.17248, -0.410263], [0.444823, 0.375965, -0.812886], [0.014038, -0.91044, -0.413402]]; the translation vector: [2.818061, 5.409916, 1.54775], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.457, -0.683, 0.495, 0.679, 0.597, 0.903], [0.426, 0.843, 0.458, 0.566, 0.562, 0.949], [-0.336, 0.792, 0.461, 0.555, 0.539, 0.932], [0.926, -0.823, 0.62, 0.473, 0.568, 0.621], [-1.992, 0.348, 0.596, 0.635, 0.634, 0.647], [1.1, 0.858, 0.465, 0.529, 0.569, 0.952], [-0.253, -1.834, 0.689, 0.639, 0.561, 0.602], [-0.397, 2.119, 0.473, 0.759, 0.651, 0.94], [-1.254, -0.965, 0.657, 0.558, 0.592, 0.636], [-1.564, -0.168, 0.649, 0.462, 0.615, 0.611], [-0.169, -2.406, 0.711, 0.757, 0.669, 0.597], [1.375, -1.924, 0.508, 0.658, 0.509, 0.96], [0.214, -0.572, 0.651, 0.695, 0.494, 0.584], [-2.356, 2.053, 0.675, 0.673, 0.595, 0.536], [-0.799, -2.241, 0.541, 0.662, 0.673, 0.96], [1.941, -1.89, 0.718, 0.565, 0.56, 0.52], [2.571, -0.575, 0.472, 0.572, 0.595, 0.956], [-0.865, 2.028, 0.487, 0.583, 0.461, 0.128], [0.361, -2.459, 0.78, 0.536, 0.269, 0.489], [1.938, -1.474, 0.649, 0.57, 0.554, 0.6], [0.743, -2.15, 0.817, 0.526, 0.164, 0.344], [2.542, -1.129, 0.644, 0.598, 0.586, 0.612], [1.955, 0.145, 0.785, 0.141, 0.509, 0.304], [-1.685, 2.109, 0.449, 0.566, 0.486, 0.153], [-2.437, -1.918, 0.584, 0.515, 0.45, 0.203]]\nB: [[-0.004, -0.217, 0.058, 0.956, 0.104, 0.992], [0.634, 0.895, 0.282, 0.697, 0.893, 1.438], [-0.387, 0.349, 0.019, 0.239, 0.901, 0.96], [1.064, -1.168, 0.964, 0.374, 1.0, 0.253], [-1.606, 0.8, 0.112, 0.967, 0.862, 0.256], [1.288, 0.417, 0.225, 0.427, 0.112, 1.268], [-0.365, -1.988, 0.842, 0.932, 0.117, 0.21], [0.056, 2.617, 0.694, 0.602, 0.776, 0.848], [-1.173, -1.184, 0.2, 0.567, 0.839, 0.497], [-1.108, -0.485, 0.838, 0.382, 0.723, 1.057], [0.031, -2.18, 0.477, 1.078, 0.774, 0.574], [1.32, -1.614, 0.5, 0.512, 0.791, 1.227], [0.57, -1.002, 0.878, 0.861, 0.739, 0.347], [-2.072, 2.433, 1.143, 0.504, 1.054, 0.551], [-0.569, -2.64, 0.278, 0.616, 1.122, 1.078], [2.089, -1.691, 0.769, 0.97, 0.148, 0.992], [2.274, -0.687, 0.634, 0.56, 0.654, 0.811], [-1.223, 2.009, 0.495, 1.006, -0.028, 0.186], [0.145, -2.547, 0.54, 0.793, 0.387, 0.825], [1.744, -1.228, 0.533, 0.139, 0.886, 1.027], [1.123, -2.589, 1.183, 0.079, 0.187, 0.548], [2.235, -0.842, 0.485, 0.73, 0.575, 0.903], [1.694, -0.054, 1.249, 0.468, 0.557, 0.748], [-1.216, 2.107, 0.803, 0.764, 0.267, 0.274], [-2.623, -2.077, 1.01, 0.838, 0.106, -0.148]]\nC: [[-0.042, -0.277, 0.622, 0.349, 0.954, 1.11], [0.421, 0.801, 0.437, 0.094, 0.078, 1.2], [-0.436, 0.855, 0.625, 0.341, 0.737, 1.353], [0.599, -0.582, 0.28, 0.836, 0.717, 0.357], [-2.398, -0.135, 0.951, 0.429, 1.038, 0.502], [1.554, 0.709, 0.624, 0.144, 0.967, 1.304], [-0.666, -1.374, 0.422, 0.517, 0.122, 0.8], [-0.203, 1.908, 0.093, 1.027, 0.556, 0.76], [-1.532, -0.535, 0.437, 0.57, 0.41, 0.413], [-1.535, -0.307, 0.814, 0.936, 0.544, 1.082], [-0.39, -2.044, 0.309, 0.76, 0.801, 0.62], [1.044, -2.393, 0.932, 1.048, 0.287, 1.261], [0.664, -0.294, 1.14, 0.882, 0.176, 0.207], [-2.135, 2.211, 0.272, 0.963, 0.668, 0.76], [-1.028, -2.103, 1.016, 0.918, 0.609, 1.31], [1.579, -2.37, 0.458, 0.202, 0.159, 0.166], [2.079, -0.505, 0.945, 0.57, 0.86, 0.725], [-0.396, 2.379, 0.489, 0.77, 0.063, 0.52], [0.423, -2.492, 0.598, 0.788, 0.241, 0.406], [2.219, -1.548, 0.415, 0.429, 0.702, 0.329], [1.236, -1.961, 0.849, 0.371, 0.256, -0.039], [2.93, -1.099, 1.108, 0.393, 0.388, 0.187], [1.738, -0.099, 0.354, 0.013, 0.06, 0.667], [-1.711, 2.599, 0.36, 0.548, 0.69, -0.323], [-1.988, -1.796, 0.232, 0.609, 0.912, -0.043]]\nD: [[-0.117, -0.712, 0.165, 0.707, 0.749, 0.416], [0.663, 1.109, 0.92, 0.786, 0.382, 0.761], [-0.485, 1.276, -0.006, 0.122, 0.579, 0.562], [0.651, -1.033, 0.48, 0.012, 0.291, 0.281], [-1.67, 0.137, 0.785, 1.091, 0.142, 0.851], [1.44, 0.455, 0.476, 0.133, 0.572, 0.925], [-0.342, -1.74, 0.35, 0.646, 0.394, 0.443], [-0.793, 2.134, 0.146, 1.105, 0.456, 0.742], [-1.574, -0.65, 0.985, 0.2, 0.168, 1.102], [-1.526, 0.104, 0.427, 0.23, 0.555, 0.818], [-0.21, -2.447, 0.593, 1.166, 1.051, 0.465], [1.11, -2.085, 0.532, 0.952, 0.334, 0.936], [-0.231, -0.532, 0.895, 0.826, 0.523, 0.78], [-2.843, 1.728, 0.764, 0.92, 0.672, 0.101], [-0.845, -1.905, 0.458, 0.184, 0.635, 1.348], [1.844, -1.433, 1.033, 0.147, 0.968, 0.118], [2.166, -0.542, 0.733, 0.117, 0.957, 0.814], [-0.92, 1.743, 0.237, 0.993, 0.477, 0.227], [0.31, -2.458, 0.659, 0.782, 0.696, 0.669], [1.626, -1.353, 0.953, 0.579, 0.517, 0.513], [0.856, -2.414, 0.37, 0.927, 0.46, -0.04], [2.564, -1.512, 0.576, 0.167, 0.528, 0.323], [2.064, -0.007, 0.399, -0.022, 0.444, 0.68], [-1.281, 1.93, 0.706, 0.411, 0.266, -0.223], [-2.823, -2.037, 0.823, 0.649, 0.539, 0.078]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.878, 0.793, 0.525, 0.307, 1.138, 0.24], [-1.741, 1.942, 0.919, 0.374, 0.284, 0.479], [-0.97, -1.167, 0.396, 0.145, 0.451, -0.19], [-1.083, -1.878, 0.816, 0.138, 0.403, 0.089], [-0.905, -1.314, 0.204, 0.196, 0.671, 0.614], [0.896, -0.37, -0.05, 0.065, 0.48, 0.052], [-0.311, 2.442, 0.913, 0.38, 0.489, 1.491]]\nB: [[-0.86, 0.987, 0.429, 0.753, 0.659, 0.935], [-1.179, 1.249, 1.101, 0.219, 0.461, 0.432], [-1.149, -1.648, 0.72, 0.293, 0.482, 0.205], [-0.806, -1.928, 1.378, 0.631, 0.665, 0.667], [-0.762, -1.463, 0.175, -0.154, 0.327, 0.058], [1.471, -0.937, 0.34, 0.631, 0.439, 0.05], [0.043, 1.928, 0.641, 0.637, 0.49, 0.81]]\nC: [[-0.458, 0.879, 0.858, 0.541, 0.86, 0.578], [-1.685, 1.754, 1.421, 0.241, 0.756, -0.241], [-1.527, -1.671, 0.922, 0.635, 0.013, 0.552], [-1.217, -1.15, 1.123, 0.142, 0.166, 0.441], [-1.042, -1.813, 0.54, 0.438, 0.445, 0.211], [1.239, -0.633, 0.179, 0.181, 0.23, 0.74], [-0.011, 2.472, 1.042, 0.129, 0.472, 1.438]]\nD: [[-0.55, 0.944, 0.644, 0.68, 1.046, 0.521], [-1.267, 1.712, 1.229, 0.359, 0.367, 0.165], [-1.24, -1.459, 0.828, 0.501, 0.283, 0.305], [-1.303, -1.553, 1.014, 0.399, 0.228, 0.178], [-0.73, -1.694, 0.629, 0.212, 0.251, 0.137], [1.337, -0.693, 0.283, 0.145, 0.467, 0.539], [0.135, 2.342, 0.574, 0.546, 0.62, 1.068]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_185_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_185_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the object in the scene. The camera pose information includes: the rotation matrix: [[0.330673, -0.328207, 0.884837], [-0.942686, -0.070458, 0.326157], [-0.044703, -0.941975, -0.332694]]; the translation vector: [3.753276, 4.481459, 1.345242], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.878, 0.793, 0.525, 0.307, 1.138, 0.24], [-1.741, 1.942, 0.919, 0.374, 0.284, 0.479], [-0.97, -1.167, 0.396, 0.145, 0.451, -0.19], [-1.083, -1.878, 0.816, 0.138, 0.403, 0.089], [-0.905, -1.314, 0.204, 0.196, 0.671, 0.614], [0.896, -0.37, -0.05, 0.065, 0.48, 0.052], [-0.311, 2.442, 0.913, 0.38, 0.489, 1.491]]\nB: [[-0.86, 0.987, 0.429, 0.753, 0.659, 0.935], [-1.179, 1.249, 1.101, 0.219, 0.461, 0.432], [-1.149, -1.648, 0.72, 0.293, 0.482, 0.205], [-0.806, -1.928, 1.378, 0.631, 0.665, 0.667], [-0.762, -1.463, 0.175, -0.154, 0.327, 0.058], [1.471, -0.937, 0.34, 0.631, 0.439, 0.05], [0.043, 1.928, 0.641, 0.637, 0.49, 0.81]]\nC: [[-0.458, 0.879, 0.858, 0.541, 0.86, 0.578], [-1.685, 1.754, 1.421, 0.241, 0.756, -0.241], [-1.527, -1.671, 0.922, 0.635, 0.013, 0.552], [-1.217, -1.15, 1.123, 0.142, 0.166, 0.441], [-1.042, -1.813, 0.54, 0.438, 0.445, 0.211], [1.239, -0.633, 0.179, 0.181, 0.23, 0.74], [-0.011, 2.472, 1.042, 0.129, 0.472, 1.438]]\nD: [[-0.55, 0.944, 0.644, 0.68, 1.046, 0.521], [-1.267, 1.712, 1.229, 0.359, 0.367, 0.165], [-1.24, -1.459, 0.828, 0.501, 0.283, 0.305], [-1.303, -1.553, 1.014, 0.399, 0.228, 0.178], [-0.73, -1.694, 0.629, 0.212, 0.251, 0.137], [1.337, -0.693, 0.283, 0.145, 0.467, 0.539], [0.135, 2.342, 0.574, 0.546, 0.62, 1.068]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.565, -1.185, 1.353, 0.464, 0.006, 0.118], [0.412, -0.591, 0.819, 0.036, 0.543, 0.322], [0.775, 0.247, 0.843, 0.919, 0.864, 0.389]]\nB: [[-0.648, -1.262, 0.922, 0.446, 0.433, 0.522], [0.437, -0.235, 0.949, 0.366, 0.445, 0.454], [0.764, 0.145, 0.941, 0.483, 0.409, 0.473]]\nC: [[-0.794, -1.422, 1.325, 0.646, -0.011, 0.511], [0.55, -0.124, 0.97, 0.767, 0.276, 0.151], [0.692, 0.134, 0.818, 0.04, 0.142, 0.775]]\nD: [[-0.888, -1.602, 1.373, 0.357, 0.797, 0.596], [0.014, -0.496, 0.808, 0.816, 0.004, 0.14], [0.932, 0.14, 0.871, 0.799, 0.355, 0.358]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_186_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_186_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the monitor in the scene. The camera pose information includes: the rotation matrix: [[0.054781, -0.427281, 0.902458], [-0.998013, -0.051617, 0.036143], [0.031139, -0.902644, -0.429259]]; the translation vector: [1.328526, 0.849821, 1.501181], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.565, -1.185, 1.353, 0.464, 0.006, 0.118], [0.412, -0.591, 0.819, 0.036, 0.543, 0.322], [0.775, 0.247, 0.843, 0.919, 0.864, 0.389]]\nB: [[-0.648, -1.262, 0.922, 0.446, 0.433, 0.522], [0.437, -0.235, 0.949, 0.366, 0.445, 0.454], [0.764, 0.145, 0.941, 0.483, 0.409, 0.473]]\nC: [[-0.794, -1.422, 1.325, 0.646, -0.011, 0.511], [0.55, -0.124, 0.97, 0.767, 0.276, 0.151], [0.692, 0.134, 0.818, 0.04, 0.142, 0.775]]\nD: [[-0.888, -1.602, 1.373, 0.357, 0.797, 0.596], [0.014, -0.496, 0.808, 0.816, 0.004, 0.14], [0.932, 0.14, 0.871, 0.799, 0.355, 0.358]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.353, -1.905, 0.542, 0.198, 0.811, 0.866]]\nB: [[-1.69, -2.015, 0.887, 0.014, 0.72, 0.41]]\nC: [[-1.178, -2.25, 0.868, 0.547, 0.466, 0.935]]\nD: [[-1.26, -1.838, 0.523, -0.212, 0.311, 0.619]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_187_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_187_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the dishwasher in the scene. The camera pose information includes: the rotation matrix: [[0.752445, 0.275595, -0.598225], [0.657828, -0.35994, 0.661593], [-0.032994, -0.891342, -0.452129]]; the translation vector: [2.633805, 2.70906, 1.31733], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.353, -1.905, 0.542, 0.198, 0.811, 0.866]]\nB: [[-1.69, -2.015, 0.887, 0.014, 0.72, 0.41]]\nC: [[-1.178, -2.25, 0.868, 0.547, 0.466, 0.935]]\nD: [[-1.26, -1.838, 0.523, -0.212, 0.311, 0.619]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.575, -1.33, 0.913, 0.422, 0.222, 1.282], [-1.133, -0.569, 0.691, 0.502, 1.733, 0.362], [-1.177, -0.378, 1.14, 0.427, 2.109, 0.616], [-1.073, 1.114, 1.403, 0.582, 1.219, 1.213], [-0.205, 1.471, 1.068, 1.327, 0.559, 1.11], [0.394, 0.971, 1.401, 0.368, 1.532, 0.97], [0.465, 0.918, 0.399, 0.657, 1.295, 0.944], [-1.033, 0.855, 0.494, 0.561, 0.838, 0.96]]\nB: [[0.612, -1.146, 1.029, 0.876, 0.249, 1.097], [-1.186, -0.558, 0.781, 0.832, 1.793, 0.11], [-0.68, -0.259, 1.327, 0.321, 2.085, 0.39], [-0.751, 1.462, 1.244, 1.064, 1.13, 1.071], [-0.245, 1.694, 1.448, 1.271, 0.405, 0.826], [0.501, 1.197, 1.032, 0.635, 1.295, 1.137], [0.575, 1.298, 0.738, 0.961, 1.68, 0.895], [-1.135, 0.586, 0.775, 0.711, 1.079, 0.526]]\nC: [[0.678, -1.206, 0.812, 0.848, -0.174, 1.369], [-1.023, -0.705, 0.492, 0.502, 1.434, -0.09], [-1.388, -0.068, 1.103, 0.59, 1.707, 0.559], [-1.152, 1.027, 1.347, 0.752, 0.971, 1.412], [-0.198, 1.443, 1.383, 1.532, 0.499, 1.267], [0.854, 0.79, 1.691, 0.351, 1.682, 0.641], [0.791, 0.546, 0.687, 0.219, 1.088, 1.252], [-0.634, 1.336, 0.286, 0.814, 1.197, 1.221]]\nD: [[0.82, -1.281, 0.96, -0.009, 0.662, 1.248], [-1.615, -0.505, 0.267, 0.866, 1.991, 0.496], [-0.964, -0.4, 1.176, 0.247, 2.442, 0.894], [-1.088, 1.358, 1.232, 0.782, 1.082, 0.821], [0.043, 1.718, 1.49, 1.508, 0.835, 1.275], [0.739, 1.084, 1.461, 0.376, 1.382, 1.444], [0.407, 0.623, 0.633, 0.434, 1.281, 1.107], [-1.311, 0.453, 0.839, 0.768, 1.093, 0.774]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_188_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_188_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the clothes in the scene. The camera pose information includes: the rotation matrix: [[0.88123, -0.188698, 0.433389], [-0.470321, -0.258404, 0.843816], [-0.047237, -0.947428, -0.316462]]; the translation vector: [1.061636, 1.321782, 1.457525], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.575, -1.33, 0.913, 0.422, 0.222, 1.282], [-1.133, -0.569, 0.691, 0.502, 1.733, 0.362], [-1.177, -0.378, 1.14, 0.427, 2.109, 0.616], [-1.073, 1.114, 1.403, 0.582, 1.219, 1.213], [-0.205, 1.471, 1.068, 1.327, 0.559, 1.11], [0.394, 0.971, 1.401, 0.368, 1.532, 0.97], [0.465, 0.918, 0.399, 0.657, 1.295, 0.944], [-1.033, 0.855, 0.494, 0.561, 0.838, 0.96]]\nB: [[0.612, -1.146, 1.029, 0.876, 0.249, 1.097], [-1.186, -0.558, 0.781, 0.832, 1.793, 0.11], [-0.68, -0.259, 1.327, 0.321, 2.085, 0.39], [-0.751, 1.462, 1.244, 1.064, 1.13, 1.071], [-0.245, 1.694, 1.448, 1.271, 0.405, 0.826], [0.501, 1.197, 1.032, 0.635, 1.295, 1.137], [0.575, 1.298, 0.738, 0.961, 1.68, 0.895], [-1.135, 0.586, 0.775, 0.711, 1.079, 0.526]]\nC: [[0.678, -1.206, 0.812, 0.848, -0.174, 1.369], [-1.023, -0.705, 0.492, 0.502, 1.434, -0.09], [-1.388, -0.068, 1.103, 0.59, 1.707, 0.559], [-1.152, 1.027, 1.347, 0.752, 0.971, 1.412], [-0.198, 1.443, 1.383, 1.532, 0.499, 1.267], [0.854, 0.79, 1.691, 0.351, 1.682, 0.641], [0.791, 0.546, 0.687, 0.219, 1.088, 1.252], [-0.634, 1.336, 0.286, 0.814, 1.197, 1.221]]\nD: [[0.82, -1.281, 0.96, -0.009, 0.662, 1.248], [-1.615, -0.505, 0.267, 0.866, 1.991, 0.496], [-0.964, -0.4, 1.176, 0.247, 2.442, 0.894], [-1.088, 1.358, 1.232, 0.782, 1.082, 0.821], [0.043, 1.718, 1.49, 1.508, 0.835, 1.275], [0.739, 1.084, 1.461, 0.376, 1.382, 1.444], [0.407, 0.623, 0.633, 0.434, 1.281, 1.107], [-1.311, 0.453, 0.839, 0.768, 1.093, 0.774]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.405, 0.601, 0.764, -0.233, 0.102, -0.396]]\nB: [[-1.074, 0.387, 1.003, 0.303, 0.098, -0.079]]\nC: [[-1.416, 1.278, 0.402, -0.026, 0.472, 0.541]]\nD: [[-1.238, 0.875, 0.853, 0.207, 0.18, 0.059]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_189_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_189_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the washcloth in the scene. The camera pose information includes: the rotation matrix: [[-0.922168, 0.178823, -0.342969], [0.38661, 0.453076, -0.803278], [0.011746, -0.873352, -0.486947]]; the translation vector: [3.207336, 1.959871, 1.267555], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.405, 0.601, 0.764, -0.233, 0.102, -0.396]]\nB: [[-1.074, 0.387, 1.003, 0.303, 0.098, -0.079]]\nC: [[-1.416, 1.278, 0.402, -0.026, 0.472, 0.541]]\nD: [[-1.238, 0.875, 0.853, 0.207, 0.18, 0.059]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.762, -1.555, 0.827, 2.184, 0.001, 1.66], [-1.543, -2.246, 0.687, 2.166, 0.538, 1.705], [-0.782, 1.874, 0.612, 0.36, -0.393, 2.288], [-2.462, 0.204, 1.234, 0.129, 3.712, 1.462], [-0.383, -1.635, 0.309, 0.432, -0.146, 1.237], [2.291, 0.002, 1.16, 0.467, 3.329, 1.816], [1.638, 1.427, 0.73, 2.104, 0.102, 1.563], [-1.67, 1.91, 0.562, 0.741, 0.507, 1.714]]\nB: [[1.374, -1.714, 0.725, 2.507, 0.169, 1.413], [-1.211, -1.757, 0.826, 2.443, 0.176, 1.694], [-0.519, 1.79, 0.908, 0.294, 0.099, 1.833], [-2.419, 0.035, 0.987, 0.337, 3.555, 1.874], [0.072, -1.69, 0.634, 0.2, 0.284, 1.225], [2.688, 0.023, 0.867, 0.191, 3.55, 1.732], [1.91, 1.763, 0.852, 1.655, 0.149, 1.762], [-2.022, 1.78, 0.984, 1.051, 0.126, 1.927]]\nC: [[0.908, -1.987, 1.173, 2.894, 0.341, 1.45], [-1.176, -1.625, 1.254, 2.938, 0.258, 1.218], [-0.734, 1.406, 1.146, 0.597, 0.342, 1.626], [-2.253, 0.34, 1.308, 0.063, 3.579, 1.568], [-0.079, -1.858, 0.689, 0.18, 0.741, 0.85], [2.904, 0.375, 0.691, 0.079, 3.103, 2.186], [1.824, 1.499, 0.728, 1.255, 0.079, 1.787], [-2.124, 1.899, 1.164, 1.019, 0.481, 1.863]]\nD: [[1.462, -1.527, 0.599, 2.871, 0.537, 1.876], [-0.801, -1.454, 1.05, 2.817, -0.258, 1.392], [-0.063, 2.202, 0.566, 0.693, 0.023, 1.708], [-2.869, -0.081, 1.48, 0.816, 3.209, 2.127], [0.07, -1.284, 0.825, -0.242, 0.304, 1.406], [2.798, 0.497, 1.202, 0.386, 3.591, 2.066], [1.458, 2.138, 0.37, 1.504, 0.6, 1.542], [-2.145, 1.824, 0.999, 1.206, 0.504, 1.867]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_190_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_190_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[0.984594, -0.069457, 0.160469], [-0.174127, -0.305795, 0.936039], [-0.015944, -0.949561, -0.313178]]; the translation vector: [3.941113, 2.817773, 1.559826], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.762, -1.555, 0.827, 2.184, 0.001, 1.66], [-1.543, -2.246, 0.687, 2.166, 0.538, 1.705], [-0.782, 1.874, 0.612, 0.36, -0.393, 2.288], [-2.462, 0.204, 1.234, 0.129, 3.712, 1.462], [-0.383, -1.635, 0.309, 0.432, -0.146, 1.237], [2.291, 0.002, 1.16, 0.467, 3.329, 1.816], [1.638, 1.427, 0.73, 2.104, 0.102, 1.563], [-1.67, 1.91, 0.562, 0.741, 0.507, 1.714]]\nB: [[1.374, -1.714, 0.725, 2.507, 0.169, 1.413], [-1.211, -1.757, 0.826, 2.443, 0.176, 1.694], [-0.519, 1.79, 0.908, 0.294, 0.099, 1.833], [-2.419, 0.035, 0.987, 0.337, 3.555, 1.874], [0.072, -1.69, 0.634, 0.2, 0.284, 1.225], [2.688, 0.023, 0.867, 0.191, 3.55, 1.732], [1.91, 1.763, 0.852, 1.655, 0.149, 1.762], [-2.022, 1.78, 0.984, 1.051, 0.126, 1.927]]\nC: [[0.908, -1.987, 1.173, 2.894, 0.341, 1.45], [-1.176, -1.625, 1.254, 2.938, 0.258, 1.218], [-0.734, 1.406, 1.146, 0.597, 0.342, 1.626], [-2.253, 0.34, 1.308, 0.063, 3.579, 1.568], [-0.079, -1.858, 0.689, 0.18, 0.741, 0.85], [2.904, 0.375, 0.691, 0.079, 3.103, 2.186], [1.824, 1.499, 0.728, 1.255, 0.079, 1.787], [-2.124, 1.899, 1.164, 1.019, 0.481, 1.863]]\nD: [[1.462, -1.527, 0.599, 2.871, 0.537, 1.876], [-0.801, -1.454, 1.05, 2.817, -0.258, 1.392], [-0.063, 2.202, 0.566, 0.693, 0.023, 1.708], [-2.869, -0.081, 1.48, 0.816, 3.209, 2.127], [0.07, -1.284, 0.825, -0.242, 0.304, 1.406], [2.798, 0.497, 1.202, 0.386, 3.591, 2.066], [1.458, 2.138, 0.37, 1.504, 0.6, 1.542], [-2.145, 1.824, 0.999, 1.206, 0.504, 1.867]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.548, -0.723, 1.702, 0.029, 0.56, 0.548], [0.99, -0.353, 1.798, 0.254, 0.406, 1.307], [0.157, -0.505, 0.811, 2.866, -0.08, 2.257], [-1.059, 0.22, 1.187, 0.204, 1.96, 1.609], [-1.515, 1.374, 1.432, 0.39, 0.462, 2.145], [-1.181, 2.329, 0.518, 0.161, 0.641, 1.327], [1.31, 1.368, 1.072, 1.078, 3.27, 1.707]]\nB: [[-0.408, -0.944, 1.285, 0.383, 0.855, 1.329], [1.037, -1.048, 1.113, 0.346, 0.92, 1.337], [0.631, -0.546, 1.683, 2.674, 0.421, 2.371], [-1.406, 0.284, 0.493, 0.426, 1.745, 1.616], [-0.913, 1.243, 0.625, 0.944, -0.159, 1.495], [-0.749, 1.827, 0.664, -0.223, 0.933, 1.793], [1.27, 1.253, 1.221, 0.403, 2.724, 2.094]]\nC: [[-0.454, -0.86, 2.026, 0.451, 0.358, 1.257], [1.65, -0.511, 2.057, 0.183, 0.13, 0.645], [0.357, -0.781, 1.143, 3.085, -0.312, 2.705], [-1.785, 0.873, 0.92, 0.414, 1.805, 1.915], [-0.907, 0.946, 0.648, 1.086, 0.063, 2.046], [-0.884, 1.711, 1.057, -0.048, 0.722, 0.964], [1.337, 0.641, 0.462, 0.296, 3.312, 2.01]]\nD: [[-0.751, -0.786, 1.574, 0.095, 0.444, 1.034], [1.18, -0.773, 1.574, 0.094, 0.433, 1.033], [0.142, -0.562, 1.184, 3.142, 0.116, 2.394], [-1.437, 0.419, 0.848, 0.139, 1.974, 1.688], [-1.083, 1.379, 1.042, 0.807, 0.163, 1.776], [-0.694, 1.837, 0.766, 0.107, 0.954, 1.459], [1.355, 0.889, 0.903, 0.788, 2.903, 1.82]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_191_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_191_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[-0.355681, -0.20797, 0.911175], [-0.934036, 0.113197, -0.338769], [-0.032689, -0.971563, -0.234514]]; the translation vector: [0.539195, 4.841905, 1.636959], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.548, -0.723, 1.702, 0.029, 0.56, 0.548], [0.99, -0.353, 1.798, 0.254, 0.406, 1.307], [0.157, -0.505, 0.811, 2.866, -0.08, 2.257], [-1.059, 0.22, 1.187, 0.204, 1.96, 1.609], [-1.515, 1.374, 1.432, 0.39, 0.462, 2.145], [-1.181, 2.329, 0.518, 0.161, 0.641, 1.327], [1.31, 1.368, 1.072, 1.078, 3.27, 1.707]]\nB: [[-0.408, -0.944, 1.285, 0.383, 0.855, 1.329], [1.037, -1.048, 1.113, 0.346, 0.92, 1.337], [0.631, -0.546, 1.683, 2.674, 0.421, 2.371], [-1.406, 0.284, 0.493, 0.426, 1.745, 1.616], [-0.913, 1.243, 0.625, 0.944, -0.159, 1.495], [-0.749, 1.827, 0.664, -0.223, 0.933, 1.793], [1.27, 1.253, 1.221, 0.403, 2.724, 2.094]]\nC: [[-0.454, -0.86, 2.026, 0.451, 0.358, 1.257], [1.65, -0.511, 2.057, 0.183, 0.13, 0.645], [0.357, -0.781, 1.143, 3.085, -0.312, 2.705], [-1.785, 0.873, 0.92, 0.414, 1.805, 1.915], [-0.907, 0.946, 0.648, 1.086, 0.063, 2.046], [-0.884, 1.711, 1.057, -0.048, 0.722, 0.964], [1.337, 0.641, 0.462, 0.296, 3.312, 2.01]]\nD: [[-0.751, -0.786, 1.574, 0.095, 0.444, 1.034], [1.18, -0.773, 1.574, 0.094, 0.433, 1.033], [0.142, -0.562, 1.184, 3.142, 0.116, 2.394], [-1.437, 0.419, 0.848, 0.139, 1.974, 1.688], [-1.083, 1.379, 1.042, 0.807, 0.163, 1.776], [-0.694, 1.837, 0.766, 0.107, 0.954, 1.459], [1.355, 0.889, 0.903, 0.788, 2.903, 1.82]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.515, -3.241, 1.128, 2.444, 0.863, 2.298], [1.577, 0.871, 1.235, 2.218, 0.709, 2.09], [1.099, 3.677, 1.424, 1.498, 0.813, 2.316], [1.686, -0.521, 1.08, 2.449, 0.774, 1.941], [1.48, 2.234, 1.312, 2.224, 0.696, 2.161], [0.71, 4.953, 0.833, 0.669, 0.644, 1.154], [1.678, -1.888, 1.095, 2.523, 0.759, 2.102]]\nB: [[1.269, -3.321, 1.076, 2.021, 0.959, 2.397], [1.664, 1.284, 1.204, 2.329, 1.065, 2.182], [1.189, 3.832, 1.394, 1.94, 1.033, 1.829], [2.066, -0.941, 0.589, 2.315, 1.169, 1.455], [1.915, 2.253, 1.321, 2.418, 0.57, 2.378], [0.213, 5.41, 0.898, 0.409, 1.093, 1.517], [1.55, -2.082, 1.024, 2.82, 0.884, 2.344]]\nC: [[1.118, -3.575, 0.993, 1.946, 0.682, 2.318], [1.412, 0.928, 1.006, 2.495, 0.73, 2.187], [0.774, 3.36, 0.968, 1.482, 0.922, 2.574], [1.295, -0.734, 1.167, 2.189, 0.383, 1.587], [1.325, 2.548, 0.999, 2.413, 1.015, 2.532], [0.98, 5.017, 0.875, 0.448, 0.455, 0.917], [2.018, -1.5, 1.046, 2.717, 0.819, 2.55]]\nD: [[1.259, -3.521, 1.143, 2.894, 0.867, 2.663], [1.362, 1.016, 1.431, 2.314, 0.878, 2.2], [0.748, 3.481, 1.025, 1.495, 1.271, 2.75], [1.85, -0.752, 1.348, 2.468, 0.657, 1.566], [1.513, 2.006, 1.345, 1.751, 0.827, 2.159], [0.635, 4.802, 1.263, 0.202, 1.111, 1.501], [1.353, -2.331, 1.563, 2.89, 1.228, 2.108]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_192_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_192_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the bookshelf in the scene. The camera pose information includes: the rotation matrix: [[-0.941243, -0.209403, 0.264975], [-0.336113, 0.504116, -0.795548], [0.033012, -0.837865, -0.544878]]; the translation vector: [4.828751, 9.008894, 1.463441], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.515, -3.241, 1.128, 2.444, 0.863, 2.298], [1.577, 0.871, 1.235, 2.218, 0.709, 2.09], [1.099, 3.677, 1.424, 1.498, 0.813, 2.316], [1.686, -0.521, 1.08, 2.449, 0.774, 1.941], [1.48, 2.234, 1.312, 2.224, 0.696, 2.161], [0.71, 4.953, 0.833, 0.669, 0.644, 1.154], [1.678, -1.888, 1.095, 2.523, 0.759, 2.102]]\nB: [[1.269, -3.321, 1.076, 2.021, 0.959, 2.397], [1.664, 1.284, 1.204, 2.329, 1.065, 2.182], [1.189, 3.832, 1.394, 1.94, 1.033, 1.829], [2.066, -0.941, 0.589, 2.315, 1.169, 1.455], [1.915, 2.253, 1.321, 2.418, 0.57, 2.378], [0.213, 5.41, 0.898, 0.409, 1.093, 1.517], [1.55, -2.082, 1.024, 2.82, 0.884, 2.344]]\nC: [[1.118, -3.575, 0.993, 1.946, 0.682, 2.318], [1.412, 0.928, 1.006, 2.495, 0.73, 2.187], [0.774, 3.36, 0.968, 1.482, 0.922, 2.574], [1.295, -0.734, 1.167, 2.189, 0.383, 1.587], [1.325, 2.548, 0.999, 2.413, 1.015, 2.532], [0.98, 5.017, 0.875, 0.448, 0.455, 0.917], [2.018, -1.5, 1.046, 2.717, 0.819, 2.55]]\nD: [[1.259, -3.521, 1.143, 2.894, 0.867, 2.663], [1.362, 1.016, 1.431, 2.314, 0.878, 2.2], [0.748, 3.481, 1.025, 1.495, 1.271, 2.75], [1.85, -0.752, 1.348, 2.468, 0.657, 1.566], [1.513, 2.006, 1.345, 1.751, 0.827, 2.159], [0.635, 4.802, 1.263, 0.202, 1.111, 1.501], [1.353, -2.331, 1.563, 2.89, 1.228, 2.108]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.126, -0.51, 1.73, -0.359, 0.479, 0.324]]\nB: [[-1.548, -0.135, 1.59, 0.021, 0.457, 0.386]]\nC: [[-1.508, -0.035, 1.589, -0.436, 0.071, 0.171]]\nD: [[-1.888, -0.563, 1.28, -0.393, 0.688, 0.046]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_193_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_193_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the picture in the scene. The camera pose information includes: the rotation matrix: [[0.623567, 0.536294, -0.568817], [0.781209, -0.455034, 0.427384], [-0.029628, -0.710867, -0.702702]]; the translation vector: [1.790477, 1.816361, 1.229059], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.126, -0.51, 1.73, -0.359, 0.479, 0.324]]\nB: [[-1.548, -0.135, 1.59, 0.021, 0.457, 0.386]]\nC: [[-1.508, -0.035, 1.589, -0.436, 0.071, 0.171]]\nD: [[-1.888, -0.563, 1.28, -0.393, 0.688, 0.046]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-2.08, 0.154, 1.005, 0.283, 1.414, 1.731]]\nB: [[-1.974, 0.286, 1.416, 0.341, 1.457, 1.235]]\nC: [[-1.941, 0.29, 1.24, -0.098, 1.307, 1.381]]\nD: [[-1.581, 0.374, 0.521, 0.311, 1.136, 1.526]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_194_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_194_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the whiteboard in the scene. The camera pose information includes: the rotation matrix: [[-0.341382, 0.594812, -0.727775], [0.932196, 0.11517, -0.343142], [-0.120287, -0.795572, -0.593798]]; the translation vector: [7.151203, 3.587152, 1.581923], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-2.08, 0.154, 1.005, 0.283, 1.414, 1.731]]\nB: [[-1.974, 0.286, 1.416, 0.341, 1.457, 1.235]]\nC: [[-1.941, 0.29, 1.24, -0.098, 1.307, 1.381]]\nD: [[-1.581, 0.374, 0.521, 0.311, 1.136, 1.526]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-0.65, 1.626, 0.952, 1.426, 0.125, 1.867]]\nB: [[-0.34, 1.647, 1.105, 1.036, 0.294, 2.092]]\nC: [[-0.202, 1.219, 1.248, 1.308, -0.28, 1.829]]\nD: [[-1.114, 1.711, 0.518, 0.996, 0.291, 2.172]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_195_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_195_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the doorframe in the scene. The camera pose information includes: the rotation matrix: [[-0.40936, -0.486807, 0.77165], [-0.912164, 0.236459, -0.334729], [-0.019515, -0.840896, -0.540844]]; the translation vector: [1.412713, 1.214489, 1.390939], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-0.65, 1.626, 0.952, 1.426, 0.125, 1.867]]\nB: [[-0.34, 1.647, 1.105, 1.036, 0.294, 2.092]]\nC: [[-0.202, 1.219, 1.248, 1.308, -0.28, 1.829]]\nD: [[-1.114, 1.711, 0.518, 0.996, 0.291, 2.172]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[-1.253, 0.185, 0.949, 0.229, 3.97, 1.922], [-0.174, 1.794, 1.044, 2.121, 0.218, 2.116], [0.873, -0.38, 1.281, 0.158, 4.352, 2.497], [0.476, -2.537, 0.593, 0.677, 0.042, 1.129], [0.122, -2.616, 0.312, 0.063, 0.188, 0.596]]\nB: [[-1.703, -0.184, 0.581, -0.118, 3.494, 2.053], [0.248, 1.316, 1.102, 2.022, 0.319, 1.655], [1.35, -0.101, 1.108, 0.315, 4.473, 2.489], [0.441, -2.72, 0.688, 0.321, 0.469, 1.1], [-0.308, -2.248, -0.131, 0.362, 0.498, 0.335]]\nC: [[-1.001, 0.387, 0.855, 0.13, 4.223, 1.808], [-0.121, 2.25, 1.058, 2.216, 0.377, 2.185], [0.489, 0.025, 0.85, -0.341, 3.971, 2.77], [0.668, -2.895, 0.381, 0.972, 0.18, 1.122], [0.223, -2.648, 0.118, -0.29, 0.288, 0.814]]\nD: [[-1.615, 0.237, 0.631, 0.113, 3.734, 2.164], [-0.111, 1.6, 1.257, 2.2, 0.658, 1.704], [0.468, -0.376, 0.97, -0.134, 3.943, 2.668], [0.083, -2.476, 0.49, 0.836, 0.329, 1.629], [-0.101, -2.949, 0.022, 0.48, 0.426, 0.711]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_196_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_196_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the wall in the scene. The camera pose information includes: the rotation matrix: [[0.977514, -0.102294, 0.184398], [-0.210796, -0.497303, 0.841578], [0.005613, -0.861525, -0.507684]]; the translation vector: [3.555602, 1.207732, 1.356493], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[-1.253, 0.185, 0.949, 0.229, 3.97, 1.922], [-0.174, 1.794, 1.044, 2.121, 0.218, 2.116], [0.873, -0.38, 1.281, 0.158, 4.352, 2.497], [0.476, -2.537, 0.593, 0.677, 0.042, 1.129], [0.122, -2.616, 0.312, 0.063, 0.188, 0.596]]\nB: [[-1.703, -0.184, 0.581, -0.118, 3.494, 2.053], [0.248, 1.316, 1.102, 2.022, 0.319, 1.655], [1.35, -0.101, 1.108, 0.315, 4.473, 2.489], [0.441, -2.72, 0.688, 0.321, 0.469, 1.1], [-0.308, -2.248, -0.131, 0.362, 0.498, 0.335]]\nC: [[-1.001, 0.387, 0.855, 0.13, 4.223, 1.808], [-0.121, 2.25, 1.058, 2.216, 0.377, 2.185], [0.489, 0.025, 0.85, -0.341, 3.971, 2.77], [0.668, -2.895, 0.381, 0.972, 0.18, 1.122], [0.223, -2.648, 0.118, -0.29, 0.288, 0.814]]\nD: [[-1.615, 0.237, 0.631, 0.113, 3.734, 2.164], [-0.111, 1.6, 1.257, 2.2, 0.658, 1.704], [0.468, -0.376, 0.97, -0.134, 3.943, 2.668], [0.083, -2.476, 0.49, 0.836, 0.329, 1.629], [-0.101, -2.949, 0.022, 0.48, 0.426, 0.711]]"}, "output": {"output_text": "A"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[1.561, -0.516, 0.43, 0.03, 0.264, 0.023]]\nB: [[1.307, -0.077, 0.927, 0.18, 0.373, 0.438]]\nC: [[1.232, 0.339, 1.368, -0.266, 0.794, 0.386]]\nD: [[1.366, 0.134, 0.662, 0.477, 0.375, 0.57]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_197_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_197_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the toilet paper holder in the scene. The camera pose information includes: the rotation matrix: [[-0.566304, -0.590941, 0.574533], [-0.823945, 0.423135, -0.376925], [-0.020365, -0.686838, -0.726526]]; the translation vector: [2.143516, 1.760119, 1.343188], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[1.561, -0.516, 0.43, 0.03, 0.264, 0.023]]\nB: [[1.307, -0.077, 0.927, 0.18, 0.373, 0.438]]\nC: [[1.232, 0.339, 1.368, -0.266, 0.794, 0.386]]\nD: [[1.366, 0.134, 0.662, 0.477, 0.375, 0.57]]"}, "output": {"output_text": "B"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.989, -2.867, 2.62, 3.827, 5.879, 0.215]]\nB: [[0.557, -2.629, 2.447, 3.868, 5.161, -0.064]]\nC: [[0.767, -2.57, 3.32, 4.124, 4.999, -0.179]]\nD: [[0.538, -2.391, 2.899, 4.263, 5.407, 0.187]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_198_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_198_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the ceiling in the scene. The camera pose information includes: the rotation matrix: [[-0.999494, 0.005595, 0.031322], [-0.029883, 0.172936, -0.98448], [-0.010925, -0.984917, -0.172681]]; the translation vector: [6.687301, 5.436423, 1.742894], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.989, -2.867, 2.62, 3.827, 5.879, 0.215]]\nB: [[0.557, -2.629, 2.447, 3.868, 5.161, -0.064]]\nC: [[0.767, -2.57, 3.32, 4.124, 4.999, -0.179]]\nD: [[0.538, -2.391, 2.899, 4.263, 5.407, 0.187]]"}, "output": {"output_text": "D"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_bbox_detection", "options": "A: [[0.728, -0.216, 1.391, -0.233, 0.319, 0.888]]\nB: [[1.382, -0.434, 1.41, 0.62, 0.036, 0.847]]\nC: [[1.017, -0.314, 0.963, 0.261, 0.326, 0.441]]\nD: [[1.373, -0.033, 0.749, 0.246, 0.609, 0.097]]", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Object_Detection/threeD_Object_Detection_199_0.jpg", "3D-spatial/threeD_Object_Detection/threeD_Object_Detection_199_1.png"], "question": "Given a RGB image and a depth image, please detect the 3D bounding box of the paper towel dispenser in the scene. The camera pose information includes: the rotation matrix: [[0.207705, 0.494542, -0.843971], [0.97739, -0.069996, 0.199524], [0.039599, -0.866331, -0.497898]]; the translation vector: [4.53083, 2.291093, 1.52739], representing the transformation from the camera coordinate system to the world coordinate system. For each detected object, provide the output in this format, i.e., [x, y, z, x_size, y_size, z_size]. Here, [x, y, z] represents the gravity center of the 3D bounding boxes in the world coordinate system, [x_size, y_size, z_size] represents the width, height, and length of the 3D bounding box.", "context": "Your task is to detect objects in 3D space using a scan of RGB-Depth image pair. \nSelect from the following choices.\nA: [[0.728, -0.216, 1.391, -0.233, 0.319, 0.888]]\nB: [[1.382, -0.434, 1.41, 0.62, 0.036, 0.847]]\nC: [[1.017, -0.314, 0.963, 0.261, 0.326, 0.441]]\nD: [[1.373, -0.033, 0.749, 0.246, 0.609, 0.097]]"}, "output": {"output_text": "C"}, "task": "threeD_Object_Detection"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999860986788529, -0.0029206102888043426, 0.004512150995140729], [0.0029125077264400548, 0.9999942525374551, 0.0017791916930172049], [-0.004515929331115238, -0.0017660484162836249, 0.9999884136529374]], 'translation vector': [0.00035121537956284143, -0.00211204147587285, 0.0015269971399166637]}\nB: {'rotation matrix': [[0.992252, 0.033516, -0.119639], [0.120006, -0.507929, 0.852999], [-0.032179, -0.860747, -0.508015]], 'translation vector': [2.483829, 1.386735, 1.351847]}\nC: {'rotation matrix': [[0.992393, 0.03365, -0.118424], [0.118928, -0.510671, 0.851511], [-0.031822, -0.859118, -0.510788]], 'translation vector': [2.483625, 1.389348, 1.348027]}\nD: {'rotation matrix': [[0.992358, 0.033913, -0.118638], [0.11923, -0.511103, 0.85121], [-0.031769, -0.85885, -0.511241]], 'translation vector': [2.484339, 1.38954, 1.351903]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_0_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_0_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_0_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_0_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999860986788529, -0.0029206102888043426, 0.004512150995140729], [0.0029125077264400548, 0.9999942525374551, 0.0017791916930172049], [-0.004515929331115238, -0.0017660484162836249, 0.9999884136529374]], 'translation vector': [0.00035121537956284143, -0.00211204147587285, 0.0015269971399166637]}\nB: {'rotation matrix': [[0.992252, 0.033516, -0.119639], [0.120006, -0.507929, 0.852999], [-0.032179, -0.860747, -0.508015]], 'translation vector': [2.483829, 1.386735, 1.351847]}\nC: {'rotation matrix': [[0.992393, 0.03365, -0.118424], [0.118928, -0.510671, 0.851511], [-0.031822, -0.859118, -0.510788]], 'translation vector': [2.483625, 1.389348, 1.348027]}\nD: {'rotation matrix': [[0.992358, 0.033913, -0.118638], [0.11923, -0.511103, 0.85121], [-0.031769, -0.85885, -0.511241]], 'translation vector': [2.484339, 1.38954, 1.351903]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.947387, 0.126025, -0.294239], [0.319939, 0.401221, -0.858289], [0.009889, -0.90727, -0.420431]], 'translation vector': [2.649368, 2.97856, 1.365403]}\nB: {'rotation matrix': [[0.9999009689053274, -0.0005834477726320058, -0.014081260252404066], [0.0005185811040898338, 0.9999892566550749, -0.004650674323837413], [0.014082812752834694, 0.004642499383147887, 0.9998897887510193]], 'translation vector': [-0.0001697198246333187, -0.006057464737030116, -0.0030857621071840313]}\nC: {'rotation matrix': [[-0.946914, 0.131611, -0.293313], [0.321456, 0.400409, -0.858102], [0.004509, -0.906836, -0.42146]], 'translation vector': [2.644349, 2.98006, 1.361572]}\nD: {'rotation matrix': [[-0.946851, 0.128282, -0.294988], [0.321573, 0.400396, -0.858064], [0.008037, -0.907318, -0.420367]], 'translation vector': [2.647634, 2.978188, 1.36466]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_1_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_1_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_1_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_1_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.947387, 0.126025, -0.294239], [0.319939, 0.401221, -0.858289], [0.009889, -0.90727, -0.420431]], 'translation vector': [2.649368, 2.97856, 1.365403]}\nB: {'rotation matrix': [[0.9999009689053274, -0.0005834477726320058, -0.014081260252404066], [0.0005185811040898338, 0.9999892566550749, -0.004650674323837413], [0.014082812752834694, 0.004642499383147887, 0.9998897887510193]], 'translation vector': [-0.0001697198246333187, -0.006057464737030116, -0.0030857621071840313]}\nC: {'rotation matrix': [[-0.946914, 0.131611, -0.293313], [0.321456, 0.400409, -0.858102], [0.004509, -0.906836, -0.42146]], 'translation vector': [2.644349, 2.98006, 1.361572]}\nD: {'rotation matrix': [[-0.946851, 0.128282, -0.294988], [0.321573, 0.400396, -0.858064], [0.008037, -0.907318, -0.420367]], 'translation vector': [2.647634, 2.978188, 1.36466]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.932535, 0.164547, -0.321407], [0.359784, -0.498771, 0.788533], [-0.030558, -0.850971, -0.524323]], 'translation vector': [4.48804, -0.229774, 1.538571]}\nB: {'rotation matrix': [[0.999974189934778, 0.00023654440835110308, 0.007205305592304459], [-0.00021900350048315587, 0.9999974076812913, -0.002394096534537237], [-0.00720576870446999, 0.0023924811533001236, 0.9999711271279352]], 'translation vector': [-0.011672688463027825, -0.012243066982587869, 0.0020668703552249035]}\nC: {'rotation matrix': [[0.930699, 0.167887, -0.324983], [0.364431, -0.502007, 0.784334], [-0.031464, -0.848412, -0.5284]], 'translation vector': [4.497419, -0.228559, 1.538943]}\nD: {'rotation matrix': [[0.928253, 0.171766, -0.329913], [0.370592, -0.502789, 0.780939], [-0.031738, -0.847172, -0.53037]], 'translation vector': [4.506209, -0.230888, 1.537021]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_2_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_2_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_2_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_2_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.932535, 0.164547, -0.321407], [0.359784, -0.498771, 0.788533], [-0.030558, -0.850971, -0.524323]], 'translation vector': [4.48804, -0.229774, 1.538571]}\nB: {'rotation matrix': [[0.999974189934778, 0.00023654440835110308, 0.007205305592304459], [-0.00021900350048315587, 0.9999974076812913, -0.002394096534537237], [-0.00720576870446999, 0.0023924811533001236, 0.9999711271279352]], 'translation vector': [-0.011672688463027825, -0.012243066982587869, 0.0020668703552249035]}\nC: {'rotation matrix': [[0.930699, 0.167887, -0.324983], [0.364431, -0.502007, 0.784334], [-0.031464, -0.848412, -0.5284]], 'translation vector': [4.497419, -0.228559, 1.538943]}\nD: {'rotation matrix': [[0.928253, 0.171766, -0.329913], [0.370592, -0.502789, 0.780939], [-0.031738, -0.847172, -0.53037]], 'translation vector': [4.506209, -0.230888, 1.537021]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999922186975153, -0.0004929414354074684, -0.003990843308659959], [0.0004944153894448021, 1.0000000788246688, 0.0002887878542439764], [0.0039912978026401735, -0.00029052347125931846, 0.9999922538344134]], 'translation vector': [0.0015230291799757656, -0.0023232322897525567, 0.004482115182110835]}\nB: {'rotation matrix': [[-0.597501, 0.375338, -0.7086], [0.801649, 0.25893, -0.538808], [-0.018758, -0.889987, -0.4556]], 'translation vector': [2.357092, 1.421442, 1.358509]}\nC: {'rotation matrix': [[-0.595396, 0.37569, -0.710183], [0.803242, 0.259116, -0.536341], [-0.017478, -0.889784, -0.456047]], 'translation vector': [2.35612, 1.420569, 1.361782]}\nD: {'rotation matrix': [[-0.600812, 0.375021, -0.705963], [0.799114, 0.258529, -0.542752], [-0.021031, -0.890237, -0.455012]], 'translation vector': [2.356618, 1.42274, 1.357666]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_3_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_3_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_3_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_3_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999922186975153, -0.0004929414354074684, -0.003990843308659959], [0.0004944153894448021, 1.0000000788246688, 0.0002887878542439764], [0.0039912978026401735, -0.00029052347125931846, 0.9999922538344134]], 'translation vector': [0.0015230291799757656, -0.0023232322897525567, 0.004482115182110835]}\nB: {'rotation matrix': [[-0.597501, 0.375338, -0.7086], [0.801649, 0.25893, -0.538808], [-0.018758, -0.889987, -0.4556]], 'translation vector': [2.357092, 1.421442, 1.358509]}\nC: {'rotation matrix': [[-0.595396, 0.37569, -0.710183], [0.803242, 0.259116, -0.536341], [-0.017478, -0.889784, -0.456047]], 'translation vector': [2.35612, 1.420569, 1.361782]}\nD: {'rotation matrix': [[-0.600812, 0.375021, -0.705963], [0.799114, 0.258529, -0.542752], [-0.021031, -0.890237, -0.455012]], 'translation vector': [2.356618, 1.42274, 1.357666]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.690346, 0.288159, -0.663616], [0.723477, -0.272947, 0.634098], [0.001589, -0.917858, -0.396905]], 'translation vector': [2.536332, 2.010734, 1.438743]}\nB: {'rotation matrix': [[0.691208, 0.288183, -0.662708], [0.722652, -0.27257, 0.635201], [0.00242, -0.917963, -0.396658]], 'translation vector': [2.535653, 2.009964, 1.439474]}\nC: {'rotation matrix': [[0.9999995587474457, 0.00024022036499647738, 0.0007957711644081506], [-0.00023933007530568237, 0.9999998633783928, -0.0007108069241564525], [-0.0007964539455043593, 0.0007109455644655081, 1.000000560983507]], 'translation vector': [-0.004770728985455719, 0.002959587174171885, 0.0013885111462622612]}\nD: {'rotation matrix': [[0.690426, 0.287793, -0.663692], [0.723401, -0.272862, 0.634222], [0.001429, -0.917999, -0.396581]], 'translation vector': [2.53477, 2.009069, 1.43814]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_4_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_4_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_4_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_4_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.690346, 0.288159, -0.663616], [0.723477, -0.272947, 0.634098], [0.001589, -0.917858, -0.396905]], 'translation vector': [2.536332, 2.010734, 1.438743]}\nB: {'rotation matrix': [[0.691208, 0.288183, -0.662708], [0.722652, -0.27257, 0.635201], [0.00242, -0.917963, -0.396658]], 'translation vector': [2.535653, 2.009964, 1.439474]}\nC: {'rotation matrix': [[0.9999995587474457, 0.00024022036499647738, 0.0007957711644081506], [-0.00023933007530568237, 0.9999998633783928, -0.0007108069241564525], [-0.0007964539455043593, 0.0007109455644655081, 1.000000560983507]], 'translation vector': [-0.004770728985455719, 0.002959587174171885, 0.0013885111462622612]}\nD: {'rotation matrix': [[0.690426, 0.287793, -0.663692], [0.723401, -0.272862, 0.634222], [0.001429, -0.917999, -0.396581]], 'translation vector': [2.53477, 2.009069, 1.43814]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999658530200795, -0.008162385048605073, -0.000989578606081076], [0.008166400906506959, 0.9999603758313507, 0.0035456278045154508], [0.000960099553273771, -0.0035536229934212678, 0.9999930725472598]], 'translation vector': [0.0005115289741049189, -0.00032414464705918244, 0.0017902118924140176]}\nB: {'rotation matrix': [[-0.221487, 0.417059, -0.881479], [0.974313, 0.13239, -0.182174], [0.040721, -0.899186, -0.435668]], 'translation vector': [3.156802, 0.483491, 1.355875]}\nC: {'rotation matrix': [[-0.223193, 0.415497, -0.881786], [0.973999, 0.131126, -0.184746], [0.038864, -0.900094, -0.43396]], 'translation vector': [3.157208, 0.483314, 1.355186]}\nD: {'rotation matrix': [[-0.22378, 0.416079, -0.881363], [0.973939, 0.129755, -0.18603], [0.036958, -0.900023, -0.434273]], 'translation vector': [3.157156, 0.483591, 1.355072]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_5_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_5_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_5_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_5_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999658530200795, -0.008162385048605073, -0.000989578606081076], [0.008166400906506959, 0.9999603758313507, 0.0035456278045154508], [0.000960099553273771, -0.0035536229934212678, 0.9999930725472598]], 'translation vector': [0.0005115289741049189, -0.00032414464705918244, 0.0017902118924140176]}\nB: {'rotation matrix': [[-0.221487, 0.417059, -0.881479], [0.974313, 0.13239, -0.182174], [0.040721, -0.899186, -0.435668]], 'translation vector': [3.156802, 0.483491, 1.355875]}\nC: {'rotation matrix': [[-0.223193, 0.415497, -0.881786], [0.973999, 0.131126, -0.184746], [0.038864, -0.900094, -0.43396]], 'translation vector': [3.157208, 0.483314, 1.355186]}\nD: {'rotation matrix': [[-0.22378, 0.416079, -0.881363], [0.973939, 0.129755, -0.18603], [0.036958, -0.900023, -0.434273]], 'translation vector': [3.157156, 0.483591, 1.355072]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.294979, -0.395497, 0.869811], [-0.955406, 0.135138, -0.26256], [-0.013703, -0.908472, -0.417722]], 'translation vector': [4.231627, 1.757554, 1.314948]}\nB: {'rotation matrix': [[0.9999859365705687, 3.1558862291102445e-05, 0.005361241460385626], [2.1367515200134227e-05, 0.9999509201368397, -0.009913096398898577], [-0.0053616455101250845, 0.009912181817668633, 0.9999368747200875]], 'translation vector': [-0.00185453480108011, 0.004425119632380792, 0.004740673653586214]}\nC: {'rotation matrix': [[-0.295231, -0.385219, 0.874325], [-0.955253, 0.136423, -0.262452], [-0.018176, -0.912686, -0.408258]], 'translation vector': [4.225714, 1.76129, 1.315325]}\nD: {'rotation matrix': [[-0.297898, -0.402478, 0.865603], [-0.954572, 0.132313, -0.266996], [-0.007071, -0.905817, -0.42361]], 'translation vector': [4.239912, 1.761582, 1.310375]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_6_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_6_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_6_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_6_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.294979, -0.395497, 0.869811], [-0.955406, 0.135138, -0.26256], [-0.013703, -0.908472, -0.417722]], 'translation vector': [4.231627, 1.757554, 1.314948]}\nB: {'rotation matrix': [[0.9999859365705687, 3.1558862291102445e-05, 0.005361241460385626], [2.1367515200134227e-05, 0.9999509201368397, -0.009913096398898577], [-0.0053616455101250845, 0.009912181817668633, 0.9999368747200875]], 'translation vector': [-0.00185453480108011, 0.004425119632380792, 0.004740673653586214]}\nC: {'rotation matrix': [[-0.295231, -0.385219, 0.874325], [-0.955253, 0.136423, -0.262452], [-0.018176, -0.912686, -0.408258]], 'translation vector': [4.225714, 1.76129, 1.315325]}\nD: {'rotation matrix': [[-0.297898, -0.402478, 0.865603], [-0.954572, 0.132313, -0.266996], [-0.007071, -0.905817, -0.42361]], 'translation vector': [4.239912, 1.761582, 1.310375]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.43634, -0.426945, 0.792039], [-0.899692, 0.219464, -0.377346], [-0.012718, -0.877242, -0.47988]], 'translation vector': [1.991026, 3.721216, 1.553809]}\nB: {'rotation matrix': [[0.9999994163271791, 0.0007055386419518741, -5.183687097418444e-05], [-0.0007048159396394524, 1.0000001700794185, 0.00017964949547958028], [5.299300853873026e-05, -0.00017925701598013347, 1.000000048079148]], 'translation vector': [-0.0002435455336966541, -0.00047987538941862695, 0.0009530826592798469]}\nC: {'rotation matrix': [[-0.436198, -0.427205, 0.791977], [-0.899763, 0.219364, -0.377235], [-0.012574, -0.877141, -0.480069]], 'translation vector': [1.990491, 3.720783, 1.55354]}\nD: {'rotation matrix': [[-0.436159, -0.427335, 0.791928], [-0.899792, 0.218686, -0.377559], [-0.011839, -0.877246, -0.479894]], 'translation vector': [1.98993, 3.720837, 1.552023]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_7_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_7_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_7_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_7_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.43634, -0.426945, 0.792039], [-0.899692, 0.219464, -0.377346], [-0.012718, -0.877242, -0.47988]], 'translation vector': [1.991026, 3.721216, 1.553809]}\nB: {'rotation matrix': [[0.9999994163271791, 0.0007055386419518741, -5.183687097418444e-05], [-0.0007048159396394524, 1.0000001700794185, 0.00017964949547958028], [5.299300853873026e-05, -0.00017925701598013347, 1.000000048079148]], 'translation vector': [-0.0002435455336966541, -0.00047987538941862695, 0.0009530826592798469]}\nC: {'rotation matrix': [[-0.436198, -0.427205, 0.791977], [-0.899763, 0.219364, -0.377235], [-0.012574, -0.877141, -0.480069]], 'translation vector': [1.990491, 3.720783, 1.55354]}\nD: {'rotation matrix': [[-0.436159, -0.427335, 0.791928], [-0.899792, 0.218686, -0.377559], [-0.011839, -0.877246, -0.479894]], 'translation vector': [1.98993, 3.720837, 1.552023]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999987261495074, 0.0004975354064711766, -0.0014612465343166485], [-0.0004956714882147159, 0.9999976114101617, 0.002168145916521647], [0.0014629580715452147, -0.002166812264256858, 0.9999963843096157]], 'translation vector': [-0.0006911004437073487, 0.0010681685362672333, 0.00045340774962232544]}\nB: {'rotation matrix': [[0.254029, -0.222698, 0.941209], [-0.965413, 0.000689, 0.260725], [-0.058712, -0.974887, -0.21482]], 'translation vector': [0.927676, 4.785758, 1.499229]}\nC: {'rotation matrix': [[0.261058, -0.219751, 0.939978], [-0.963311, 0.003543, 0.268366], [-0.062304, -0.97555, -0.210763]], 'translation vector': [0.925951, 4.784105, 1.497862]}\nD: {'rotation matrix': [[0.253006, -0.222602, 0.941507], [-0.965684, 0.00092, 0.259721], [-0.058681, -0.974909, -0.21473]], 'translation vector': [0.928139, 4.78494, 1.499076]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_8_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_8_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_8_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_8_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999987261495074, 0.0004975354064711766, -0.0014612465343166485], [-0.0004956714882147159, 0.9999976114101617, 0.002168145916521647], [0.0014629580715452147, -0.002166812264256858, 0.9999963843096157]], 'translation vector': [-0.0006911004437073487, 0.0010681685362672333, 0.00045340774962232544]}\nB: {'rotation matrix': [[0.254029, -0.222698, 0.941209], [-0.965413, 0.000689, 0.260725], [-0.058712, -0.974887, -0.21482]], 'translation vector': [0.927676, 4.785758, 1.499229]}\nC: {'rotation matrix': [[0.261058, -0.219751, 0.939978], [-0.963311, 0.003543, 0.268366], [-0.062304, -0.97555, -0.210763]], 'translation vector': [0.925951, 4.784105, 1.497862]}\nD: {'rotation matrix': [[0.253006, -0.222602, 0.941507], [-0.965684, 0.00092, 0.259721], [-0.058681, -0.974909, -0.21473]], 'translation vector': [0.928139, 4.78494, 1.499076]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.298773, 0.351612, -0.887189], [0.953749, -0.077747, 0.290375], [0.033123, -0.932912, -0.358578]], 'translation vector': [3.912279, 4.982921, 1.420651]}\nB: {'rotation matrix': [[0.29932, 0.353357, -0.88631], [0.953697, -0.082092, 0.289349], [0.029485, -0.93188, -0.361567]], 'translation vector': [3.9112, 4.98563, 1.419169]}\nC: {'rotation matrix': [[0.999988451223679, 0.004467367701975065, -0.0013038134525021694], [-0.00445692043483639, 0.9999572940857223, 0.008125240965736606], [0.0013398420675200973, -0.008118916964061989, 0.9999668442244075]], 'translation vector': [0.0032416245875248606, 0.010404768814489485, 0.0002686970709979697]}\nD: {'rotation matrix': [[0.298213, 0.352721, -0.886937], [0.953989, -0.07977, 0.289034], [0.031197, -0.932323, -0.36028]], 'translation vector': [3.912466, 4.985029, 1.419803]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_9_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_9_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_9_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_9_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.298773, 0.351612, -0.887189], [0.953749, -0.077747, 0.290375], [0.033123, -0.932912, -0.358578]], 'translation vector': [3.912279, 4.982921, 1.420651]}\nB: {'rotation matrix': [[0.29932, 0.353357, -0.88631], [0.953697, -0.082092, 0.289349], [0.029485, -0.93188, -0.361567]], 'translation vector': [3.9112, 4.98563, 1.419169]}\nC: {'rotation matrix': [[0.999988451223679, 0.004467367701975065, -0.0013038134525021694], [-0.00445692043483639, 0.9999572940857223, 0.008125240965736606], [0.0013398420675200973, -0.008118916964061989, 0.9999668442244075]], 'translation vector': [0.0032416245875248606, 0.010404768814489485, 0.0002686970709979697]}\nD: {'rotation matrix': [[0.298213, 0.352721, -0.886937], [0.953989, -0.07977, 0.289034], [0.031197, -0.932323, -0.36028]], 'translation vector': [3.912466, 4.985029, 1.419803]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999651962705811, 0.003066448737415877, 0.007690547235694275], [-0.003089438182273661, 0.9999915450229314, 0.002959839315488226], [-0.007681501308992471, -0.0029840343790842917, 0.999966014383214]], 'translation vector': [-0.009845168086086709, -0.005623772397939042, 0.0006148134083248102]}\nB: {'rotation matrix': [[-0.998744, -0.022866, -0.044595], [0.034706, 0.326335, -0.944617], [0.036152, -0.944977, -0.325132]], 'translation vector': [2.332638, 2.988529, 1.390534]}\nC: {'rotation matrix': [[-0.998733, -0.022769, -0.044885], [0.035006, 0.326505, -0.944547], [0.036161, -0.944921, -0.325294]], 'translation vector': [2.335994, 2.987912, 1.391848]}\nD: {'rotation matrix': [[-0.998702, -0.02238, -0.045764], [0.035975, 0.326219, -0.94461], [0.03607, -0.945029, -0.32499]], 'translation vector': [2.340556, 2.987934, 1.391904]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_10_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_10_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_10_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_10_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999651962705811, 0.003066448737415877, 0.007690547235694275], [-0.003089438182273661, 0.9999915450229314, 0.002959839315488226], [-0.007681501308992471, -0.0029840343790842917, 0.999966014383214]], 'translation vector': [-0.009845168086086709, -0.005623772397939042, 0.0006148134083248102]}\nB: {'rotation matrix': [[-0.998744, -0.022866, -0.044595], [0.034706, 0.326335, -0.944617], [0.036152, -0.944977, -0.325132]], 'translation vector': [2.332638, 2.988529, 1.390534]}\nC: {'rotation matrix': [[-0.998733, -0.022769, -0.044885], [0.035006, 0.326505, -0.944547], [0.036161, -0.944921, -0.325294]], 'translation vector': [2.335994, 2.987912, 1.391848]}\nD: {'rotation matrix': [[-0.998702, -0.02238, -0.045764], [0.035975, 0.326219, -0.94461], [0.03607, -0.945029, -0.32499]], 'translation vector': [2.340556, 2.987934, 1.391904]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.088289, -0.769037, 0.633078], [-0.992448, -0.013575, 0.121917], [-0.085165, -0.63906, -0.764427]], 'translation vector': [1.06143, 1.251586, 2.183495]}\nB: {'rotation matrix': [[0.095281, -0.770575, 0.630187], [-0.991458, -0.016816, 0.129342], [-0.08907, -0.637128, -0.765594]], 'translation vector': [1.056131, 1.246655, 2.184574]}\nC: {'rotation matrix': [[0.101903, -0.771131, 0.628469], [-0.990357, -0.019031, 0.13723], [-0.093862, -0.636392, -0.765634]], 'translation vector': [1.04909, 1.241123, 2.18482]}\nD: {'rotation matrix': [[0.9999704077161121, 0.0009465902067394159, -0.007647096819155797], [-0.0009526969531251086, 0.9999995333260298, -0.0008216172460913287], [0.00764682863028495, 0.0008292870802229541, 0.9999701657998578]], 'translation vector': [0.005049491112872229, 0.003519427946364395, -0.004842133831311157]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_11_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_11_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_11_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_11_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.088289, -0.769037, 0.633078], [-0.992448, -0.013575, 0.121917], [-0.085165, -0.63906, -0.764427]], 'translation vector': [1.06143, 1.251586, 2.183495]}\nB: {'rotation matrix': [[0.095281, -0.770575, 0.630187], [-0.991458, -0.016816, 0.129342], [-0.08907, -0.637128, -0.765594]], 'translation vector': [1.056131, 1.246655, 2.184574]}\nC: {'rotation matrix': [[0.101903, -0.771131, 0.628469], [-0.990357, -0.019031, 0.13723], [-0.093862, -0.636392, -0.765634]], 'translation vector': [1.04909, 1.241123, 2.18482]}\nD: {'rotation matrix': [[0.9999704077161121, 0.0009465902067394159, -0.007647096819155797], [-0.0009526969531251086, 0.9999995333260298, -0.0008216172460913287], [0.00764682863028495, 0.0008292870802229541, 0.9999701657998578]], 'translation vector': [0.005049491112872229, 0.003519427946364395, -0.004842133831311157]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.236859, -0.585227, 0.775504], [-0.967029, -0.065142, 0.246196], [-0.093563, -0.808248, -0.581361]], 'translation vector': [0.85633, 3.124968, 1.418476]}\nB: {'rotation matrix': [[0.9999986227118945, -0.0014386707321173084, -0.0013720086731618905], [0.0014396405048904127, 0.9999985343757846, 0.0002480174905685849], [0.0013722163701430706, -0.00024858511187529484, 0.9999990039875143]], 'translation vector': [0.0014743108378150183, 9.881450519233503e-05, 0.00010772367212419365]}\nC: {'rotation matrix': [[0.234228, -0.586349, 0.775456], [-0.967526, -0.06262, 0.244894], [-0.095034, -0.807635, -0.581975]], 'translation vector': [0.858687, 3.12069, 1.418757]}\nD: {'rotation matrix': [[0.234642, -0.58546, 0.776002], [-0.967537, -0.063552, 0.24461], [-0.093893, -0.808206, -0.581366]], 'translation vector': [0.856906, 3.122666, 1.417663]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_12_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_12_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_12_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_12_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.236859, -0.585227, 0.775504], [-0.967029, -0.065142, 0.246196], [-0.093563, -0.808248, -0.581361]], 'translation vector': [0.85633, 3.124968, 1.418476]}\nB: {'rotation matrix': [[0.9999986227118945, -0.0014386707321173084, -0.0013720086731618905], [0.0014396405048904127, 0.9999985343757846, 0.0002480174905685849], [0.0013722163701430706, -0.00024858511187529484, 0.9999990039875143]], 'translation vector': [0.0014743108378150183, 9.881450519233503e-05, 0.00010772367212419365]}\nC: {'rotation matrix': [[0.234228, -0.586349, 0.775456], [-0.967526, -0.06262, 0.244894], [-0.095034, -0.807635, -0.581975]], 'translation vector': [0.858687, 3.12069, 1.418757]}\nD: {'rotation matrix': [[0.234642, -0.58546, 0.776002], [-0.967537, -0.063552, 0.24461], [-0.093893, -0.808206, -0.581366]], 'translation vector': [0.856906, 3.122666, 1.417663]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.582104, 0.470868, -0.662901], [0.81311, -0.339656, 0.472743], [-0.002559, -0.814197, -0.580583]], 'translation vector': [4.229822, 1.596572, 1.425168]}\nB: {'rotation matrix': [[0.9999560146697009, 0.003230475520535795, -0.00886892770497088], [-0.0032175833964298243, 0.9999942676924473, 0.0014734023416888033], [0.008873986014087454, -0.001444906579376565, 0.9999590747869875]], 'translation vector': [0.0012149381321875374, 0.0024560981455157282, -0.00010287317760537817]}\nC: {'rotation matrix': [[0.582444, 0.471641, -0.662053], [0.812867, -0.340629, 0.472461], [-0.002682, -0.813343, -0.581779]], 'translation vector': [4.230144, 1.598887, 1.426125]}\nD: {'rotation matrix': [[0.583525, 0.471082, -0.661499], [0.812092, -0.340805, 0.473665], [-0.002307, -0.813593, -0.58143]], 'translation vector': [4.230429, 1.59898, 1.426046]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_13_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_13_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_13_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_13_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.582104, 0.470868, -0.662901], [0.81311, -0.339656, 0.472743], [-0.002559, -0.814197, -0.580583]], 'translation vector': [4.229822, 1.596572, 1.425168]}\nB: {'rotation matrix': [[0.9999560146697009, 0.003230475520535795, -0.00886892770497088], [-0.0032175833964298243, 0.9999942676924473, 0.0014734023416888033], [0.008873986014087454, -0.001444906579376565, 0.9999590747869875]], 'translation vector': [0.0012149381321875374, 0.0024560981455157282, -0.00010287317760537817]}\nC: {'rotation matrix': [[0.582444, 0.471641, -0.662053], [0.812867, -0.340629, 0.472461], [-0.002682, -0.813343, -0.581779]], 'translation vector': [4.230144, 1.598887, 1.426125]}\nD: {'rotation matrix': [[0.583525, 0.471082, -0.661499], [0.812092, -0.340805, 0.473665], [-0.002307, -0.813593, -0.58143]], 'translation vector': [4.230429, 1.59898, 1.426046]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.990893, 0.057008, -0.121987], [0.134304, -0.353431, 0.92577], [0.009662, -0.933722, -0.357869]], 'translation vector': [2.186028, 2.144782, 1.462596]}\nB: {'rotation matrix': [[0.991569, 0.053062, -0.11822], [0.129357, -0.351493, 0.927211], [0.007646, -0.934686, -0.355393]], 'translation vector': [2.183204, 2.143093, 1.462234]}\nC: {'rotation matrix': [[0.9999874902969159, 0.004379197439594465, -0.002403723493325247], [-0.004372650351021444, 0.9999870005118716, 0.0026700250405810233], [0.0024158589744238553, -0.0026609890925621414, 0.9999939599581709]], 'translation vector': [-0.003672033476809222, -0.0017027412429904132, -0.0003357999980959647]}\nD: {'rotation matrix': [[0.991257, 0.055775, -0.119575], [0.131602, -0.352888, 0.926364], [0.009471, -0.934002, -0.357143]], 'translation vector': [2.184101, 2.143995, 1.46179]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_14_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_14_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_14_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_14_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.990893, 0.057008, -0.121987], [0.134304, -0.353431, 0.92577], [0.009662, -0.933722, -0.357869]], 'translation vector': [2.186028, 2.144782, 1.462596]}\nB: {'rotation matrix': [[0.991569, 0.053062, -0.11822], [0.129357, -0.351493, 0.927211], [0.007646, -0.934686, -0.355393]], 'translation vector': [2.183204, 2.143093, 1.462234]}\nC: {'rotation matrix': [[0.9999874902969159, 0.004379197439594465, -0.002403723493325247], [-0.004372650351021444, 0.9999870005118716, 0.0026700250405810233], [0.0024158589744238553, -0.0026609890925621414, 0.9999939599581709]], 'translation vector': [-0.003672033476809222, -0.0017027412429904132, -0.0003357999980959647]}\nD: {'rotation matrix': [[0.991257, 0.055775, -0.119575], [0.131602, -0.352888, 0.926364], [0.009471, -0.934002, -0.357143]], 'translation vector': [2.184101, 2.143995, 1.46179]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999986691328494, -0.001073261840895818, -0.0008802624854347336], [0.001080335550453663, 0.9999723432097648, 0.00736012496129083], [0.0008730903166935182, -0.007359768837914202, 0.9999729147693108]], 'translation vector': [0.0010486658094048806, -0.004009939681768326, 0.0017973568614269853]}\nB: {'rotation matrix': [[-0.386299, -0.298688, 0.872673], [-0.920393, 0.186791, -0.343491], [-0.060411, -0.935893, -0.347067]], 'translation vector': [2.08048, 4.009937, 1.840847]}\nC: {'rotation matrix': [[-0.383122, -0.307436, 0.871034], [-0.921947, 0.185316, -0.340108], [-0.056855, -0.933349, -0.354438]], 'translation vector': [2.080896, 4.009106, 1.847586]}\nD: {'rotation matrix': [[-0.384424, -0.301178, 0.872645], [-0.921297, 0.185141, -0.341959], [-0.058572, -0.935422, -0.348647]], 'translation vector': [2.077995, 4.010322, 1.837904]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_15_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_15_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_15_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_15_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999986691328494, -0.001073261840895818, -0.0008802624854347336], [0.001080335550453663, 0.9999723432097648, 0.00736012496129083], [0.0008730903166935182, -0.007359768837914202, 0.9999729147693108]], 'translation vector': [0.0010486658094048806, -0.004009939681768326, 0.0017973568614269853]}\nB: {'rotation matrix': [[-0.386299, -0.298688, 0.872673], [-0.920393, 0.186791, -0.343491], [-0.060411, -0.935893, -0.347067]], 'translation vector': [2.08048, 4.009937, 1.840847]}\nC: {'rotation matrix': [[-0.383122, -0.307436, 0.871034], [-0.921947, 0.185316, -0.340108], [-0.056855, -0.933349, -0.354438]], 'translation vector': [2.080896, 4.009106, 1.847586]}\nD: {'rotation matrix': [[-0.384424, -0.301178, 0.872645], [-0.921297, 0.185141, -0.341959], [-0.058572, -0.935422, -0.348647]], 'translation vector': [2.077995, 4.010322, 1.837904]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999787823940977, 0.006347499783107699, -0.0013436878206843045], [-0.006341718624184496, 0.9999688828294876, 0.004625015892328648], [0.0013735202687803576, -0.004616292980016383, 0.9999878757602079]], 'translation vector': [-0.006298849286503927, 0.01405890593176995, 0.0007444533799123576]}\nB: {'rotation matrix': [[0.999733, -0.006694, 0.022129], [-0.023039, -0.368118, 0.929494], [0.001924, -0.929755, -0.368173]], 'translation vector': [3.317142, 3.173762, 1.523565]}\nC: {'rotation matrix': [[0.999731, -0.010083, 0.02088], [-0.023127, -0.369367, 0.928996], [-0.001654, -0.929229, -0.3695]], 'translation vector': [3.314788, 3.169853, 1.521514]}\nD: {'rotation matrix': [[0.999712, -0.007131, 0.022924], [-0.023946, -0.364324, 0.930964], [0.001713, -0.931245, -0.36439]], 'translation vector': [3.320507, 3.174599, 1.524876]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_16_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_16_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_16_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_16_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999787823940977, 0.006347499783107699, -0.0013436878206843045], [-0.006341718624184496, 0.9999688828294876, 0.004625015892328648], [0.0013735202687803576, -0.004616292980016383, 0.9999878757602079]], 'translation vector': [-0.006298849286503927, 0.01405890593176995, 0.0007444533799123576]}\nB: {'rotation matrix': [[0.999733, -0.006694, 0.022129], [-0.023039, -0.368118, 0.929494], [0.001924, -0.929755, -0.368173]], 'translation vector': [3.317142, 3.173762, 1.523565]}\nC: {'rotation matrix': [[0.999731, -0.010083, 0.02088], [-0.023127, -0.369367, 0.928996], [-0.001654, -0.929229, -0.3695]], 'translation vector': [3.314788, 3.169853, 1.521514]}\nD: {'rotation matrix': [[0.999712, -0.007131, 0.022924], [-0.023946, -0.364324, 0.930964], [0.001713, -0.931245, -0.36439]], 'translation vector': [3.320507, 3.174599, 1.524876]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.998283, -0.004041, -0.058434], [0.054839, 0.286044, -0.956646], [0.020581, -0.958208, -0.285332]], 'translation vector': [1.688122, 4.435732, 1.572228]}\nB: {'rotation matrix': [[0.9999952600112642, 0.0029895442027471574, 0.0009673920050112699], [-0.0029953662693526914, 0.9999719574782809, 0.006845684012961962], [-0.000945954294544353, -0.006847856485920328, 0.9999767653082445]], 'translation vector': [-0.00043220364465224037, 0.0023057137872921907, 0.0026271806076847426]}\nC: {'rotation matrix': [[-0.998336, -0.002848, -0.057597], [0.054423, 0.283794, -0.95734], [0.019072, -0.958881, -0.283167]], 'translation vector': [1.687961, 4.436946, 1.571062]}\nD: {'rotation matrix': [[-0.998358, -0.001309, -0.057275], [0.054546, 0.284027, -0.957264], [0.017521, -0.958815, -0.283489]], 'translation vector': [1.688286, 4.43679, 1.571851]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_17_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_17_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_17_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_17_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.998283, -0.004041, -0.058434], [0.054839, 0.286044, -0.956646], [0.020581, -0.958208, -0.285332]], 'translation vector': [1.688122, 4.435732, 1.572228]}\nB: {'rotation matrix': [[0.9999952600112642, 0.0029895442027471574, 0.0009673920050112699], [-0.0029953662693526914, 0.9999719574782809, 0.006845684012961962], [-0.000945954294544353, -0.006847856485920328, 0.9999767653082445]], 'translation vector': [-0.00043220364465224037, 0.0023057137872921907, 0.0026271806076847426]}\nC: {'rotation matrix': [[-0.998336, -0.002848, -0.057597], [0.054423, 0.283794, -0.95734], [0.019072, -0.958881, -0.283167]], 'translation vector': [1.687961, 4.436946, 1.571062]}\nD: {'rotation matrix': [[-0.998358, -0.001309, -0.057275], [0.054546, 0.284027, -0.957264], [0.017521, -0.958815, -0.283489]], 'translation vector': [1.688286, 4.43679, 1.571851]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.083515, 0.422666, -0.902429], [0.995888, 0.067297, -0.060645], [0.035099, -0.903783, -0.426549]], 'translation vector': [4.26049, 5.866284, 1.66918]}\nB: {'rotation matrix': [[-0.080848, 0.422553, -0.902725], [0.996028, 0.068154, -0.057302], [0.037311, -0.903772, -0.426385]], 'translation vector': [4.26043, 5.866841, 1.668667]}\nC: {'rotation matrix': [[-0.081468, 0.422714, -0.902594], [0.995995, 0.068006, -0.058049], [0.036844, -0.903708, -0.426561]], 'translation vector': [4.260486, 5.864969, 1.669529]}\nD: {'rotation matrix': [[0.9999996666026792, 0.0007024902365725143, 0.00045309895052521656], [-0.0007041385629428506, 0.9999945142012453, 0.003060691886503368], [-0.00045146230549075186, -0.0030616184704849174, 0.9999957671575359]], 'translation vector': [-0.008238592634347341, 0.0026712907326988944, 0.0010534554726602252]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_18_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_18_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_18_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_18_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.083515, 0.422666, -0.902429], [0.995888, 0.067297, -0.060645], [0.035099, -0.903783, -0.426549]], 'translation vector': [4.26049, 5.866284, 1.66918]}\nB: {'rotation matrix': [[-0.080848, 0.422553, -0.902725], [0.996028, 0.068154, -0.057302], [0.037311, -0.903772, -0.426385]], 'translation vector': [4.26043, 5.866841, 1.668667]}\nC: {'rotation matrix': [[-0.081468, 0.422714, -0.902594], [0.995995, 0.068006, -0.058049], [0.036844, -0.903708, -0.426561]], 'translation vector': [4.260486, 5.864969, 1.669529]}\nD: {'rotation matrix': [[0.9999996666026792, 0.0007024902365725143, 0.00045309895052521656], [-0.0007041385629428506, 0.9999945142012453, 0.003060691886503368], [-0.00045146230549075186, -0.0030616184704849174, 0.9999957671575359]], 'translation vector': [-0.008238592634347341, 0.0026712907326988944, 0.0010534554726602252]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.192624, -0.379717, 0.904826], [-0.981148, -0.059825, 0.183766], [-0.015648, -0.923166, -0.384082]], 'translation vector': [4.984646, 4.164808, 1.32267]}\nB: {'rotation matrix': [[0.9993897560101446, -0.009672092115768357, 0.033569058676964116], [0.00944513640094131, 0.9999317047122397, 0.006930507743012298], [-0.033634032991460915, -0.006610261888877057, 0.9994127816547865]], 'translation vector': [-0.03424616147212767, -0.0027538632482175807, 0.008124405533084023]}\nC: {'rotation matrix': [[0.180272, -0.384554, 0.905329], [-0.983511, -0.056947, 0.171651], [-0.014453, -0.921344, -0.388479]], 'translation vector': [4.987018, 4.177592, 1.323464]}\nD: {'rotation matrix': [[0.205405, -0.377617, 0.902892], [-0.978531, -0.0633, 0.196139], [-0.016912, -0.923796, -0.382512]], 'translation vector': [4.985321, 4.152791, 1.324267]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_19_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_19_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_19_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_19_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.192624, -0.379717, 0.904826], [-0.981148, -0.059825, 0.183766], [-0.015648, -0.923166, -0.384082]], 'translation vector': [4.984646, 4.164808, 1.32267]}\nB: {'rotation matrix': [[0.9993897560101446, -0.009672092115768357, 0.033569058676964116], [0.00944513640094131, 0.9999317047122397, 0.006930507743012298], [-0.033634032991460915, -0.006610261888877057, 0.9994127816547865]], 'translation vector': [-0.03424616147212767, -0.0027538632482175807, 0.008124405533084023]}\nC: {'rotation matrix': [[0.180272, -0.384554, 0.905329], [-0.983511, -0.056947, 0.171651], [-0.014453, -0.921344, -0.388479]], 'translation vector': [4.987018, 4.177592, 1.323464]}\nD: {'rotation matrix': [[0.205405, -0.377617, 0.902892], [-0.978531, -0.0633, 0.196139], [-0.016912, -0.923796, -0.382512]], 'translation vector': [4.985321, 4.152791, 1.324267]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.084118, -0.329466, 0.940413], [-0.993483, 0.100574, -0.05363], [-0.076912, -0.938795, -0.335779]], 'translation vector': [4.338453, 2.933071, 1.462896]}\nB: {'rotation matrix': [[0.9999984493090167, 0.0015295352178733802, -0.0012886089849350254], [-0.0015301527829556035, 0.9999993364831051, -0.0007407082576259022], [0.0012866367449453698, 0.0007417730730382566, 0.99999926268211]], 'translation vector': [-0.001971799758651027, -0.003988184523042726, -0.0019001345524003455]}\nC: {'rotation matrix': [[-0.084181, -0.324678, 0.942071], [-0.993543, 0.09952, -0.054482], [-0.076066, -0.940574, -0.330959]], 'translation vector': [4.337488, 2.935505, 1.461639]}\nD: {'rotation matrix': [[-0.083371, -0.331462, 0.939778], [-0.993645, 0.099215, -0.053156], [-0.075621, -0.938238, -0.337627]], 'translation vector': [4.338066, 2.933557, 1.453891]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_20_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_20_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_20_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_20_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.084118, -0.329466, 0.940413], [-0.993483, 0.100574, -0.05363], [-0.076912, -0.938795, -0.335779]], 'translation vector': [4.338453, 2.933071, 1.462896]}\nB: {'rotation matrix': [[0.9999984493090167, 0.0015295352178733802, -0.0012886089849350254], [-0.0015301527829556035, 0.9999993364831051, -0.0007407082576259022], [0.0012866367449453698, 0.0007417730730382566, 0.99999926268211]], 'translation vector': [-0.001971799758651027, -0.003988184523042726, -0.0019001345524003455]}\nC: {'rotation matrix': [[-0.084181, -0.324678, 0.942071], [-0.993543, 0.09952, -0.054482], [-0.076066, -0.940574, -0.330959]], 'translation vector': [4.337488, 2.935505, 1.461639]}\nD: {'rotation matrix': [[-0.083371, -0.331462, 0.939778], [-0.993645, 0.099215, -0.053156], [-0.075621, -0.938238, -0.337627]], 'translation vector': [4.338066, 2.933557, 1.453891]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.486704, 0.327719, -0.809765], [0.869935, 0.097394, -0.483454], [-0.079571, -0.939742, -0.332496]], 'translation vector': [4.437128, 2.283443, 1.465507]}\nB: {'rotation matrix': [[0.9999935589617881, -0.0023123151478069903, 0.002638162918517237], [0.0023036775758451737, 0.9999925417720922, 0.0032437850296420778], [-0.0026449296307575294, -0.0032387699437697024, 0.9999912244700261]], 'translation vector': [0.0032199017210038927, 0.0001093759992842891, 0.0024338106134420556]}\nC: {'rotation matrix': [[-0.494127, 0.32769, -0.805269], [0.866163, 0.105829, -0.488427], [-0.074832, -0.938839, -0.336126]], 'translation vector': [4.441189, 2.279036, 1.469096]}\nD: {'rotation matrix': [[-0.489836, 0.32797, -0.807773], [0.868301, 0.100425, -0.485767], [-0.078196, -0.939335, -0.333968]], 'translation vector': [4.439312, 2.280933, 1.467607]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_21_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_21_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_21_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_21_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.486704, 0.327719, -0.809765], [0.869935, 0.097394, -0.483454], [-0.079571, -0.939742, -0.332496]], 'translation vector': [4.437128, 2.283443, 1.465507]}\nB: {'rotation matrix': [[0.9999935589617881, -0.0023123151478069903, 0.002638162918517237], [0.0023036775758451737, 0.9999925417720922, 0.0032437850296420778], [-0.0026449296307575294, -0.0032387699437697024, 0.9999912244700261]], 'translation vector': [0.0032199017210038927, 0.0001093759992842891, 0.0024338106134420556]}\nC: {'rotation matrix': [[-0.494127, 0.32769, -0.805269], [0.866163, 0.105829, -0.488427], [-0.074832, -0.938839, -0.336126]], 'translation vector': [4.441189, 2.279036, 1.469096]}\nD: {'rotation matrix': [[-0.489836, 0.32797, -0.807773], [0.868301, 0.100425, -0.485767], [-0.078196, -0.939335, -0.333968]], 'translation vector': [4.439312, 2.280933, 1.467607]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.591474, -0.360427, 0.721284], [-0.806244, -0.251769, 0.535335], [-0.011352, -0.898167, -0.439507]], 'translation vector': [2.523668, 2.4613, 1.342936]}\nB: {'rotation matrix': [[0.9999823901895873, 0.005315913984669213, -0.0024241384709724934], [-0.005325670093989841, 0.9999780230897936, -0.003916850861463004], [0.002402806763812986, 0.0039304838949891525, 0.9999899783862463]], 'translation vector': [-0.0021162233882717763, -0.0011065369325464758, -0.0015805869003076012]}\nC: {'rotation matrix': [[0.588358, -0.362651, 0.722717], [-0.808515, -0.250803, 0.532355], [-0.0118, -0.897542, -0.440771]], 'translation vector': [2.523157, 2.461525, 1.343416]}\nD: {'rotation matrix': [[0.586933, -0.361149, 0.724625], [-0.809565, -0.249931, 0.531168], [-0.010725, -0.898391, -0.439067]], 'translation vector': [2.521696, 2.461699, 1.342706]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_22_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_22_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_22_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_22_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.591474, -0.360427, 0.721284], [-0.806244, -0.251769, 0.535335], [-0.011352, -0.898167, -0.439507]], 'translation vector': [2.523668, 2.4613, 1.342936]}\nB: {'rotation matrix': [[0.9999823901895873, 0.005315913984669213, -0.0024241384709724934], [-0.005325670093989841, 0.9999780230897936, -0.003916850861463004], [0.002402806763812986, 0.0039304838949891525, 0.9999899783862463]], 'translation vector': [-0.0021162233882717763, -0.0011065369325464758, -0.0015805869003076012]}\nC: {'rotation matrix': [[0.588358, -0.362651, 0.722717], [-0.808515, -0.250803, 0.532355], [-0.0118, -0.897542, -0.440771]], 'translation vector': [2.523157, 2.461525, 1.343416]}\nD: {'rotation matrix': [[0.586933, -0.361149, 0.724625], [-0.809565, -0.249931, 0.531168], [-0.010725, -0.898391, -0.439067]], 'translation vector': [2.521696, 2.461699, 1.342706]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.519941, -0.4438, 0.729866], [-0.853216, -0.228773, 0.468706], [-0.041038, -0.866432, -0.497605]], 'translation vector': [1.000289, 1.985685, 1.347635]}\nB: {'rotation matrix': [[0.520738, -0.4401, 0.731535], [-0.852723, -0.226811, 0.470553], [-0.041171, -0.868832, -0.493393]], 'translation vector': [0.998782, 1.983781, 1.347411]}\nC: {'rotation matrix': [[0.9999982219593319, -0.002079266464163152, 4.9620397493296405e-05], [0.0020793800784517404, 0.99998989374647, 0.004115140408478336], [-5.7016409592928054e-05, -0.004114590657101431, 0.9999914687195216]], 'translation vector': [-0.0013942399199289301, -0.0008989415392872679, 0.0029889416631920795]}\nD: {'rotation matrix': [[0.521192, -0.438092, 0.732417], [-0.852373, -0.224319, 0.472378], [-0.04265, -0.870492, -0.490332]], 'translation vector': [0.999181, 1.981126, 1.348386]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_23_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_23_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_23_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_23_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.519941, -0.4438, 0.729866], [-0.853216, -0.228773, 0.468706], [-0.041038, -0.866432, -0.497605]], 'translation vector': [1.000289, 1.985685, 1.347635]}\nB: {'rotation matrix': [[0.520738, -0.4401, 0.731535], [-0.852723, -0.226811, 0.470553], [-0.041171, -0.868832, -0.493393]], 'translation vector': [0.998782, 1.983781, 1.347411]}\nC: {'rotation matrix': [[0.9999982219593319, -0.002079266464163152, 4.9620397493296405e-05], [0.0020793800784517404, 0.99998989374647, 0.004115140408478336], [-5.7016409592928054e-05, -0.004114590657101431, 0.9999914687195216]], 'translation vector': [-0.0013942399199289301, -0.0008989415392872679, 0.0029889416631920795]}\nD: {'rotation matrix': [[0.521192, -0.438092, 0.732417], [-0.852373, -0.224319, 0.472378], [-0.04265, -0.870492, -0.490332]], 'translation vector': [0.999181, 1.981126, 1.348386]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.961526, 0.04991, -0.270143], [0.263115, -0.450039, 0.853367], [-0.078983, -0.891613, -0.445856]], 'translation vector': [2.643601, 1.008587, 1.47483]}\nB: {'rotation matrix': [[0.9999611816262259, 0.006037262376624097, -0.006357733639992428], [-0.0060929360747264, 0.9999425771984013, -0.008789441445278661], [0.006305603526763411, 0.00882761527567942, 0.9999410260999323]], 'translation vector': [0.006025344459442472, -0.004704561758730241, -0.003336645842906716]}\nC: {'rotation matrix': [[0.958799, 0.0516, -0.27936], [0.272826, -0.441359, 0.85485], [-0.079187, -0.895846, -0.437252]], 'translation vector': [2.65219, 1.005876, 1.472401]}\nD: {'rotation matrix': [[0.963523, 0.050371, -0.262843], [0.256662, -0.452159, 0.854211], [-0.075819, -0.890514, -0.448594]], 'translation vector': [2.637859, 1.00927, 1.478429]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_24_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_24_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_24_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_24_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.961526, 0.04991, -0.270143], [0.263115, -0.450039, 0.853367], [-0.078983, -0.891613, -0.445856]], 'translation vector': [2.643601, 1.008587, 1.47483]}\nB: {'rotation matrix': [[0.9999611816262259, 0.006037262376624097, -0.006357733639992428], [-0.0060929360747264, 0.9999425771984013, -0.008789441445278661], [0.006305603526763411, 0.00882761527567942, 0.9999410260999323]], 'translation vector': [0.006025344459442472, -0.004704561758730241, -0.003336645842906716]}\nC: {'rotation matrix': [[0.958799, 0.0516, -0.27936], [0.272826, -0.441359, 0.85485], [-0.079187, -0.895846, -0.437252]], 'translation vector': [2.65219, 1.005876, 1.472401]}\nD: {'rotation matrix': [[0.963523, 0.050371, -0.262843], [0.256662, -0.452159, 0.854211], [-0.075819, -0.890514, -0.448594]], 'translation vector': [2.637859, 1.00927, 1.478429]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999982465629441, -0.0013465983865406563, -0.0009053084488285325], [0.0013501875456354963, 0.999982864157121, 0.005743205099670796], [0.0008980715136351007, -0.0057437521444019864, 0.9999827649954101]], 'translation vector': [0.006929822597295576, -0.003954296383870348, -0.0008962942027399556]}\nB: {'rotation matrix': [[0.678055, 0.431256, -0.595198], [0.734977, -0.40565, 0.543375], [-0.007108, -0.805894, -0.592017]], 'translation vector': [3.965842, 0.866337, 1.41271]}\nC: {'rotation matrix': [[0.680551, 0.428937, -0.594024], [0.732652, -0.407746, 0.544944], [-0.008465, -0.806075, -0.591754]], 'translation vector': [3.965306, 0.868392, 1.416605]}\nD: {'rotation matrix': [[0.681867, 0.427349, -0.593659], [0.731402, -0.409894, 0.545013], [-0.010426, -0.805829, -0.592057]], 'translation vector': [3.966104, 0.870012, 1.418402]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_25_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_25_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_25_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_25_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999982465629441, -0.0013465983865406563, -0.0009053084488285325], [0.0013501875456354963, 0.999982864157121, 0.005743205099670796], [0.0008980715136351007, -0.0057437521444019864, 0.9999827649954101]], 'translation vector': [0.006929822597295576, -0.003954296383870348, -0.0008962942027399556]}\nB: {'rotation matrix': [[0.678055, 0.431256, -0.595198], [0.734977, -0.40565, 0.543375], [-0.007108, -0.805894, -0.592017]], 'translation vector': [3.965842, 0.866337, 1.41271]}\nC: {'rotation matrix': [[0.680551, 0.428937, -0.594024], [0.732652, -0.407746, 0.544944], [-0.008465, -0.806075, -0.591754]], 'translation vector': [3.965306, 0.868392, 1.416605]}\nD: {'rotation matrix': [[0.681867, 0.427349, -0.593659], [0.731402, -0.409894, 0.545013], [-0.010426, -0.805829, -0.592057]], 'translation vector': [3.966104, 0.870012, 1.418402]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.999985554212974, -0.0031855347936376403, 0.004407056654662203], [0.003212953146819932, 0.9999747868858251, -0.006356723963664241], [-0.004386364338204691, 0.006371176808258376, 0.999970327730571]], 'translation vector': [-0.010337331339885125, -0.003078319020026643, -0.0057934529197571916]}\nB: {'rotation matrix': [[-0.816952, -0.193331, 0.543335], [-0.575587, 0.331994, -0.747315], [-0.035905, -0.923257, -0.382502]], 'translation vector': [4.389139, 4.029859, 1.398995]}\nC: {'rotation matrix': [[-0.817965, -0.190324, 0.542871], [-0.574258, 0.326013, -0.750961], [-0.034057, -0.926009, -0.375963]], 'translation vector': [4.389857, 4.037429, 1.401592]}\nD: {'rotation matrix': [[-0.817754, -0.196252, 0.541077], [-0.574392, 0.338327, -0.745392], [-0.036776, -0.920337, -0.389394]], 'translation vector': [4.391615, 4.02441, 1.397694]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_26_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_26_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_26_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_26_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.999985554212974, -0.0031855347936376403, 0.004407056654662203], [0.003212953146819932, 0.9999747868858251, -0.006356723963664241], [-0.004386364338204691, 0.006371176808258376, 0.999970327730571]], 'translation vector': [-0.010337331339885125, -0.003078319020026643, -0.0057934529197571916]}\nB: {'rotation matrix': [[-0.816952, -0.193331, 0.543335], [-0.575587, 0.331994, -0.747315], [-0.035905, -0.923257, -0.382502]], 'translation vector': [4.389139, 4.029859, 1.398995]}\nC: {'rotation matrix': [[-0.817965, -0.190324, 0.542871], [-0.574258, 0.326013, -0.750961], [-0.034057, -0.926009, -0.375963]], 'translation vector': [4.389857, 4.037429, 1.401592]}\nD: {'rotation matrix': [[-0.817754, -0.196252, 0.541077], [-0.574392, 0.338327, -0.745392], [-0.036776, -0.920337, -0.389394]], 'translation vector': [4.391615, 4.02441, 1.397694]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.989636, -0.107174, 0.095574], [-0.139302, -0.554918, 0.820159], [-0.034864, -0.824973, -0.564096]], 'translation vector': [6.683643, 2.494903, 1.406773]}\nB: {'rotation matrix': [[0.989623, -0.107386, 0.095468], [-0.139407, -0.55662, 0.818988], [-0.034808, -0.823798, -0.565814]], 'translation vector': [6.681599, 2.49535, 1.408922]}\nC: {'rotation matrix': [[0.989755, -0.10674, 0.094822], [-0.138471, -0.555821, 0.819688], [-0.034789, -0.824421, -0.564907]], 'translation vector': [6.681521, 2.493315, 1.407658]}\nD: {'rotation matrix': [[0.9999901303029469, 0.004176228929177566, 0.0011903596205295832], [-0.00418098989555596, 0.9999858303738082, 0.003280298331639201], [-0.0011769495287118517, -0.003284936107684076, 0.9999936907012513]], 'translation vector': [-0.000365649748907515, 0.007725567810238587, -0.0007277349140568656]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_27_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_27_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_27_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_27_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.989636, -0.107174, 0.095574], [-0.139302, -0.554918, 0.820159], [-0.034864, -0.824973, -0.564096]], 'translation vector': [6.683643, 2.494903, 1.406773]}\nB: {'rotation matrix': [[0.989623, -0.107386, 0.095468], [-0.139407, -0.55662, 0.818988], [-0.034808, -0.823798, -0.565814]], 'translation vector': [6.681599, 2.49535, 1.408922]}\nC: {'rotation matrix': [[0.989755, -0.10674, 0.094822], [-0.138471, -0.555821, 0.819688], [-0.034789, -0.824421, -0.564907]], 'translation vector': [6.681521, 2.493315, 1.407658]}\nD: {'rotation matrix': [[0.9999901303029469, 0.004176228929177566, 0.0011903596205295832], [-0.00418098989555596, 0.9999858303738082, 0.003280298331639201], [-0.0011769495287118517, -0.003284936107684076, 0.9999936907012513]], 'translation vector': [-0.000365649748907515, 0.007725567810238587, -0.0007277349140568656]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999990866555979, 0.0004093298689293289, 0.0008391460833273652], [-0.00041250820264666677, 0.9999930945433543, 0.0037605519712407454], [-0.0008378351814566854, -0.0037610473264969298, 0.9999924864591837]], 'translation vector': [-0.002544400937407598, -0.0017921618995201394, 0.0018599883369136982]}\nB: {'rotation matrix': [[0.155491, 0.600889, -0.784063], [0.987779, -0.103232, 0.116776], [-0.010771, -0.792638, -0.609597]], 'translation vector': [3.280226, 1.958162, 1.281368]}\nC: {'rotation matrix': [[0.159827, 0.598569, -0.784966], [0.987096, -0.104834, 0.121042], [-0.009839, -0.794182, -0.6076]], 'translation vector': [3.27763, 1.954194, 1.282551]}\nD: {'rotation matrix': [[0.164916, 0.595071, -0.786571], [0.986276, -0.105924, 0.126651], [-0.007951, -0.796662, -0.604372]], 'translation vector': [3.274219, 1.949482, 1.285722]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_28_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_28_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_28_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_28_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999990866555979, 0.0004093298689293289, 0.0008391460833273652], [-0.00041250820264666677, 0.9999930945433543, 0.0037605519712407454], [-0.0008378351814566854, -0.0037610473264969298, 0.9999924864591837]], 'translation vector': [-0.002544400937407598, -0.0017921618995201394, 0.0018599883369136982]}\nB: {'rotation matrix': [[0.155491, 0.600889, -0.784063], [0.987779, -0.103232, 0.116776], [-0.010771, -0.792638, -0.609597]], 'translation vector': [3.280226, 1.958162, 1.281368]}\nC: {'rotation matrix': [[0.159827, 0.598569, -0.784966], [0.987096, -0.104834, 0.121042], [-0.009839, -0.794182, -0.6076]], 'translation vector': [3.27763, 1.954194, 1.282551]}\nD: {'rotation matrix': [[0.164916, 0.595071, -0.786571], [0.986276, -0.105924, 0.126651], [-0.007951, -0.796662, -0.604372]], 'translation vector': [3.274219, 1.949482, 1.285722]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999748122492941, 0.0038384551465654687, -0.005906369455983883], [-0.0037983225864595374, 0.9999703256171942, 0.006729367156156027], [0.005932617650240982, -0.006707131114408277, 0.9999600560348555]], 'translation vector': [-0.00423530822573337, 0.003061759875670811, -0.009950114450137715]}\nB: {'rotation matrix': [[-0.937821, -0.115212, 0.32744], [-0.346749, 0.354456, -0.868405], [-0.016013, -0.927948, -0.372366]], 'translation vector': [5.30238, 4.116027, 1.850731]}\nC: {'rotation matrix': [[-0.932005, -0.116649, 0.343162], [-0.36182, 0.355063, -0.861984], [-0.021294, -0.927536, -0.373127]], 'translation vector': [5.291139, 4.11983, 1.856331]}\nD: {'rotation matrix': [[-0.934388, -0.115649, 0.336964], [-0.355745, 0.353624, -0.865099], [-0.01911, -0.928211, -0.371563]], 'translation vector': [5.294776, 4.11946, 1.854234]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_29_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_29_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_29_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_29_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999748122492941, 0.0038384551465654687, -0.005906369455983883], [-0.0037983225864595374, 0.9999703256171942, 0.006729367156156027], [0.005932617650240982, -0.006707131114408277, 0.9999600560348555]], 'translation vector': [-0.00423530822573337, 0.003061759875670811, -0.009950114450137715]}\nB: {'rotation matrix': [[-0.937821, -0.115212, 0.32744], [-0.346749, 0.354456, -0.868405], [-0.016013, -0.927948, -0.372366]], 'translation vector': [5.30238, 4.116027, 1.850731]}\nC: {'rotation matrix': [[-0.932005, -0.116649, 0.343162], [-0.36182, 0.355063, -0.861984], [-0.021294, -0.927536, -0.373127]], 'translation vector': [5.291139, 4.11983, 1.856331]}\nD: {'rotation matrix': [[-0.934388, -0.115649, 0.336964], [-0.355745, 0.353624, -0.865099], [-0.01911, -0.928211, -0.371563]], 'translation vector': [5.294776, 4.11946, 1.854234]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.431582, -0.098037, 0.896731], [-0.900431, 0.106787, -0.421688], [-0.054418, -0.989437, -0.134363]], 'translation vector': [4.412532, 3.596741, 1.526323]}\nB: {'rotation matrix': [[-0.43275, -0.095778, 0.896412], [-0.899777, 0.107595, -0.422878], [-0.055947, -0.989571, -0.132741]], 'translation vector': [4.410773, 3.601486, 1.526138]}\nC: {'rotation matrix': [[0.9999520333968362, 0.0006753791567632332, -0.009755571516398104], [-0.0006310509478896895, 0.999990797204237, 0.004384447971913257], [0.009758133830260066, -0.004378955576420755, 0.9999427994349811]], 'translation vector': [0.0016435229369795579, -0.00040384651884517453, 0.0035746064241082287]}\nD: {'rotation matrix': [[-0.433914, -0.093907, 0.896047], [-0.899123, 0.108519, -0.42403], [-0.057419, -0.989649, -0.131522]], 'translation vector': [4.40951, 3.606652, 1.52516]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_30_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_30_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_30_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_30_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.431582, -0.098037, 0.896731], [-0.900431, 0.106787, -0.421688], [-0.054418, -0.989437, -0.134363]], 'translation vector': [4.412532, 3.596741, 1.526323]}\nB: {'rotation matrix': [[-0.43275, -0.095778, 0.896412], [-0.899777, 0.107595, -0.422878], [-0.055947, -0.989571, -0.132741]], 'translation vector': [4.410773, 3.601486, 1.526138]}\nC: {'rotation matrix': [[0.9999520333968362, 0.0006753791567632332, -0.009755571516398104], [-0.0006310509478896895, 0.999990797204237, 0.004384447971913257], [0.009758133830260066, -0.004378955576420755, 0.9999427994349811]], 'translation vector': [0.0016435229369795579, -0.00040384651884517453, 0.0035746064241082287]}\nD: {'rotation matrix': [[-0.433914, -0.093907, 0.896047], [-0.899123, 0.108519, -0.42403], [-0.057419, -0.989649, -0.131522]], 'translation vector': [4.40951, 3.606652, 1.52516]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999917661523451, 0.003965604575831933, -0.00020113541169654973], [-0.0039642406405361414, 0.9999897644646852, 0.002088386147537849], [0.00020867644615939134, -0.0020887952983848278, 0.9999975122366389]], 'translation vector': [0.003940681703816118, 0.0007777989134077623, 0.003188885648093276]}\nB: {'rotation matrix': [[-0.926146, 0.120999, -0.357228], [0.374267, 0.177659, -0.910144], [-0.046662, -0.976625, -0.209824]], 'translation vector': [4.737155, 2.737478, 1.223721]}\nC: {'rotation matrix': [[-0.926101, 0.124421, -0.356169], [0.374063, 0.179874, -0.909792], [-0.049131, -0.975789, -0.213123]], 'translation vector': [4.73486, 2.737298, 1.223615]}\nD: {'rotation matrix': [[-0.927631, 0.118543, -0.354186], [0.370581, 0.173865, -0.912382], [-0.046576, -0.977609, -0.205212]], 'translation vector': [4.731637, 2.739449, 1.226493]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_31_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_31_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_31_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_31_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999917661523451, 0.003965604575831933, -0.00020113541169654973], [-0.0039642406405361414, 0.9999897644646852, 0.002088386147537849], [0.00020867644615939134, -0.0020887952983848278, 0.9999975122366389]], 'translation vector': [0.003940681703816118, 0.0007777989134077623, 0.003188885648093276]}\nB: {'rotation matrix': [[-0.926146, 0.120999, -0.357228], [0.374267, 0.177659, -0.910144], [-0.046662, -0.976625, -0.209824]], 'translation vector': [4.737155, 2.737478, 1.223721]}\nC: {'rotation matrix': [[-0.926101, 0.124421, -0.356169], [0.374063, 0.179874, -0.909792], [-0.049131, -0.975789, -0.213123]], 'translation vector': [4.73486, 2.737298, 1.223615]}\nD: {'rotation matrix': [[-0.927631, 0.118543, -0.354186], [0.370581, 0.173865, -0.912382], [-0.046576, -0.977609, -0.205212]], 'translation vector': [4.731637, 2.739449, 1.226493]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.854414, -0.337949, 0.394674], [-0.51408, -0.439475, 0.736602], [-0.075485, -0.832257, -0.549227]], 'translation vector': [2.728753, 6.764147, 1.410515]}\nB: {'rotation matrix': [[0.857663, -0.338131, 0.387404], [-0.508133, -0.441807, 0.739329], [-0.078832, -0.830948, -0.550737]], 'translation vector': [2.730525, 6.755143, 1.407191]}\nC: {'rotation matrix': [[0.856314, -0.338309, 0.390222], [-0.510605, -0.441176, 0.738002], [-0.077516, -0.83121, -0.550528]], 'translation vector': [2.731703, 6.760056, 1.408417]}\nD: {'rotation matrix': [[0.9999681707679642, 0.006356789386196493, 0.004849115684302276], [-0.0063488135736310385, 0.9999779524760675, -0.0017687198088092734], [-0.004860696689611514, 0.0017388114569044306, 0.9999869431575653]], 'translation vector': [0.001030885579985874, -0.006730226347642976, 0.006769981822561277]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_32_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_32_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_32_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_32_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.854414, -0.337949, 0.394674], [-0.51408, -0.439475, 0.736602], [-0.075485, -0.832257, -0.549227]], 'translation vector': [2.728753, 6.764147, 1.410515]}\nB: {'rotation matrix': [[0.857663, -0.338131, 0.387404], [-0.508133, -0.441807, 0.739329], [-0.078832, -0.830948, -0.550737]], 'translation vector': [2.730525, 6.755143, 1.407191]}\nC: {'rotation matrix': [[0.856314, -0.338309, 0.390222], [-0.510605, -0.441176, 0.738002], [-0.077516, -0.83121, -0.550528]], 'translation vector': [2.731703, 6.760056, 1.408417]}\nD: {'rotation matrix': [[0.9999681707679642, 0.006356789386196493, 0.004849115684302276], [-0.0063488135736310385, 0.9999779524760675, -0.0017687198088092734], [-0.004860696689611514, 0.0017388114569044306, 0.9999869431575653]], 'translation vector': [0.001030885579985874, -0.006730226347642976, 0.006769981822561277]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.230447, -0.471956, 0.850971], [-0.964157, 0.007445, 0.265227], [-0.131511, -0.881591, -0.453324]], 'translation vector': [3.039354, 2.955346, 1.549151]}\nB: {'rotation matrix': [[0.228449, -0.472123, 0.851417], [-0.96468, 0.008044, 0.2633], [-0.131159, -0.881496, -0.45361]], 'translation vector': [3.038737, 2.954341, 1.548813]}\nC: {'rotation matrix': [[0.9999932374461685, -2.1218966376535376e-05, -0.003832905020754294], [2.3397413103181216e-05, 0.9999998755264938, 0.00025510731414015743], [0.003833858200182055, -0.0002556535302727228, 0.9999922097121886]], 'translation vector': [-0.00018189815458224956, -0.001091765193039329, 0.0006659190149727046]}\nD: {'rotation matrix': [[0.234859, -0.471403, 0.850071], [-0.962925, 0.006583, 0.269689], [-0.132728, -0.881894, -0.452379]], 'translation vector': [3.04024, 2.955162, 1.549553]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_33_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_33_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_33_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_33_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.230447, -0.471956, 0.850971], [-0.964157, 0.007445, 0.265227], [-0.131511, -0.881591, -0.453324]], 'translation vector': [3.039354, 2.955346, 1.549151]}\nB: {'rotation matrix': [[0.228449, -0.472123, 0.851417], [-0.96468, 0.008044, 0.2633], [-0.131159, -0.881496, -0.45361]], 'translation vector': [3.038737, 2.954341, 1.548813]}\nC: {'rotation matrix': [[0.9999932374461685, -2.1218966376535376e-05, -0.003832905020754294], [2.3397413103181216e-05, 0.9999998755264938, 0.00025510731414015743], [0.003833858200182055, -0.0002556535302727228, 0.9999922097121886]], 'translation vector': [-0.00018189815458224956, -0.001091765193039329, 0.0006659190149727046]}\nD: {'rotation matrix': [[0.234859, -0.471403, 0.850071], [-0.962925, 0.006583, 0.269689], [-0.132728, -0.881894, -0.452379]], 'translation vector': [3.04024, 2.955162, 1.549553]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999722451927703, 0.006302215099590525, -0.00403981735739725], [-0.006327345454891822, 0.9999605703041478, -0.0062233586210535905], [0.004001166188993241, 0.006248748688806741, 0.9999728906669906]], 'translation vector': [0.005093628494140745, -0.0003734020522905279, 0.0005966377475724594]}\nB: {'rotation matrix': [[-0.852779, -0.130984, 0.505581], [-0.521088, 0.148208, -0.840537], [0.035166, -0.980244, -0.194643]], 'translation vector': [2.708243, 1.722235, 1.600397]}\nC: {'rotation matrix': [[-0.85558, -0.133703, 0.500106], [-0.51643, 0.153622, -0.842437], [0.035809, -0.979042, -0.200484]], 'translation vector': [2.710987, 1.723705, 1.596351]}\nD: {'rotation matrix': [[-0.853917, -0.132599, 0.503232], [-0.519221, 0.151792, -0.841052], [0.035136, -0.979478, -0.198466]], 'translation vector': [2.709099, 1.722802, 1.598917]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_34_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_34_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_34_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_34_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999722451927703, 0.006302215099590525, -0.00403981735739725], [-0.006327345454891822, 0.9999605703041478, -0.0062233586210535905], [0.004001166188993241, 0.006248748688806741, 0.9999728906669906]], 'translation vector': [0.005093628494140745, -0.0003734020522905279, 0.0005966377475724594]}\nB: {'rotation matrix': [[-0.852779, -0.130984, 0.505581], [-0.521088, 0.148208, -0.840537], [0.035166, -0.980244, -0.194643]], 'translation vector': [2.708243, 1.722235, 1.600397]}\nC: {'rotation matrix': [[-0.85558, -0.133703, 0.500106], [-0.51643, 0.153622, -0.842437], [0.035809, -0.979042, -0.200484]], 'translation vector': [2.710987, 1.723705, 1.596351]}\nD: {'rotation matrix': [[-0.853917, -0.132599, 0.503232], [-0.519221, 0.151792, -0.841052], [0.035136, -0.979478, -0.198466]], 'translation vector': [2.709099, 1.722802, 1.598917]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.478873, -0.428944, 0.765955], [-0.87533, -0.166797, 0.453846], [-0.066915, -0.887798, -0.455343]], 'translation vector': [0.725473, 2.084639, 1.401624]}\nB: {'rotation matrix': [[0.9999321559246817, -0.004700941469421, -0.010648795235394873], [0.0046277052826301434, 0.9999657024420984, -0.006814383513752801], [0.010680686020790284, 0.006765103656469935, 0.9999199949357819]], 'translation vector': [-0.010159202650746213, -0.00890278579572934, 0.006564575177659959]}\nC: {'rotation matrix': [[0.476891, -0.427829, 0.767814], [-0.876452, -0.165482, 0.452159], [-0.066387, -0.888582, -0.453888]], 'translation vector': [0.720453, 2.082574, 1.402557]}\nD: {'rotation matrix': [[0.480806, -0.429519, 0.764421], [-0.874127, -0.166433, 0.456292], [-0.068761, -0.887589, -0.455476]], 'translation vector': [0.729586, 2.089959, 1.401763]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_35_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_35_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_35_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_35_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.478873, -0.428944, 0.765955], [-0.87533, -0.166797, 0.453846], [-0.066915, -0.887798, -0.455343]], 'translation vector': [0.725473, 2.084639, 1.401624]}\nB: {'rotation matrix': [[0.9999321559246817, -0.004700941469421, -0.010648795235394873], [0.0046277052826301434, 0.9999657024420984, -0.006814383513752801], [0.010680686020790284, 0.006765103656469935, 0.9999199949357819]], 'translation vector': [-0.010159202650746213, -0.00890278579572934, 0.006564575177659959]}\nC: {'rotation matrix': [[0.476891, -0.427829, 0.767814], [-0.876452, -0.165482, 0.452159], [-0.066387, -0.888582, -0.453888]], 'translation vector': [0.720453, 2.082574, 1.402557]}\nD: {'rotation matrix': [[0.480806, -0.429519, 0.764421], [-0.874127, -0.166433, 0.456292], [-0.068761, -0.887589, -0.455476]], 'translation vector': [0.729586, 2.089959, 1.401763]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.745148, -0.37119, 0.554052], [-0.66666, -0.436838, 0.603934], [0.017857, -0.819385, -0.572966]], 'translation vector': [3.707678, 4.401502, 1.259793]}\nB: {'rotation matrix': [[0.9999956925108978, 0.0027628800894689116, -0.0013776131907199199], [-0.002750831230441356, 0.9999530244932063, 0.009285447903977378], [0.0014027365353670037, -0.00928147923100416, 0.9999562334978788]], 'translation vector': [-0.001323540742452639, -0.0019242276069570963, 0.0020358659652854882]}\nC: {'rotation matrix': [[0.745353, -0.370803, 0.554034], [-0.666429, -0.436771, 0.604239], [0.017933, -0.819595, -0.572662]], 'translation vector': [3.707908, 4.40198, 1.260519]}\nD: {'rotation matrix': [[0.746372, -0.37052, 0.55285], [-0.665272, -0.438418, 0.60432], [0.018468, -0.818844, -0.57372]], 'translation vector': [3.708833, 4.402057, 1.261367]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_36_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_36_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_36_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_36_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.745148, -0.37119, 0.554052], [-0.66666, -0.436838, 0.603934], [0.017857, -0.819385, -0.572966]], 'translation vector': [3.707678, 4.401502, 1.259793]}\nB: {'rotation matrix': [[0.9999956925108978, 0.0027628800894689116, -0.0013776131907199199], [-0.002750831230441356, 0.9999530244932063, 0.009285447903977378], [0.0014027365353670037, -0.00928147923100416, 0.9999562334978788]], 'translation vector': [-0.001323540742452639, -0.0019242276069570963, 0.0020358659652854882]}\nC: {'rotation matrix': [[0.745353, -0.370803, 0.554034], [-0.666429, -0.436771, 0.604239], [0.017933, -0.819595, -0.572662]], 'translation vector': [3.707908, 4.40198, 1.260519]}\nD: {'rotation matrix': [[0.746372, -0.37052, 0.55285], [-0.665272, -0.438418, 0.60432], [0.018468, -0.818844, -0.57372]], 'translation vector': [3.708833, 4.402057, 1.261367]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.116268, -0.545929, 0.829725], [-0.992164, 0.102308, -0.071715], [-0.045736, -0.831562, -0.553546]], 'translation vector': [1.188241, 1.804719, 1.496587]}\nB: {'rotation matrix': [[-0.114381, -0.546538, 0.829586], [-0.992382, 0.101334, -0.070067], [-0.045771, -0.83128, -0.553966]], 'translation vector': [1.18804, 1.806907, 1.497044]}\nC: {'rotation matrix': [[-0.116275, -0.545912, 0.829735], [-0.992183, 0.101947, -0.071965], [-0.045303, -0.831617, -0.553499]], 'translation vector': [1.188215, 1.807271, 1.496983]}\nD: {'rotation matrix': [[0.9999972656726313, 0.0013206868291442259, 0.0020218952923470846], [-0.0013233096218697464, 0.999999141112598, 0.0010787718934225417], [-0.0020206374390544144, -0.0010806530653509267, 0.9999977188154618]], 'translation vector': [-0.0038275910671821123, 0.000160776135250007, -0.0021485328355081296]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_37_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_37_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_37_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_37_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.116268, -0.545929, 0.829725], [-0.992164, 0.102308, -0.071715], [-0.045736, -0.831562, -0.553546]], 'translation vector': [1.188241, 1.804719, 1.496587]}\nB: {'rotation matrix': [[-0.114381, -0.546538, 0.829586], [-0.992382, 0.101334, -0.070067], [-0.045771, -0.83128, -0.553966]], 'translation vector': [1.18804, 1.806907, 1.497044]}\nC: {'rotation matrix': [[-0.116275, -0.545912, 0.829735], [-0.992183, 0.101947, -0.071965], [-0.045303, -0.831617, -0.553499]], 'translation vector': [1.188215, 1.807271, 1.496983]}\nD: {'rotation matrix': [[0.9999972656726313, 0.0013206868291442259, 0.0020218952923470846], [-0.0013233096218697464, 0.999999141112598, 0.0010787718934225417], [-0.0020206374390544144, -0.0010806530653509267, 0.9999977188154618]], 'translation vector': [-0.0038275910671821123, 0.000160776135250007, -0.0021485328355081296]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.997087, -0.025415, -0.071922], [0.054952, -0.414609, 0.908339], [-0.052905, -0.909645, -0.412004]], 'translation vector': [4.407682, 5.403047, 1.49649]}\nB: {'rotation matrix': [[1.0000003154168173, -0.00026066196587795827, 0.0009499731630029714], [0.00026257414143552785, 0.9999962311537921, -0.0026991488717855007], [-0.0009496510997198135, 0.002699452079922895, 0.9999961867215906]], 'translation vector': [-0.0035058102061285012, -0.0001503164701972537, 0.00022028015795205746]}\nC: {'rotation matrix': [[0.996877, -0.026735, -0.074307], [0.056551, -0.415107, 0.908013], [-0.055122, -0.909379, -0.412299]], 'translation vector': [4.407921, 5.402507, 1.494552]}\nD: {'rotation matrix': [[0.997138, -0.02412, -0.07165], [0.055312, -0.413324, 0.908903], [-0.051537, -0.910265, -0.410807]], 'translation vector': [4.410345, 5.401881, 1.497987]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_38_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_38_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_38_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_38_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.997087, -0.025415, -0.071922], [0.054952, -0.414609, 0.908339], [-0.052905, -0.909645, -0.412004]], 'translation vector': [4.407682, 5.403047, 1.49649]}\nB: {'rotation matrix': [[1.0000003154168173, -0.00026066196587795827, 0.0009499731630029714], [0.00026257414143552785, 0.9999962311537921, -0.0026991488717855007], [-0.0009496510997198135, 0.002699452079922895, 0.9999961867215906]], 'translation vector': [-0.0035058102061285012, -0.0001503164701972537, 0.00022028015795205746]}\nC: {'rotation matrix': [[0.996877, -0.026735, -0.074307], [0.056551, -0.415107, 0.908013], [-0.055122, -0.909379, -0.412299]], 'translation vector': [4.407921, 5.402507, 1.494552]}\nD: {'rotation matrix': [[0.997138, -0.02412, -0.07165], [0.055312, -0.413324, 0.908903], [-0.051537, -0.910265, -0.410807]], 'translation vector': [4.410345, 5.401881, 1.497987]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.317061, -0.465845, 0.826112], [-0.947162, 0.200121, -0.250671], [-0.048548, -0.86194, -0.504681]], 'translation vector': [2.298134, 2.388596, 1.453916]}\nB: {'rotation matrix': [[-0.317304, -0.461983, 0.828185], [-0.946993, 0.200626, -0.250908], [-0.05024, -0.863899, -0.501153]], 'translation vector': [2.298876, 2.392571, 1.455489]}\nC: {'rotation matrix': [[0.99999454935107, 0.0002197888751369094, -0.0032128422811739327], [-0.00022937596583946223, 0.9999976816384528, -0.0024943946424807743], [0.0032131009034445414, 0.0024955910558726972, 0.9999912821080568]], 'translation vector': [0.001089045909415276, -0.0004423003337574727, -0.0002086110960047849]}\nD: {'rotation matrix': [[-0.314906, -0.456701, 0.83202], [-0.947639, 0.200286, -0.248728], [-0.053048, -0.866781, -0.49586]], 'translation vector': [2.297376, 2.389925, 1.457247]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_39_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_39_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_39_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_39_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.317061, -0.465845, 0.826112], [-0.947162, 0.200121, -0.250671], [-0.048548, -0.86194, -0.504681]], 'translation vector': [2.298134, 2.388596, 1.453916]}\nB: {'rotation matrix': [[-0.317304, -0.461983, 0.828185], [-0.946993, 0.200626, -0.250908], [-0.05024, -0.863899, -0.501153]], 'translation vector': [2.298876, 2.392571, 1.455489]}\nC: {'rotation matrix': [[0.99999454935107, 0.0002197888751369094, -0.0032128422811739327], [-0.00022937596583946223, 0.9999976816384528, -0.0024943946424807743], [0.0032131009034445414, 0.0024955910558726972, 0.9999912821080568]], 'translation vector': [0.001089045909415276, -0.0004423003337574727, -0.0002086110960047849]}\nD: {'rotation matrix': [[-0.314906, -0.456701, 0.83202], [-0.947639, 0.200286, -0.248728], [-0.053048, -0.866781, -0.49586]], 'translation vector': [2.297376, 2.389925, 1.457247]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.887986, -0.072993, 0.45404], [-0.454573, -0.288743, 0.84261], [0.069596, -0.95462, -0.28958]], 'translation vector': [3.216625, 3.12153, 1.569232]}\nB: {'rotation matrix': [[0.881294, -0.091283, 0.463668], [-0.468392, -0.298889, 0.831429], [0.06269, -0.949912, -0.306165]], 'translation vector': [3.22503, 3.133041, 1.572641]}\nC: {'rotation matrix': [[0.9998534926564413, 0.011234421547280734, -0.012941695383424894], [-0.01131150095792877, 0.9999182350466784, -0.005915937307264116], [0.012873405071388795, 0.006062261057420049, 0.9998987281608317]], 'translation vector': [-0.0006289172879170302, -0.011376901257172278, -0.010410317713380746]}\nD: {'rotation matrix': [[0.883743, -0.084646, 0.460254], [-0.463409, -0.29531, 0.83549], [0.065197, -0.951644, -0.300204]], 'translation vector': [3.211292, 3.12843, 1.571525]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_40_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_40_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_40_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_40_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.887986, -0.072993, 0.45404], [-0.454573, -0.288743, 0.84261], [0.069596, -0.95462, -0.28958]], 'translation vector': [3.216625, 3.12153, 1.569232]}\nB: {'rotation matrix': [[0.881294, -0.091283, 0.463668], [-0.468392, -0.298889, 0.831429], [0.06269, -0.949912, -0.306165]], 'translation vector': [3.22503, 3.133041, 1.572641]}\nC: {'rotation matrix': [[0.9998534926564413, 0.011234421547280734, -0.012941695383424894], [-0.01131150095792877, 0.9999182350466784, -0.005915937307264116], [0.012873405071388795, 0.006062261057420049, 0.9998987281608317]], 'translation vector': [-0.0006289172879170302, -0.011376901257172278, -0.010410317713380746]}\nD: {'rotation matrix': [[0.883743, -0.084646, 0.460254], [-0.463409, -0.29531, 0.83549], [0.065197, -0.951644, -0.300204]], 'translation vector': [3.211292, 3.12843, 1.571525]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999922215867046, 0.00022785537094286064, 0.0038428059210989744], [-0.0002767566400686762, 0.9999180395239896, 0.0128255569964717], [-0.0038395911947271166, -0.01282698821636408, 0.9999095074136637]], 'translation vector': [-0.012178319620715694, 0.0009877403245357463, 0.004998693428563072]}\nB: {'rotation matrix': [[-0.349791, 0.571502, -0.742315], [0.927295, 0.098467, -0.361147], [-0.133303, -0.814672, -0.564394]], 'translation vector': [7.153554, 3.625007, 1.584927]}\nC: {'rotation matrix': [[-0.352738, 0.563812, -0.746788], [0.92567, 0.093586, -0.366575], [-0.13679, -0.820584, -0.554915]], 'translation vector': [7.154875, 3.637451, 1.583088]}\nD: {'rotation matrix': [[-0.346362, 0.577228, -0.739487], [0.929238, 0.103006, -0.354833], [-0.128648, -0.81006, -0.57206]], 'translation vector': [7.154236, 3.613202, 1.583063]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_41_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_41_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_41_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_41_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999922215867046, 0.00022785537094286064, 0.0038428059210989744], [-0.0002767566400686762, 0.9999180395239896, 0.0128255569964717], [-0.0038395911947271166, -0.01282698821636408, 0.9999095074136637]], 'translation vector': [-0.012178319620715694, 0.0009877403245357463, 0.004998693428563072]}\nB: {'rotation matrix': [[-0.349791, 0.571502, -0.742315], [0.927295, 0.098467, -0.361147], [-0.133303, -0.814672, -0.564394]], 'translation vector': [7.153554, 3.625007, 1.584927]}\nC: {'rotation matrix': [[-0.352738, 0.563812, -0.746788], [0.92567, 0.093586, -0.366575], [-0.13679, -0.820584, -0.554915]], 'translation vector': [7.154875, 3.637451, 1.583088]}\nD: {'rotation matrix': [[-0.346362, 0.577228, -0.739487], [0.929238, 0.103006, -0.354833], [-0.128648, -0.81006, -0.57206]], 'translation vector': [7.154236, 3.613202, 1.583063]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.295342, -0.337479, 0.893802], [-0.954338, -0.060275, 0.292587], [-0.044868, -0.939402, -0.33987]], 'translation vector': [3.757863, 4.507889, 1.342911]}\nB: {'rotation matrix': [[0.300826, -0.332026, 0.894015], [-0.952739, -0.063015, 0.297182], [-0.042336, -0.941163, -0.33529]], 'translation vector': [3.757184, 4.502328, 1.344268]}\nC: {'rotation matrix': [[0.280244, -0.341756, 0.897032], [-0.959084, -0.060487, 0.276585], [-0.040265, -0.93784, -0.344724]], 'translation vector': [3.749212, 4.541941, 1.346336]}\nD: {'rotation matrix': [[0.9996750004430802, 0.005976407862532351, -0.024761409167148862], [-0.005880950295372731, 0.9999756244730406, 0.0039275528492273585], [0.024784884729748376, -0.0037817785482656863, 0.9996858791488856]], 'translation vector': [0.014484406993793275, 0.0006255655612603661, -0.006516735656635575]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_42_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_42_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_42_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_42_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.295342, -0.337479, 0.893802], [-0.954338, -0.060275, 0.292587], [-0.044868, -0.939402, -0.33987]], 'translation vector': [3.757863, 4.507889, 1.342911]}\nB: {'rotation matrix': [[0.300826, -0.332026, 0.894015], [-0.952739, -0.063015, 0.297182], [-0.042336, -0.941163, -0.33529]], 'translation vector': [3.757184, 4.502328, 1.344268]}\nC: {'rotation matrix': [[0.280244, -0.341756, 0.897032], [-0.959084, -0.060487, 0.276585], [-0.040265, -0.93784, -0.344724]], 'translation vector': [3.749212, 4.541941, 1.346336]}\nD: {'rotation matrix': [[0.9996750004430802, 0.005976407862532351, -0.024761409167148862], [-0.005880950295372731, 0.9999756244730406, 0.0039275528492273585], [0.024784884729748376, -0.0037817785482656863, 0.9996858791488856]], 'translation vector': [0.014484406993793275, 0.0006255655612603661, -0.006516735656635575]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.408105, -0.298824, 0.862644], [-0.912691, -0.155393, 0.377953], [0.021107, -0.941572, -0.33615]], 'translation vector': [3.68854, 2.987475, 1.504179]}\nB: {'rotation matrix': [[0.414415, -0.280989, 0.865625], [-0.909796, -0.152002, 0.386221], [0.023053, -0.947597, -0.318634]], 'translation vector': [3.695469, 2.977012, 1.528306]}\nC: {'rotation matrix': [[0.9999691985275884, -0.0028723049102575577, -0.007257311467463551], [0.0029984988555096107, 0.9998441859378951, 0.01739980616527257], [0.007206986340996781, -0.017422228683580315, 0.9998224150329578]], 'translation vector': [0.005083024714500617, 0.008976294562036191, -0.004546920528859744]}\nD: {'rotation matrix': [[0.410301, -0.290948, 0.864293], [-0.911655, -0.15496, 0.38062], [0.02319, -0.944106, -0.328824]], 'translation vector': [3.694328, 2.984669, 1.517045]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_43_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_43_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_43_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_43_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.408105, -0.298824, 0.862644], [-0.912691, -0.155393, 0.377953], [0.021107, -0.941572, -0.33615]], 'translation vector': [3.68854, 2.987475, 1.504179]}\nB: {'rotation matrix': [[0.414415, -0.280989, 0.865625], [-0.909796, -0.152002, 0.386221], [0.023053, -0.947597, -0.318634]], 'translation vector': [3.695469, 2.977012, 1.528306]}\nC: {'rotation matrix': [[0.9999691985275884, -0.0028723049102575577, -0.007257311467463551], [0.0029984988555096107, 0.9998441859378951, 0.01739980616527257], [0.007206986340996781, -0.017422228683580315, 0.9998224150329578]], 'translation vector': [0.005083024714500617, 0.008976294562036191, -0.004546920528859744]}\nD: {'rotation matrix': [[0.410301, -0.290948, 0.864293], [-0.911655, -0.15496, 0.38062], [0.02319, -0.944106, -0.328824]], 'translation vector': [3.694328, 2.984669, 1.517045]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.794148, 0.542055, -0.274783], [0.607642, 0.715697, -0.34431], [0.010026, -0.440403, -0.897744]], 'translation vector': [2.029685, 2.312871, 1.199782]}\nB: {'rotation matrix': [[-0.789274, 0.545355, -0.282196], [0.613822, 0.713018, -0.338862], [0.016411, -0.440674, -0.897518]], 'translation vector': [2.029754, 2.312013, 1.198812]}\nC: {'rotation matrix': [[-0.792558, 0.542991, -0.277512], [0.609667, 0.714954, -0.342268], [0.01256, -0.440457, -0.897686]], 'translation vector': [2.028831, 2.312793, 1.199579]}\nD: {'rotation matrix': [[0.9999690183091173, 0.00758939386438217, -0.0016348482581436392], [-0.007592849178659918, 0.9999686021169869, -0.0023322818814674375], [0.0016172805944689142, 0.0023449024761050914, 0.9999961697739403]], 'translation vector': [-0.0009595698380654716, -0.001243015152278204, -0.0008030280503015241]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_44_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_44_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_44_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_44_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.794148, 0.542055, -0.274783], [0.607642, 0.715697, -0.34431], [0.010026, -0.440403, -0.897744]], 'translation vector': [2.029685, 2.312871, 1.199782]}\nB: {'rotation matrix': [[-0.789274, 0.545355, -0.282196], [0.613822, 0.713018, -0.338862], [0.016411, -0.440674, -0.897518]], 'translation vector': [2.029754, 2.312013, 1.198812]}\nC: {'rotation matrix': [[-0.792558, 0.542991, -0.277512], [0.609667, 0.714954, -0.342268], [0.01256, -0.440457, -0.897686]], 'translation vector': [2.028831, 2.312793, 1.199579]}\nD: {'rotation matrix': [[0.9999690183091173, 0.00758939386438217, -0.0016348482581436392], [-0.007592849178659918, 0.9999686021169869, -0.0023322818814674375], [0.0016172805944689142, 0.0023449024761050914, 0.9999961697739403]], 'translation vector': [-0.0009595698380654716, -0.001243015152278204, -0.0008030280503015241]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.595869, 0.488846, -0.637158], [0.802996, -0.351087, 0.481596], [0.011728, -0.798604, -0.601743]], 'translation vector': [3.453696, 1.113575, 1.412785]}\nB: {'rotation matrix': [[0.596116, 0.489381, -0.636516], [0.802814, -0.351792, 0.481386], [0.01166, -0.797966, -0.60259]], 'translation vector': [3.45192, 1.112521, 1.411639]}\nC: {'rotation matrix': [[0.9999972585421386, -0.0019706644639079346, -0.0016038162580140711], [0.0019696489330632795, 0.9999981939869151, -0.0004898637930363391], [0.00160459924260016, 0.0004861135599392089, 0.9999985246041514]], 'translation vector': [0.0004367632436044211, -0.0013470306629629059, 0.001255614697354801]}\nD: {'rotation matrix': [[0.596167, 0.487305, -0.638059], [0.802791, -0.351322, 0.481768], [0.010604, -0.799442, -0.60065]], 'translation vector': [3.452477, 1.114933, 1.412574]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_45_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_45_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_45_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_45_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.595869, 0.488846, -0.637158], [0.802996, -0.351087, 0.481596], [0.011728, -0.798604, -0.601743]], 'translation vector': [3.453696, 1.113575, 1.412785]}\nB: {'rotation matrix': [[0.596116, 0.489381, -0.636516], [0.802814, -0.351792, 0.481386], [0.01166, -0.797966, -0.60259]], 'translation vector': [3.45192, 1.112521, 1.411639]}\nC: {'rotation matrix': [[0.9999972585421386, -0.0019706644639079346, -0.0016038162580140711], [0.0019696489330632795, 0.9999981939869151, -0.0004898637930363391], [0.00160459924260016, 0.0004861135599392089, 0.9999985246041514]], 'translation vector': [0.0004367632436044211, -0.0013470306629629059, 0.001255614697354801]}\nD: {'rotation matrix': [[0.596167, 0.487305, -0.638059], [0.802791, -0.351322, 0.481768], [0.010604, -0.799442, -0.60065]], 'translation vector': [3.452477, 1.114933, 1.412574]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.454351, -0.425578, 0.782591], [-0.890802, 0.223047, -0.395881], [-0.006077, -0.877003, -0.480447]], 'translation vector': [2.248463, 3.862178, 1.517095]}\nB: {'rotation matrix': [[-0.455273, -0.423684, 0.783083], [-0.890312, 0.224946, -0.395908], [-0.008411, -0.877434, -0.479623]], 'translation vector': [2.248543, 3.862554, 1.517483]}\nC: {'rotation matrix': [[0.9999998220095317, 0.00019344203418205028, 0.0003904002954544705], [-0.00019414720576528636, 0.99999726822095, 0.002542005647158053], [-0.00038905761812178927, -0.002542402173661647, 0.9999965389998547]], 'translation vector': [-0.0007329855911066829, -0.0003036787606989222, 0.00038766167203613255]}\nD: {'rotation matrix': [[-0.455182, -0.424042, 0.782942], [-0.890372, 0.223522, -0.39658], [-0.006838, -0.877625, -0.479299]], 'translation vector': [2.247845, 3.863035, 1.516836]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_46_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_46_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_46_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_46_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.454351, -0.425578, 0.782591], [-0.890802, 0.223047, -0.395881], [-0.006077, -0.877003, -0.480447]], 'translation vector': [2.248463, 3.862178, 1.517095]}\nB: {'rotation matrix': [[-0.455273, -0.423684, 0.783083], [-0.890312, 0.224946, -0.395908], [-0.008411, -0.877434, -0.479623]], 'translation vector': [2.248543, 3.862554, 1.517483]}\nC: {'rotation matrix': [[0.9999998220095317, 0.00019344203418205028, 0.0003904002954544705], [-0.00019414720576528636, 0.99999726822095, 0.002542005647158053], [-0.00038905761812178927, -0.002542402173661647, 0.9999965389998547]], 'translation vector': [-0.0007329855911066829, -0.0003036787606989222, 0.00038766167203613255]}\nD: {'rotation matrix': [[-0.455182, -0.424042, 0.782942], [-0.890372, 0.223522, -0.39658], [-0.006838, -0.877625, -0.479299]], 'translation vector': [2.247845, 3.863035, 1.516836]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.503003, -0.389292, 0.771648], [-0.863104, 0.179601, -0.472011], [0.045161, -0.903435, -0.426339]], 'translation vector': [8.991447, 2.792113, 1.935809]}\nB: {'rotation matrix': [[0.9998820105783071, 0.006892269339613531, -0.013715431860878731], [-0.006800370949834618, 0.9999536838119013, 0.00673862053023821], [0.013761408703211613, -0.006644159929287518, 0.9998834142169373]], 'translation vector': [0.0018210588463203337, -0.0009922093443961444, -0.010804184818734797]}\nC: {'rotation matrix': [[-0.507392, -0.392271, 0.767253], [-0.860549, 0.184347, -0.474839], [0.044825, -0.901188, -0.431104]], 'translation vector': [8.996889, 2.787546, 1.938329]}\nD: {'rotation matrix': [[-0.511945, -0.391945, 0.76439], [-0.857826, 0.186392, -0.47895], [0.045246, -0.900909, -0.431643]], 'translation vector': [9.004251, 2.788493, 1.934378]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_47_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_47_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_47_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_47_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.503003, -0.389292, 0.771648], [-0.863104, 0.179601, -0.472011], [0.045161, -0.903435, -0.426339]], 'translation vector': [8.991447, 2.792113, 1.935809]}\nB: {'rotation matrix': [[0.9998820105783071, 0.006892269339613531, -0.013715431860878731], [-0.006800370949834618, 0.9999536838119013, 0.00673862053023821], [0.013761408703211613, -0.006644159929287518, 0.9998834142169373]], 'translation vector': [0.0018210588463203337, -0.0009922093443961444, -0.010804184818734797]}\nC: {'rotation matrix': [[-0.507392, -0.392271, 0.767253], [-0.860549, 0.184347, -0.474839], [0.044825, -0.901188, -0.431104]], 'translation vector': [8.996889, 2.787546, 1.938329]}\nD: {'rotation matrix': [[-0.511945, -0.391945, 0.76439], [-0.857826, 0.186392, -0.47895], [0.045246, -0.900909, -0.431643]], 'translation vector': [9.004251, 2.788493, 1.934378]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.347731, 0.021734, -0.937343], [0.937583, -0.012995, 0.347518], [-0.004627, -0.999679, -0.024896]], 'translation vector': [3.086271, 2.7877, 1.609772]}\nB: {'rotation matrix': [[0.349639, 0.022266, -0.93662], [0.936876, -0.012692, 0.349433], [-0.004108, -0.999671, -0.025298]], 'translation vector': [3.085923, 2.787744, 1.608445]}\nC: {'rotation matrix': [[0.9999983503028658, 0.0012588328917477426, 0.0010046121758577645], [-0.001258491549862339, 0.999999582567488, 0.0007249187267349242], [-0.0010031229358240259, -0.0007259449856603071, 0.9999988669360486]], 'translation vector': [-0.0007969980165536406, 0.0011986171600251172, 0.00041117594518969014]}\nD: {'rotation matrix': [[0.348071, 0.022212, -0.937205], [0.937459, -0.012734, 0.347863], [-0.004208, -0.999672, -0.025256]], 'translation vector': [3.0862, 2.78781, 1.60897]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_48_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_48_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_48_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_48_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.347731, 0.021734, -0.937343], [0.937583, -0.012995, 0.347518], [-0.004627, -0.999679, -0.024896]], 'translation vector': [3.086271, 2.7877, 1.609772]}\nB: {'rotation matrix': [[0.349639, 0.022266, -0.93662], [0.936876, -0.012692, 0.349433], [-0.004108, -0.999671, -0.025298]], 'translation vector': [3.085923, 2.787744, 1.608445]}\nC: {'rotation matrix': [[0.9999983503028658, 0.0012588328917477426, 0.0010046121758577645], [-0.001258491549862339, 0.999999582567488, 0.0007249187267349242], [-0.0010031229358240259, -0.0007259449856603071, 0.9999988669360486]], 'translation vector': [-0.0007969980165536406, 0.0011986171600251172, 0.00041117594518969014]}\nD: {'rotation matrix': [[0.348071, 0.022212, -0.937205], [0.937459, -0.012734, 0.347863], [-0.004208, -0.999672, -0.025256]], 'translation vector': [3.0862, 2.78781, 1.60897]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.671878, -0.274721, 0.687829], [-0.740313, -0.220562, 0.635051], [-0.022753, -0.935885, -0.35157]], 'translation vector': [3.807358, 2.10759, 1.500018]}\nB: {'rotation matrix': [[0.9999995287042943, -0.00016620863165950158, -1.0138120576769867e-05], [0.00016705647891749608, 0.9999995162619548, -0.0013603662243301747], [1.062657980571793e-05, 0.001360311886111166, 0.9999990686101642]], 'translation vector': [-0.004297820144825049, 0.003351067382226791, -0.0005408272137925607]}\nC: {'rotation matrix': [[0.670129, -0.272494, 0.690416], [-0.741875, -0.216557, 0.634606], [-0.023412, -0.93747, -0.347278]], 'translation vector': [3.805446, 2.107442, 1.49456]}\nD: {'rotation matrix': [[0.670813, -0.272809, 0.689627], [-0.741265, -0.217599, 0.634962], [-0.023161, -0.937137, -0.348192]], 'translation vector': [3.805646, 2.107794, 1.49708]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_49_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_49_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_49_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_49_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.671878, -0.274721, 0.687829], [-0.740313, -0.220562, 0.635051], [-0.022753, -0.935885, -0.35157]], 'translation vector': [3.807358, 2.10759, 1.500018]}\nB: {'rotation matrix': [[0.9999995287042943, -0.00016620863165950158, -1.0138120576769867e-05], [0.00016705647891749608, 0.9999995162619548, -0.0013603662243301747], [1.062657980571793e-05, 0.001360311886111166, 0.9999990686101642]], 'translation vector': [-0.004297820144825049, 0.003351067382226791, -0.0005408272137925607]}\nC: {'rotation matrix': [[0.670129, -0.272494, 0.690416], [-0.741875, -0.216557, 0.634606], [-0.023412, -0.93747, -0.347278]], 'translation vector': [3.805446, 2.107442, 1.49456]}\nD: {'rotation matrix': [[0.670813, -0.272809, 0.689627], [-0.741265, -0.217599, 0.634962], [-0.023161, -0.937137, -0.348192]], 'translation vector': [3.805646, 2.107794, 1.49708]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.479262, 0.501356, -0.720382], [0.874939, 0.337636, -0.347107], [0.069203, -0.796646, -0.600472]], 'translation vector': [2.874844, 0.864648, 1.19894]}\nB: {'rotation matrix': [[-0.476726, 0.503154, -0.720812], [0.876238, 0.337562, -0.343889], [0.070289, -0.795543, -0.601806]], 'translation vector': [2.872792, 0.865184, 1.200293]}\nC: {'rotation matrix': [[-0.480917, 0.499307, -0.720702], [0.874259, 0.335212, -0.351147], [0.066258, -0.798953, -0.597732]], 'translation vector': [2.877507, 0.861745, 1.198945]}\nD: {'rotation matrix': [[0.9999458075169825, -0.0037298030767581817, 0.009658870905228063], [0.003830453413616424, 0.9999377550296561, -0.010410573829210937], [-0.009619405173591757, 0.010446297554888797, 0.999899528124321]], 'translation vector': [0.004156407549993579, -0.0031544955662062835, 0.0021419719379069946]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_50_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_50_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_50_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_50_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.479262, 0.501356, -0.720382], [0.874939, 0.337636, -0.347107], [0.069203, -0.796646, -0.600472]], 'translation vector': [2.874844, 0.864648, 1.19894]}\nB: {'rotation matrix': [[-0.476726, 0.503154, -0.720812], [0.876238, 0.337562, -0.343889], [0.070289, -0.795543, -0.601806]], 'translation vector': [2.872792, 0.865184, 1.200293]}\nC: {'rotation matrix': [[-0.480917, 0.499307, -0.720702], [0.874259, 0.335212, -0.351147], [0.066258, -0.798953, -0.597732]], 'translation vector': [2.877507, 0.861745, 1.198945]}\nD: {'rotation matrix': [[0.9999458075169825, -0.0037298030767581817, 0.009658870905228063], [0.003830453413616424, 0.9999377550296561, -0.010410573829210937], [-0.009619405173591757, 0.010446297554888797, 0.999899528124321]], 'translation vector': [0.004156407549993579, -0.0031544955662062835, 0.0021419719379069946]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.408839, -0.490635, 0.769499], [-0.912309, 0.19818, -0.358354], [0.023322, -0.848529, -0.528634]], 'translation vector': [0.933751, 3.504875, 1.495928]}\nB: {'rotation matrix': [[-0.405517, -0.49009, 0.771601], [-0.913834, 0.197477, -0.354839], [0.02153, -0.849008, -0.527941]], 'translation vector': [0.92311, 3.508826, 1.494794]}\nC: {'rotation matrix': [[-0.406934, -0.490269, 0.770741], [-0.913168, 0.197092, -0.356762], [0.023003, -0.848994, -0.527902]], 'translation vector': [0.928096, 3.507151, 1.495325]}\nD: {'rotation matrix': [[0.9999720790780128, 0.0021449080565870337, 0.007189565686557225], [-0.0021449387549180303, 0.9999977939892998, -4.554193667967342e-05], [-0.007190098560018757, 3.036958542106401e-05, 0.9999745575458397]], 'translation vector': [-0.0022708049168844724, -0.01148622047209824, 0.014300413115339472]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_51_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_51_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_51_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_51_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.408839, -0.490635, 0.769499], [-0.912309, 0.19818, -0.358354], [0.023322, -0.848529, -0.528634]], 'translation vector': [0.933751, 3.504875, 1.495928]}\nB: {'rotation matrix': [[-0.405517, -0.49009, 0.771601], [-0.913834, 0.197477, -0.354839], [0.02153, -0.849008, -0.527941]], 'translation vector': [0.92311, 3.508826, 1.494794]}\nC: {'rotation matrix': [[-0.406934, -0.490269, 0.770741], [-0.913168, 0.197092, -0.356762], [0.023003, -0.848994, -0.527902]], 'translation vector': [0.928096, 3.507151, 1.495325]}\nD: {'rotation matrix': [[0.9999720790780128, 0.0021449080565870337, 0.007189565686557225], [-0.0021449387549180303, 0.9999977939892998, -4.554193667967342e-05], [-0.007190098560018757, 3.036958542106401e-05, 0.9999745575458397]], 'translation vector': [-0.0022708049168844724, -0.01148622047209824, 0.014300413115339472]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.812183, -0.277025, 0.513436], [-0.583176, 0.410049, -0.70126], [-0.016267, -0.868975, -0.494589]], 'translation vector': [4.864513, 2.490983, 1.398342]}\nB: {'rotation matrix': [[-0.813534, -0.276094, 0.511796], [-0.581281, 0.411223, -0.702146], [-0.016604, -0.868716, -0.495032]], 'translation vector': [4.865518, 2.490622, 1.399591]}\nC: {'rotation matrix': [[0.999997135129029, 0.001605805084179667, 0.0018057529572375504], [-0.0016158596045621908, 0.9999825699875163, 0.0055795127618636095], [-0.0017979244064656866, -0.005583390464990996, 0.9999826090372864]], 'translation vector': [-0.008521917625347264, -0.003245150959530152, 0.000826648743016356]}\nD: {'rotation matrix': [[-0.814102, -0.273924, 0.512058], [-0.580426, 0.411969, -0.702416], [-0.018543, -0.86905, -0.494377]], 'translation vector': [4.865249, 2.49003, 1.4009]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_52_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_52_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_52_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_52_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.812183, -0.277025, 0.513436], [-0.583176, 0.410049, -0.70126], [-0.016267, -0.868975, -0.494589]], 'translation vector': [4.864513, 2.490983, 1.398342]}\nB: {'rotation matrix': [[-0.813534, -0.276094, 0.511796], [-0.581281, 0.411223, -0.702146], [-0.016604, -0.868716, -0.495032]], 'translation vector': [4.865518, 2.490622, 1.399591]}\nC: {'rotation matrix': [[0.999997135129029, 0.001605805084179667, 0.0018057529572375504], [-0.0016158596045621908, 0.9999825699875163, 0.0055795127618636095], [-0.0017979244064656866, -0.005583390464990996, 0.9999826090372864]], 'translation vector': [-0.008521917625347264, -0.003245150959530152, 0.000826648743016356]}\nD: {'rotation matrix': [[-0.814102, -0.273924, 0.512058], [-0.580426, 0.411969, -0.702416], [-0.018543, -0.86905, -0.494377]], 'translation vector': [4.865249, 2.49003, 1.4009]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.065966, 0.424992, -0.90279], [0.996327, -0.077558, 0.03629], [-0.054596, -0.901868, -0.428547]], 'translation vector': [3.688125, 7.382969, 1.65232]}\nB: {'rotation matrix': [[0.06445, 0.42596, -0.902444], [0.996336, -0.078418, 0.034141], [-0.056225, -0.901337, -0.429453]], 'translation vector': [3.691079, 7.385597, 1.655249]}\nC: {'rotation matrix': [[0.065269, 0.425434, -0.902633], [0.996301, -0.078461, 0.035062], [-0.055905, -0.901582, -0.428981]], 'translation vector': [3.688166, 7.384302, 1.653993]}\nD: {'rotation matrix': [[0.9999823018718307, 0.004888113491700664, -0.003558790677819051], [-0.004889637706536031, 0.9999888180833659, -0.00037767294265026564], [0.0035570250944470354, 0.00039493287161776724, 0.9999941352091379]], 'translation vector': [-0.0029368758378494064, 0.0007877967404965047, -0.003178400438716089]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_53_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_53_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_53_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_53_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.065966, 0.424992, -0.90279], [0.996327, -0.077558, 0.03629], [-0.054596, -0.901868, -0.428547]], 'translation vector': [3.688125, 7.382969, 1.65232]}\nB: {'rotation matrix': [[0.06445, 0.42596, -0.902444], [0.996336, -0.078418, 0.034141], [-0.056225, -0.901337, -0.429453]], 'translation vector': [3.691079, 7.385597, 1.655249]}\nC: {'rotation matrix': [[0.065269, 0.425434, -0.902633], [0.996301, -0.078461, 0.035062], [-0.055905, -0.901582, -0.428981]], 'translation vector': [3.688166, 7.384302, 1.653993]}\nD: {'rotation matrix': [[0.9999823018718307, 0.004888113491700664, -0.003558790677819051], [-0.004889637706536031, 0.9999888180833659, -0.00037767294265026564], [0.0035570250944470354, 0.00039493287161776724, 0.9999941352091379]], 'translation vector': [-0.0029368758378494064, 0.0007877967404965047, -0.003178400438716089]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.664692, -0.099755, 0.740428], [-0.744592, -0.007027, 0.667483], [-0.061382, -0.994987, -0.078948]], 'translation vector': [3.729187, 1.43308, 1.737059]}\nB: {'rotation matrix': [[0.660717, -0.100231, 0.743913], [-0.748068, -0.006018, 0.663595], [-0.062036, -0.994946, -0.078955]], 'translation vector': [3.728547, 1.433503, 1.735599]}\nC: {'rotation matrix': [[0.9999743209792964, 0.004172766279522147, 0.005832278992731541], [-0.004189646737158265, 0.9999872000751636, 0.0029117442423506165], [-0.0058200970417569145, -0.0029366540837721536, 0.9999788200004149]], 'translation vector': [0.0013138555211342773, -0.001864474585307807, 0.0012853107981345424]}\nD: {'rotation matrix': [[0.656146, -0.099388, 0.74806], [-0.75226, -0.007571, 0.658823], [-0.059815, -0.99502, -0.079733]], 'translation vector': [3.729275, 1.433124, 1.734442]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_54_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_54_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_54_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_54_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.664692, -0.099755, 0.740428], [-0.744592, -0.007027, 0.667483], [-0.061382, -0.994987, -0.078948]], 'translation vector': [3.729187, 1.43308, 1.737059]}\nB: {'rotation matrix': [[0.660717, -0.100231, 0.743913], [-0.748068, -0.006018, 0.663595], [-0.062036, -0.994946, -0.078955]], 'translation vector': [3.728547, 1.433503, 1.735599]}\nC: {'rotation matrix': [[0.9999743209792964, 0.004172766279522147, 0.005832278992731541], [-0.004189646737158265, 0.9999872000751636, 0.0029117442423506165], [-0.0058200970417569145, -0.0029366540837721536, 0.9999788200004149]], 'translation vector': [0.0013138555211342773, -0.001864474585307807, 0.0012853107981345424]}\nD: {'rotation matrix': [[0.656146, -0.099388, 0.74806], [-0.75226, -0.007571, 0.658823], [-0.059815, -0.99502, -0.079733]], 'translation vector': [3.729275, 1.433124, 1.734442]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.482382, -0.62548, 0.613257], [-0.875317, -0.317346, 0.364844], [-0.033588, -0.712788, -0.700575]], 'translation vector': [-0.164493, 3.070356, 1.320176]}\nB: {'rotation matrix': [[0.482432, -0.626604, 0.612068], [-0.875266, -0.317577, 0.364766], [-0.034185, -0.711697, -0.701654]], 'translation vector': [-0.163574, 3.070977, 1.321051]}\nC: {'rotation matrix': [[0.9999881393517817, -0.00035757344474597234, -0.005016643883040467], [0.0003166564592981544, 0.999967468385718, -0.008020454596773861], [0.005019965204090123, 0.008019005544894866, 0.9999547455108736]], 'translation vector': [-0.0028720129328290156, -0.004572041684123063, -0.0005047793498673403]}\nD: {'rotation matrix': [[0.482883, -0.62302, 0.615362], [-0.875067, -0.316913, 0.36582], [-0.032897, -0.715131, -0.698216]], 'translation vector': [-0.165581, 3.069752, 1.319227]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_55_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_55_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_55_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_55_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.482382, -0.62548, 0.613257], [-0.875317, -0.317346, 0.364844], [-0.033588, -0.712788, -0.700575]], 'translation vector': [-0.164493, 3.070356, 1.320176]}\nB: {'rotation matrix': [[0.482432, -0.626604, 0.612068], [-0.875266, -0.317577, 0.364766], [-0.034185, -0.711697, -0.701654]], 'translation vector': [-0.163574, 3.070977, 1.321051]}\nC: {'rotation matrix': [[0.9999881393517817, -0.00035757344474597234, -0.005016643883040467], [0.0003166564592981544, 0.999967468385718, -0.008020454596773861], [0.005019965204090123, 0.008019005544894866, 0.9999547455108736]], 'translation vector': [-0.0028720129328290156, -0.004572041684123063, -0.0005047793498673403]}\nD: {'rotation matrix': [[0.482883, -0.62302, 0.615362], [-0.875067, -0.316913, 0.36582], [-0.032897, -0.715131, -0.698216]], 'translation vector': [-0.165581, 3.069752, 1.319227]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.254741, -0.436809, 0.862731], [-0.966661, 0.138975, -0.215064], [-0.025957, -0.888754, -0.457649]], 'translation vector': [1.470391, 3.880589, 1.437084]}\nB: {'rotation matrix': [[-0.255547, -0.436424, 0.862688], [-0.966448, 0.139272, -0.215827], [-0.025956, -0.888897, -0.457372]], 'translation vector': [1.471235, 3.880077, 1.436326]}\nC: {'rotation matrix': [[-0.25517, -0.435877, 0.863076], [-0.966551, 0.138838, -0.215646], [-0.025832, -0.889233, -0.456724]], 'translation vector': [1.470861, 3.880012, 1.43644]}\nD: {'rotation matrix': [[0.9999966837298163, 0.0008619563673921012, 0.0026549103476475175], [-0.0008486493068450321, 0.999987344007734, -0.004872285830769469], [-0.0026592683333448467, 0.0048702326102797195, 0.9999843899240968]], 'translation vector': [-0.0017811924174484517, 0.006401158448355426, 0.0014093231794466143]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_56_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_56_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_56_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_56_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.254741, -0.436809, 0.862731], [-0.966661, 0.138975, -0.215064], [-0.025957, -0.888754, -0.457649]], 'translation vector': [1.470391, 3.880589, 1.437084]}\nB: {'rotation matrix': [[-0.255547, -0.436424, 0.862688], [-0.966448, 0.139272, -0.215827], [-0.025956, -0.888897, -0.457372]], 'translation vector': [1.471235, 3.880077, 1.436326]}\nC: {'rotation matrix': [[-0.25517, -0.435877, 0.863076], [-0.966551, 0.138838, -0.215646], [-0.025832, -0.889233, -0.456724]], 'translation vector': [1.470861, 3.880012, 1.43644]}\nD: {'rotation matrix': [[0.9999966837298163, 0.0008619563673921012, 0.0026549103476475175], [-0.0008486493068450321, 0.999987344007734, -0.004872285830769469], [-0.0026592683333448467, 0.0048702326102797195, 0.9999843899240968]], 'translation vector': [-0.0017811924174484517, 0.006401158448355426, 0.0014093231794466143]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.877903, 0.287785, -0.382709], [0.47693, 0.596815, -0.645252], [0.042713, -0.748994, -0.661199]], 'translation vector': [3.16702, 3.626466, 1.453681]}\nB: {'rotation matrix': [[0.9999791193908465, -0.001916910413648059, -0.0061771002364880544], [0.001968865784627184, 0.9999613398790298, 0.008534807689413037], [0.006161535037181589, -0.008547114556570383, 0.9999441766313318]], 'translation vector': [0.0007167215000418725, 0.004111635033621663, 0.00058908656396639]}\nC: {'rotation matrix': [[-0.874912, 0.294682, -0.384306], [0.482557, 0.597398, -0.640512], [0.040836, -0.745841, -0.664871]], 'translation vector': [3.163697, 3.627347, 1.450583]}\nD: {'rotation matrix': [[-0.871313, 0.303569, -0.385564], [0.489353, 0.596266, -0.636396], [0.036709, -0.743177, -0.668087]], 'translation vector': [3.163155, 3.630899, 1.446354]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_57_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_57_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_57_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_57_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.877903, 0.287785, -0.382709], [0.47693, 0.596815, -0.645252], [0.042713, -0.748994, -0.661199]], 'translation vector': [3.16702, 3.626466, 1.453681]}\nB: {'rotation matrix': [[0.9999791193908465, -0.001916910413648059, -0.0061771002364880544], [0.001968865784627184, 0.9999613398790298, 0.008534807689413037], [0.006161535037181589, -0.008547114556570383, 0.9999441766313318]], 'translation vector': [0.0007167215000418725, 0.004111635033621663, 0.00058908656396639]}\nC: {'rotation matrix': [[-0.874912, 0.294682, -0.384306], [0.482557, 0.597398, -0.640512], [0.040836, -0.745841, -0.664871]], 'translation vector': [3.163697, 3.627347, 1.450583]}\nD: {'rotation matrix': [[-0.871313, 0.303569, -0.385564], [0.489353, 0.596266, -0.636396], [0.036709, -0.743177, -0.668087]], 'translation vector': [3.163155, 3.630899, 1.446354]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.078798, -0.401808, 0.912327], [-0.996147, 0.067086, -0.056491], [-0.038506, -0.913263, -0.405546]], 'translation vector': [2.214502, 1.810217, 1.39288]}\nB: {'rotation matrix': [[-0.078108, -0.404311, 0.91128], [-0.996161, 0.067892, -0.055261], [-0.039526, -0.912098, -0.408062]], 'translation vector': [2.215161, 1.809587, 1.395775]}\nC: {'rotation matrix': [[0.9999986851865202, 0.0008401734129283168, -0.0015770679658950186], [-0.0008378992163381685, 0.9999975925523196, 0.0021246735415499604], [0.0015786984008670537, -0.002123956111471475, 0.9999965494818978]], 'translation vector': [0.0020818624690659426, 0.003854659633225399, 0.00023093351122471795]}\nD: {'rotation matrix': [[-0.078693, -0.405741, 0.910594], [-0.996048, 0.069734, -0.055005], [-0.041182, -0.911324, -0.409625]], 'translation vector': [2.217248, 1.812374, 1.391779]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_58_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_58_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_58_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_58_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.078798, -0.401808, 0.912327], [-0.996147, 0.067086, -0.056491], [-0.038506, -0.913263, -0.405546]], 'translation vector': [2.214502, 1.810217, 1.39288]}\nB: {'rotation matrix': [[-0.078108, -0.404311, 0.91128], [-0.996161, 0.067892, -0.055261], [-0.039526, -0.912098, -0.408062]], 'translation vector': [2.215161, 1.809587, 1.395775]}\nC: {'rotation matrix': [[0.9999986851865202, 0.0008401734129283168, -0.0015770679658950186], [-0.0008378992163381685, 0.9999975925523196, 0.0021246735415499604], [0.0015786984008670537, -0.002123956111471475, 0.9999965494818978]], 'translation vector': [0.0020818624690659426, 0.003854659633225399, 0.00023093351122471795]}\nD: {'rotation matrix': [[-0.078693, -0.405741, 0.910594], [-0.996048, 0.069734, -0.055005], [-0.041182, -0.911324, -0.409625]], 'translation vector': [2.217248, 1.812374, 1.391779]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.529336, -0.227144, 0.817441], [-0.847759, 0.103788, -0.520128], [0.033303, -0.968315, -0.247502]], 'translation vector': [5.896173, 2.790533, 1.549775]}\nB: {'rotation matrix': [[0.9999873040333512, 0.004505537820277509, -0.002397070922509149], [-0.004504137793554688, 0.9999890779279523, 0.0010154010037770195], [0.0024022565915601136, -0.0010036320370672355, 0.999996209316038]], 'translation vector': [-0.001560160498486951, -0.0020049110640587564, -0.0017324624821037915]}\nC: {'rotation matrix': [[-0.531472, -0.2283, 0.815731], [-0.846401, 0.104685, -0.522156], [0.033813, -0.967947, -0.24887]], 'translation vector': [5.895259, 2.788617, 1.559572]}\nD: {'rotation matrix': [[-0.53062, -0.226646, 0.816746], [-0.846944, 0.10358, -0.521495], [0.033596, -0.968454, -0.246918]], 'translation vector': [5.896636, 2.790495, 1.551807]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_59_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_59_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_59_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_59_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.529336, -0.227144, 0.817441], [-0.847759, 0.103788, -0.520128], [0.033303, -0.968315, -0.247502]], 'translation vector': [5.896173, 2.790533, 1.549775]}\nB: {'rotation matrix': [[0.9999873040333512, 0.004505537820277509, -0.002397070922509149], [-0.004504137793554688, 0.9999890779279523, 0.0010154010037770195], [0.0024022565915601136, -0.0010036320370672355, 0.999996209316038]], 'translation vector': [-0.001560160498486951, -0.0020049110640587564, -0.0017324624821037915]}\nC: {'rotation matrix': [[-0.531472, -0.2283, 0.815731], [-0.846401, 0.104685, -0.522156], [0.033813, -0.967947, -0.24887]], 'translation vector': [5.895259, 2.788617, 1.559572]}\nD: {'rotation matrix': [[-0.53062, -0.226646, 0.816746], [-0.846944, 0.10358, -0.521495], [0.033596, -0.968454, -0.246918]], 'translation vector': [5.896636, 2.790495, 1.551807]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999735234224584, -0.0071926018984539266, -0.00013127408012229648], [0.007193266878786128, 0.999950750728307, 0.006784512971560901], [8.152710211630049e-05, -0.006784805304509037, 0.9999770195971557]], 'translation vector': [-0.005319134943293502, -0.0035091612770564717, 0.0004269635666275251]}\nB: {'rotation matrix': [[-0.879528, -0.314344, 0.357236], [-0.47435, 0.638683, -0.605869], [-0.03771, -0.702334, -0.710848]], 'translation vector': [3.140295, 1.690182, 1.269802]}\nC: {'rotation matrix': [[-0.879673, -0.316123, 0.355304], [-0.474189, 0.640089, -0.604509], [-0.036327, -0.700252, -0.712971]], 'translation vector': [3.138628, 1.688987, 1.26968]}\nD: {'rotation matrix': [[-0.879671, -0.317176, 0.354371], [-0.474219, 0.641391, -0.603103], [-0.036001, -0.698582, -0.714624]], 'translation vector': [3.137942, 1.687445, 1.270163]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_60_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_60_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_60_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_60_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999735234224584, -0.0071926018984539266, -0.00013127408012229648], [0.007193266878786128, 0.999950750728307, 0.006784512971560901], [8.152710211630049e-05, -0.006784805304509037, 0.9999770195971557]], 'translation vector': [-0.005319134943293502, -0.0035091612770564717, 0.0004269635666275251]}\nB: {'rotation matrix': [[-0.879528, -0.314344, 0.357236], [-0.47435, 0.638683, -0.605869], [-0.03771, -0.702334, -0.710848]], 'translation vector': [3.140295, 1.690182, 1.269802]}\nC: {'rotation matrix': [[-0.879673, -0.316123, 0.355304], [-0.474189, 0.640089, -0.604509], [-0.036327, -0.700252, -0.712971]], 'translation vector': [3.138628, 1.688987, 1.26968]}\nD: {'rotation matrix': [[-0.879671, -0.317176, 0.354371], [-0.474219, 0.641391, -0.603103], [-0.036001, -0.698582, -0.714624]], 'translation vector': [3.137942, 1.687445, 1.270163]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.303413, -0.396105, 0.866627], [-0.952854, 0.129076, -0.274605], [-0.003088, -0.909088, -0.416593]], 'translation vector': [3.699021, 3.5579, 1.347225]}\nB: {'rotation matrix': [[-0.298621, -0.390383, 0.870877], [-0.954343, 0.1293, -0.26928], [-0.007482, -0.911527, -0.411171]], 'translation vector': [3.695972, 3.555829, 1.344301]}\nC: {'rotation matrix': [[-0.295385, -0.381895, 0.875731], [-0.955321, 0.128105, -0.266366], [-0.010462, -0.915284, -0.402672]], 'translation vector': [3.694636, 3.554343, 1.343555]}\nD: {'rotation matrix': [[0.9999470991216314, -8.645859163103856e-05, -0.010261215579303299], [0.00018576960757566105, 0.999954044961018, 0.009631176353467179], [0.010258362047762553, -0.00963308504359663, 0.9999007352405366]], 'translation vector': [0.002023687193802637, -0.005328769253949428, -0.0010872499872041086]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_61_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_61_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_61_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_61_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.303413, -0.396105, 0.866627], [-0.952854, 0.129076, -0.274605], [-0.003088, -0.909088, -0.416593]], 'translation vector': [3.699021, 3.5579, 1.347225]}\nB: {'rotation matrix': [[-0.298621, -0.390383, 0.870877], [-0.954343, 0.1293, -0.26928], [-0.007482, -0.911527, -0.411171]], 'translation vector': [3.695972, 3.555829, 1.344301]}\nC: {'rotation matrix': [[-0.295385, -0.381895, 0.875731], [-0.955321, 0.128105, -0.266366], [-0.010462, -0.915284, -0.402672]], 'translation vector': [3.694636, 3.554343, 1.343555]}\nD: {'rotation matrix': [[0.9999470991216314, -8.645859163103856e-05, -0.010261215579303299], [0.00018576960757566105, 0.999954044961018, 0.009631176353467179], [0.010258362047762553, -0.00963308504359663, 0.9999007352405366]], 'translation vector': [0.002023687193802637, -0.005328769253949428, -0.0010872499872041086]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.996466, -0.001244, 0.083992], [-0.083908, 0.032374, 0.995948], [-0.003958, -0.999475, 0.032156]], 'translation vector': [2.320184, 5.772667, 1.343957]}\nB: {'rotation matrix': [[0.994982, 0.000179, 0.100051], [-0.099963, 0.043922, 0.994021], [-0.004216, -0.999035, 0.043719]], 'translation vector': [2.304385, 5.780403, 1.335008]}\nC: {'rotation matrix': [[0.995982, -5.3e-05, 0.089553], [-0.089485, 0.038471, 0.995245], [-0.003498, -0.99926, 0.038311]], 'translation vector': [2.323582, 5.777781, 1.339158]}\nD: {'rotation matrix': [[0.9997533523434441, 0.006129226982668424, -0.021333118212536917], [-0.0059433732378316425, 0.9999427902508286, 0.008815866423587717], [0.02138545815854184, -0.008687653795007199, 0.9997333060483455]], 'translation vector': [0.03726599986839263, -0.00376568964599322, 0.0024709716040858254]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_62_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_62_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_62_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_62_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.996466, -0.001244, 0.083992], [-0.083908, 0.032374, 0.995948], [-0.003958, -0.999475, 0.032156]], 'translation vector': [2.320184, 5.772667, 1.343957]}\nB: {'rotation matrix': [[0.994982, 0.000179, 0.100051], [-0.099963, 0.043922, 0.994021], [-0.004216, -0.999035, 0.043719]], 'translation vector': [2.304385, 5.780403, 1.335008]}\nC: {'rotation matrix': [[0.995982, -5.3e-05, 0.089553], [-0.089485, 0.038471, 0.995245], [-0.003498, -0.99926, 0.038311]], 'translation vector': [2.323582, 5.777781, 1.339158]}\nD: {'rotation matrix': [[0.9997533523434441, 0.006129226982668424, -0.021333118212536917], [-0.0059433732378316425, 0.9999427902508286, 0.008815866423587717], [0.02138545815854184, -0.008687653795007199, 0.9997333060483455]], 'translation vector': [0.03726599986839263, -0.00376568964599322, 0.0024709716040858254]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.980568, 0.060238, -0.186705], [0.195333, -0.388226, 0.900625], [-0.018232, -0.919594, -0.392448]], 'translation vector': [0.950732, 0.877848, 1.428266]}\nB: {'rotation matrix': [[0.980128, 0.059665, -0.18918], [0.197203, -0.396203, 0.896735], [-0.02145, -0.916222, -0.400096]], 'translation vector': [0.955184, 0.877183, 1.426427]}\nC: {'rotation matrix': [[0.979822, 0.061197, -0.190271], [0.198756, -0.398709, 0.89528], [-0.021074, -0.915034, -0.402827]], 'translation vector': [0.958185, 0.874355, 1.42036]}\nD: {'rotation matrix': [[0.9999275128023173, 0.008592189796214917, -0.008452948749791484], [-0.008364555101980847, 0.9996139276735185, 0.026478714279731284], [0.008677131864842291, -0.02640733905967608, 0.9996135651618278]], 'translation vector': [0.01623466192676637, 0.01524648577924892, 0.005088344597766196]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_63_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_63_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_63_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_63_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.980568, 0.060238, -0.186705], [0.195333, -0.388226, 0.900625], [-0.018232, -0.919594, -0.392448]], 'translation vector': [0.950732, 0.877848, 1.428266]}\nB: {'rotation matrix': [[0.980128, 0.059665, -0.18918], [0.197203, -0.396203, 0.896735], [-0.02145, -0.916222, -0.400096]], 'translation vector': [0.955184, 0.877183, 1.426427]}\nC: {'rotation matrix': [[0.979822, 0.061197, -0.190271], [0.198756, -0.398709, 0.89528], [-0.021074, -0.915034, -0.402827]], 'translation vector': [0.958185, 0.874355, 1.42036]}\nD: {'rotation matrix': [[0.9999275128023173, 0.008592189796214917, -0.008452948749791484], [-0.008364555101980847, 0.9996139276735185, 0.026478714279731284], [0.008677131864842291, -0.02640733905967608, 0.9996135651618278]], 'translation vector': [0.01623466192676637, 0.01524648577924892, 0.005088344597766196]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.986729, -0.120978, 0.108304], [-0.140205, -0.298357, 0.944101], [-0.081902, -0.946757, -0.311359]], 'translation vector': [1.126551, 1.554919, 1.507245]}\nB: {'rotation matrix': [[0.9999934208085578, -0.0036450224249741864, 0.00012972614797144], [0.003645024213464494, 0.9999784140945303, 0.005329513561381964], [-0.0001495669882096765, -0.005329922173518521, 0.999986531390115]], 'translation vector': [0.0031820360164642736, 0.0011599203443171113, -0.0008228633488331916]}\nC: {'rotation matrix': [[0.986279, -0.125902, 0.106787], [-0.140227, -0.297512, 0.944364], [-0.087128, -0.94638, -0.311084]], 'translation vector': [1.129178, 1.552708, 1.506911]}\nD: {'rotation matrix': [[0.987067, -0.117318, 0.109254], [-0.140068, -0.29963, 0.943717], [-0.077979, -0.946815, -0.312188]], 'translation vector': [1.12401, 1.557217, 1.508026]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_64_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_64_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_64_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_64_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.986729, -0.120978, 0.108304], [-0.140205, -0.298357, 0.944101], [-0.081902, -0.946757, -0.311359]], 'translation vector': [1.126551, 1.554919, 1.507245]}\nB: {'rotation matrix': [[0.9999934208085578, -0.0036450224249741864, 0.00012972614797144], [0.003645024213464494, 0.9999784140945303, 0.005329513561381964], [-0.0001495669882096765, -0.005329922173518521, 0.999986531390115]], 'translation vector': [0.0031820360164642736, 0.0011599203443171113, -0.0008228633488331916]}\nC: {'rotation matrix': [[0.986279, -0.125902, 0.106787], [-0.140227, -0.297512, 0.944364], [-0.087128, -0.94638, -0.311084]], 'translation vector': [1.129178, 1.552708, 1.506911]}\nD: {'rotation matrix': [[0.987067, -0.117318, 0.109254], [-0.140068, -0.29963, 0.943717], [-0.077979, -0.946815, -0.312188]], 'translation vector': [1.12401, 1.557217, 1.508026]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.34785, 0.12218, -0.929555], [0.936582, -0.000241, 0.350448], [0.042594, -0.992508, -0.114515]], 'translation vector': [2.709976, 2.082475, 1.464411]}\nB: {'rotation matrix': [[0.348346, 0.120067, -0.929645], [0.936396, 0.00053, 0.350944], [0.042629, -0.992766, -0.112245]], 'translation vector': [2.711116, 2.081261, 1.464473]}\nC: {'rotation matrix': [[0.9999996813993267, 0.0006538118368534332, -8.345927351154747e-06], [-0.0006528854877680812, 0.9999955547316733, 0.002915205326606667], [1.0134396361542957e-05, -0.002915969719233099, 0.9999961918791215]], 'translation vector': [-0.0015843322088442413, -0.00023090688010451998, -0.00020610665531961558]}\nD: {'rotation matrix': [[0.34832, 0.118845, -0.929811], [0.936428, 0.00049, 0.350861], [0.042154, -0.992913, -0.111119]], 'translation vector': [2.712512, 2.080143, 1.464219]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_65_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_65_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_65_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_65_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.34785, 0.12218, -0.929555], [0.936582, -0.000241, 0.350448], [0.042594, -0.992508, -0.114515]], 'translation vector': [2.709976, 2.082475, 1.464411]}\nB: {'rotation matrix': [[0.348346, 0.120067, -0.929645], [0.936396, 0.00053, 0.350944], [0.042629, -0.992766, -0.112245]], 'translation vector': [2.711116, 2.081261, 1.464473]}\nC: {'rotation matrix': [[0.9999996813993267, 0.0006538118368534332, -8.345927351154747e-06], [-0.0006528854877680812, 0.9999955547316733, 0.002915205326606667], [1.0134396361542957e-05, -0.002915969719233099, 0.9999961918791215]], 'translation vector': [-0.0015843322088442413, -0.00023090688010451998, -0.00020610665531961558]}\nD: {'rotation matrix': [[0.34832, 0.118845, -0.929811], [0.936428, 0.00049, 0.350861], [0.042154, -0.992913, -0.111119]], 'translation vector': [2.712512, 2.080143, 1.464219]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.436759, -0.378371, 0.816135], [-0.888864, -0.041911, 0.45625], [-0.138426, -0.924705, -0.354625]], 'translation vector': [2.634246, 6.766675, 1.418575]}\nB: {'rotation matrix': [[0.9999585207206515, -0.003693386756648477, 0.008341273999683681], [0.0038081841800440604, 0.9998961013275416, -0.013845142600948103], [-0.008289566528701709, 0.013875695158089622, 0.9998694901286989]], 'translation vector': [0.0023225809960010224, 0.0034699322670346255, -0.0016854173948939177]}\nC: {'rotation matrix': [[0.435508, -0.378095, 0.816931], [-0.889287, -0.039919, 0.455605], [-0.139651, -0.924906, -0.35362]], 'translation vector': [2.637863, 6.764602, 1.421504]}\nD: {'rotation matrix': [[0.436668, -0.378575, 0.81609], [-0.888812, -0.041337, 0.456404], [-0.139048, -0.924647, -0.354533]], 'translation vector': [2.636727, 6.764818, 1.421436]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_66_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_66_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_66_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_66_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.436759, -0.378371, 0.816135], [-0.888864, -0.041911, 0.45625], [-0.138426, -0.924705, -0.354625]], 'translation vector': [2.634246, 6.766675, 1.418575]}\nB: {'rotation matrix': [[0.9999585207206515, -0.003693386756648477, 0.008341273999683681], [0.0038081841800440604, 0.9998961013275416, -0.013845142600948103], [-0.008289566528701709, 0.013875695158089622, 0.9998694901286989]], 'translation vector': [0.0023225809960010224, 0.0034699322670346255, -0.0016854173948939177]}\nC: {'rotation matrix': [[0.435508, -0.378095, 0.816931], [-0.889287, -0.039919, 0.455605], [-0.139651, -0.924906, -0.35362]], 'translation vector': [2.637863, 6.764602, 1.421504]}\nD: {'rotation matrix': [[0.436668, -0.378575, 0.81609], [-0.888812, -0.041337, 0.456404], [-0.139048, -0.924647, -0.354533]], 'translation vector': [2.636727, 6.764818, 1.421436]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.994032, -0.08462, 0.068848], [-0.109061, -0.785368, 0.609346], [0.002509, -0.613218, -0.78991]], 'translation vector': [1.310442, 0.50567, 1.185464]}\nB: {'rotation matrix': [[0.994117, -0.083714, 0.068724], [-0.108266, -0.785982, 0.608696], [0.003059, -0.612556, -0.790421]], 'translation vector': [1.309119, 0.507232, 1.184932]}\nC: {'rotation matrix': [[0.9999858152282176, 0.005111825032549412, 0.0011655701624676482], [-0.005114663160965653, 0.9999842406155692, 0.0025048411154926643], [-0.0011536230586058512, -0.002510397377259177, 0.9999958649343827]], 'translation vector': [-0.003249111441538055, -0.00014047167946484862, 0.0018748641056286486]}\nD: {'rotation matrix': [[0.99397, -0.085854, 0.068209], [-0.109644, -0.78528, 0.609356], [0.001247, -0.61316, -0.789958]], 'translation vector': [1.312051, 0.504544, 1.186353]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_67_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_67_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_67_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_67_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.994032, -0.08462, 0.068848], [-0.109061, -0.785368, 0.609346], [0.002509, -0.613218, -0.78991]], 'translation vector': [1.310442, 0.50567, 1.185464]}\nB: {'rotation matrix': [[0.994117, -0.083714, 0.068724], [-0.108266, -0.785982, 0.608696], [0.003059, -0.612556, -0.790421]], 'translation vector': [1.309119, 0.507232, 1.184932]}\nC: {'rotation matrix': [[0.9999858152282176, 0.005111825032549412, 0.0011655701624676482], [-0.005114663160965653, 0.9999842406155692, 0.0025048411154926643], [-0.0011536230586058512, -0.002510397377259177, 0.9999958649343827]], 'translation vector': [-0.003249111441538055, -0.00014047167946484862, 0.0018748641056286486]}\nD: {'rotation matrix': [[0.99397, -0.085854, 0.068209], [-0.109644, -0.78528, 0.609356], [0.001247, -0.61316, -0.789958]], 'translation vector': [1.312051, 0.504544, 1.186353]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.184838, -0.635323, 0.7498], [-0.98276, 0.116273, -0.143746], [0.004144, -0.763444, -0.645861]], 'translation vector': [1.003433, 1.175637, 1.437383]}\nB: {'rotation matrix': [[-0.184201, -0.636583, 0.748887], [-0.982879, 0.11585, -0.143279], [0.00445, -0.762457, -0.647023]], 'translation vector': [1.004527, 1.174467, 1.438164]}\nC: {'rotation matrix': [[-0.184847, -0.63596, 0.749258], [-0.982754, 0.115597, -0.144335], [0.005179, -0.763016, -0.646359]], 'translation vector': [1.003287, 1.175642, 1.437097]}\nD: {'rotation matrix': [[0.9999986055688241, -0.001502869212153915, -0.0010557523049182509], [0.0014994906185130158, 0.9999931829288878, -0.003258507979167455], [0.0010610991854197703, 0.003257203501798957, 0.999994335142242]], 'translation vector': [0.0018601875903911935, -0.0006944560630759433, -0.0003289584369169929]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_68_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_68_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_68_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_68_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.184838, -0.635323, 0.7498], [-0.98276, 0.116273, -0.143746], [0.004144, -0.763444, -0.645861]], 'translation vector': [1.003433, 1.175637, 1.437383]}\nB: {'rotation matrix': [[-0.184201, -0.636583, 0.748887], [-0.982879, 0.11585, -0.143279], [0.00445, -0.762457, -0.647023]], 'translation vector': [1.004527, 1.174467, 1.438164]}\nC: {'rotation matrix': [[-0.184847, -0.63596, 0.749258], [-0.982754, 0.115597, -0.144335], [0.005179, -0.763016, -0.646359]], 'translation vector': [1.003287, 1.175642, 1.437097]}\nD: {'rotation matrix': [[0.9999986055688241, -0.001502869212153915, -0.0010557523049182509], [0.0014994906185130158, 0.9999931829288878, -0.003258507979167455], [0.0010610991854197703, 0.003257203501798957, 0.999994335142242]], 'translation vector': [0.0018601875903911935, -0.0006944560630759433, -0.0003289584369169929]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.200306, -0.502555, 0.841021], [-0.979587, 0.117581, -0.163047], [-0.016948, -0.856512, -0.515849]], 'translation vector': [2.912164, 4.287547, 1.28791]}\nB: {'rotation matrix': [[0.9999873120379679, 0.002880995332778331, 0.004067114056895998], [-0.002882835524779029, 0.9999951519449766, 0.0005437699978073844], [-0.004064760122873662, -0.0005563594395375273, 0.9999918873961958]], 'translation vector': [-0.0006376699678316555, 0.00863085045062073, -0.004612247460962893]}\nC: {'rotation matrix': [[-0.196493, -0.497947, 0.844654], [-0.980345, 0.115377, -0.160041], [-0.017762, -0.859498, -0.51083]], 'translation vector': [2.914041, 4.284364, 1.288676]}\nD: {'rotation matrix': [[-0.191542, -0.494391, 0.847873], [-0.981313, 0.112624, -0.156017], [-0.018357, -0.861913, -0.506724]], 'translation vector': [2.915548, 4.280207, 1.289523]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_69_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_69_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_69_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_69_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.200306, -0.502555, 0.841021], [-0.979587, 0.117581, -0.163047], [-0.016948, -0.856512, -0.515849]], 'translation vector': [2.912164, 4.287547, 1.28791]}\nB: {'rotation matrix': [[0.9999873120379679, 0.002880995332778331, 0.004067114056895998], [-0.002882835524779029, 0.9999951519449766, 0.0005437699978073844], [-0.004064760122873662, -0.0005563594395375273, 0.9999918873961958]], 'translation vector': [-0.0006376699678316555, 0.00863085045062073, -0.004612247460962893]}\nC: {'rotation matrix': [[-0.196493, -0.497947, 0.844654], [-0.980345, 0.115377, -0.160041], [-0.017762, -0.859498, -0.51083]], 'translation vector': [2.914041, 4.284364, 1.288676]}\nD: {'rotation matrix': [[-0.191542, -0.494391, 0.847873], [-0.981313, 0.112624, -0.156017], [-0.018357, -0.861913, -0.506724]], 'translation vector': [2.915548, 4.280207, 1.289523]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.734788, 0.391108, -0.554185], [0.678289, 0.419895, -0.603003], [-0.00314, -0.818977, -0.573818]], 'translation vector': [5.172049, 2.206823, 1.423276]}\nB: {'rotation matrix': [[-0.735622, 0.390311, -0.55364], [0.677385, 0.420178, -0.603821], [-0.003051, -0.819212, -0.573483]], 'translation vector': [5.170603, 2.207022, 1.424387]}\nC: {'rotation matrix': [[0.9999900939462747, -0.004290505816425898, 0.0009195812709430778], [0.0042999758462496885, 0.9999235506202053, -0.011514550430676607], [-0.0008694094505867219, 0.011517701317526751, 0.9999331376988827]], 'translation vector': [-0.00082889643265327, -0.0036811171481734295, -0.003335935402839496]}\nD: {'rotation matrix': [[-0.734029, 0.39088, -0.55535], [0.679109, 0.418321, -0.603174], [-0.003454, -0.81989, -0.57251]], 'translation vector': [5.174113, 2.207384, 1.421993]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_70_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_70_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_70_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_70_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.734788, 0.391108, -0.554185], [0.678289, 0.419895, -0.603003], [-0.00314, -0.818977, -0.573818]], 'translation vector': [5.172049, 2.206823, 1.423276]}\nB: {'rotation matrix': [[-0.735622, 0.390311, -0.55364], [0.677385, 0.420178, -0.603821], [-0.003051, -0.819212, -0.573483]], 'translation vector': [5.170603, 2.207022, 1.424387]}\nC: {'rotation matrix': [[0.9999900939462747, -0.004290505816425898, 0.0009195812709430778], [0.0042999758462496885, 0.9999235506202053, -0.011514550430676607], [-0.0008694094505867219, 0.011517701317526751, 0.9999331376988827]], 'translation vector': [-0.00082889643265327, -0.0036811171481734295, -0.003335935402839496]}\nD: {'rotation matrix': [[-0.734029, 0.39088, -0.55535], [0.679109, 0.418321, -0.603174], [-0.003454, -0.81989, -0.57251]], 'translation vector': [5.174113, 2.207384, 1.421993]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.231441, -0.548452, 0.803514], [-0.97266, -0.114172, 0.202231], [-0.019175, -0.828351, -0.559882]], 'translation vector': [1.70644, 2.067417, 1.36452]}\nB: {'rotation matrix': [[0.226329, -0.547002, 0.805955], [-0.973947, -0.114973, 0.195472], [-0.01426, -0.829199, -0.558772]], 'translation vector': [1.704179, 2.073727, 1.363978]}\nC: {'rotation matrix': [[0.9999250411381765, -0.0006651889723176079, -0.012145965376701085], [0.0006720606381267904, 0.999998823757648, 0.0005907315128157197], [0.012145773622422931, -0.0005986694012902582, 0.9999254709423802]], 'translation vector': [0.004506212132421972, 0.005377300872088764, -0.0022216956686449407]}\nD: {'rotation matrix': [[0.220852, -0.547607, 0.807063], [-0.975257, -0.115603, 0.188439], [-0.009892, -0.828711, -0.559589]], 'translation vector': [1.70298, 2.078271, 1.364741]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_71_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_71_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_71_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_71_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.231441, -0.548452, 0.803514], [-0.97266, -0.114172, 0.202231], [-0.019175, -0.828351, -0.559882]], 'translation vector': [1.70644, 2.067417, 1.36452]}\nB: {'rotation matrix': [[0.226329, -0.547002, 0.805955], [-0.973947, -0.114973, 0.195472], [-0.01426, -0.829199, -0.558772]], 'translation vector': [1.704179, 2.073727, 1.363978]}\nC: {'rotation matrix': [[0.9999250411381765, -0.0006651889723176079, -0.012145965376701085], [0.0006720606381267904, 0.999998823757648, 0.0005907315128157197], [0.012145773622422931, -0.0005986694012902582, 0.9999254709423802]], 'translation vector': [0.004506212132421972, 0.005377300872088764, -0.0022216956686449407]}\nD: {'rotation matrix': [[0.220852, -0.547607, 0.807063], [-0.975257, -0.115603, 0.188439], [-0.009892, -0.828711, -0.559589]], 'translation vector': [1.70298, 2.078271, 1.364741]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.122634, -0.436101, 0.891503], [-0.989963, 0.117329, -0.078783], [-0.070242, -0.892216, -0.446113]], 'translation vector': [3.397121, 4.680246, 1.399477]}\nB: {'rotation matrix': [[-0.131936, -0.437064, 0.889701], [-0.988639, 0.123231, -0.08607], [-0.072021, -0.890949, -0.448357]], 'translation vector': [3.380324, 4.680538, 1.400463]}\nC: {'rotation matrix': [[0.9999977526314023, 0.0018483257426729351, -0.00041760047623725873], [-0.0018481932934636253, 0.9999980766573896, 0.00088155464161366], [0.00041944957876658323, -0.0008809692307902862, 0.9999991600629605]], 'translation vector': [0.0013914092466897898, -0.0023350058272084695, 0.005488229626908758]}\nD: {'rotation matrix': [[-0.127448, -0.436966, 0.890403], [-0.989339, 0.119783, -0.082825], [-0.070464, -0.891467, -0.447574]], 'translation vector': [3.388002, 4.681844, 1.400749]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_72_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_72_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_72_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_72_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.122634, -0.436101, 0.891503], [-0.989963, 0.117329, -0.078783], [-0.070242, -0.892216, -0.446113]], 'translation vector': [3.397121, 4.680246, 1.399477]}\nB: {'rotation matrix': [[-0.131936, -0.437064, 0.889701], [-0.988639, 0.123231, -0.08607], [-0.072021, -0.890949, -0.448357]], 'translation vector': [3.380324, 4.680538, 1.400463]}\nC: {'rotation matrix': [[0.9999977526314023, 0.0018483257426729351, -0.00041760047623725873], [-0.0018481932934636253, 0.9999980766573896, 0.00088155464161366], [0.00041944957876658323, -0.0008809692307902862, 0.9999991600629605]], 'translation vector': [0.0013914092466897898, -0.0023350058272084695, 0.005488229626908758]}\nD: {'rotation matrix': [[-0.127448, -0.436966, 0.890403], [-0.989339, 0.119783, -0.082825], [-0.070464, -0.891467, -0.447574]], 'translation vector': [3.388002, 4.681844, 1.400749]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.018523, 0.490425, -0.871286], [0.99775, 0.065233, 0.015507], [0.064442, -0.869039, -0.49053]], 'translation vector': [3.293662, 2.081986, 1.287803]}\nB: {'rotation matrix': [[-0.012031, 0.49001, -0.871634], [0.99805, 0.059277, 0.019548], [0.061246, -0.869699, -0.489768]], 'translation vector': [3.297196, 2.086649, 1.289788]}\nC: {'rotation matrix': [[0.9998524821662119, 0.011110486941731442, -0.013083720076090504], [-0.011104516921568186, 0.9999377181682902, 0.0005342849090069752], [0.013088749073536516, -0.0003893477266632072, 0.9999144546094512]], 'translation vector': [-0.004299120253105748, -0.007367168150444914, 0.008875125679755236]}\nD: {'rotation matrix': [[-0.025914, 0.492003, -0.870208], [0.997577, 0.068946, 0.009274], [0.06456, -0.867859, -0.492598]], 'translation vector': [3.28927, 2.078913, 1.287729]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_73_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_73_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_73_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_73_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.018523, 0.490425, -0.871286], [0.99775, 0.065233, 0.015507], [0.064442, -0.869039, -0.49053]], 'translation vector': [3.293662, 2.081986, 1.287803]}\nB: {'rotation matrix': [[-0.012031, 0.49001, -0.871634], [0.99805, 0.059277, 0.019548], [0.061246, -0.869699, -0.489768]], 'translation vector': [3.297196, 2.086649, 1.289788]}\nC: {'rotation matrix': [[0.9998524821662119, 0.011110486941731442, -0.013083720076090504], [-0.011104516921568186, 0.9999377181682902, 0.0005342849090069752], [0.013088749073536516, -0.0003893477266632072, 0.9999144546094512]], 'translation vector': [-0.004299120253105748, -0.007367168150444914, 0.008875125679755236]}\nD: {'rotation matrix': [[-0.025914, 0.492003, -0.870208], [0.997577, 0.068946, 0.009274], [0.06456, -0.867859, -0.492598]], 'translation vector': [3.28927, 2.078913, 1.287729]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.963707, 0.155577, -0.216944], [0.257928, 0.333002, -0.906964], [-0.06886, -0.930003, -0.361044]], 'translation vector': [5.977247, 2.820638, 1.467431]}\nB: {'rotation matrix': [[-0.963568, 0.155178, -0.217846], [0.258718, 0.334184, -0.906303], [-0.067837, -0.929646, -0.362157]], 'translation vector': [5.975011, 2.821235, 1.467201]}\nC: {'rotation matrix': [[-0.963289, 0.1552, -0.219062], [0.259892, 0.33449, -0.905855], [-0.067315, -0.929532, -0.362545]], 'translation vector': [5.973778, 2.820463, 1.46621]}\nD: {'rotation matrix': [[0.9999997264810032, 0.0001398888061159318, -0.0006664023459939352], [-0.00013916119976689398, 1.0000000334978612, 0.0010113123861037441], [0.0006662597489821222, -0.0010109047313490711, 0.9999993871422703]], 'translation vector': [0.0010522232087115668, -0.0015450075589019119, 0.0008995589608247201]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_74_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_74_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_74_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_74_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.963707, 0.155577, -0.216944], [0.257928, 0.333002, -0.906964], [-0.06886, -0.930003, -0.361044]], 'translation vector': [5.977247, 2.820638, 1.467431]}\nB: {'rotation matrix': [[-0.963568, 0.155178, -0.217846], [0.258718, 0.334184, -0.906303], [-0.067837, -0.929646, -0.362157]], 'translation vector': [5.975011, 2.821235, 1.467201]}\nC: {'rotation matrix': [[-0.963289, 0.1552, -0.219062], [0.259892, 0.33449, -0.905855], [-0.067315, -0.929532, -0.362545]], 'translation vector': [5.973778, 2.820463, 1.46621]}\nD: {'rotation matrix': [[0.9999997264810032, 0.0001398888061159318, -0.0006664023459939352], [-0.00013916119976689398, 1.0000000334978612, 0.0010113123861037441], [0.0006662597489821222, -0.0010109047313490711, 0.9999993871422703]], 'translation vector': [0.0010522232087115668, -0.0015450075589019119, 0.0008995589608247201]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.608915, -0.355061, 0.709333], [-0.792506, -0.310645, 0.524818], [0.034009, -0.881721, -0.470545]], 'translation vector': [3.226315, 3.403534, 1.349898]}\nB: {'rotation matrix': [[0.615195, -0.359882, 0.701442], [-0.787888, -0.311929, 0.530973], [0.027713, -0.87931, -0.475444]], 'translation vector': [3.233385, 3.405524, 1.366998]}\nC: {'rotation matrix': [[0.613018, -0.357666, 0.704474], [-0.789518, -0.310613, 0.529321], [0.029499, -0.880678, -0.472795]], 'translation vector': [3.232441, 3.405463, 1.362879]}\nD: {'rotation matrix': [[0.9997863328706507, 0.00048772072536455783, -0.020639341477887214], [-0.000435326360773427, 0.9999962939853105, 0.002563461941184151], [0.020641174681034113, -0.002552850852538859, 0.9997836062327491]], 'translation vector': [0.014979793826815802, -0.00028266630712581176, -0.003454343250508085]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_75_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_75_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_75_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_75_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.608915, -0.355061, 0.709333], [-0.792506, -0.310645, 0.524818], [0.034009, -0.881721, -0.470545]], 'translation vector': [3.226315, 3.403534, 1.349898]}\nB: {'rotation matrix': [[0.615195, -0.359882, 0.701442], [-0.787888, -0.311929, 0.530973], [0.027713, -0.87931, -0.475444]], 'translation vector': [3.233385, 3.405524, 1.366998]}\nC: {'rotation matrix': [[0.613018, -0.357666, 0.704474], [-0.789518, -0.310613, 0.529321], [0.029499, -0.880678, -0.472795]], 'translation vector': [3.232441, 3.405463, 1.362879]}\nD: {'rotation matrix': [[0.9997863328706507, 0.00048772072536455783, -0.020639341477887214], [-0.000435326360773427, 0.9999962939853105, 0.002563461941184151], [0.020641174681034113, -0.002552850852538859, 0.9997836062327491]], 'translation vector': [0.014979793826815802, -0.00028266630712581176, -0.003454343250508085]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999991463733822, 0.0008702753414361648, -0.0009523887468317617], [-0.0008598677378153328, 0.999935869624125, 0.011274652427134848], [0.0009622841974666614, -0.011274638788349072, 0.9999353623727418]], 'translation vector': [-0.0018668216035679919, 0.003964358597176476, 0.0035095844812185473]}\nB: {'rotation matrix': [[0.995169, 0.04021, -0.089565], [0.098119, -0.43886, 0.893182], [-0.003392, -0.897655, -0.440686]], 'translation vector': [3.819187, 1.33594, 1.360146]}\nC: {'rotation matrix': [[0.994619, 0.036032, -0.097136], [0.10302, -0.443404, 0.890382], [-0.010989, -0.895597, -0.44473]], 'translation vector': [3.820524, 1.337409, 1.359976]}\nD: {'rotation matrix': [[0.995617, 0.045838, -0.081525], [0.09337, -0.436452, 0.89487], [0.005437, -0.898559, -0.438819]], 'translation vector': [3.821348, 1.335292, 1.36241]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_76_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_76_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_76_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_76_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999991463733822, 0.0008702753414361648, -0.0009523887468317617], [-0.0008598677378153328, 0.999935869624125, 0.011274652427134848], [0.0009622841974666614, -0.011274638788349072, 0.9999353623727418]], 'translation vector': [-0.0018668216035679919, 0.003964358597176476, 0.0035095844812185473]}\nB: {'rotation matrix': [[0.995169, 0.04021, -0.089565], [0.098119, -0.43886, 0.893182], [-0.003392, -0.897655, -0.440686]], 'translation vector': [3.819187, 1.33594, 1.360146]}\nC: {'rotation matrix': [[0.994619, 0.036032, -0.097136], [0.10302, -0.443404, 0.890382], [-0.010989, -0.895597, -0.44473]], 'translation vector': [3.820524, 1.337409, 1.359976]}\nD: {'rotation matrix': [[0.995617, 0.045838, -0.081525], [0.09337, -0.436452, 0.89487], [0.005437, -0.898559, -0.438819]], 'translation vector': [3.821348, 1.335292, 1.36241]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.882555, 0.386221, -0.268197], [0.46123, 0.600144, -0.653524], [-0.091448, -0.700472, -0.707797]], 'translation vector': [4.952963, 3.575409, 1.461658]}\nB: {'rotation matrix': [[-0.884605, 0.387053, -0.260122], [0.456774, 0.606746, -0.650551], [-0.09397, -0.694298, -0.713526]], 'translation vector': [4.944654, 3.579183, 1.459738]}\nC: {'rotation matrix': [[-0.883899, 0.386346, -0.263552], [0.458302, 0.603262, -0.652713], [-0.093182, -0.697719, -0.710286]], 'translation vector': [4.946745, 3.577697, 1.460677]}\nD: {'rotation matrix': [[0.9999447182645155, 0.005004874877878123, -0.00920632642357687], [-0.0050456554798214885, 0.9999777740634089, -0.004314913443862226], [0.009184864298060464, 0.004360756390993736, 0.9999481114756171]], 'translation vector': [0.007685923361448133, 0.0066471354724360054, 0.0017036092209536946]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_77_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_77_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_77_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_77_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.882555, 0.386221, -0.268197], [0.46123, 0.600144, -0.653524], [-0.091448, -0.700472, -0.707797]], 'translation vector': [4.952963, 3.575409, 1.461658]}\nB: {'rotation matrix': [[-0.884605, 0.387053, -0.260122], [0.456774, 0.606746, -0.650551], [-0.09397, -0.694298, -0.713526]], 'translation vector': [4.944654, 3.579183, 1.459738]}\nC: {'rotation matrix': [[-0.883899, 0.386346, -0.263552], [0.458302, 0.603262, -0.652713], [-0.093182, -0.697719, -0.710286]], 'translation vector': [4.946745, 3.577697, 1.460677]}\nD: {'rotation matrix': [[0.9999447182645155, 0.005004874877878123, -0.00920632642357687], [-0.0050456554798214885, 0.9999777740634089, -0.004314913443862226], [0.009184864298060464, 0.004360756390993736, 0.9999481114756171]], 'translation vector': [0.007685923361448133, 0.0066471354724360054, 0.0017036092209536946]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.625113, 0.311868, -0.715523], [0.780406, -0.266348, 0.565708], [-0.014152, -0.912029, -0.409881]], 'translation vector': [1.602076, 0.627028, 1.325196]}\nB: {'rotation matrix': [[0.622635, 0.31497, -0.716324], [0.782419, -0.264717, 0.563689], [-0.012077, -0.911438, -0.411261]], 'translation vector': [1.601839, 0.627416, 1.324643]}\nC: {'rotation matrix': [[0.624152, 0.313246, -0.715759], [0.781196, -0.26537, 0.565077], [-0.012933, -0.911842, -0.410338]], 'translation vector': [1.601807, 0.626749, 1.324787]}\nD: {'rotation matrix': [[0.999966975162773, 0.003632343802915245, 0.007281117690826753], [-0.0036218018444724924, 0.9999920045733598, -0.0017116834889060193], [-0.007286301405287572, 0.0016849146368096719, 0.9999717827304806]], 'translation vector': [-0.0025932164044990547, 0.0007159923074403496, -0.0006736212556601728]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_78_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_78_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_78_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_78_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.625113, 0.311868, -0.715523], [0.780406, -0.266348, 0.565708], [-0.014152, -0.912029, -0.409881]], 'translation vector': [1.602076, 0.627028, 1.325196]}\nB: {'rotation matrix': [[0.622635, 0.31497, -0.716324], [0.782419, -0.264717, 0.563689], [-0.012077, -0.911438, -0.411261]], 'translation vector': [1.601839, 0.627416, 1.324643]}\nC: {'rotation matrix': [[0.624152, 0.313246, -0.715759], [0.781196, -0.26537, 0.565077], [-0.012933, -0.911842, -0.410338]], 'translation vector': [1.601807, 0.626749, 1.324787]}\nD: {'rotation matrix': [[0.999966975162773, 0.003632343802915245, 0.007281117690826753], [-0.0036218018444724924, 0.9999920045733598, -0.0017116834889060193], [-0.007286301405287572, 0.0016849146368096719, 0.9999717827304806]], 'translation vector': [-0.0025932164044990547, 0.0007159923074403496, -0.0006736212556601728]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.198116, 0.271577, -0.941805], [0.979964, -0.034779, 0.196115], [0.020505, -0.961788, -0.273026]], 'translation vector': [3.606948, 3.761193, 1.556592]}\nB: {'rotation matrix': [[0.193825, 0.274451, -0.941864], [0.980909, -0.038747, 0.19057], [0.015807, -0.96082, -0.276722]], 'translation vector': [3.608205, 3.76769, 1.544741]}\nC: {'rotation matrix': [[0.999997674889758, 0.0021739401100205674, -0.00025104493249259135], [-0.002175952729401346, 0.9999848730149307, -0.004981286419615835], [0.0002396488755047073, 0.004981659902978713, 0.9999879544274658]], 'translation vector': [0.0009190453627176964, -0.0033553865594018184, -0.0035327864721872437]}\nD: {'rotation matrix': [[0.190217, 0.28361, -0.939884], [0.981635, -0.040777, 0.186362], [0.014528, -0.958072, -0.286158]], 'translation vector': [3.605221, 3.771751, 1.549751]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_79_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_79_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_79_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_79_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.198116, 0.271577, -0.941805], [0.979964, -0.034779, 0.196115], [0.020505, -0.961788, -0.273026]], 'translation vector': [3.606948, 3.761193, 1.556592]}\nB: {'rotation matrix': [[0.193825, 0.274451, -0.941864], [0.980909, -0.038747, 0.19057], [0.015807, -0.96082, -0.276722]], 'translation vector': [3.608205, 3.76769, 1.544741]}\nC: {'rotation matrix': [[0.999997674889758, 0.0021739401100205674, -0.00025104493249259135], [-0.002175952729401346, 0.9999848730149307, -0.004981286419615835], [0.0002396488755047073, 0.004981659902978713, 0.9999879544274658]], 'translation vector': [0.0009190453627176964, -0.0033553865594018184, -0.0035327864721872437]}\nD: {'rotation matrix': [[0.190217, 0.28361, -0.939884], [0.981635, -0.040777, 0.186362], [0.014528, -0.958072, -0.286158]], 'translation vector': [3.605221, 3.771751, 1.549751]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.631227, -0.321947, 0.705622], [-0.775405, -0.28226, 0.564869], [0.017311, -0.903703, -0.427809]], 'translation vector': [-0.207113, 0.785695, 1.605991]}\nB: {'rotation matrix': [[0.9999995913321388, 0.0005903556746734515, -0.0005873839987845575], [-0.0005915541354645518, 0.9999966980036584, -0.0023348317149788846], [0.0005870160507556152, 0.00233575631512544, 0.9999968115853851]], 'translation vector': [0.0016624461367128474, -0.0028184747771204943, -0.001607026045218174]}\nC: {'rotation matrix': [[0.628117, -0.317695, 0.71031], [-0.777888, -0.278629, 0.563255], [0.018969, -0.906331, -0.422142]], 'translation vector': [-0.210483, 0.781575, 1.607029]}\nD: {'rotation matrix': [[0.626043, -0.313657, 0.713926], [-0.779508, -0.27628, 0.562171], [0.020914, -0.908454, -0.417462]], 'translation vector': [-0.212996, 0.77858, 1.610364]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_80_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_80_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_80_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_80_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.631227, -0.321947, 0.705622], [-0.775405, -0.28226, 0.564869], [0.017311, -0.903703, -0.427809]], 'translation vector': [-0.207113, 0.785695, 1.605991]}\nB: {'rotation matrix': [[0.9999995913321388, 0.0005903556746734515, -0.0005873839987845575], [-0.0005915541354645518, 0.9999966980036584, -0.0023348317149788846], [0.0005870160507556152, 0.00233575631512544, 0.9999968115853851]], 'translation vector': [0.0016624461367128474, -0.0028184747771204943, -0.001607026045218174]}\nC: {'rotation matrix': [[0.628117, -0.317695, 0.71031], [-0.777888, -0.278629, 0.563255], [0.018969, -0.906331, -0.422142]], 'translation vector': [-0.210483, 0.781575, 1.607029]}\nD: {'rotation matrix': [[0.626043, -0.313657, 0.713926], [-0.779508, -0.27628, 0.562171], [0.020914, -0.908454, -0.417462]], 'translation vector': [-0.212996, 0.77858, 1.610364]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999006085846415, 0.014105987403183131, 0.0007516964397581732], [-0.014115634211093402, 0.9997972933579915, 0.014373215967786759], [-0.0005489990557007766, -0.014382715808085993, 0.9998969169271865]], 'translation vector': [-0.02535757146051898, 0.0018154305901567636, 0.010236799804218322]}\nB: {'rotation matrix': [[0.151948, 0.599833, -0.785565], [0.987995, -0.114601, 0.103597], [-0.027885, -0.791875, -0.610046]], 'translation vector': [3.432288, 3.133084, 1.213871]}\nC: {'rotation matrix': [[0.14922, 0.604558, -0.78246], [0.988532, -0.109774, 0.103704], [-0.023198, -0.788961, -0.614005]], 'translation vector': [3.429968, 3.121084, 1.211424]}\nD: {'rotation matrix': [[0.14748, 0.608832, -0.77947], [0.988883, -0.105872, 0.104407], [-0.018958, -0.786202, -0.617678]], 'translation vector': [3.426714, 3.1102, 1.209074]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_81_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_81_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_81_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_81_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999006085846415, 0.014105987403183131, 0.0007516964397581732], [-0.014115634211093402, 0.9997972933579915, 0.014373215967786759], [-0.0005489990557007766, -0.014382715808085993, 0.9998969169271865]], 'translation vector': [-0.02535757146051898, 0.0018154305901567636, 0.010236799804218322]}\nB: {'rotation matrix': [[0.151948, 0.599833, -0.785565], [0.987995, -0.114601, 0.103597], [-0.027885, -0.791875, -0.610046]], 'translation vector': [3.432288, 3.133084, 1.213871]}\nC: {'rotation matrix': [[0.14922, 0.604558, -0.78246], [0.988532, -0.109774, 0.103704], [-0.023198, -0.788961, -0.614005]], 'translation vector': [3.429968, 3.121084, 1.211424]}\nD: {'rotation matrix': [[0.14748, 0.608832, -0.77947], [0.988883, -0.105872, 0.104407], [-0.018958, -0.786202, -0.617678]], 'translation vector': [3.426714, 3.1102, 1.209074]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.720072, 0.306191, -0.62269], [0.693309, -0.280455, 0.663829], [0.028622, -0.909721, -0.414232]], 'translation vector': [3.433251, 3.053234, 1.552574]}\nB: {'rotation matrix': [[0.715824, 0.307759, -0.626802], [0.697706, -0.278807, 0.659904], [0.028335, -0.909698, -0.414302]], 'translation vector': [3.42786, 3.050569, 1.552797]}\nC: {'rotation matrix': [[0.99998073687791, -0.005433231351435887, 0.0028092605219069734], [0.0054430621429484745, 0.9999793374936902, -0.0033485077732525377], [-0.00279094918696337, 0.0033635449074639256, 0.9999906279011188]], 'translation vector': [0.0048247922808197785, -0.007326500694675886, 7.779843116662022e-05]}\nD: {'rotation matrix': [[0.717959, 0.306862, -0.624797], [0.695515, -0.279904, 0.66175], [0.028183, -0.909665, -0.414386]], 'translation vector': [3.431505, 3.053102, 1.552563]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_82_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_82_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_82_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_82_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.720072, 0.306191, -0.62269], [0.693309, -0.280455, 0.663829], [0.028622, -0.909721, -0.414232]], 'translation vector': [3.433251, 3.053234, 1.552574]}\nB: {'rotation matrix': [[0.715824, 0.307759, -0.626802], [0.697706, -0.278807, 0.659904], [0.028335, -0.909698, -0.414302]], 'translation vector': [3.42786, 3.050569, 1.552797]}\nC: {'rotation matrix': [[0.99998073687791, -0.005433231351435887, 0.0028092605219069734], [0.0054430621429484745, 0.9999793374936902, -0.0033485077732525377], [-0.00279094918696337, 0.0033635449074639256, 0.9999906279011188]], 'translation vector': [0.0048247922808197785, -0.007326500694675886, 7.779843116662022e-05]}\nD: {'rotation matrix': [[0.717959, 0.306862, -0.624797], [0.695515, -0.279904, 0.66175], [0.028183, -0.909665, -0.414386]], 'translation vector': [3.431505, 3.053102, 1.552563]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.863341, -0.254981, 0.435461], [-0.503057, 0.367008, -0.782457], [0.039694, -0.894589, -0.445123]], 'translation vector': [2.006748, 3.81545, 1.542323]}\nB: {'rotation matrix': [[-0.863173, -0.254818, 0.43589], [-0.503388, 0.367381, -0.782069], [0.039148, -0.894483, -0.445386]], 'translation vector': [2.007018, 3.816806, 1.542476]}\nC: {'rotation matrix': [[-0.863454, -0.255279, 0.435064], [-0.502805, 0.366433, -0.782888], [0.040433, -0.89474, -0.444754]], 'translation vector': [2.007318, 3.814646, 1.54216]}\nD: {'rotation matrix': [[0.9999972277888285, -0.0019486605164344517, 0.0010264732410869921], [0.0019490971963479567, 0.9999969267726074, -0.0010703044149313807], [-0.0010241404575203601, 0.0010719252856060263, 0.9999989421516985]], 'translation vector': [-0.0025894589048998107, 0.007141119527829198, -0.0014552230705469071]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_83_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_83_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_83_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_83_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.863341, -0.254981, 0.435461], [-0.503057, 0.367008, -0.782457], [0.039694, -0.894589, -0.445123]], 'translation vector': [2.006748, 3.81545, 1.542323]}\nB: {'rotation matrix': [[-0.863173, -0.254818, 0.43589], [-0.503388, 0.367381, -0.782069], [0.039148, -0.894483, -0.445386]], 'translation vector': [2.007018, 3.816806, 1.542476]}\nC: {'rotation matrix': [[-0.863454, -0.255279, 0.435064], [-0.502805, 0.366433, -0.782888], [0.040433, -0.89474, -0.444754]], 'translation vector': [2.007318, 3.814646, 1.54216]}\nD: {'rotation matrix': [[0.9999972277888285, -0.0019486605164344517, 0.0010264732410869921], [0.0019490971963479567, 0.9999969267726074, -0.0010703044149313807], [-0.0010241404575203601, 0.0010719252856060263, 0.9999989421516985]], 'translation vector': [-0.0025894589048998107, 0.007141119527829198, -0.0014552230705469071]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.987787, 0.108072, -0.112241], [0.155697, -0.656841, 0.73778], [0.006009, -0.746244, -0.665645]], 'translation vector': [4.649458, 4.057209, 1.404581]}\nB: {'rotation matrix': [[0.988022, 0.106035, -0.112112], [0.15424, -0.656197, 0.738658], [0.004756, -0.747102, -0.664692]], 'translation vector': [4.650307, 4.057695, 1.405486]}\nC: {'rotation matrix': [[0.9999939235077703, -0.0009864268743032946, -0.003107875618402941], [0.0009789613139893545, 0.9999966009200537, -0.0022176346298812244], [0.003110843270450784, 0.0022141652882606867, 0.9999926277610204]], 'translation vector': [-0.007831508873088033, -0.00424079700623059, -0.0006393879079424902]}\nD: {'rotation matrix': [[0.987654, 0.108357, -0.113131], [0.15654, -0.65545, 0.738837], [0.005906, -0.747425, -0.66432]], 'translation vector': [4.648766, 4.054578, 1.401957]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_84_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_84_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_84_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_84_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.987787, 0.108072, -0.112241], [0.155697, -0.656841, 0.73778], [0.006009, -0.746244, -0.665645]], 'translation vector': [4.649458, 4.057209, 1.404581]}\nB: {'rotation matrix': [[0.988022, 0.106035, -0.112112], [0.15424, -0.656197, 0.738658], [0.004756, -0.747102, -0.664692]], 'translation vector': [4.650307, 4.057695, 1.405486]}\nC: {'rotation matrix': [[0.9999939235077703, -0.0009864268743032946, -0.003107875618402941], [0.0009789613139893545, 0.9999966009200537, -0.0022176346298812244], [0.003110843270450784, 0.0022141652882606867, 0.9999926277610204]], 'translation vector': [-0.007831508873088033, -0.00424079700623059, -0.0006393879079424902]}\nD: {'rotation matrix': [[0.987654, 0.108357, -0.113131], [0.15654, -0.65545, 0.738837], [0.005906, -0.747425, -0.66432]], 'translation vector': [4.648766, 4.054578, 1.401957]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9997717908276891, -0.014061705239683872, 0.016112763216433307], [0.0140800110532502, 0.9999007363199941, -0.0010460438789438157], [-0.01609611583081038, 0.0012720455953134791, 0.9998692891144138]], 'translation vector': [-0.018076948566243978, 0.0017768934909982992, 0.0006580952284183095]}\nB: {'rotation matrix': [[-0.782674, -0.257014, 0.566891], [-0.62216, 0.296092, -0.724739], [0.018416, -0.919931, -0.391647]], 'translation vector': [3.075882, 2.930909, 1.465913]}\nC: {'rotation matrix': [[-0.790591, -0.247688, 0.560015], [-0.61223, 0.301979, -0.730742], [0.011883, -0.920576, -0.390384]], 'translation vector': [3.085087, 2.935415, 1.467454]}\nD: {'rotation matrix': [[-0.773889, -0.266244, 0.574639], [-0.632944, 0.293814, -0.716279], [0.021868, -0.918034, -0.395897]], 'translation vector': [3.064209, 2.92712, 1.46117]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_85_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_85_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_85_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_85_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9997717908276891, -0.014061705239683872, 0.016112763216433307], [0.0140800110532502, 0.9999007363199941, -0.0010460438789438157], [-0.01609611583081038, 0.0012720455953134791, 0.9998692891144138]], 'translation vector': [-0.018076948566243978, 0.0017768934909982992, 0.0006580952284183095]}\nB: {'rotation matrix': [[-0.782674, -0.257014, 0.566891], [-0.62216, 0.296092, -0.724739], [0.018416, -0.919931, -0.391647]], 'translation vector': [3.075882, 2.930909, 1.465913]}\nC: {'rotation matrix': [[-0.790591, -0.247688, 0.560015], [-0.61223, 0.301979, -0.730742], [0.011883, -0.920576, -0.390384]], 'translation vector': [3.085087, 2.935415, 1.467454]}\nD: {'rotation matrix': [[-0.773889, -0.266244, 0.574639], [-0.632944, 0.293814, -0.716279], [0.021868, -0.918034, -0.395897]], 'translation vector': [3.064209, 2.92712, 1.46117]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.516456, 0.471348, -0.714916], [0.852952, -0.209256, 0.47821], [0.075803, -0.856763, -0.510109]], 'translation vector': [4.97866, 0.423553, 1.591931]}\nB: {'rotation matrix': [[0.514459, 0.473148, -0.715167], [0.854068, -0.208015, 0.476757], [0.076811, -0.856073, -0.511116]], 'translation vector': [4.979161, 0.423603, 1.588672]}\nC: {'rotation matrix': [[0.513176, 0.475448, -0.714563], [0.854688, -0.206948, 0.476112], [0.078489, -0.855056, -0.51256]], 'translation vector': [4.976408, 0.420953, 1.588878]}\nD: {'rotation matrix': [[0.9999760932186582, 0.0012257187804321542, -0.006834405192096566], [-0.001218782424370881, 0.999999818921041, 0.0008912149688576313], [0.006835564452074455, -0.0008827669412868106, 0.9999768915925589]], 'translation vector': [-0.008703367750305002, 0.013496314561282197, 0.004560884153690381]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_86_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_86_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_86_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_86_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.516456, 0.471348, -0.714916], [0.852952, -0.209256, 0.47821], [0.075803, -0.856763, -0.510109]], 'translation vector': [4.97866, 0.423553, 1.591931]}\nB: {'rotation matrix': [[0.514459, 0.473148, -0.715167], [0.854068, -0.208015, 0.476757], [0.076811, -0.856073, -0.511116]], 'translation vector': [4.979161, 0.423603, 1.588672]}\nC: {'rotation matrix': [[0.513176, 0.475448, -0.714563], [0.854688, -0.206948, 0.476112], [0.078489, -0.855056, -0.51256]], 'translation vector': [4.976408, 0.420953, 1.588878]}\nD: {'rotation matrix': [[0.9999760932186582, 0.0012257187804321542, -0.006834405192096566], [-0.001218782424370881, 0.999999818921041, 0.0008912149688576313], [0.006835564452074455, -0.0008827669412868106, 0.9999768915925589]], 'translation vector': [-0.008703367750305002, 0.013496314561282197, 0.004560884153690381]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.448824, 0.136877, -0.883075], [0.892984, 0.105987, -0.437432], [0.033721, -0.984902, -0.169799]], 'translation vector': [3.315047, 2.127717, 1.592265]}\nB: {'rotation matrix': [[-0.452202, 0.137197, -0.8813], [0.891317, 0.105713, -0.440885], [0.032677, -0.984887, -0.170089]], 'translation vector': [3.315698, 2.124716, 1.590659]}\nC: {'rotation matrix': [[-0.449366, 0.136914, -0.882794], [0.892692, 0.106685, -0.437859], [0.034232, -0.984821, -0.170162]], 'translation vector': [3.315906, 2.123902, 1.590809]}\nD: {'rotation matrix': [[0.9999985219155758, 3.3460926462502616e-05, -0.0017161305114821916], [-2.2107949587045813e-05, 0.9999776535003064, 0.006715346047559243], [0.0017166465785429835, -0.006715383734168117, 0.9999757458350781]], 'translation vector': [0.0004478029195722488, -0.00269782175769262, 0.002036977128338613]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_87_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_87_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_87_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_87_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.448824, 0.136877, -0.883075], [0.892984, 0.105987, -0.437432], [0.033721, -0.984902, -0.169799]], 'translation vector': [3.315047, 2.127717, 1.592265]}\nB: {'rotation matrix': [[-0.452202, 0.137197, -0.8813], [0.891317, 0.105713, -0.440885], [0.032677, -0.984887, -0.170089]], 'translation vector': [3.315698, 2.124716, 1.590659]}\nC: {'rotation matrix': [[-0.449366, 0.136914, -0.882794], [0.892692, 0.106685, -0.437859], [0.034232, -0.984821, -0.170162]], 'translation vector': [3.315906, 2.123902, 1.590809]}\nD: {'rotation matrix': [[0.9999985219155758, 3.3460926462502616e-05, -0.0017161305114821916], [-2.2107949587045813e-05, 0.9999776535003064, 0.006715346047559243], [0.0017166465785429835, -0.006715383734168117, 0.9999757458350781]], 'translation vector': [0.0004478029195722488, -0.00269782175769262, 0.002036977128338613]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.993234, -0.016226, -0.114989], [0.102235, -0.347461, 0.932104], [-0.055078, -0.937554, -0.343451]], 'translation vector': [2.952414, 4.433719, 1.459459]}\nB: {'rotation matrix': [[0.993467, -0.015486, -0.113064], [0.100672, -0.347655, 0.932202], [-0.053743, -0.937495, -0.343825]], 'translation vector': [2.95506, 4.435545, 1.464879]}\nC: {'rotation matrix': [[0.9999909736646528, 0.004123633453855257, 0.0014048261378039103], [-0.004123349991970072, 0.9999914014789152, -0.00016491391217041438], [-0.0014064329904194771, 0.0001595777583995875, 0.9999985433300184]], 'translation vector': [-0.0007043054873738797, 0.0030876829023283037, 0.0005875691155496909]}\nD: {'rotation matrix': [[0.993543, -0.018943, -0.111866], [0.098443, -0.346258, 0.93296], [-0.056408, -0.937948, -0.342158]], 'translation vector': [2.958581, 4.436487, 1.463224]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_88_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_88_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_88_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_88_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.993234, -0.016226, -0.114989], [0.102235, -0.347461, 0.932104], [-0.055078, -0.937554, -0.343451]], 'translation vector': [2.952414, 4.433719, 1.459459]}\nB: {'rotation matrix': [[0.993467, -0.015486, -0.113064], [0.100672, -0.347655, 0.932202], [-0.053743, -0.937495, -0.343825]], 'translation vector': [2.95506, 4.435545, 1.464879]}\nC: {'rotation matrix': [[0.9999909736646528, 0.004123633453855257, 0.0014048261378039103], [-0.004123349991970072, 0.9999914014789152, -0.00016491391217041438], [-0.0014064329904194771, 0.0001595777583995875, 0.9999985433300184]], 'translation vector': [-0.0007043054873738797, 0.0030876829023283037, 0.0005875691155496909]}\nD: {'rotation matrix': [[0.993543, -0.018943, -0.111866], [0.098443, -0.346258, 0.93296], [-0.056408, -0.937948, -0.342158]], 'translation vector': [2.958581, 4.436487, 1.463224]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.481483, 0.389974, -0.784917], [0.875782, -0.249176, 0.413422], [-0.034359, -0.886471, -0.461507]], 'translation vector': [2.949051, 2.713893, 1.478454]}\nB: {'rotation matrix': [[0.478541, 0.391858, -0.785777], [0.877371, -0.248969, 0.410164], [-0.034908, -0.885699, -0.462947]], 'translation vector': [2.947931, 2.717417, 1.47825]}\nC: {'rotation matrix': [[0.48013, 0.390884, -0.785293], [0.876512, -0.249161, 0.41188], [-0.034667, -0.886075, -0.462245]], 'translation vector': [2.948499, 2.715565, 1.478062]}\nD: {'rotation matrix': [[0.9999997612782662, 0.0004988640565728734, 0.0011620670948559774], [-0.0004998749589789403, 0.9999982856757066, 0.0017162390398127588], [-0.0011605634579595124, -0.0017165704161403005, 0.9999970539013514]], 'translation vector': [0.0003215494383659312, -0.003127483043635193, -0.0005499886913977736]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_89_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_89_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_89_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_89_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.481483, 0.389974, -0.784917], [0.875782, -0.249176, 0.413422], [-0.034359, -0.886471, -0.461507]], 'translation vector': [2.949051, 2.713893, 1.478454]}\nB: {'rotation matrix': [[0.478541, 0.391858, -0.785777], [0.877371, -0.248969, 0.410164], [-0.034908, -0.885699, -0.462947]], 'translation vector': [2.947931, 2.717417, 1.47825]}\nC: {'rotation matrix': [[0.48013, 0.390884, -0.785293], [0.876512, -0.249161, 0.41188], [-0.034667, -0.886075, -0.462245]], 'translation vector': [2.948499, 2.715565, 1.478062]}\nD: {'rotation matrix': [[0.9999997612782662, 0.0004988640565728734, 0.0011620670948559774], [-0.0004998749589789403, 0.9999982856757066, 0.0017162390398127588], [-0.0011605634579595124, -0.0017165704161403005, 0.9999970539013514]], 'translation vector': [0.0003215494383659312, -0.003127483043635193, -0.0005499886913977736]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.564799, -0.352124, 0.746332], [-0.825057, 0.22251, -0.519395], [0.016825, -0.909119, -0.416196]], 'translation vector': [2.054545, 3.84102, 1.387591]}\nB: {'rotation matrix': [[-0.564546, -0.353818, 0.745722], [-0.825222, 0.223074, -0.518891], [0.017242, -0.908323, -0.417914]], 'translation vector': [2.054274, 3.838, 1.389919]}\nC: {'rotation matrix': [[0.9999863571433116, 0.000569020369849223, 0.005277349616356428], [-0.0005964877721919992, 0.9999870648779766, 0.0050113119474318605], [-0.005273998232851741, -0.005013939911459714, 0.9999743290291354]], 'translation vector': [-0.009394794053914524, 0.0032248655541047277, -0.0014403793043347157]}\nD: {'rotation matrix': [[-0.566299, -0.350153, 0.746122], [-0.824022, 0.221689, -0.521385], [0.017157, -0.91008, -0.414077]], 'translation vector': [2.055187, 3.843729, 1.385575]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_90_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_90_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_90_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_90_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.564799, -0.352124, 0.746332], [-0.825057, 0.22251, -0.519395], [0.016825, -0.909119, -0.416196]], 'translation vector': [2.054545, 3.84102, 1.387591]}\nB: {'rotation matrix': [[-0.564546, -0.353818, 0.745722], [-0.825222, 0.223074, -0.518891], [0.017242, -0.908323, -0.417914]], 'translation vector': [2.054274, 3.838, 1.389919]}\nC: {'rotation matrix': [[0.9999863571433116, 0.000569020369849223, 0.005277349616356428], [-0.0005964877721919992, 0.9999870648779766, 0.0050113119474318605], [-0.005273998232851741, -0.005013939911459714, 0.9999743290291354]], 'translation vector': [-0.009394794053914524, 0.0032248655541047277, -0.0014403793043347157]}\nD: {'rotation matrix': [[-0.566299, -0.350153, 0.746122], [-0.824022, 0.221689, -0.521385], [0.017157, -0.91008, -0.414077]], 'translation vector': [2.055187, 3.843729, 1.385575]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.037266, 0.594373, -0.803326], [0.998697, -0.005895, -0.05069], [-0.034865, -0.804168, -0.593379]], 'translation vector': [3.957977, 2.244087, 1.44004]}\nB: {'rotation matrix': [[0.9999996431737382, -0.0003859815143722872, 0.000745633467728039], [0.0003848347144862704, 1.0000000520852899, 0.00069936137332727], [-0.0007460186813055825, -0.0006987638070698045, 0.9999991664939947]], 'translation vector': [0.0003220625244955144, -0.0016866012265464025, 0.00017566976974592308]}\nC: {'rotation matrix': [[-0.03699, 0.597433, -0.801066], [0.998659, -0.006964, -0.051308], [-0.036231, -0.801889, -0.596374]], 'translation vector': [3.95766, 2.242744, 1.440408]}\nD: {'rotation matrix': [[-0.039909, 0.596654, -0.801506], [0.998413, -0.00808, -0.055729], [-0.039727, -0.802458, -0.595385]], 'translation vector': [3.959598, 2.247142, 1.43878]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_91_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_91_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_91_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_91_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.037266, 0.594373, -0.803326], [0.998697, -0.005895, -0.05069], [-0.034865, -0.804168, -0.593379]], 'translation vector': [3.957977, 2.244087, 1.44004]}\nB: {'rotation matrix': [[0.9999996431737382, -0.0003859815143722872, 0.000745633467728039], [0.0003848347144862704, 1.0000000520852899, 0.00069936137332727], [-0.0007460186813055825, -0.0006987638070698045, 0.9999991664939947]], 'translation vector': [0.0003220625244955144, -0.0016866012265464025, 0.00017566976974592308]}\nC: {'rotation matrix': [[-0.03699, 0.597433, -0.801066], [0.998659, -0.006964, -0.051308], [-0.036231, -0.801889, -0.596374]], 'translation vector': [3.95766, 2.242744, 1.440408]}\nD: {'rotation matrix': [[-0.039909, 0.596654, -0.801506], [0.998413, -0.00808, -0.055729], [-0.039727, -0.802458, -0.595385]], 'translation vector': [3.959598, 2.247142, 1.43878]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.875953, -0.064411, 0.478078], [-0.480708, 0.199407, -0.853907], [-0.040331, -0.977798, -0.205634]], 'translation vector': [2.420033, 1.712699, 1.489589]}\nB: {'rotation matrix': [[0.9999951897323609, 0.002443562746852685, 0.0019815417907405445], [-0.0024514031523570133, 0.9999905126626161, 0.0035483645433095957], [-0.001973097402749593, -0.0035542813588159473, 0.9999914538041953]], 'translation vector': [0.004274186437530858, 0.003113397542267471, -0.0028983696999268505]}\nC: {'rotation matrix': [[-0.873782, -0.064754, 0.481987], [-0.484652, 0.197901, -0.852026], [-0.040214, -0.978081, -0.204306]], 'translation vector': [2.408279, 1.71933, 1.490834]}\nD: {'rotation matrix': [[-0.874383, -0.064777, 0.480894], [-0.483517, 0.199683, -0.852255], [-0.04082, -0.977717, -0.20592]], 'translation vector': [2.41403, 1.715424, 1.490696]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_92_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_92_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_92_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_92_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.875953, -0.064411, 0.478078], [-0.480708, 0.199407, -0.853907], [-0.040331, -0.977798, -0.205634]], 'translation vector': [2.420033, 1.712699, 1.489589]}\nB: {'rotation matrix': [[0.9999951897323609, 0.002443562746852685, 0.0019815417907405445], [-0.0024514031523570133, 0.9999905126626161, 0.0035483645433095957], [-0.001973097402749593, -0.0035542813588159473, 0.9999914538041953]], 'translation vector': [0.004274186437530858, 0.003113397542267471, -0.0028983696999268505]}\nC: {'rotation matrix': [[-0.873782, -0.064754, 0.481987], [-0.484652, 0.197901, -0.852026], [-0.040214, -0.978081, -0.204306]], 'translation vector': [2.408279, 1.71933, 1.490834]}\nD: {'rotation matrix': [[-0.874383, -0.064777, 0.480894], [-0.483517, 0.199683, -0.852255], [-0.04082, -0.977717, -0.20592]], 'translation vector': [2.41403, 1.715424, 1.490696]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.222027, -0.462333, 0.858459], [-0.974308, 0.139332, -0.176951], [-0.0378, -0.875691, -0.48139]], 'translation vector': [2.717101, 1.647348, 1.522281]}\nB: {'rotation matrix': [[-0.218431, -0.46311, 0.858963], [-0.975079, 0.138612, -0.173227], [-0.038839, -0.875395, -0.481846]], 'translation vector': [2.716881, 1.647519, 1.52132]}\nC: {'rotation matrix': [[-0.21644, -0.463451, 0.859283], [-0.975487, 0.138488, -0.171017], [-0.039742, -0.875234, -0.482065]], 'translation vector': [2.718464, 1.6518, 1.521331]}\nD: {'rotation matrix': [[0.9999923983379827, -0.0004070717907623284, -0.003958509569048427], [0.0004054339454520325, 1.0000004886800318, -0.0002774375137664041], [0.003959398020789269, 0.00027564706640871675, 0.9999922541189072]], 'translation vector': [-0.005217870906849331, -0.0010876072780465762, 0.0013190166897232292]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_93_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_93_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_93_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_93_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.222027, -0.462333, 0.858459], [-0.974308, 0.139332, -0.176951], [-0.0378, -0.875691, -0.48139]], 'translation vector': [2.717101, 1.647348, 1.522281]}\nB: {'rotation matrix': [[-0.218431, -0.46311, 0.858963], [-0.975079, 0.138612, -0.173227], [-0.038839, -0.875395, -0.481846]], 'translation vector': [2.716881, 1.647519, 1.52132]}\nC: {'rotation matrix': [[-0.21644, -0.463451, 0.859283], [-0.975487, 0.138488, -0.171017], [-0.039742, -0.875234, -0.482065]], 'translation vector': [2.718464, 1.6518, 1.521331]}\nD: {'rotation matrix': [[0.9999923983379827, -0.0004070717907623284, -0.003958509569048427], [0.0004054339454520325, 1.0000004886800318, -0.0002774375137664041], [0.003959398020789269, 0.00027564706640871675, 0.9999922541189072]], 'translation vector': [-0.005217870906849331, -0.0010876072780465762, 0.0013190166897232292]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.937153, -0.143335, 0.318118], [-0.348912, 0.379164, -0.857027], [0.002223, -0.914161, -0.405346]], 'translation vector': [2.695696, 2.482015, 1.468683]}\nB: {'rotation matrix': [[0.9999943196573092, 0.0004252932585082039, -0.003407353327997387], [-0.0004083231357033075, 0.9999884704113977, 0.004802465167927532], [0.0034098975295442984, -0.004801063633517885, 0.9999828785878939]], 'translation vector': [4.878723511492211e-05, -0.0002916568078848991, 6.338042778675224e-05]}\nC: {'rotation matrix': [[-0.936491, -0.141969, 0.320669], [-0.350691, 0.379755, -0.856039], [-0.000244, -0.914129, -0.405424]], 'translation vector': [2.694833, 2.48135, 1.466405]}\nD: {'rotation matrix': [[-0.938082, -0.144128, 0.315008], [-0.346377, 0.376958, -0.859026], [0.005065, -0.914948, -0.40354]], 'translation vector': [2.697706, 2.481531, 1.470994]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_94_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_94_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_94_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_94_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.937153, -0.143335, 0.318118], [-0.348912, 0.379164, -0.857027], [0.002223, -0.914161, -0.405346]], 'translation vector': [2.695696, 2.482015, 1.468683]}\nB: {'rotation matrix': [[0.9999943196573092, 0.0004252932585082039, -0.003407353327997387], [-0.0004083231357033075, 0.9999884704113977, 0.004802465167927532], [0.0034098975295442984, -0.004801063633517885, 0.9999828785878939]], 'translation vector': [4.878723511492211e-05, -0.0002916568078848991, 6.338042778675224e-05]}\nC: {'rotation matrix': [[-0.936491, -0.141969, 0.320669], [-0.350691, 0.379755, -0.856039], [-0.000244, -0.914129, -0.405424]], 'translation vector': [2.694833, 2.48135, 1.466405]}\nD: {'rotation matrix': [[-0.938082, -0.144128, 0.315008], [-0.346377, 0.376958, -0.859026], [0.005065, -0.914948, -0.40354]], 'translation vector': [2.697706, 2.481531, 1.470994]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999926818767, 0.0006670318036002099, -0.0037525660402691484], [-0.0006413298116955215, 0.9999778975651503, 0.0065610016234285765], [0.0037569249243787368, -0.006558428485894876, 0.999971386151166]], 'translation vector': [0.00407147231806082, -0.002381515530327949, 0.00020808612264033854]}\nB: {'rotation matrix': [[0.598948, -0.354434, 0.718079], [-0.795274, -0.158225, 0.585238], [-0.093811, -0.921597, -0.376641]], 'translation vector': [2.366687, 6.228749, 1.483315]}\nC: {'rotation matrix': [[0.595688, -0.354051, 0.720975], [-0.797698, -0.155728, 0.582604], [-0.093996, -0.92217, -0.37519]], 'translation vector': [2.365015, 6.231124, 1.484416]}\nD: {'rotation matrix': [[0.602088, -0.354098, 0.715615], [-0.793005, -0.160904, 0.587582], [-0.092916, -0.921263, -0.37768]], 'translation vector': [2.370181, 6.228135, 1.483056]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_95_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_95_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_95_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_95_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999926818767, 0.0006670318036002099, -0.0037525660402691484], [-0.0006413298116955215, 0.9999778975651503, 0.0065610016234285765], [0.0037569249243787368, -0.006558428485894876, 0.999971386151166]], 'translation vector': [0.00407147231806082, -0.002381515530327949, 0.00020808612264033854]}\nB: {'rotation matrix': [[0.598948, -0.354434, 0.718079], [-0.795274, -0.158225, 0.585238], [-0.093811, -0.921597, -0.376641]], 'translation vector': [2.366687, 6.228749, 1.483315]}\nC: {'rotation matrix': [[0.595688, -0.354051, 0.720975], [-0.797698, -0.155728, 0.582604], [-0.093996, -0.92217, -0.37519]], 'translation vector': [2.365015, 6.231124, 1.484416]}\nD: {'rotation matrix': [[0.602088, -0.354098, 0.715615], [-0.793005, -0.160904, 0.587582], [-0.092916, -0.921263, -0.37768]], 'translation vector': [2.370181, 6.228135, 1.483056]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.749807, 0.343159, -0.565713], [0.658704, 0.306467, -0.687158], [-0.062432, -0.887874, -0.455832]], 'translation vector': [3.78087, 2.559782, 1.382918]}\nB: {'rotation matrix': [[0.9999937348891738, -5.242465291256345e-05, -0.003554980216800454], [4.743594033927849e-05, 0.9999987930802742, -0.0013704756295102494], [0.0035549170275783653, 0.0013698614468464884, 0.9999933438233037]], 'translation vector': [-0.006430893779766134, -0.00441205739948114, -0.013902381507369554]}\nC: {'rotation matrix': [[-0.753941, 0.344397, -0.559431], [0.653858, 0.310968, -0.68976], [-0.063586, -0.885827, -0.459639]], 'translation vector': [3.768856, 2.553297, 1.380708]}\nD: {'rotation matrix': [[-0.758857, 0.345337, -0.552158], [0.64782, 0.313263, -0.694403], [-0.066832, -0.884652, -0.461438]], 'translation vector': [3.75736, 2.54705, 1.379026]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_96_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_96_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_96_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_96_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.749807, 0.343159, -0.565713], [0.658704, 0.306467, -0.687158], [-0.062432, -0.887874, -0.455832]], 'translation vector': [3.78087, 2.559782, 1.382918]}\nB: {'rotation matrix': [[0.9999937348891738, -5.242465291256345e-05, -0.003554980216800454], [4.743594033927849e-05, 0.9999987930802742, -0.0013704756295102494], [0.0035549170275783653, 0.0013698614468464884, 0.9999933438233037]], 'translation vector': [-0.006430893779766134, -0.00441205739948114, -0.013902381507369554]}\nC: {'rotation matrix': [[-0.753941, 0.344397, -0.559431], [0.653858, 0.310968, -0.68976], [-0.063586, -0.885827, -0.459639]], 'translation vector': [3.768856, 2.553297, 1.380708]}\nD: {'rotation matrix': [[-0.758857, 0.345337, -0.552158], [0.64782, 0.313263, -0.694403], [-0.066832, -0.884652, -0.461438]], 'translation vector': [3.75736, 2.54705, 1.379026]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999813823639969, 0.005886631638650806, 0.0017617762591203541], [-0.005897799441000984, 0.9999663260190635, 0.005653603868593601], [-0.0017278375660129883, -0.005663714705693189, 0.9999828776446472]], 'translation vector': [-0.009345482457980114, -0.0002560144178671564, 0.004418422526778709]}\nB: {'rotation matrix': [[0.930353, -0.229821, 0.285704], [-0.366636, -0.593139, 0.716774], [0.004732, -0.771601, -0.636089]], 'translation vector': [0.347034, 1.978598, 1.559374]}\nC: {'rotation matrix': [[0.932658, -0.225033, 0.281975], [-0.360742, -0.590178, 0.722188], [0.003899, -0.775274, -0.631613]], 'translation vector': [0.341015, 1.979035, 1.553548]}\nD: {'rotation matrix': [[0.93165, -0.227962, 0.282953], [-0.363337, -0.592976, 0.718587], [0.003973, -0.772278, -0.635273]], 'translation vector': [0.345174, 1.978811, 1.55669]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_97_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_97_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_97_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_97_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999813823639969, 0.005886631638650806, 0.0017617762591203541], [-0.005897799441000984, 0.9999663260190635, 0.005653603868593601], [-0.0017278375660129883, -0.005663714705693189, 0.9999828776446472]], 'translation vector': [-0.009345482457980114, -0.0002560144178671564, 0.004418422526778709]}\nB: {'rotation matrix': [[0.930353, -0.229821, 0.285704], [-0.366636, -0.593139, 0.716774], [0.004732, -0.771601, -0.636089]], 'translation vector': [0.347034, 1.978598, 1.559374]}\nC: {'rotation matrix': [[0.932658, -0.225033, 0.281975], [-0.360742, -0.590178, 0.722188], [0.003899, -0.775274, -0.631613]], 'translation vector': [0.341015, 1.979035, 1.553548]}\nD: {'rotation matrix': [[0.93165, -0.227962, 0.282953], [-0.363337, -0.592976, 0.718587], [0.003973, -0.772278, -0.635273]], 'translation vector': [0.345174, 1.978811, 1.55669]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.805636, 0.331099, -0.491249], [0.591886, 0.41495, -0.691005], [-0.024947, -0.847461, -0.530271]], 'translation vector': [2.379813, 3.089217, 1.318416]}\nB: {'rotation matrix': [[-0.795605, 0.337599, -0.503031], [0.605104, 0.402607, -0.686846], [-0.029355, -0.850844, -0.524598]], 'translation vector': [2.393777, 3.105406, 1.314663]}\nC: {'rotation matrix': [[0.9993623988750846, 0.01800106003136589, -0.030848731804103247], [-0.01802560053443595, 0.9998375187449363, -0.0005268676766097016], [0.03083392596568167, 0.0010819486754358148, 0.9995239906208094]], 'translation vector': [-0.0016360885893116628, -0.010945290948126685, 0.024052024973950203]}\nD: {'rotation matrix': [[-0.800158, 0.334375, -0.497936], [0.599132, 0.406738, -0.689642], [-0.02807, -0.850152, -0.525789]], 'translation vector': [2.38798, 3.097038, 1.316188]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_98_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_98_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_98_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_98_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.805636, 0.331099, -0.491249], [0.591886, 0.41495, -0.691005], [-0.024947, -0.847461, -0.530271]], 'translation vector': [2.379813, 3.089217, 1.318416]}\nB: {'rotation matrix': [[-0.795605, 0.337599, -0.503031], [0.605104, 0.402607, -0.686846], [-0.029355, -0.850844, -0.524598]], 'translation vector': [2.393777, 3.105406, 1.314663]}\nC: {'rotation matrix': [[0.9993623988750846, 0.01800106003136589, -0.030848731804103247], [-0.01802560053443595, 0.9998375187449363, -0.0005268676766097016], [0.03083392596568167, 0.0010819486754358148, 0.9995239906208094]], 'translation vector': [-0.0016360885893116628, -0.010945290948126685, 0.024052024973950203]}\nD: {'rotation matrix': [[-0.800158, 0.334375, -0.497936], [0.599132, 0.406738, -0.689642], [-0.02807, -0.850152, -0.525789]], 'translation vector': [2.38798, 3.097038, 1.316188]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.991094, 0.095151, -0.093156], [0.13246, 0.632786, -0.762913], [-0.013644, -0.768458, -0.639754]], 'translation vector': [1.823914, 5.346199, 1.288239]}\nB: {'rotation matrix': [[-0.988726, 0.104422, -0.107319], [0.149216, 0.627347, -0.764311], [-0.012484, -0.771707, -0.635855]], 'translation vector': [1.82699, 5.341948, 1.287049]}\nC: {'rotation matrix': [[-0.99302, 0.087717, -0.078848], [0.116766, 0.636826, -0.762115], [-0.016638, -0.766002, -0.642623]], 'translation vector': [1.820977, 5.35315, 1.28763]}\nD: {'rotation matrix': [[0.9995983225918212, 0.019501636556654815, -0.020561779482543004], [-0.019155805749363774, 0.9996737108067424, 0.016883013818148294], [0.020884207942970644, -0.01648212192569651, 0.9996460764084063]], 'translation vector': [0.004177467169132809, 0.0037647300644172432, -0.008346822766605477]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_99_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_99_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_99_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_99_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.991094, 0.095151, -0.093156], [0.13246, 0.632786, -0.762913], [-0.013644, -0.768458, -0.639754]], 'translation vector': [1.823914, 5.346199, 1.288239]}\nB: {'rotation matrix': [[-0.988726, 0.104422, -0.107319], [0.149216, 0.627347, -0.764311], [-0.012484, -0.771707, -0.635855]], 'translation vector': [1.82699, 5.341948, 1.287049]}\nC: {'rotation matrix': [[-0.99302, 0.087717, -0.078848], [0.116766, 0.636826, -0.762115], [-0.016638, -0.766002, -0.642623]], 'translation vector': [1.820977, 5.35315, 1.28763]}\nD: {'rotation matrix': [[0.9995983225918212, 0.019501636556654815, -0.020561779482543004], [-0.019155805749363774, 0.9996737108067424, 0.016883013818148294], [0.020884207942970644, -0.01648212192569651, 0.9996460764084063]], 'translation vector': [0.004177467169132809, 0.0037647300644172432, -0.008346822766605477]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.821677, -0.468788, 0.324168], [-0.569738, 0.691217, -0.444543], [-0.015674, -0.549962, -0.835043]], 'translation vector': [3.090628, 8.002418, 1.936363]}\nB: {'rotation matrix': [[-0.828255, -0.463511, 0.314882], [-0.560231, 0.696605, -0.4482], [-0.011603, -0.547631, -0.83664]], 'translation vector': [3.092081, 8.003743, 1.933112]}\nC: {'rotation matrix': [[-0.825245, -0.467159, 0.317384], [-0.564664, 0.693585, -0.44732], [-0.011164, -0.548364, -0.836165]], 'translation vector': [3.09483, 8.004893, 1.934166]}\nD: {'rotation matrix': [[0.9997794014417315, -0.01936250651215195, 0.008149128878679036], [0.019327506819120155, 0.9998035065129168, 0.004379447300995329], [-0.008232031850993044, -0.004222057574502129, 0.9999569918430281]], 'translation vector': [0.008428449014058259, -0.001816843944377755, 0.00043274814993932154]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_100_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_100_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_100_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_100_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.821677, -0.468788, 0.324168], [-0.569738, 0.691217, -0.444543], [-0.015674, -0.549962, -0.835043]], 'translation vector': [3.090628, 8.002418, 1.936363]}\nB: {'rotation matrix': [[-0.828255, -0.463511, 0.314882], [-0.560231, 0.696605, -0.4482], [-0.011603, -0.547631, -0.83664]], 'translation vector': [3.092081, 8.003743, 1.933112]}\nC: {'rotation matrix': [[-0.825245, -0.467159, 0.317384], [-0.564664, 0.693585, -0.44732], [-0.011164, -0.548364, -0.836165]], 'translation vector': [3.09483, 8.004893, 1.934166]}\nD: {'rotation matrix': [[0.9997794014417315, -0.01936250651215195, 0.008149128878679036], [0.019327506819120155, 0.9998035065129168, 0.004379447300995329], [-0.008232031850993044, -0.004222057574502129, 0.9999569918430281]], 'translation vector': [0.008428449014058259, -0.001816843944377755, 0.00043274814993932154]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.141521, 0.444417, -0.884571], [0.989842, -0.075821, 0.12027], [-0.013619, -0.892605, -0.450633]], 'translation vector': [3.547713, 0.933243, 1.481136]}\nB: {'rotation matrix': [[0.9999998646080918, -0.0007460665530377528, -0.0009402946708239287], [0.0007455507104745661, 1.0000000002230558, -0.0004258129745529856], [0.0009407423454210515, 0.0004259725827619916, 0.9999998211939707]], 'translation vector': [0.0008665006475636616, -0.0026059059125004003, -0.0011105548234366935]}\nC: {'rotation matrix': [[0.140147, 0.44482, -0.884587], [0.990025, -0.076044, 0.118612], [-0.014506, -0.892386, -0.45104]], 'translation vector': [3.548717, 0.935529, 1.481701]}\nD: {'rotation matrix': [[0.140907, 0.444584, -0.884585], [0.989916, -0.076415, 0.11928], [-0.014565, -0.892472, -0.450868]], 'translation vector': [3.549046, 0.934745, 1.482359]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_101_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_101_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_101_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_101_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.141521, 0.444417, -0.884571], [0.989842, -0.075821, 0.12027], [-0.013619, -0.892605, -0.450633]], 'translation vector': [3.547713, 0.933243, 1.481136]}\nB: {'rotation matrix': [[0.9999998646080918, -0.0007460665530377528, -0.0009402946708239287], [0.0007455507104745661, 1.0000000002230558, -0.0004258129745529856], [0.0009407423454210515, 0.0004259725827619916, 0.9999998211939707]], 'translation vector': [0.0008665006475636616, -0.0026059059125004003, -0.0011105548234366935]}\nC: {'rotation matrix': [[0.140147, 0.44482, -0.884587], [0.990025, -0.076044, 0.118612], [-0.014506, -0.892386, -0.45104]], 'translation vector': [3.548717, 0.935529, 1.481701]}\nD: {'rotation matrix': [[0.140907, 0.444584, -0.884585], [0.989916, -0.076415, 0.11928], [-0.014565, -0.892472, -0.450868]], 'translation vector': [3.549046, 0.934745, 1.482359]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999988361601905, 0.001006375069335518, -0.0012640568426656846], [-0.0010070223030151592, 0.9999994457401622, -0.0002863718291939501], [0.00126333848912293, 0.0002872673648295308, 0.9999986249179557]], 'translation vector': [-2.298300292791211e-05, -0.0003253221346838364, -0.001208803459929797]}\nB: {'rotation matrix': [[0.209622, 0.494864, -0.843308], [0.976967, -0.070778, 0.201312], [0.039935, -0.866083, -0.498303]], 'translation vector': [4.529501, 2.292687, 1.525847]}\nC: {'rotation matrix': [[0.210084, 0.49423, -0.843565], [0.976909, -0.071791, 0.201231], [0.038894, -0.866362, -0.4979]], 'translation vector': [4.52972, 2.291977, 1.52688]}\nD: {'rotation matrix': [[0.207746, 0.495681, -0.843292], [0.977345, -0.069508, 0.199914], [0.040478, -0.865719, -0.498891]], 'translation vector': [4.528935, 2.293617, 1.525752]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_102_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_102_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_102_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_102_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999988361601905, 0.001006375069335518, -0.0012640568426656846], [-0.0010070223030151592, 0.9999994457401622, -0.0002863718291939501], [0.00126333848912293, 0.0002872673648295308, 0.9999986249179557]], 'translation vector': [-2.298300292791211e-05, -0.0003253221346838364, -0.001208803459929797]}\nB: {'rotation matrix': [[0.209622, 0.494864, -0.843308], [0.976967, -0.070778, 0.201312], [0.039935, -0.866083, -0.498303]], 'translation vector': [4.529501, 2.292687, 1.525847]}\nC: {'rotation matrix': [[0.210084, 0.49423, -0.843565], [0.976909, -0.071791, 0.201231], [0.038894, -0.866362, -0.4979]], 'translation vector': [4.52972, 2.291977, 1.52688]}\nD: {'rotation matrix': [[0.207746, 0.495681, -0.843292], [0.977345, -0.069508, 0.199914], [0.040478, -0.865719, -0.498891]], 'translation vector': [4.528935, 2.293617, 1.525752]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.08541, 0.640528, -0.76317], [0.996306, -0.061741, 0.059682], [-0.008891, -0.765449, -0.643436]], 'translation vector': [3.003591, 1.574332, 1.432793]}\nB: {'rotation matrix': [[0.08501, 0.641279, -0.762584], [0.996355, -0.060148, 0.06049], [-0.007077, -0.764946, -0.644055]], 'translation vector': [3.00634, 1.575815, 1.433934]}\nC: {'rotation matrix': [[0.9999991614836521, 0.0005695811207308883, -0.0015075373347832835], [-0.0005748316229898535, 0.9999942080654551, -0.0033643004544446934], [0.0015050239127193494, 0.003364654292322913, 0.9999927444380246]], 'translation vector': [-0.0005823890138008103, 0.0017300160779236684, -0.0007769099832195536]}\nD: {'rotation matrix': [[0.085438, 0.641091, -0.762694], [0.996316, -0.060644, 0.060635], [-0.00738, -0.765065, -0.64391]], 'translation vector': [3.005707, 1.574798, 1.4333]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_103_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_103_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_103_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_103_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.08541, 0.640528, -0.76317], [0.996306, -0.061741, 0.059682], [-0.008891, -0.765449, -0.643436]], 'translation vector': [3.003591, 1.574332, 1.432793]}\nB: {'rotation matrix': [[0.08501, 0.641279, -0.762584], [0.996355, -0.060148, 0.06049], [-0.007077, -0.764946, -0.644055]], 'translation vector': [3.00634, 1.575815, 1.433934]}\nC: {'rotation matrix': [[0.9999991614836521, 0.0005695811207308883, -0.0015075373347832835], [-0.0005748316229898535, 0.9999942080654551, -0.0033643004544446934], [0.0015050239127193494, 0.003364654292322913, 0.9999927444380246]], 'translation vector': [-0.0005823890138008103, 0.0017300160779236684, -0.0007769099832195536]}\nD: {'rotation matrix': [[0.085438, 0.641091, -0.762694], [0.996316, -0.060644, 0.060635], [-0.00738, -0.765065, -0.64391]], 'translation vector': [3.005707, 1.574798, 1.4333]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999836186953653, 0.00108451635874016, -0.00565701955892193], [-0.0010583782720287828, 0.9999885698645751, 0.004627019650109258], [0.005661574895801672, -0.004620937029738945, 0.9999737330988163]], 'translation vector': [0.0022502124816869973, 0.004079635447382657, -0.0017077678174191036]}\nB: {'rotation matrix': [[0.764916, -0.419696, 0.48863], [-0.623144, -0.290098, 0.726316], [-0.163081, -0.860057, -0.483431]], 'translation vector': [2.190224, 2.255941, 1.286466]}\nC: {'rotation matrix': [[0.764173, -0.416772, 0.492281], [-0.624792, -0.28869, 0.725461], [-0.160235, -0.861951, -0.481005]], 'translation vector': [2.189569, 2.253508, 1.282023]}\nD: {'rotation matrix': [[0.763152, -0.417481, 0.493263], [-0.626561, -0.291187, 0.722933], [-0.158179, -0.860767, -0.483797]], 'translation vector': [2.190887, 2.252149, 1.282769]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_104_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_104_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_104_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_104_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999836186953653, 0.00108451635874016, -0.00565701955892193], [-0.0010583782720287828, 0.9999885698645751, 0.004627019650109258], [0.005661574895801672, -0.004620937029738945, 0.9999737330988163]], 'translation vector': [0.0022502124816869973, 0.004079635447382657, -0.0017077678174191036]}\nB: {'rotation matrix': [[0.764916, -0.419696, 0.48863], [-0.623144, -0.290098, 0.726316], [-0.163081, -0.860057, -0.483431]], 'translation vector': [2.190224, 2.255941, 1.286466]}\nC: {'rotation matrix': [[0.764173, -0.416772, 0.492281], [-0.624792, -0.28869, 0.725461], [-0.160235, -0.861951, -0.481005]], 'translation vector': [2.189569, 2.253508, 1.282023]}\nD: {'rotation matrix': [[0.763152, -0.417481, 0.493263], [-0.626561, -0.291187, 0.722933], [-0.158179, -0.860767, -0.483797]], 'translation vector': [2.190887, 2.252149, 1.282769]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999685089712825, -0.00485492735446149, 0.006197125791337409], [0.004892366141195013, 0.9999701266660436, -0.005981156791582798], [-0.006168136508286792, 0.006011265809070663, 0.9999622632239159]], 'translation vector': [0.00022924877864394233, 0.00019097290261571587, -0.001928325440709866]}\nB: {'rotation matrix': [[-0.968997, 0.179836, -0.169422], [0.236776, 0.48002, -0.8447], [-0.070582, -0.858627, -0.507719]], 'translation vector': [3.781446, 2.333063, 1.459816]}\nC: {'rotation matrix': [[-0.967651, 0.180929, -0.175829], [0.242263, 0.471818, -0.84776], [-0.070424, -0.862933, -0.500388]], 'translation vector': [3.780886, 2.334988, 1.460004]}\nD: {'rotation matrix': [[-0.968244, 0.180308, -0.173186], [0.239986, 0.476144, -0.845987], [-0.070076, -0.860684, -0.504294]], 'translation vector': [3.781386, 2.333968, 1.460791]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_105_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_105_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_105_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_105_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999685089712825, -0.00485492735446149, 0.006197125791337409], [0.004892366141195013, 0.9999701266660436, -0.005981156791582798], [-0.006168136508286792, 0.006011265809070663, 0.9999622632239159]], 'translation vector': [0.00022924877864394233, 0.00019097290261571587, -0.001928325440709866]}\nB: {'rotation matrix': [[-0.968997, 0.179836, -0.169422], [0.236776, 0.48002, -0.8447], [-0.070582, -0.858627, -0.507719]], 'translation vector': [3.781446, 2.333063, 1.459816]}\nC: {'rotation matrix': [[-0.967651, 0.180929, -0.175829], [0.242263, 0.471818, -0.84776], [-0.070424, -0.862933, -0.500388]], 'translation vector': [3.780886, 2.334988, 1.460004]}\nD: {'rotation matrix': [[-0.968244, 0.180308, -0.173186], [0.239986, 0.476144, -0.845987], [-0.070076, -0.860684, -0.504294]], 'translation vector': [3.781386, 2.333968, 1.460791]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.769476, 0.035457, -0.637691], [0.638618, -0.056212, 0.767468], [-0.008634, -0.997789, -0.065897]], 'translation vector': [3.059908, 3.99174, 1.48793]}\nB: {'rotation matrix': [[0.768334, 0.034359, -0.639126], [0.639975, -0.056434, 0.766321], [-0.009738, -0.997815, -0.065349]], 'translation vector': [3.063556, 3.993645, 1.487647]}\nC: {'rotation matrix': [[0.76637, 0.032495, -0.641577], [0.642284, -0.057724, 0.764291], [-0.012198, -0.997804, -0.065109]], 'translation vector': [3.065239, 3.993527, 1.488269]}\nD: {'rotation matrix': [[0.9999994770672102, 0.0010059593388553243, -0.0005629779278299809], [-0.0010051492699491647, 0.9999992963767129, 0.00013663416634814593], [0.0005621045000587302, -0.0001358922037830382, 1.0000001627120574]], 'translation vector': [-0.004005273497495132, -0.008267648490985158, -0.0009698463604679297]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_106_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_106_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_106_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_106_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.769476, 0.035457, -0.637691], [0.638618, -0.056212, 0.767468], [-0.008634, -0.997789, -0.065897]], 'translation vector': [3.059908, 3.99174, 1.48793]}\nB: {'rotation matrix': [[0.768334, 0.034359, -0.639126], [0.639975, -0.056434, 0.766321], [-0.009738, -0.997815, -0.065349]], 'translation vector': [3.063556, 3.993645, 1.487647]}\nC: {'rotation matrix': [[0.76637, 0.032495, -0.641577], [0.642284, -0.057724, 0.764291], [-0.012198, -0.997804, -0.065109]], 'translation vector': [3.065239, 3.993527, 1.488269]}\nD: {'rotation matrix': [[0.9999994770672102, 0.0010059593388553243, -0.0005629779278299809], [-0.0010051492699491647, 0.9999992963767129, 0.00013663416634814593], [0.0005621045000587302, -0.0001358922037830382, 1.0000001627120574]], 'translation vector': [-0.004005273497495132, -0.008267648490985158, -0.0009698463604679297]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999965024273574, 0.0018995589746770465, -0.002128604659346281], [-0.0018975946490258904, 0.9999971783528935, 0.0010235202394668671], [0.0021305967266473038, -0.00101920750556101, 0.9999966975642395]], 'translation vector': [-0.001221359216795559, -0.0013000622008119134, -0.00023198476015379166]}\nB: {'rotation matrix': [[-0.247804, -0.452831, 0.856468], [-0.967446, 0.162565, -0.193963], [-0.051399, -0.876651, -0.478373]], 'translation vector': [1.577581, 1.960365, 1.31447]}\nC: {'rotation matrix': [[-0.241822, -0.452397, 0.858405], [-0.968762, 0.162689, -0.18717], [-0.054978, -0.876852, -0.477607]], 'translation vector': [1.575634, 1.958436, 1.314538]}\nD: {'rotation matrix': [[-0.251836, -0.455153, 0.854058], [-0.966529, 0.162962, -0.198153], [-0.048989, -0.875374, -0.480959]], 'translation vector': [1.577733, 1.957285, 1.314553]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_107_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_107_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_107_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_107_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999965024273574, 0.0018995589746770465, -0.002128604659346281], [-0.0018975946490258904, 0.9999971783528935, 0.0010235202394668671], [0.0021305967266473038, -0.00101920750556101, 0.9999966975642395]], 'translation vector': [-0.001221359216795559, -0.0013000622008119134, -0.00023198476015379166]}\nB: {'rotation matrix': [[-0.247804, -0.452831, 0.856468], [-0.967446, 0.162565, -0.193963], [-0.051399, -0.876651, -0.478373]], 'translation vector': [1.577581, 1.960365, 1.31447]}\nC: {'rotation matrix': [[-0.241822, -0.452397, 0.858405], [-0.968762, 0.162689, -0.18717], [-0.054978, -0.876852, -0.477607]], 'translation vector': [1.575634, 1.958436, 1.314538]}\nD: {'rotation matrix': [[-0.251836, -0.455153, 0.854058], [-0.966529, 0.162962, -0.198153], [-0.048989, -0.875374, -0.480959]], 'translation vector': [1.577733, 1.957285, 1.314553]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.502725, -0.506922, 0.700212], [-0.864292, 0.279467, -0.418207], [0.016312, -0.815431, -0.578624]], 'translation vector': [4.022235, 5.007849, 1.281956]}\nB: {'rotation matrix': [[0.9994658881112836, -0.01787238768104933, 0.027367099286839433], [0.01746068119707397, 0.9997321901556896, 0.015206345300919908], [-0.027631559291770684, -0.01472107419323857, 0.9995094632380824]], 'translation vector': [-0.030548360022831567, -0.0024606871848007472, 0.004630350985881493]}\nC: {'rotation matrix': [[-0.511887, -0.50554, 0.694551], [-0.858867, 0.284356, -0.426016], [0.017868, -0.814599, -0.579749]], 'translation vector': [4.034731, 5.018784, 1.285057]}\nD: {'rotation matrix': [[-0.524185, -0.50567, 0.685221], [-0.851455, 0.296094, -0.432844], [0.015986, -0.810325, -0.585763]], 'translation vector': [4.046806, 5.029983, 1.286514]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_108_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_108_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_108_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_108_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.502725, -0.506922, 0.700212], [-0.864292, 0.279467, -0.418207], [0.016312, -0.815431, -0.578624]], 'translation vector': [4.022235, 5.007849, 1.281956]}\nB: {'rotation matrix': [[0.9994658881112836, -0.01787238768104933, 0.027367099286839433], [0.01746068119707397, 0.9997321901556896, 0.015206345300919908], [-0.027631559291770684, -0.01472107419323857, 0.9995094632380824]], 'translation vector': [-0.030548360022831567, -0.0024606871848007472, 0.004630350985881493]}\nC: {'rotation matrix': [[-0.511887, -0.50554, 0.694551], [-0.858867, 0.284356, -0.426016], [0.017868, -0.814599, -0.579749]], 'translation vector': [4.034731, 5.018784, 1.285057]}\nD: {'rotation matrix': [[-0.524185, -0.50567, 0.685221], [-0.851455, 0.296094, -0.432844], [0.015986, -0.810325, -0.585763]], 'translation vector': [4.046806, 5.029983, 1.286514]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9997511181043846, 0.002627583195842048, -0.02210613011174363], [-0.002639480814720638, 0.9999968737080126, -0.0005594700790184048], [0.022104273186971824, 0.0006179932127646122, 0.9997554616613505]], 'translation vector': [0.008057060510321179, -0.003086615617105104, 0.008815946351156123]}\nB: {'rotation matrix': [[-0.793492, -0.269336, 0.545737], [-0.608499, 0.36581, -0.70421], [-0.009967, -0.890865, -0.454158]], 'translation vector': [3.342808, 3.719108, 1.377405]}\nC: {'rotation matrix': [[-0.799682, -0.271069, 0.535752], [-0.600405, 0.367946, -0.710021], [-0.004663, -0.889459, -0.456991]], 'translation vector': [3.342098, 3.723592, 1.379504]}\nD: {'rotation matrix': [[-0.786909, -0.267427, 0.556108], [-0.616914, 0.361106, -0.699299], [-0.013802, -0.893356, -0.449137]], 'translation vector': [3.343614, 3.714152, 1.377028]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_109_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_109_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_109_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_109_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9997511181043846, 0.002627583195842048, -0.02210613011174363], [-0.002639480814720638, 0.9999968737080126, -0.0005594700790184048], [0.022104273186971824, 0.0006179932127646122, 0.9997554616613505]], 'translation vector': [0.008057060510321179, -0.003086615617105104, 0.008815946351156123]}\nB: {'rotation matrix': [[-0.793492, -0.269336, 0.545737], [-0.608499, 0.36581, -0.70421], [-0.009967, -0.890865, -0.454158]], 'translation vector': [3.342808, 3.719108, 1.377405]}\nC: {'rotation matrix': [[-0.799682, -0.271069, 0.535752], [-0.600405, 0.367946, -0.710021], [-0.004663, -0.889459, -0.456991]], 'translation vector': [3.342098, 3.723592, 1.379504]}\nD: {'rotation matrix': [[-0.786909, -0.267427, 0.556108], [-0.616914, 0.361106, -0.699299], [-0.013802, -0.893356, -0.449137]], 'translation vector': [3.343614, 3.714152, 1.377028]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.470058, 0.310455, -0.826234], [0.882195, -0.135697, 0.450908], [0.027869, -0.940853, -0.337668]], 'translation vector': [2.719146, 3.165557, 1.444111]}\nB: {'rotation matrix': [[0.468253, 0.310351, -0.827298], [0.883071, -0.132138, 0.45025], [0.030418, -0.941394, -0.335936]], 'translation vector': [2.721684, 3.167619, 1.442076]}\nC: {'rotation matrix': [[0.9999808269927472, 0.005970992787416191, 0.00174631158613173], [-0.00597527498498062, 0.9999782630360619, 0.002650362855816552], [-0.0017306339108793102, -0.002661153861931357, 0.9999943916418343]], 'translation vector': [0.00038154468875628567, 0.0036815080791540167, 0.0005855298747257098]}\nD: {'rotation matrix': [[0.468431, 0.309409, -0.82755], [0.883026, -0.133283, 0.45], [0.028935, -0.941542, -0.33565]], 'translation vector': [2.722082, 3.167839, 1.441818]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_110_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_110_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_110_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_110_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.470058, 0.310455, -0.826234], [0.882195, -0.135697, 0.450908], [0.027869, -0.940853, -0.337668]], 'translation vector': [2.719146, 3.165557, 1.444111]}\nB: {'rotation matrix': [[0.468253, 0.310351, -0.827298], [0.883071, -0.132138, 0.45025], [0.030418, -0.941394, -0.335936]], 'translation vector': [2.721684, 3.167619, 1.442076]}\nC: {'rotation matrix': [[0.9999808269927472, 0.005970992787416191, 0.00174631158613173], [-0.00597527498498062, 0.9999782630360619, 0.002650362855816552], [-0.0017306339108793102, -0.002661153861931357, 0.9999943916418343]], 'translation vector': [0.00038154468875628567, 0.0036815080791540167, 0.0005855298747257098]}\nD: {'rotation matrix': [[0.468431, 0.309409, -0.82755], [0.883026, -0.133283, 0.45], [0.028935, -0.941542, -0.33565]], 'translation vector': [2.722082, 3.167839, 1.441818]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.886617, -0.372394, 0.274287], [-0.453667, -0.584855, 0.672407], [-0.089983, -0.720602, -0.687485]], 'translation vector': [2.862491, 2.429976, 1.648643]}\nB: {'rotation matrix': [[0.9999609940536269, 0.004336106194237876, -0.007665012330121596], [-0.0043994792450735756, 0.9999564170173506, -0.008231049758408536], [0.007628227917166668, 0.008264723677336768, 0.9999364519647637]], 'translation vector': [0.014388650201931252, -0.01870904449863442, 0.020428177278094317]}\nC: {'rotation matrix': [[0.881825, -0.378531, 0.281247], [-0.462696, -0.579299, 0.671062], [-0.091091, -0.721891, -0.685985]], 'translation vector': [2.843046, 2.410197, 1.648909]}\nD: {'rotation matrix': [[0.88465, -0.37678, 0.274647], [-0.457061, -0.584385, 0.670514], [-0.092137, -0.718701, -0.689188]], 'translation vector': [2.852998, 2.419565, 1.649377]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_111_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_111_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_111_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_111_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.886617, -0.372394, 0.274287], [-0.453667, -0.584855, 0.672407], [-0.089983, -0.720602, -0.687485]], 'translation vector': [2.862491, 2.429976, 1.648643]}\nB: {'rotation matrix': [[0.9999609940536269, 0.004336106194237876, -0.007665012330121596], [-0.0043994792450735756, 0.9999564170173506, -0.008231049758408536], [0.007628227917166668, 0.008264723677336768, 0.9999364519647637]], 'translation vector': [0.014388650201931252, -0.01870904449863442, 0.020428177278094317]}\nC: {'rotation matrix': [[0.881825, -0.378531, 0.281247], [-0.462696, -0.579299, 0.671062], [-0.091091, -0.721891, -0.685985]], 'translation vector': [2.843046, 2.410197, 1.648909]}\nD: {'rotation matrix': [[0.88465, -0.37678, 0.274647], [-0.457061, -0.584385, 0.670514], [-0.092137, -0.718701, -0.689188]], 'translation vector': [2.852998, 2.419565, 1.649377]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.937349, 0.183503, -0.296148], [0.348203, 0.521431, -0.779015], [0.011469, -0.833329, -0.552659]], 'translation vector': [1.516432, 1.509609, 1.382559]}\nB: {'rotation matrix': [[0.9999980782363276, 0.001503213640840046, -0.0005306957238598916], [-0.001506954921949503, 0.9999783283684359, -0.006294441787430057], [0.0005221180642734458, 0.006294562264384682, 0.9999799919937622]], 'translation vector': [-0.0001973645495118026, -0.004429123982855679, 0.002277103824624316]}\nC: {'rotation matrix': [[-0.936868, 0.179689, -0.299985], [0.349254, 0.523335, -0.777266], [0.017327, -0.832966, -0.553053]], 'translation vector': [1.516465, 1.50589, 1.383504]}\nD: {'rotation matrix': [[-0.936977, 0.182065, -0.298205], [0.349103, 0.5225, -0.777896], [0.014184, -0.832974, -0.55313]], 'translation vector': [1.516084, 1.508243, 1.382535]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_112_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_112_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_112_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_112_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.937349, 0.183503, -0.296148], [0.348203, 0.521431, -0.779015], [0.011469, -0.833329, -0.552659]], 'translation vector': [1.516432, 1.509609, 1.382559]}\nB: {'rotation matrix': [[0.9999980782363276, 0.001503213640840046, -0.0005306957238598916], [-0.001506954921949503, 0.9999783283684359, -0.006294441787430057], [0.0005221180642734458, 0.006294562264384682, 0.9999799919937622]], 'translation vector': [-0.0001973645495118026, -0.004429123982855679, 0.002277103824624316]}\nC: {'rotation matrix': [[-0.936868, 0.179689, -0.299985], [0.349254, 0.523335, -0.777266], [0.017327, -0.832966, -0.553053]], 'translation vector': [1.516465, 1.50589, 1.383504]}\nD: {'rotation matrix': [[-0.936977, 0.182065, -0.298205], [0.349103, 0.5225, -0.777896], [0.014184, -0.832974, -0.55313]], 'translation vector': [1.516084, 1.508243, 1.382535]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.857254, 0.207542, -0.471213], [0.514274, 0.300265, -0.803345], [-0.025239, -0.931003, -0.364137]], 'translation vector': [3.165454, 3.656282, 1.333704]}\nB: {'rotation matrix': [[0.99999640966509, -0.0010007660526934368, -0.0025990335284116336], [0.0009919500135136654, 0.9999945413184362, -0.003311856723933156], [0.0026023838793041037, 0.0033091782066769597, 0.999990415293157]], 'translation vector': [0.003805164660490079, -0.0038731744338753593, -0.0029462366598167478]}\nC: {'rotation matrix': [[-0.857583, 0.210228, -0.469422], [0.513576, 0.300052, -0.803871], [-0.028145, -0.930469, -0.365287]], 'translation vector': [3.164042, 3.653142, 1.337743]}\nD: {'rotation matrix': [[-0.856761, 0.210709, -0.470704], [0.514795, 0.294981, -0.804967], [-0.030765, -0.931981, -0.3612]], 'translation vector': [3.165054, 3.650114, 1.341357]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_113_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_113_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_113_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_113_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.857254, 0.207542, -0.471213], [0.514274, 0.300265, -0.803345], [-0.025239, -0.931003, -0.364137]], 'translation vector': [3.165454, 3.656282, 1.333704]}\nB: {'rotation matrix': [[0.99999640966509, -0.0010007660526934368, -0.0025990335284116336], [0.0009919500135136654, 0.9999945413184362, -0.003311856723933156], [0.0026023838793041037, 0.0033091782066769597, 0.999990415293157]], 'translation vector': [0.003805164660490079, -0.0038731744338753593, -0.0029462366598167478]}\nC: {'rotation matrix': [[-0.857583, 0.210228, -0.469422], [0.513576, 0.300052, -0.803871], [-0.028145, -0.930469, -0.365287]], 'translation vector': [3.164042, 3.653142, 1.337743]}\nD: {'rotation matrix': [[-0.856761, 0.210709, -0.470704], [0.514795, 0.294981, -0.804967], [-0.030765, -0.931981, -0.3612]], 'translation vector': [3.165054, 3.650114, 1.341357]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.496753, -0.455066, 0.739021], [-0.867832, 0.250391, -0.429153], [0.010249, -0.854529, -0.519303]], 'translation vector': [1.585927, 4.408765, 1.329075]}\nB: {'rotation matrix': [[-0.500222, -0.451271, 0.739008], [-0.865841, 0.250951, -0.432832], [0.009869, -0.856375, -0.51626]], 'translation vector': [1.58204, 4.414393, 1.331803]}\nC: {'rotation matrix': [[0.9999646386789894, 0.004658434745366248, 0.0070851516010133645], [-0.004681817359291345, 0.999983580482257, 0.0033767996583214267], [-0.007069472768969729, -0.0034085438936624457, 0.9999685018088521]], 'translation vector': [-1.9089315443032717e-05, 0.003691149021725071, -0.009076217757424399]}\nD: {'rotation matrix': [[-0.49386, -0.45517, 0.740893], [-0.869462, 0.246928, -0.427859], [0.011802, -0.855481, -0.5177]], 'translation vector': [1.591466, 4.4048, 1.328646]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_114_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_114_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_114_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_114_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.496753, -0.455066, 0.739021], [-0.867832, 0.250391, -0.429153], [0.010249, -0.854529, -0.519303]], 'translation vector': [1.585927, 4.408765, 1.329075]}\nB: {'rotation matrix': [[-0.500222, -0.451271, 0.739008], [-0.865841, 0.250951, -0.432832], [0.009869, -0.856375, -0.51626]], 'translation vector': [1.58204, 4.414393, 1.331803]}\nC: {'rotation matrix': [[0.9999646386789894, 0.004658434745366248, 0.0070851516010133645], [-0.004681817359291345, 0.999983580482257, 0.0033767996583214267], [-0.007069472768969729, -0.0034085438936624457, 0.9999685018088521]], 'translation vector': [-1.9089315443032717e-05, 0.003691149021725071, -0.009076217757424399]}\nD: {'rotation matrix': [[-0.49386, -0.45517, 0.740893], [-0.869462, 0.246928, -0.427859], [0.011802, -0.855481, -0.5177]], 'translation vector': [1.591466, 4.4048, 1.328646]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.216454, 0.211748, -0.953053], [0.970078, -0.156619, 0.185523], [-0.109982, -0.964693, -0.239313]], 'translation vector': [4.876326, 2.835873, 1.673403]}\nB: {'rotation matrix': [[0.9999815116666099, 0.003828941338965109, -0.004550071168900241], [-0.0038043597787837257, 0.999978256845473, 0.005451903660299082], [0.004571630830927769, -0.005433064547306739, 0.9999746221671975]], 'translation vector': [-0.0021931397990639923, 0.004370231111501255, 0.000887941045025542]}\nC: {'rotation matrix': [[0.223921, 0.203392, -0.953148], [0.967778, -0.16198, 0.192793], [-0.115179, -0.965606, -0.233109]], 'translation vector': [4.877863, 2.835087, 1.676992]}\nD: {'rotation matrix': [[0.219557, 0.208101, -0.953147], [0.969026, -0.159743, 0.188338], [-0.113066, -0.964975, -0.236728]], 'translation vector': [4.875911, 2.83788, 1.674953]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_115_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_115_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_115_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_115_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.216454, 0.211748, -0.953053], [0.970078, -0.156619, 0.185523], [-0.109982, -0.964693, -0.239313]], 'translation vector': [4.876326, 2.835873, 1.673403]}\nB: {'rotation matrix': [[0.9999815116666099, 0.003828941338965109, -0.004550071168900241], [-0.0038043597787837257, 0.999978256845473, 0.005451903660299082], [0.004571630830927769, -0.005433064547306739, 0.9999746221671975]], 'translation vector': [-0.0021931397990639923, 0.004370231111501255, 0.000887941045025542]}\nC: {'rotation matrix': [[0.223921, 0.203392, -0.953148], [0.967778, -0.16198, 0.192793], [-0.115179, -0.965606, -0.233109]], 'translation vector': [4.877863, 2.835087, 1.676992]}\nD: {'rotation matrix': [[0.219557, 0.208101, -0.953147], [0.969026, -0.159743, 0.188338], [-0.113066, -0.964975, -0.236728]], 'translation vector': [4.875911, 2.83788, 1.674953]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999402380460055, 0.006292872204581464, 0.009000301608311233], [-0.006374858865950918, 0.9999377706786996, 0.009079354369281548], [-0.008942504139812743, -0.009135104885608418, 0.9999183041835895]], 'translation vector': [3.939302955568991e-05, -0.002970151993936021, 0.008448821166219922]}\nB: {'rotation matrix': [[-0.997375, -0.070877, -0.01485], [-0.014261, 0.393282, -0.919307], [0.070998, -0.916682, -0.393261]], 'translation vector': [7.372805, 2.63008, 1.348598]}\nC: {'rotation matrix': [[-0.997269, -0.072413, -0.014556], [-0.015372, 0.396244, -0.918017], [0.072244, -0.915286, -0.396275]], 'translation vector': [7.36901, 2.625689, 1.34671]}\nD: {'rotation matrix': [[-0.997198, -0.073599, -0.01342], [-0.016859, 0.39584, -0.918165], [0.072888, -0.915366, -0.395972]], 'translation vector': [7.365971, 2.622898, 1.345074]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_116_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_116_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_116_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_116_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999402380460055, 0.006292872204581464, 0.009000301608311233], [-0.006374858865950918, 0.9999377706786996, 0.009079354369281548], [-0.008942504139812743, -0.009135104885608418, 0.9999183041835895]], 'translation vector': [3.939302955568991e-05, -0.002970151993936021, 0.008448821166219922]}\nB: {'rotation matrix': [[-0.997375, -0.070877, -0.01485], [-0.014261, 0.393282, -0.919307], [0.070998, -0.916682, -0.393261]], 'translation vector': [7.372805, 2.63008, 1.348598]}\nC: {'rotation matrix': [[-0.997269, -0.072413, -0.014556], [-0.015372, 0.396244, -0.918017], [0.072244, -0.915286, -0.396275]], 'translation vector': [7.36901, 2.625689, 1.34671]}\nD: {'rotation matrix': [[-0.997198, -0.073599, -0.01342], [-0.016859, 0.39584, -0.918165], [0.072888, -0.915366, -0.395972]], 'translation vector': [7.365971, 2.622898, 1.345074]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.051446, 0.205786, -0.977244], [0.99734, -0.040014, -0.06093], [-0.051642, -0.977778, -0.20318]], 'translation vector': [3.492872, 2.502008, 1.69891]}\nB: {'rotation matrix': [[-0.043348, 0.1967, -0.979505], [0.997776, -0.041176, -0.052425], [-0.050644, -0.979599, -0.194477]], 'translation vector': [3.495688, 2.502278, 1.699202]}\nC: {'rotation matrix': [[-0.045349, 0.201463, -0.978446], [0.997609, -0.041995, -0.054884], [-0.052147, -0.978595, -0.199077]], 'translation vector': [3.49477, 2.503383, 1.707673]}\nD: {'rotation matrix': [[0.999952584360321, 0.006117610645767056, 0.007552374046773563], [-0.006133995866929935, 0.9999788341295721, 0.0021300038842573614], [-0.007539309696335425, -0.0021763143472021637, 0.9999686644670424]], 'translation vector': [-0.005541149058866601, -0.004329021249491083, -0.004737026405577716]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_117_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_117_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_117_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_117_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.051446, 0.205786, -0.977244], [0.99734, -0.040014, -0.06093], [-0.051642, -0.977778, -0.20318]], 'translation vector': [3.492872, 2.502008, 1.69891]}\nB: {'rotation matrix': [[-0.043348, 0.1967, -0.979505], [0.997776, -0.041176, -0.052425], [-0.050644, -0.979599, -0.194477]], 'translation vector': [3.495688, 2.502278, 1.699202]}\nC: {'rotation matrix': [[-0.045349, 0.201463, -0.978446], [0.997609, -0.041995, -0.054884], [-0.052147, -0.978595, -0.199077]], 'translation vector': [3.49477, 2.503383, 1.707673]}\nD: {'rotation matrix': [[0.999952584360321, 0.006117610645767056, 0.007552374046773563], [-0.006133995866929935, 0.9999788341295721, 0.0021300038842573614], [-0.007539309696335425, -0.0021763143472021637, 0.9999686644670424]], 'translation vector': [-0.005541149058866601, -0.004329021249491083, -0.004737026405577716]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.92969, -0.177823, 0.322577], [-0.368073, 0.414955, -0.832066], [0.014105, -0.892296, -0.451231]], 'translation vector': [2.094699, 1.923867, 1.362793]}\nB: {'rotation matrix': [[-0.929496, -0.179835, 0.322021], [-0.368436, 0.412208, -0.833271], [0.017112, -0.893165, -0.449403]], 'translation vector': [2.092189, 1.927801, 1.363214]}\nC: {'rotation matrix': [[0.9999967402226891, -0.00025435497097484245, -0.0026972206948773017], [0.0002554991423686922, 0.9999998064927808, 0.00039832318899401273], [0.0026965738295479497, -0.00039944612541857925, 0.9999956863286328]], 'translation vector': [0.0007808272698826002, -3.308771117738196e-05, 0.0032529965763865576]}\nD: {'rotation matrix': [[-0.929672, -0.179046, 0.321952], [-0.368044, 0.413573, -0.832767], [0.015953, -0.892693, -0.450384]], 'translation vector': [2.09373, 1.925922, 1.362599]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_118_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_118_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_118_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_118_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.92969, -0.177823, 0.322577], [-0.368073, 0.414955, -0.832066], [0.014105, -0.892296, -0.451231]], 'translation vector': [2.094699, 1.923867, 1.362793]}\nB: {'rotation matrix': [[-0.929496, -0.179835, 0.322021], [-0.368436, 0.412208, -0.833271], [0.017112, -0.893165, -0.449403]], 'translation vector': [2.092189, 1.927801, 1.363214]}\nC: {'rotation matrix': [[0.9999967402226891, -0.00025435497097484245, -0.0026972206948773017], [0.0002554991423686922, 0.9999998064927808, 0.00039832318899401273], [0.0026965738295479497, -0.00039944612541857925, 0.9999956863286328]], 'translation vector': [0.0007808272698826002, -3.308771117738196e-05, 0.0032529965763865576]}\nD: {'rotation matrix': [[-0.929672, -0.179046, 0.321952], [-0.368044, 0.413573, -0.832767], [0.015953, -0.892693, -0.450384]], 'translation vector': [2.09373, 1.925922, 1.362599]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.462347, -0.272387, 0.843825], [-0.885267, -0.195868, 0.421827], [0.050379, -0.942041, -0.331694]], 'translation vector': [2.976725, 2.047585, 1.44742]}\nB: {'rotation matrix': [[0.9999659967455217, 0.000730682433916761, -0.008205012696381919], [-0.0006795411337798277, 0.9999808235064653, 0.006171696278259806], [0.008208518663254718, -0.006164897409722228, 0.9999474019525653]], 'translation vector': [0.003919003542433852, -0.0016103743394202397, 0.004248482748549165]}\nC: {'rotation matrix': [[0.463845, -0.2716, 0.843257], [-0.884483, -0.196093, 0.423364], [0.050371, -0.942221, -0.331182]], 'translation vector': [2.976598, 2.048301, 1.445946]}\nD: {'rotation matrix': [[0.465329, -0.271694, 0.842408], [-0.883772, -0.195467, 0.425135], [0.049156, -0.942324, -0.331072]], 'translation vector': [2.978186, 2.04869, 1.446578]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_119_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_119_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_119_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_119_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.462347, -0.272387, 0.843825], [-0.885267, -0.195868, 0.421827], [0.050379, -0.942041, -0.331694]], 'translation vector': [2.976725, 2.047585, 1.44742]}\nB: {'rotation matrix': [[0.9999659967455217, 0.000730682433916761, -0.008205012696381919], [-0.0006795411337798277, 0.9999808235064653, 0.006171696278259806], [0.008208518663254718, -0.006164897409722228, 0.9999474019525653]], 'translation vector': [0.003919003542433852, -0.0016103743394202397, 0.004248482748549165]}\nC: {'rotation matrix': [[0.463845, -0.2716, 0.843257], [-0.884483, -0.196093, 0.423364], [0.050371, -0.942221, -0.331182]], 'translation vector': [2.976598, 2.048301, 1.445946]}\nD: {'rotation matrix': [[0.465329, -0.271694, 0.842408], [-0.883772, -0.195467, 0.425135], [0.049156, -0.942324, -0.331072]], 'translation vector': [2.978186, 2.04869, 1.446578]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.819777, 0.236537, -0.521552], [0.57264, -0.327401, 0.751593], [0.007023, -0.9148, -0.403846]], 'translation vector': [2.353185, 1.22719, 1.374303]}\nB: {'rotation matrix': [[0.999987888286007, -0.002291943522874061, -0.004318624647106336], [0.002305286110298337, 0.9999924577563948, 0.0032570259245620907], [0.0043115657326277725, -0.0032678213093349246, 0.9999859589268988]], 'translation vector': [0.0029862992996512183, 0.0027957678410703846, 0.00028412393673649117]}\nC: {'rotation matrix': [[0.818568, 0.239176, -0.522246], [0.574347, -0.327388, 0.750296], [0.008476, -0.914118, -0.405359]], 'translation vector': [2.353795, 1.227513, 1.374115]}\nD: {'rotation matrix': [[0.821096, 0.234783, -0.520267], [0.570754, -0.327501, 0.752983], [0.006399, -0.915216, -0.402913]], 'translation vector': [2.353373, 1.227232, 1.3746]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_120_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_120_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_120_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_120_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.819777, 0.236537, -0.521552], [0.57264, -0.327401, 0.751593], [0.007023, -0.9148, -0.403846]], 'translation vector': [2.353185, 1.22719, 1.374303]}\nB: {'rotation matrix': [[0.999987888286007, -0.002291943522874061, -0.004318624647106336], [0.002305286110298337, 0.9999924577563948, 0.0032570259245620907], [0.0043115657326277725, -0.0032678213093349246, 0.9999859589268988]], 'translation vector': [0.0029862992996512183, 0.0027957678410703846, 0.00028412393673649117]}\nC: {'rotation matrix': [[0.818568, 0.239176, -0.522246], [0.574347, -0.327388, 0.750296], [0.008476, -0.914118, -0.405359]], 'translation vector': [2.353795, 1.227513, 1.374115]}\nD: {'rotation matrix': [[0.821096, 0.234783, -0.520267], [0.570754, -0.327501, 0.752983], [0.006399, -0.915216, -0.402913]], 'translation vector': [2.353373, 1.227232, 1.3746]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.416416, 0.454823, -0.787232], [0.907976, 0.163592, -0.38577], [-0.046672, -0.875428, -0.481091]], 'translation vector': [2.42158, 4.677908, 1.279661]}\nB: {'rotation matrix': [[-0.425105, 0.447282, -0.786908], [0.904054, 0.167175, -0.393368], [-0.044395, -0.878631, -0.475434]], 'translation vector': [2.418032, 4.676476, 1.278379]}\nC: {'rotation matrix': [[-0.405457, 0.458134, -0.791023], [0.912898, 0.15832, -0.376234], [-0.047131, -0.87467, -0.482422]], 'translation vector': [2.427205, 4.676823, 1.279665]}\nD: {'rotation matrix': [[0.999724588457419, 0.011399918490649034, -0.02049681987065299], [-0.011547405749944445, 0.9999079075389897, -0.007141934731129424], [0.020413044185954875, 0.00737693223574732, 0.9997642455565067]], 'translation vector': [0.0017021170863906754, -0.0007418791262142621, 0.002807958654513776]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_121_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_121_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_121_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_121_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.416416, 0.454823, -0.787232], [0.907976, 0.163592, -0.38577], [-0.046672, -0.875428, -0.481091]], 'translation vector': [2.42158, 4.677908, 1.279661]}\nB: {'rotation matrix': [[-0.425105, 0.447282, -0.786908], [0.904054, 0.167175, -0.393368], [-0.044395, -0.878631, -0.475434]], 'translation vector': [2.418032, 4.676476, 1.278379]}\nC: {'rotation matrix': [[-0.405457, 0.458134, -0.791023], [0.912898, 0.15832, -0.376234], [-0.047131, -0.87467, -0.482422]], 'translation vector': [2.427205, 4.676823, 1.279665]}\nD: {'rotation matrix': [[0.999724588457419, 0.011399918490649034, -0.02049681987065299], [-0.011547405749944445, 0.9999079075389897, -0.007141934731129424], [0.020413044185954875, 0.00737693223574732, 0.9997642455565067]], 'translation vector': [0.0017021170863906754, -0.0007418791262142621, 0.002807958654513776]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999991921613425, -0.0009534576315807749, 0.0007322231548443674], [0.0009539109746141209, 0.9999998849157189, 0.0006356436900991667], [-0.0007323849744554394, -0.0006353709242038023, 0.9999990842009482]], 'translation vector': [-0.0019568440092229133, 0.0040178639573226205, -0.0007055440032766036]}\nB: {'rotation matrix': [[-0.677088, 0.408379, -0.612192], [0.735888, 0.380882, -0.559819], [0.004555, -0.829551, -0.558412]], 'translation vector': [3.089066, 2.044868, 1.438859]}\nC: {'rotation matrix': [[-0.677557, 0.408197, -0.611794], [0.735465, 0.379263, -0.561472], [0.002839, -0.830382, -0.557187]], 'translation vector': [3.090277, 2.045193, 1.438377]}\nD: {'rotation matrix': [[-0.677242, 0.408267, -0.612096], [0.73575, 0.380087, -0.56054], [0.003799, -0.829971, -0.557794]], 'translation vector': [3.089461, 2.045596, 1.437863]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_122_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_122_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_122_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_122_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999991921613425, -0.0009534576315807749, 0.0007322231548443674], [0.0009539109746141209, 0.9999998849157189, 0.0006356436900991667], [-0.0007323849744554394, -0.0006353709242038023, 0.9999990842009482]], 'translation vector': [-0.0019568440092229133, 0.0040178639573226205, -0.0007055440032766036]}\nB: {'rotation matrix': [[-0.677088, 0.408379, -0.612192], [0.735888, 0.380882, -0.559819], [0.004555, -0.829551, -0.558412]], 'translation vector': [3.089066, 2.044868, 1.438859]}\nC: {'rotation matrix': [[-0.677557, 0.408197, -0.611794], [0.735465, 0.379263, -0.561472], [0.002839, -0.830382, -0.557187]], 'translation vector': [3.090277, 2.045193, 1.438377]}\nD: {'rotation matrix': [[-0.677242, 0.408267, -0.612096], [0.73575, 0.380087, -0.56054], [0.003799, -0.829971, -0.557794]], 'translation vector': [3.089461, 2.045596, 1.437863]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999933784388596, -0.0034228660793026973, 0.0010334015378228609], [0.003443417069472685, 0.9997723135838638, -0.0210485719107263], [-0.0009619583367667721, 0.021052364637286505, 0.9997776329131831]], 'translation vector': [0.004991626612900646, -0.0024493216023662445, -0.003027628610638544]}\nB: {'rotation matrix': [[-0.068724, 0.196407, -0.978111], [0.997631, 0.016511, -0.06678], [0.003034, -0.980384, -0.197076]], 'translation vector': [6.624384, 2.565858, 1.44421]}\nC: {'rotation matrix': [[-0.062271, 0.18592, -0.98059], [0.998056, 0.014281, -0.060673], [0.002724, -0.982461, -0.186448]], 'translation vector': [6.625182, 2.564143, 1.442555]}\nD: {'rotation matrix': [[-0.067121, 0.19262, -0.978975], [0.997737, 0.016917, -0.065078], [0.004026, -0.981128, -0.19332]], 'translation vector': [6.625297, 2.569471, 1.443187]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_123_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_123_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_123_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_123_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999933784388596, -0.0034228660793026973, 0.0010334015378228609], [0.003443417069472685, 0.9997723135838638, -0.0210485719107263], [-0.0009619583367667721, 0.021052364637286505, 0.9997776329131831]], 'translation vector': [0.004991626612900646, -0.0024493216023662445, -0.003027628610638544]}\nB: {'rotation matrix': [[-0.068724, 0.196407, -0.978111], [0.997631, 0.016511, -0.06678], [0.003034, -0.980384, -0.197076]], 'translation vector': [6.624384, 2.565858, 1.44421]}\nC: {'rotation matrix': [[-0.062271, 0.18592, -0.98059], [0.998056, 0.014281, -0.060673], [0.002724, -0.982461, -0.186448]], 'translation vector': [6.625182, 2.564143, 1.442555]}\nD: {'rotation matrix': [[-0.067121, 0.19262, -0.978975], [0.997737, 0.016917, -0.065078], [0.004026, -0.981128, -0.19332]], 'translation vector': [6.625297, 2.569471, 1.443187]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9997697997860496, 0.001019787082464491, -0.021429481643640898], [-0.0009730181353209979, 0.9999969701208679, 0.002158925702055335], [0.021432088446976687, -0.002138201439636503, 0.9997675908556951]], 'translation vector': [0.004448630857523561, 0.0024420113720010628, -0.001058932632110654]}\nB: {'rotation matrix': [[-0.999487, 0.010341, 0.030333], [-0.019706, 0.548122, -0.836166], [-0.025273, -0.836334, -0.547637]], 'translation vector': [4.843515, 3.430529, 1.401708]}\nC: {'rotation matrix': [[-0.998846, 0.024735, 0.04116], [-0.020973, 0.546345, -0.837298], [-0.043199, -0.837195, -0.545196]], 'translation vector': [4.840129, 3.432139, 1.401112]}\nD: {'rotation matrix': [[-0.99921, 0.020117, 0.034274], [-0.017632, 0.548494, -0.835969], [-0.035616, -0.835913, -0.547706]], 'translation vector': [4.841137, 3.430736, 1.401886]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_124_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_124_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_124_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_124_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9997697997860496, 0.001019787082464491, -0.021429481643640898], [-0.0009730181353209979, 0.9999969701208679, 0.002158925702055335], [0.021432088446976687, -0.002138201439636503, 0.9997675908556951]], 'translation vector': [0.004448630857523561, 0.0024420113720010628, -0.001058932632110654]}\nB: {'rotation matrix': [[-0.999487, 0.010341, 0.030333], [-0.019706, 0.548122, -0.836166], [-0.025273, -0.836334, -0.547637]], 'translation vector': [4.843515, 3.430529, 1.401708]}\nC: {'rotation matrix': [[-0.998846, 0.024735, 0.04116], [-0.020973, 0.546345, -0.837298], [-0.043199, -0.837195, -0.545196]], 'translation vector': [4.840129, 3.432139, 1.401112]}\nD: {'rotation matrix': [[-0.99921, 0.020117, 0.034274], [-0.017632, 0.548494, -0.835969], [-0.035616, -0.835913, -0.547706]], 'translation vector': [4.841137, 3.430736, 1.401886]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.973747, -0.109977, 0.199301], [-0.227471, -0.502961, 0.833839], [0.008537, -0.857284, -0.514773]], 'translation vector': [3.554081, 1.206281, 1.35243]}\nB: {'rotation matrix': [[0.974665, -0.108996, 0.195317], [-0.223559, -0.502331, 0.835276], [0.007072, -0.857778, -0.513971]], 'translation vector': [3.555352, 1.206811, 1.353912]}\nC: {'rotation matrix': [[0.975504, -0.107044, 0.192183], [-0.219886, -0.500464, 0.837368], [0.006546, -0.859114, -0.511742]], 'translation vector': [3.5544, 1.207723, 1.355687]}\nD: {'rotation matrix': [[0.9999906036647181, 0.002816837265478036, -0.0034361334791159484], [-0.0028229898836968203, 0.9999947431038866, -0.0015384023641953812], [0.0034319714995403, 0.0015489580591809052, 0.9999926274107623]], 'translation vector': [0.0002503237708082473, -0.0002760600759463827, -0.00019478740093437086]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_125_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_125_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_125_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_125_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.973747, -0.109977, 0.199301], [-0.227471, -0.502961, 0.833839], [0.008537, -0.857284, -0.514773]], 'translation vector': [3.554081, 1.206281, 1.35243]}\nB: {'rotation matrix': [[0.974665, -0.108996, 0.195317], [-0.223559, -0.502331, 0.835276], [0.007072, -0.857778, -0.513971]], 'translation vector': [3.555352, 1.206811, 1.353912]}\nC: {'rotation matrix': [[0.975504, -0.107044, 0.192183], [-0.219886, -0.500464, 0.837368], [0.006546, -0.859114, -0.511742]], 'translation vector': [3.5544, 1.207723, 1.355687]}\nD: {'rotation matrix': [[0.9999906036647181, 0.002816837265478036, -0.0034361334791159484], [-0.0028229898836968203, 0.9999947431038866, -0.0015384023641953812], [0.0034319714995403, 0.0015489580591809052, 0.9999926274107623]], 'translation vector': [0.0002503237708082473, -0.0002760600759463827, -0.00019478740093437086]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.153679, 0.256881, -0.954146], [0.987333, 0.001369, -0.158656], [-0.03945, -0.966442, -0.253837]], 'translation vector': [1.842026, 1.203469, 1.473211]}\nB: {'rotation matrix': [[-0.151778, 0.257722, -0.954224], [0.987593, 0.000186, -0.157036], [-0.040294, -0.966219, -0.254553]], 'translation vector': [1.842306, 1.202322, 1.472604]}\nC: {'rotation matrix': [[-0.149914, 0.257434, -0.954596], [0.987791, -0.002361, -0.155764], [-0.042353, -0.966293, -0.253937]], 'translation vector': [1.843622, 1.201203, 1.472192]}\nD: {'rotation matrix': [[0.9999992738268638, -0.00012046241721948631, -0.0012199092118460354], [0.0001219402230910216, 0.9999989013124573, 0.0017389291337165482], [0.0012191992898708535, -0.0017382297355628953, 0.9999985296461054]], 'translation vector': [9.159323589502666e-05, -0.0060291788848427785, 8.443913047839757e-05]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_126_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_126_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_126_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_126_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.153679, 0.256881, -0.954146], [0.987333, 0.001369, -0.158656], [-0.03945, -0.966442, -0.253837]], 'translation vector': [1.842026, 1.203469, 1.473211]}\nB: {'rotation matrix': [[-0.151778, 0.257722, -0.954224], [0.987593, 0.000186, -0.157036], [-0.040294, -0.966219, -0.254553]], 'translation vector': [1.842306, 1.202322, 1.472604]}\nC: {'rotation matrix': [[-0.149914, 0.257434, -0.954596], [0.987791, -0.002361, -0.155764], [-0.042353, -0.966293, -0.253937]], 'translation vector': [1.843622, 1.201203, 1.472192]}\nD: {'rotation matrix': [[0.9999992738268638, -0.00012046241721948631, -0.0012199092118460354], [0.0001219402230910216, 0.9999989013124573, 0.0017389291337165482], [0.0012191992898708535, -0.0017382297355628953, 0.9999985296461054]], 'translation vector': [9.159323589502666e-05, -0.0060291788848427785, 8.443913047839757e-05]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.14824, 0.422945, -0.893948], [0.983241, -0.033972, -0.17912], [-0.106127, -0.905518, -0.410821]], 'translation vector': [4.004252, 0.906944, 2.572337]}\nB: {'rotation matrix': [[-0.144176, 0.428291, -0.892065], [0.983875, -0.034383, -0.175522], [-0.105847, -0.902987, -0.416427]], 'translation vector': [4.001886, 0.906293, 2.57387]}\nC: {'rotation matrix': [[0.9999802090304492, -0.0006608909445885984, -0.006377640026736867], [0.0006622709420172097, 0.9999989071934312, 0.0002893250642296396], [0.006377955510407445, -0.00029429125031086645, 0.9999796120375704]], 'translation vector': [0.0015109144602648002, -0.0040381270140653625, -0.0009682382039999382]}\nD: {'rotation matrix': [[-0.139849, 0.432923, -0.890517], [0.98469, -0.03371, -0.171026], [-0.10406, -0.9008, -0.42158]], 'translation vector': [3.996022, 0.9047, 2.579904]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_127_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_127_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_127_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_127_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.14824, 0.422945, -0.893948], [0.983241, -0.033972, -0.17912], [-0.106127, -0.905518, -0.410821]], 'translation vector': [4.004252, 0.906944, 2.572337]}\nB: {'rotation matrix': [[-0.144176, 0.428291, -0.892065], [0.983875, -0.034383, -0.175522], [-0.105847, -0.902987, -0.416427]], 'translation vector': [4.001886, 0.906293, 2.57387]}\nC: {'rotation matrix': [[0.9999802090304492, -0.0006608909445885984, -0.006377640026736867], [0.0006622709420172097, 0.9999989071934312, 0.0002893250642296396], [0.006377955510407445, -0.00029429125031086645, 0.9999796120375704]], 'translation vector': [0.0015109144602648002, -0.0040381270140653625, -0.0009682382039999382]}\nD: {'rotation matrix': [[-0.139849, 0.432923, -0.890517], [0.98469, -0.03371, -0.171026], [-0.10406, -0.9008, -0.42158]], 'translation vector': [3.996022, 0.9047, 2.579904]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.95128, 0.171677, -0.256112], [0.307849, -0.482535, 0.819993], [0.017191, -0.858887, -0.511877]], 'translation vector': [2.918653, 3.427386, 1.515216]}\nB: {'rotation matrix': [[0.9999949680507799, -0.0030198797325234252, -0.001049278425799119], [0.0030204031206264347, 0.9999953358677364, 0.000916435423205514], [0.0010474297666525848, -0.0009198822713830659, 0.9999990387486941]], 'translation vector': [-0.00019299961249297226, -0.0019013116010877518, -0.0012501965874700538]}\nC: {'rotation matrix': [[0.951329, 0.168071, -0.258311], [0.307858, -0.480204, 0.821357], [0.014004, -0.860905, -0.508574]], 'translation vector': [2.920244, 3.426191, 1.515625]}\nD: {'rotation matrix': [[0.951137, 0.174865, -0.254481], [0.308106, -0.483514, 0.81932], [0.020225, -0.857693, -0.513765]], 'translation vector': [2.916759, 3.427486, 1.515303]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_128_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_128_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_128_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_128_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.95128, 0.171677, -0.256112], [0.307849, -0.482535, 0.819993], [0.017191, -0.858887, -0.511877]], 'translation vector': [2.918653, 3.427386, 1.515216]}\nB: {'rotation matrix': [[0.9999949680507799, -0.0030198797325234252, -0.001049278425799119], [0.0030204031206264347, 0.9999953358677364, 0.000916435423205514], [0.0010474297666525848, -0.0009198822713830659, 0.9999990387486941]], 'translation vector': [-0.00019299961249297226, -0.0019013116010877518, -0.0012501965874700538]}\nC: {'rotation matrix': [[0.951329, 0.168071, -0.258311], [0.307858, -0.480204, 0.821357], [0.014004, -0.860905, -0.508574]], 'translation vector': [2.920244, 3.426191, 1.515625]}\nD: {'rotation matrix': [[0.951137, 0.174865, -0.254481], [0.308106, -0.483514, 0.81932], [0.020225, -0.857693, -0.513765]], 'translation vector': [2.916759, 3.427486, 1.515303]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999948635923562, 0.0019820469436732306, 0.002154140600797888], [-0.0019903388630383317, 0.9999924231566063, 0.003542917026556551], [-0.0021468846137928286, -0.0035469945961230523, 0.999992296254944]], 'translation vector': [-5.7007563989186494e-05, -0.0006793783086549987, -0.00012474555531971632]}\nB: {'rotation matrix': [[-0.933451, -0.165748, 0.318116], [-0.358704, 0.434072, -0.826385], [-0.001114, -0.885499, -0.464639]], 'translation vector': [1.119556, 2.234202, 1.400117]}\nC: {'rotation matrix': [[-0.933995, -0.170592, 0.31393], [-0.357261, 0.435306, -0.826362], [0.004315, -0.883973, -0.467519]], 'translation vector': [1.117768, 2.23249, 1.399859]}\nD: {'rotation matrix': [[-0.93341, -0.169242, 0.31639], [-0.358807, 0.435851, -0.825404], [0.001794, -0.883963, -0.467553]], 'translation vector': [1.117643, 2.232584, 1.400741]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_129_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_129_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_129_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_129_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999948635923562, 0.0019820469436732306, 0.002154140600797888], [-0.0019903388630383317, 0.9999924231566063, 0.003542917026556551], [-0.0021468846137928286, -0.0035469945961230523, 0.999992296254944]], 'translation vector': [-5.7007563989186494e-05, -0.0006793783086549987, -0.00012474555531971632]}\nB: {'rotation matrix': [[-0.933451, -0.165748, 0.318116], [-0.358704, 0.434072, -0.826385], [-0.001114, -0.885499, -0.464639]], 'translation vector': [1.119556, 2.234202, 1.400117]}\nC: {'rotation matrix': [[-0.933995, -0.170592, 0.31393], [-0.357261, 0.435306, -0.826362], [0.004315, -0.883973, -0.467519]], 'translation vector': [1.117768, 2.23249, 1.399859]}\nD: {'rotation matrix': [[-0.93341, -0.169242, 0.31639], [-0.358807, 0.435851, -0.825404], [0.001794, -0.883963, -0.467553]], 'translation vector': [1.117643, 2.232584, 1.400741]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.748267, 0.274864, -0.603777], [0.662514, -0.356598, 0.658721], [-0.034247, -0.892909, -0.448932]], 'translation vector': [2.689408, 2.67138, 1.313352]}\nB: {'rotation matrix': [[0.746223, 0.273332, -0.606993], [0.664679, -0.356291, 0.656703], [-0.036768, -0.893502, -0.447551]], 'translation vector': [2.678885, 2.679979, 1.310144]}\nC: {'rotation matrix': [[0.9999399674236885, 0.0008968793534765223, 0.01089808273108475], [-0.000989300454985631, 0.9999632239345498, 0.008537240164508266], [-0.010889507071785043, -0.008547033142130317, 0.9999033050990314]], 'translation vector': [-0.01197293045142045, -0.02229876967815736, 0.03026515941132618]}\nD: {'rotation matrix': [[0.750155, 0.270973, -0.603193], [0.660278, -0.356699, 0.660908], [-0.03607, -0.894058, -0.446497]], 'translation vector': [2.698287, 2.659688, 1.315667]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_130_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_130_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_130_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_130_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.748267, 0.274864, -0.603777], [0.662514, -0.356598, 0.658721], [-0.034247, -0.892909, -0.448932]], 'translation vector': [2.689408, 2.67138, 1.313352]}\nB: {'rotation matrix': [[0.746223, 0.273332, -0.606993], [0.664679, -0.356291, 0.656703], [-0.036768, -0.893502, -0.447551]], 'translation vector': [2.678885, 2.679979, 1.310144]}\nC: {'rotation matrix': [[0.9999399674236885, 0.0008968793534765223, 0.01089808273108475], [-0.000989300454985631, 0.9999632239345498, 0.008537240164508266], [-0.010889507071785043, -0.008547033142130317, 0.9999033050990314]], 'translation vector': [-0.01197293045142045, -0.02229876967815736, 0.03026515941132618]}\nD: {'rotation matrix': [[0.750155, 0.270973, -0.603193], [0.660278, -0.356699, 0.660908], [-0.03607, -0.894058, -0.446497]], 'translation vector': [2.698287, 2.659688, 1.315667]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.696591, -0.332063, 0.636], [-0.715704, 0.259464, -0.648419], [0.050297, -0.90687, -0.418398]], 'translation vector': [0.055261, 3.785911, 1.510756]}\nB: {'rotation matrix': [[0.9999892202506441, -0.00432806217171397, -0.0014665396078038379], [0.0043283836537151305, 0.9999910348386083, -5.023853182741767e-05], [0.0014665058361795998, 4.44487020677531e-05, 0.9999983390207243]], 'translation vector': [0.0011882249140264811, -0.004541217231683825, 0.003677767622445316]}\nC: {'rotation matrix': [[-0.698852, -0.328674, 0.635279], [-0.713642, 0.26058, -0.65024], [0.048176, -0.907784, -0.416662]], 'translation vector': [0.047395, 3.788746, 1.502043]}\nD: {'rotation matrix': [[-0.698666, -0.330448, 0.634563], [-0.713793, 0.261647, -0.649647], [0.048643, -0.906832, -0.418676]], 'translation vector': [0.050863, 3.788018, 1.507423]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_131_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_131_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_131_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_131_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.696591, -0.332063, 0.636], [-0.715704, 0.259464, -0.648419], [0.050297, -0.90687, -0.418398]], 'translation vector': [0.055261, 3.785911, 1.510756]}\nB: {'rotation matrix': [[0.9999892202506441, -0.00432806217171397, -0.0014665396078038379], [0.0043283836537151305, 0.9999910348386083, -5.023853182741767e-05], [0.0014665058361795998, 4.44487020677531e-05, 0.9999983390207243]], 'translation vector': [0.0011882249140264811, -0.004541217231683825, 0.003677767622445316]}\nC: {'rotation matrix': [[-0.698852, -0.328674, 0.635279], [-0.713642, 0.26058, -0.65024], [0.048176, -0.907784, -0.416662]], 'translation vector': [0.047395, 3.788746, 1.502043]}\nD: {'rotation matrix': [[-0.698666, -0.330448, 0.634563], [-0.713793, 0.261647, -0.649647], [0.048643, -0.906832, -0.418676]], 'translation vector': [0.050863, 3.788018, 1.507423]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999994384686345, -0.0006788559243182462, -0.0008560007213187077], [0.0006780059132462143, 0.9999998393114027, -0.000711634963528042], [0.0008572035387077444, 0.0007099766954480035, 0.9999996039685791]], 'translation vector': [0.0021169101928586176, 0.0016932348180918044, -0.0014691902955634717]}\nB: {'rotation matrix': [[-0.895004, 0.171136, -0.411923], [0.445772, 0.376296, -0.812213], [0.016006, -0.910557, -0.413074]], 'translation vector': [2.821576, 5.408109, 1.547241]}\nC: {'rotation matrix': [[-0.895238, 0.170954, -0.411491], [0.44529, 0.377097, -0.812105], [0.016339, -0.910259, -0.413716]], 'translation vector': [2.819563, 5.407667, 1.547957]}\nD: {'rotation matrix': [[-0.895239, 0.171618, -0.411211], [0.445324, 0.376235, -0.812486], [0.015275, -0.910491, -0.413246]], 'translation vector': [2.820169, 5.40833, 1.547624]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_132_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_132_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_132_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_132_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999994384686345, -0.0006788559243182462, -0.0008560007213187077], [0.0006780059132462143, 0.9999998393114027, -0.000711634963528042], [0.0008572035387077444, 0.0007099766954480035, 0.9999996039685791]], 'translation vector': [0.0021169101928586176, 0.0016932348180918044, -0.0014691902955634717]}\nB: {'rotation matrix': [[-0.895004, 0.171136, -0.411923], [0.445772, 0.376296, -0.812213], [0.016006, -0.910557, -0.413074]], 'translation vector': [2.821576, 5.408109, 1.547241]}\nC: {'rotation matrix': [[-0.895238, 0.170954, -0.411491], [0.44529, 0.377097, -0.812105], [0.016339, -0.910259, -0.413716]], 'translation vector': [2.819563, 5.407667, 1.547957]}\nD: {'rotation matrix': [[-0.895239, 0.171618, -0.411211], [0.445324, 0.376235, -0.812486], [0.015275, -0.910491, -0.413246]], 'translation vector': [2.820169, 5.40833, 1.547624]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.637806, -0.366719, 0.67729], [-0.770059, -0.286951, 0.569797], [-0.014606, -0.884972, -0.465415]], 'translation vector': [2.635432, 2.237918, 1.453759]}\nB: {'rotation matrix': [[0.639756, -0.365353, 0.676188], [-0.768417, -0.286037, 0.572466], [-0.015738, -0.885833, -0.463738]], 'translation vector': [2.635672, 2.238828, 1.45525]}\nC: {'rotation matrix': [[0.999992450941996, 0.003938168732013472, 0.0002619981628988685], [-0.003940060772482587, 0.9999806955317443, 0.004722690751934828], [-0.00024268998302535557, -0.004722987499164323, 0.9999892225354342]], 'translation vector': [-0.005978537327156946, -0.0007775878287423765, 0.0022633181070532693]}\nD: {'rotation matrix': [[0.636585, -0.368058, 0.677712], [-0.771071, -0.287285, 0.568258], [-0.014455, -0.884308, -0.46668]], 'translation vector': [2.636608, 2.236841, 1.454577]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_133_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_133_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_133_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_133_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.637806, -0.366719, 0.67729], [-0.770059, -0.286951, 0.569797], [-0.014606, -0.884972, -0.465415]], 'translation vector': [2.635432, 2.237918, 1.453759]}\nB: {'rotation matrix': [[0.639756, -0.365353, 0.676188], [-0.768417, -0.286037, 0.572466], [-0.015738, -0.885833, -0.463738]], 'translation vector': [2.635672, 2.238828, 1.45525]}\nC: {'rotation matrix': [[0.999992450941996, 0.003938168732013472, 0.0002619981628988685], [-0.003940060772482587, 0.9999806955317443, 0.004722690751934828], [-0.00024268998302535557, -0.004722987499164323, 0.9999892225354342]], 'translation vector': [-0.005978537327156946, -0.0007775878287423765, 0.0022633181070532693]}\nD: {'rotation matrix': [[0.636585, -0.368058, 0.677712], [-0.771071, -0.287285, 0.568258], [-0.014455, -0.884308, -0.46668]], 'translation vector': [2.636608, 2.236841, 1.454577]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.354317, -0.208867, 0.911501], [-0.934632, 0.110757, -0.337929], [-0.030372, -0.971652, -0.234457]], 'translation vector': [0.531753, 4.839624, 1.62588]}\nB: {'rotation matrix': [[-0.359065, -0.216471, 0.907862], [-0.932968, 0.109695, -0.342839], [-0.025373, -0.970107, -0.241348]], 'translation vector': [0.533016, 4.840936, 1.625213]}\nC: {'rotation matrix': [[0.9999996059479784, -0.0012011060402040321, 0.0006047856645127561], [0.0011984060508814654, 0.9999921678086844, 0.003627178785230534], [-0.000607755557205814, -0.0036253860701085153, 0.999994001644102]], 'translation vector': [-0.0020457167014393818, -0.01042060812880563, 0.003252619468668172]}\nD: {'rotation matrix': [[-0.356177, -0.213479, 0.909706], [-0.934025, 0.10958, -0.339984], [-0.027106, -0.970783, -0.238424]], 'translation vector': [0.532497, 4.839391, 1.625248]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_134_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_134_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_134_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_134_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.354317, -0.208867, 0.911501], [-0.934632, 0.110757, -0.337929], [-0.030372, -0.971652, -0.234457]], 'translation vector': [0.531753, 4.839624, 1.62588]}\nB: {'rotation matrix': [[-0.359065, -0.216471, 0.907862], [-0.932968, 0.109695, -0.342839], [-0.025373, -0.970107, -0.241348]], 'translation vector': [0.533016, 4.840936, 1.625213]}\nC: {'rotation matrix': [[0.9999996059479784, -0.0012011060402040321, 0.0006047856645127561], [0.0011984060508814654, 0.9999921678086844, 0.003627178785230534], [-0.000607755557205814, -0.0036253860701085153, 0.999994001644102]], 'translation vector': [-0.0020457167014393818, -0.01042060812880563, 0.003252619468668172]}\nD: {'rotation matrix': [[-0.356177, -0.213479, 0.909706], [-0.934025, 0.10958, -0.339984], [-0.027106, -0.970783, -0.238424]], 'translation vector': [0.532497, 4.839391, 1.625248]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999831834333464, -3.507485354961902e-05, -0.005860591935981322], [1.2894070442508321e-05, 0.999992942835117, -0.003855834283817326], [0.00585975547828403, 0.003855906716345711, 0.9999751812718962]], 'translation vector': [-9.176265998767086e-05, -0.003526493044568424, -0.0013563859537040202]}\nB: {'rotation matrix': [[-0.77208, 0.081888, -0.630228], [0.634233, 0.036058, -0.772301], [-0.040517, -0.995989, -0.079776]], 'translation vector': [4.355151, 2.275217, 1.510745]}\nC: {'rotation matrix': [[-0.769009, 0.085964, -0.633432], [0.638035, 0.042436, -0.768838], [-0.039212, -0.995394, -0.087482]], 'translation vector': [4.353152, 2.272772, 1.50454]}\nD: {'rotation matrix': [[-0.770144, 0.083681, -0.632358], [0.636632, 0.03909, -0.770176], [-0.03973, -0.995726, -0.083379]], 'translation vector': [4.354443, 2.273597, 1.508503]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_135_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_135_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_135_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_135_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999831834333464, -3.507485354961902e-05, -0.005860591935981322], [1.2894070442508321e-05, 0.999992942835117, -0.003855834283817326], [0.00585975547828403, 0.003855906716345711, 0.9999751812718962]], 'translation vector': [-9.176265998767086e-05, -0.003526493044568424, -0.0013563859537040202]}\nB: {'rotation matrix': [[-0.77208, 0.081888, -0.630228], [0.634233, 0.036058, -0.772301], [-0.040517, -0.995989, -0.079776]], 'translation vector': [4.355151, 2.275217, 1.510745]}\nC: {'rotation matrix': [[-0.769009, 0.085964, -0.633432], [0.638035, 0.042436, -0.768838], [-0.039212, -0.995394, -0.087482]], 'translation vector': [4.353152, 2.272772, 1.50454]}\nD: {'rotation matrix': [[-0.770144, 0.083681, -0.632358], [0.636632, 0.03909, -0.770176], [-0.03973, -0.995726, -0.083379]], 'translation vector': [4.354443, 2.273597, 1.508503]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.872251, 0.269436, -0.408146], [0.489057, 0.477878, -0.729696], [-0.001562, -0.836084, -0.548599]], 'translation vector': [2.680995, 3.11951, 1.281605]}\nB: {'rotation matrix': [[0.9999175427731898, 0.009289450845399635, 0.008882740398963147], [-0.00915148449802066, 0.9998381508008006, -0.015456879997285015], [-0.00902528905222651, 0.015374430101541683, 0.9998409413313208]], 'translation vector': [-0.02453370105938546, 0.014905487027389919, -0.03059606364374634]}\nC: {'rotation matrix': [[-0.872521, 0.262383, -0.412143], [0.488544, 0.478168, -0.729849], [0.005573, -0.838159, -0.545398]], 'translation vector': [2.690634, 3.125973, 1.284562]}\nD: {'rotation matrix': [[-0.871338, 0.255355, -0.419003], [0.490471, 0.478377, -0.728419], [0.014436, -0.840208, -0.542072]], 'translation vector': [2.702949, 3.129856, 1.287257]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_136_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_136_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_136_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_136_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.872251, 0.269436, -0.408146], [0.489057, 0.477878, -0.729696], [-0.001562, -0.836084, -0.548599]], 'translation vector': [2.680995, 3.11951, 1.281605]}\nB: {'rotation matrix': [[0.9999175427731898, 0.009289450845399635, 0.008882740398963147], [-0.00915148449802066, 0.9998381508008006, -0.015456879997285015], [-0.00902528905222651, 0.015374430101541683, 0.9998409413313208]], 'translation vector': [-0.02453370105938546, 0.014905487027389919, -0.03059606364374634]}\nC: {'rotation matrix': [[-0.872521, 0.262383, -0.412143], [0.488544, 0.478168, -0.729849], [0.005573, -0.838159, -0.545398]], 'translation vector': [2.690634, 3.125973, 1.284562]}\nD: {'rotation matrix': [[-0.871338, 0.255355, -0.419003], [0.490471, 0.478377, -0.728419], [0.014436, -0.840208, -0.542072]], 'translation vector': [2.702949, 3.129856, 1.287257]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.333056, -0.473197, 0.815573], [-0.9429, 0.170506, -0.286124], [-0.003667, -0.864299, -0.502965]], 'translation vector': [2.099262, 2.343947, 1.49878]}\nB: {'rotation matrix': [[-0.341507, -0.468371, 0.814864], [-0.939879, 0.169312, -0.296582], [0.000944, -0.867158, -0.498033]], 'translation vector': [2.09227, 2.339374, 1.500507]}\nC: {'rotation matrix': [[-0.349241, -0.464358, 0.813882], [-0.937028, 0.170072, -0.305049], [0.003234, -0.869165, -0.494512]], 'translation vector': [2.088692, 2.33782, 1.505356]}\nD: {'rotation matrix': [[0.9999635418289009, -0.005130634438046651, -0.00688590414124517], [0.00513692191174813, 0.9999857138339602, 0.0010725741392655886], [0.00688015226508057, -0.0011072559806139443, 0.9999748317531684]], 'translation vector': [-0.026001101753266642, -0.0071394396285136, 0.008639096069164354]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_137_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_137_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_137_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_137_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.333056, -0.473197, 0.815573], [-0.9429, 0.170506, -0.286124], [-0.003667, -0.864299, -0.502965]], 'translation vector': [2.099262, 2.343947, 1.49878]}\nB: {'rotation matrix': [[-0.341507, -0.468371, 0.814864], [-0.939879, 0.169312, -0.296582], [0.000944, -0.867158, -0.498033]], 'translation vector': [2.09227, 2.339374, 1.500507]}\nC: {'rotation matrix': [[-0.349241, -0.464358, 0.813882], [-0.937028, 0.170072, -0.305049], [0.003234, -0.869165, -0.494512]], 'translation vector': [2.088692, 2.33782, 1.505356]}\nD: {'rotation matrix': [[0.9999635418289009, -0.005130634438046651, -0.00688590414124517], [0.00513692191174813, 0.9999857138339602, 0.0010725741392655886], [0.00688015226508057, -0.0011072559806139443, 0.9999748317531684]], 'translation vector': [-0.026001101753266642, -0.0071394396285136, 0.008639096069164354]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.030402, 0.425954, -0.904234], [0.998503, -0.028211, -0.04686], [-0.045469, -0.904305, -0.424459]], 'translation vector': [2.422483, 1.358004, 3.279846]}\nB: {'rotation matrix': [[-0.030422, 0.425378, -0.904504], [0.99853, -0.027681, -0.046602], [-0.044861, -0.904592, -0.42391]], 'translation vector': [2.423117, 1.357937, 3.279462]}\nC: {'rotation matrix': [[0.9999413192700902, -0.00031349790801336034, -0.010858677567769605], [0.00020550611921538246, 0.9999497154111819, -0.010006476843209223], [0.010861290904906616, 0.010003092803207396, 0.9998904023572843]], 'translation vector': [-0.0025713849698387747, -0.003845445277962156, -0.00016886354172340745]}\nD: {'rotation matrix': [[-0.029484, 0.425058, -0.904686], [0.998566, -0.027942, -0.045671], [-0.044692, -0.904735, -0.423624]], 'translation vector': [2.421348, 1.3572, 3.28135]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_138_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_138_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_138_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_138_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.030402, 0.425954, -0.904234], [0.998503, -0.028211, -0.04686], [-0.045469, -0.904305, -0.424459]], 'translation vector': [2.422483, 1.358004, 3.279846]}\nB: {'rotation matrix': [[-0.030422, 0.425378, -0.904504], [0.99853, -0.027681, -0.046602], [-0.044861, -0.904592, -0.42391]], 'translation vector': [2.423117, 1.357937, 3.279462]}\nC: {'rotation matrix': [[0.9999413192700902, -0.00031349790801336034, -0.010858677567769605], [0.00020550611921538246, 0.9999497154111819, -0.010006476843209223], [0.010861290904906616, 0.010003092803207396, 0.9998904023572843]], 'translation vector': [-0.0025713849698387747, -0.003845445277962156, -0.00016886354172340745]}\nD: {'rotation matrix': [[-0.029484, 0.425058, -0.904686], [0.998566, -0.027942, -0.045671], [-0.044692, -0.904735, -0.423624]], 'translation vector': [2.421348, 1.3572, 3.28135]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.765303, 0.126374, -0.631143], [0.606826, -0.468638, 0.641982], [-0.214648, -0.874305, -0.435336]], 'translation vector': [4.259322, 3.776065, 1.503445]}\nB: {'rotation matrix': [[0.771053, 0.12608, -0.624165], [0.599963, -0.472273, 0.645757], [-0.213359, -0.872388, -0.439791]], 'translation vector': [4.254354, 3.773882, 1.500145]}\nC: {'rotation matrix': [[0.9999284250414853, 0.0013159481143052354, -0.011853419692681406], [-0.0013716672277964584, 0.9999877220001062, -0.004620807232633075], [0.011847871043956123, 0.004636177506016426, 0.9999191533457081]], 'translation vector': [-0.0029675207616195465, 0.002877998549804417, -0.005058945419356364]}\nD: {'rotation matrix': [[0.774333, 0.127442, -0.619813], [0.595393, -0.478434, 0.645452], [-0.214281, -0.868826, -0.446345]], 'translation vector': [4.253978, 3.779827, 1.501383]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_139_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_139_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_139_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_139_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.765303, 0.126374, -0.631143], [0.606826, -0.468638, 0.641982], [-0.214648, -0.874305, -0.435336]], 'translation vector': [4.259322, 3.776065, 1.503445]}\nB: {'rotation matrix': [[0.771053, 0.12608, -0.624165], [0.599963, -0.472273, 0.645757], [-0.213359, -0.872388, -0.439791]], 'translation vector': [4.254354, 3.773882, 1.500145]}\nC: {'rotation matrix': [[0.9999284250414853, 0.0013159481143052354, -0.011853419692681406], [-0.0013716672277964584, 0.9999877220001062, -0.004620807232633075], [0.011847871043956123, 0.004636177506016426, 0.9999191533457081]], 'translation vector': [-0.0029675207616195465, 0.002877998549804417, -0.005058945419356364]}\nD: {'rotation matrix': [[0.774333, 0.127442, -0.619813], [0.595393, -0.478434, 0.645452], [-0.214281, -0.868826, -0.446345]], 'translation vector': [4.253978, 3.779827, 1.501383]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.90788, 0.151333, -0.390964], [0.408575, 0.110464, -0.906016], [-0.093922, -0.982291, -0.162118]], 'translation vector': [8.818443, 3.831761, 1.477683]}\nB: {'rotation matrix': [[0.9999985311997388, 0.0014822343891824376, 0.0004132906130215321], [-0.0014816934035833144, 0.9999987577699637, 9.7059989439923e-05], [-0.00041331535706021807, -9.78109674475786e-05, 1.0000005199156523]], 'translation vector': [-0.004405482725633902, -0.00022188509424603264, 0.00016042860388854052]}\nC: {'rotation matrix': [[-0.90752, 0.150251, -0.392214], [0.409699, 0.111045, -0.905437], [-0.092489, -0.982392, -0.162333]], 'translation vector': [8.816371, 3.832904, 1.475888]}\nD: {'rotation matrix': [[-0.907271, 0.148469, -0.393466], [0.410673, 0.111241, -0.904972], [-0.090591, -0.982641, -0.161898]], 'translation vector': [8.814532, 3.834109, 1.474353]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_140_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_140_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_140_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_140_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.90788, 0.151333, -0.390964], [0.408575, 0.110464, -0.906016], [-0.093922, -0.982291, -0.162118]], 'translation vector': [8.818443, 3.831761, 1.477683]}\nB: {'rotation matrix': [[0.9999985311997388, 0.0014822343891824376, 0.0004132906130215321], [-0.0014816934035833144, 0.9999987577699637, 9.7059989439923e-05], [-0.00041331535706021807, -9.78109674475786e-05, 1.0000005199156523]], 'translation vector': [-0.004405482725633902, -0.00022188509424603264, 0.00016042860388854052]}\nC: {'rotation matrix': [[-0.90752, 0.150251, -0.392214], [0.409699, 0.111045, -0.905437], [-0.092489, -0.982392, -0.162333]], 'translation vector': [8.816371, 3.832904, 1.475888]}\nD: {'rotation matrix': [[-0.907271, 0.148469, -0.393466], [0.410673, 0.111241, -0.904972], [-0.090591, -0.982641, -0.161898]], 'translation vector': [8.814532, 3.834109, 1.474353]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.999990277128188, -0.004263613841972057, 0.00022215499723240068], [0.004262324646153357, 0.9999855274813817, 0.003172824698500956], [-0.00023539502566653948, -0.003171844248534696, 0.9999944918809965]], 'translation vector': [0.0008976741232249452, 0.001107833658419377, 0.002287318056557207]}\nB: {'rotation matrix': [[0.982661, 0.058297, -0.176007], [0.185241, -0.268064, 0.945425], [0.007934, -0.961636, -0.274215]], 'translation vector': [4.071507, 1.217171, 1.479186]}\nC: {'rotation matrix': [[0.982484, 0.05703, -0.177406], [0.186213, -0.264319, 0.946288], [0.007075, -0.962748, -0.270309]], 'translation vector': [4.071419, 1.216069, 1.480649]}\nD: {'rotation matrix': [[0.98266, 0.058843, -0.175828], [0.185228, -0.2691, 0.945133], [0.008299, -0.961313, -0.275333]], 'translation vector': [4.071304, 1.217707, 1.478697]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_141_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_141_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_141_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_141_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.999990277128188, -0.004263613841972057, 0.00022215499723240068], [0.004262324646153357, 0.9999855274813817, 0.003172824698500956], [-0.00023539502566653948, -0.003171844248534696, 0.9999944918809965]], 'translation vector': [0.0008976741232249452, 0.001107833658419377, 0.002287318056557207]}\nB: {'rotation matrix': [[0.982661, 0.058297, -0.176007], [0.185241, -0.268064, 0.945425], [0.007934, -0.961636, -0.274215]], 'translation vector': [4.071507, 1.217171, 1.479186]}\nC: {'rotation matrix': [[0.982484, 0.05703, -0.177406], [0.186213, -0.264319, 0.946288], [0.007075, -0.962748, -0.270309]], 'translation vector': [4.071419, 1.216069, 1.480649]}\nD: {'rotation matrix': [[0.98266, 0.058843, -0.175828], [0.185228, -0.2691, 0.945133], [0.008299, -0.961313, -0.275333]], 'translation vector': [4.071304, 1.217707, 1.478697]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.566945, -0.119787, 0.815], [-0.823733, -0.07511, 0.561981], [-0.006103, -0.989954, -0.141256]], 'translation vector': [0.25398, 0.970235, 1.632712]}\nB: {'rotation matrix': [[0.566333, -0.122518, 0.81502], [-0.824133, -0.073956, 0.561548], [-0.008524, -0.989707, -0.142854]], 'translation vector': [0.252647, 0.969528, 1.633147]}\nC: {'rotation matrix': [[0.565918, -0.124531, 0.815003], [-0.824401, -0.073416, 0.561226], [-0.010056, -0.989496, -0.144211]], 'translation vector': [0.251636, 0.969331, 1.634009]}\nD: {'rotation matrix': [[0.9999988126320164, 0.0003312007428265276, -0.0004969284405179408], [-0.00033114016656371985, 0.9999998966821256, -0.0003458941517538565], [0.0004968245827711156, 0.000346552992150063, 0.9999997733502279]], 'translation vector': [5.9331917010907453e-05, -0.0008045063572443834, -0.0004101833402060384]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_142_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_142_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_142_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_142_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.566945, -0.119787, 0.815], [-0.823733, -0.07511, 0.561981], [-0.006103, -0.989954, -0.141256]], 'translation vector': [0.25398, 0.970235, 1.632712]}\nB: {'rotation matrix': [[0.566333, -0.122518, 0.81502], [-0.824133, -0.073956, 0.561548], [-0.008524, -0.989707, -0.142854]], 'translation vector': [0.252647, 0.969528, 1.633147]}\nC: {'rotation matrix': [[0.565918, -0.124531, 0.815003], [-0.824401, -0.073416, 0.561226], [-0.010056, -0.989496, -0.144211]], 'translation vector': [0.251636, 0.969331, 1.634009]}\nD: {'rotation matrix': [[0.9999988126320164, 0.0003312007428265276, -0.0004969284405179408], [-0.00033114016656371985, 0.9999998966821256, -0.0003458941517538565], [0.0004968245827711156, 0.000346552992150063, 0.9999997733502279]], 'translation vector': [5.9331917010907453e-05, -0.0008045063572443834, -0.0004101833402060384]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999807090620153, 0.004568922096108109, 0.004345106491864972], [-0.004581791622211755, 0.9999843128892885, 0.0029713844388234126], [-0.00433269576861675, -0.002991018231335416, 0.9999858202835764]], 'translation vector': [-0.011188164884389007, 0.009307427071622687, -0.0007429783939219003]}\nB: {'rotation matrix': [[-0.942483, -0.17354, 0.285674], [-0.333358, 0.550552, -0.765353], [-0.024459, -0.816564, -0.576737]], 'translation vector': [2.733535, 1.660706, 1.301168]}\nC: {'rotation matrix': [[-0.942594, -0.174193, 0.284909], [-0.333124, 0.550105, -0.765776], [-0.023337, -0.816726, -0.576554]], 'translation vector': [2.730048, 1.657302, 1.301829]}\nD: {'rotation matrix': [[-0.942586, -0.174069, 0.285013], [-0.333135, 0.550225, -0.765686], [-0.023539, -0.816672, -0.576622]], 'translation vector': [2.726519, 1.654368, 1.301906]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_143_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_143_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_143_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_143_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999807090620153, 0.004568922096108109, 0.004345106491864972], [-0.004581791622211755, 0.9999843128892885, 0.0029713844388234126], [-0.00433269576861675, -0.002991018231335416, 0.9999858202835764]], 'translation vector': [-0.011188164884389007, 0.009307427071622687, -0.0007429783939219003]}\nB: {'rotation matrix': [[-0.942483, -0.17354, 0.285674], [-0.333358, 0.550552, -0.765353], [-0.024459, -0.816564, -0.576737]], 'translation vector': [2.733535, 1.660706, 1.301168]}\nC: {'rotation matrix': [[-0.942594, -0.174193, 0.284909], [-0.333124, 0.550105, -0.765776], [-0.023337, -0.816726, -0.576554]], 'translation vector': [2.730048, 1.657302, 1.301829]}\nD: {'rotation matrix': [[-0.942586, -0.174069, 0.285013], [-0.333135, 0.550225, -0.765686], [-0.023539, -0.816672, -0.576622]], 'translation vector': [2.726519, 1.654368, 1.301906]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.662528, 0.400848, -0.632754], [0.747812, -0.402283, 0.528154], [-0.042837, -0.823097, -0.566283]], 'translation vector': [1.744816, 2.25794, 1.331918]}\nB: {'rotation matrix': [[0.662009, 0.40559, -0.630271], [0.748112, -0.408664, 0.522802], [-0.045526, -0.817613, -0.573966]], 'translation vector': [1.743048, 2.25768, 1.329749]}\nC: {'rotation matrix': [[0.6641, 0.398897, -0.632339], [0.746639, -0.397674, 0.533278], [-0.038742, -0.826279, -0.561927]], 'translation vector': [1.744615, 2.258795, 1.335923]}\nD: {'rotation matrix': [[0.9999981013423613, 0.0016775919055887754, -0.0009118672263504091], [-0.0016584483846788572, 0.999788802812158, 0.020485068642363036], [0.0009453490386347853, -0.020482492872648857, 0.9997898845593165]], 'translation vector': [0.0006281413363966593, 0.0014761974203534312, 0.005568137578716104]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_144_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_144_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_144_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_144_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.662528, 0.400848, -0.632754], [0.747812, -0.402283, 0.528154], [-0.042837, -0.823097, -0.566283]], 'translation vector': [1.744816, 2.25794, 1.331918]}\nB: {'rotation matrix': [[0.662009, 0.40559, -0.630271], [0.748112, -0.408664, 0.522802], [-0.045526, -0.817613, -0.573966]], 'translation vector': [1.743048, 2.25768, 1.329749]}\nC: {'rotation matrix': [[0.6641, 0.398897, -0.632339], [0.746639, -0.397674, 0.533278], [-0.038742, -0.826279, -0.561927]], 'translation vector': [1.744615, 2.258795, 1.335923]}\nD: {'rotation matrix': [[0.9999981013423613, 0.0016775919055887754, -0.0009118672263504091], [-0.0016584483846788572, 0.999788802812158, 0.020485068642363036], [0.0009453490386347853, -0.020482492872648857, 0.9997898845593165]], 'translation vector': [0.0006281413363966593, 0.0014761974203534312, 0.005568137578716104]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.44362, -0.475187, 0.759868], [-0.895973, 0.254861, -0.363701], [-0.020835, -0.842166, -0.538816]], 'translation vector': [2.452095, 1.901161, 1.451891]}\nB: {'rotation matrix': [[-0.440436, -0.475273, 0.761664], [-0.897497, 0.254555, -0.360142], [-0.02272, -0.84221, -0.538671]], 'translation vector': [2.449051, 1.900731, 1.449924]}\nC: {'rotation matrix': [[-0.441002, -0.475612, 0.761125], [-0.897234, 0.254511, -0.360825], [-0.022102, -0.842032, -0.538975]], 'translation vector': [2.451296, 1.899939, 1.450426]}\nD: {'rotation matrix': [[0.9999985864023682, -0.0015621221187893434, 0.0006936316269794283], [0.0015661737335896364, 0.9999849325621631, -0.005207380366478063], [-0.0006858389600734047, 0.005207931011548828, 0.9999859575854745]], 'translation vector': [-0.0017105359831024458, -0.002297103154811353, -0.000983146020886283]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_145_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_145_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_145_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_145_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.44362, -0.475187, 0.759868], [-0.895973, 0.254861, -0.363701], [-0.020835, -0.842166, -0.538816]], 'translation vector': [2.452095, 1.901161, 1.451891]}\nB: {'rotation matrix': [[-0.440436, -0.475273, 0.761664], [-0.897497, 0.254555, -0.360142], [-0.02272, -0.84221, -0.538671]], 'translation vector': [2.449051, 1.900731, 1.449924]}\nC: {'rotation matrix': [[-0.441002, -0.475612, 0.761125], [-0.897234, 0.254511, -0.360825], [-0.022102, -0.842032, -0.538975]], 'translation vector': [2.451296, 1.899939, 1.450426]}\nD: {'rotation matrix': [[0.9999985864023682, -0.0015621221187893434, 0.0006936316269794283], [0.0015661737335896364, 0.9999849325621631, -0.005207380366478063], [-0.0006858389600734047, 0.005207931011548828, 0.9999859575854745]], 'translation vector': [-0.0017105359831024458, -0.002297103154811353, -0.000983146020886283]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.648777, 0.514326, -0.560854], [0.760441, -0.465898, 0.452404], [-0.028617, -0.720006, -0.693378]], 'translation vector': [1.800914, 1.822078, 1.233863]}\nB: {'rotation matrix': [[0.644427, 0.520052, -0.560589], [0.76413, -0.465418, 0.446645], [-0.028629, -0.716192, -0.697315]], 'translation vector': [1.79848, 1.820985, 1.232666]}\nC: {'rotation matrix': [[0.9998704626137827, 0.011052401167760776, -0.011708701735332047], [-0.011032627408678441, 0.9999372608185829, 0.0017110617555067353], [0.011728123043277196, -0.001580982237636182, 0.9999298219541505]], 'translation vector': [-0.004951638312360451, 0.0003388210922784518, 0.0025384925972402606]}\nD: {'rotation matrix': [[0.639937, 0.524455, -0.56163], [0.767882, -0.464002, 0.441656], [-0.028969, -0.713897, -0.699651]], 'translation vector': [1.797021, 1.819882, 1.231178]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_146_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_146_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_146_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_146_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.648777, 0.514326, -0.560854], [0.760441, -0.465898, 0.452404], [-0.028617, -0.720006, -0.693378]], 'translation vector': [1.800914, 1.822078, 1.233863]}\nB: {'rotation matrix': [[0.644427, 0.520052, -0.560589], [0.76413, -0.465418, 0.446645], [-0.028629, -0.716192, -0.697315]], 'translation vector': [1.79848, 1.820985, 1.232666]}\nC: {'rotation matrix': [[0.9998704626137827, 0.011052401167760776, -0.011708701735332047], [-0.011032627408678441, 0.9999372608185829, 0.0017110617555067353], [0.011728123043277196, -0.001580982237636182, 0.9999298219541505]], 'translation vector': [-0.004951638312360451, 0.0003388210922784518, 0.0025384925972402606]}\nD: {'rotation matrix': [[0.639937, 0.524455, -0.56163], [0.767882, -0.464002, 0.441656], [-0.028969, -0.713897, -0.699651]], 'translation vector': [1.797021, 1.819882, 1.231178]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.480833, -0.463789, 0.74411], [-0.876135, 0.287476, -0.386968], [-0.034442, -0.838008, -0.54457]], 'translation vector': [3.084943, 2.078791, 1.469333]}\nB: {'rotation matrix': [[0.9999951018718091, -0.0022147244398398017, -0.0018850296839706259], [0.002209800973893798, 0.9999949398931387, -0.0022506347742728594], [0.0018898473296588083, 0.0022461573677036097, 0.9999958361862953]], 'translation vector': [0.004387368548260717, 1.4705105160661702e-05, 0.0008301488900060994]}\nC: {'rotation matrix': [[-0.476687, -0.464053, 0.746608], [-0.878377, 0.285219, -0.383541], [-0.034963, -0.838633, -0.543574]], 'translation vector': [3.080459, 2.078543, 1.469168]}\nD: {'rotation matrix': [[-0.479567, -0.463643, 0.745017], [-0.876821, 0.286706, -0.385985], [-0.034641, -0.838352, -0.544027]], 'translation vector': [3.083795, 2.079285, 1.469908]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_147_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_147_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_147_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_147_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.480833, -0.463789, 0.74411], [-0.876135, 0.287476, -0.386968], [-0.034442, -0.838008, -0.54457]], 'translation vector': [3.084943, 2.078791, 1.469333]}\nB: {'rotation matrix': [[0.9999951018718091, -0.0022147244398398017, -0.0018850296839706259], [0.002209800973893798, 0.9999949398931387, -0.0022506347742728594], [0.0018898473296588083, 0.0022461573677036097, 0.9999958361862953]], 'translation vector': [0.004387368548260717, 1.4705105160661702e-05, 0.0008301488900060994]}\nC: {'rotation matrix': [[-0.476687, -0.464053, 0.746608], [-0.878377, 0.285219, -0.383541], [-0.034963, -0.838633, -0.543574]], 'translation vector': [3.080459, 2.078543, 1.469168]}\nD: {'rotation matrix': [[-0.479567, -0.463643, 0.745017], [-0.876821, 0.286706, -0.385985], [-0.034641, -0.838352, -0.544027]], 'translation vector': [3.083795, 2.079285, 1.469908]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.724797, -0.022386, -0.688599], [0.687785, -0.034918, 0.725075], [-0.040276, -0.999139, -0.009911]], 'translation vector': [1.871804, 0.814995, 1.597738]}\nB: {'rotation matrix': [[0.729664, -0.019712, -0.683522], [0.682722, -0.035273, 0.729827], [-0.038496, -0.999183, -0.01228]], 'translation vector': [1.870321, 0.812422, 1.590842]}\nC: {'rotation matrix': [[0.9999971996131989, 0.0007346987095039795, -0.0017367305867328272], [-0.0007296724426740893, 0.9999944712211791, 0.003354984500413017], [0.0017384108444949038, -0.003353839188726123, 0.9999931577143994]], 'translation vector': [-0.0004548504518708807, 0.001951786856664972, -7.749986575322776e-05]}\nD: {'rotation matrix': [[0.728234, -0.022145, -0.684971], [0.684198, -0.033912, 0.728508], [-0.039361, -0.99918, -0.009544]], 'translation vector': [1.869489, 0.812101, 1.591189]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_148_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_148_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_148_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_148_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.724797, -0.022386, -0.688599], [0.687785, -0.034918, 0.725075], [-0.040276, -0.999139, -0.009911]], 'translation vector': [1.871804, 0.814995, 1.597738]}\nB: {'rotation matrix': [[0.729664, -0.019712, -0.683522], [0.682722, -0.035273, 0.729827], [-0.038496, -0.999183, -0.01228]], 'translation vector': [1.870321, 0.812422, 1.590842]}\nC: {'rotation matrix': [[0.9999971996131989, 0.0007346987095039795, -0.0017367305867328272], [-0.0007296724426740893, 0.9999944712211791, 0.003354984500413017], [0.0017384108444949038, -0.003353839188726123, 0.9999931577143994]], 'translation vector': [-0.0004548504518708807, 0.001951786856664972, -7.749986575322776e-05]}\nD: {'rotation matrix': [[0.728234, -0.022145, -0.684971], [0.684198, -0.033912, 0.728508], [-0.039361, -0.99918, -0.009544]], 'translation vector': [1.869489, 0.812101, 1.591189]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999774991279762, 0.0031690326046340087, -0.005996753212157376], [-0.003090362324076843, 0.9999123878108386, 0.012868971987653289], [0.006038036583570517, -0.012849517542798453, 0.9998986268025651]], 'translation vector': [-0.00016965780714706113, -0.008841569485431133, 0.004505805451807898]}\nB: {'rotation matrix': [[0.651481, -0.368876, 0.66295], [-0.758449, -0.337487, 0.557546], [0.018072, -0.866045, -0.49964]], 'translation vector': [2.471969, 4.600353, 1.449958]}\nC: {'rotation matrix': [[0.655694, -0.362412, 0.662362], [-0.754768, -0.337631, 0.562433], [0.019802, -0.868713, -0.49492]], 'translation vector': [2.472568, 4.599315, 1.447954]}\nD: {'rotation matrix': [[0.660006, -0.356371, 0.661356], [-0.750952, -0.338178, 0.567192], [0.021525, -0.870997, -0.490817]], 'translation vector': [2.470351, 4.598146, 1.447521]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_149_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_149_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_149_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_149_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999774991279762, 0.0031690326046340087, -0.005996753212157376], [-0.003090362324076843, 0.9999123878108386, 0.012868971987653289], [0.006038036583570517, -0.012849517542798453, 0.9998986268025651]], 'translation vector': [-0.00016965780714706113, -0.008841569485431133, 0.004505805451807898]}\nB: {'rotation matrix': [[0.651481, -0.368876, 0.66295], [-0.758449, -0.337487, 0.557546], [0.018072, -0.866045, -0.49964]], 'translation vector': [2.471969, 4.600353, 1.449958]}\nC: {'rotation matrix': [[0.655694, -0.362412, 0.662362], [-0.754768, -0.337631, 0.562433], [0.019802, -0.868713, -0.49492]], 'translation vector': [2.472568, 4.599315, 1.447954]}\nD: {'rotation matrix': [[0.660006, -0.356371, 0.661356], [-0.750952, -0.338178, 0.567192], [0.021525, -0.870997, -0.490817]], 'translation vector': [2.470351, 4.598146, 1.447521]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.550599, -0.608246, 0.571732], [-0.834661, 0.412205, -0.365279], [-0.013491, -0.678325, -0.734639]], 'translation vector': [2.153644, 1.764514, 1.342866]}\nB: {'rotation matrix': [[0.9999831845983815, -0.004759897354970956, 0.0032519818043716545], [0.004774936203352942, 0.9999789289359345, -0.004542082720936493], [-0.003229136166379075, 0.004558818034209968, 0.9999846215935988]], 'translation vector': [0.0033377456840164577, 0.0021763424534348985, -0.0009933558524138353]}\nC: {'rotation matrix': [[-0.553936, -0.603859, 0.573158], [-0.832399, 0.415212, -0.36703], [-0.016348, -0.680407, -0.732652]], 'translation vector': [2.15044, 1.76409, 1.342895]}\nD: {'rotation matrix': [[-0.551929, -0.606401, 0.572409], [-0.833765, 0.413226, -0.366169], [-0.014489, -0.679354, -0.733668]], 'translation vector': [2.152355, 1.764444, 1.342815]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_150_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_150_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_150_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_150_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.550599, -0.608246, 0.571732], [-0.834661, 0.412205, -0.365279], [-0.013491, -0.678325, -0.734639]], 'translation vector': [2.153644, 1.764514, 1.342866]}\nB: {'rotation matrix': [[0.9999831845983815, -0.004759897354970956, 0.0032519818043716545], [0.004774936203352942, 0.9999789289359345, -0.004542082720936493], [-0.003229136166379075, 0.004558818034209968, 0.9999846215935988]], 'translation vector': [0.0033377456840164577, 0.0021763424534348985, -0.0009933558524138353]}\nC: {'rotation matrix': [[-0.553936, -0.603859, 0.573158], [-0.832399, 0.415212, -0.36703], [-0.016348, -0.680407, -0.732652]], 'translation vector': [2.15044, 1.76409, 1.342895]}\nD: {'rotation matrix': [[-0.551929, -0.606401, 0.572409], [-0.833765, 0.413226, -0.366169], [-0.014489, -0.679354, -0.733668]], 'translation vector': [2.152355, 1.764444, 1.342815]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.254539, -0.436075, 0.863162], [-0.966632, 0.141348, -0.213642], [-0.028842, -0.88874, -0.457503]], 'translation vector': [1.735428, 0.748356, 1.43337]}\nB: {'rotation matrix': [[-0.254681, -0.434936, 0.863695], [-0.966604, 0.140846, -0.2141], [-0.028528, -0.889378, -0.456282]], 'translation vector': [1.735372, 0.748905, 1.433089]}\nC: {'rotation matrix': [[1.0000001555675329, -0.0009323657310693132, 0.0004792288755131117], [0.0009313044295569888, 0.9999972868981549, 0.0021526068874492825], [-0.0004812492477208415, -0.0021517811624316304, 0.9999974478268276]], 'translation vector': [0.0025109364715583116, 0.0011773606935274739, 0.0008952278670837366]}\nD: {'rotation matrix': [[-0.254466, -0.434667, 0.863893], [-0.966638, 0.141384, -0.213593], [-0.029299, -0.889424, -0.456143]], 'translation vector': [1.735598, 0.749181, 1.433436]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_151_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_151_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_151_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_151_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.254539, -0.436075, 0.863162], [-0.966632, 0.141348, -0.213642], [-0.028842, -0.88874, -0.457503]], 'translation vector': [1.735428, 0.748356, 1.43337]}\nB: {'rotation matrix': [[-0.254681, -0.434936, 0.863695], [-0.966604, 0.140846, -0.2141], [-0.028528, -0.889378, -0.456282]], 'translation vector': [1.735372, 0.748905, 1.433089]}\nC: {'rotation matrix': [[1.0000001555675329, -0.0009323657310693132, 0.0004792288755131117], [0.0009313044295569888, 0.9999972868981549, 0.0021526068874492825], [-0.0004812492477208415, -0.0021517811624316304, 0.9999974478268276]], 'translation vector': [0.0025109364715583116, 0.0011773606935274739, 0.0008952278670837366]}\nD: {'rotation matrix': [[-0.254466, -0.434667, 0.863893], [-0.966638, 0.141384, -0.213593], [-0.029299, -0.889424, -0.456143]], 'translation vector': [1.735598, 0.749181, 1.433436]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.874972, 0.120483, -0.468943], [0.467945, 0.459094, -0.755156], [0.124305, -0.88018, -0.458074]], 'translation vector': [3.924764, 3.210204, 1.74232]}\nB: {'rotation matrix': [[-0.872887, 0.124749, -0.471706], [0.47258, 0.456684, -0.75373], [0.121394, -0.880839, -0.457587]], 'translation vector': [3.924155, 3.192614, 1.742181]}\nC: {'rotation matrix': [[-0.873832, 0.122242, -0.470612], [0.470279, 0.458348, -0.754158], [0.123514, -0.880326, -0.458007]], 'translation vector': [3.924731, 3.201921, 1.742944]}\nD: {'rotation matrix': [[0.9999981203399105, -2.162890380847432e-05, -0.0011856852248069943], [2.6074892574446623e-05, 0.9999907421564089, 0.004166234818762547], [0.0011853825032994, -0.0041669736288708105, 0.9999895516522684]], 'translation vector': [0.0031018447373007962, -0.004160693298826068, -0.00448172332630925]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_152_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_152_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_152_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_152_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.874972, 0.120483, -0.468943], [0.467945, 0.459094, -0.755156], [0.124305, -0.88018, -0.458074]], 'translation vector': [3.924764, 3.210204, 1.74232]}\nB: {'rotation matrix': [[-0.872887, 0.124749, -0.471706], [0.47258, 0.456684, -0.75373], [0.121394, -0.880839, -0.457587]], 'translation vector': [3.924155, 3.192614, 1.742181]}\nC: {'rotation matrix': [[-0.873832, 0.122242, -0.470612], [0.470279, 0.458348, -0.754158], [0.123514, -0.880326, -0.458007]], 'translation vector': [3.924731, 3.201921, 1.742944]}\nD: {'rotation matrix': [[0.9999981203399105, -2.162890380847432e-05, -0.0011856852248069943], [2.6074892574446623e-05, 0.9999907421564089, 0.004166234818762547], [0.0011853825032994, -0.0041669736288708105, 0.9999895516522684]], 'translation vector': [0.0031018447373007962, -0.004160693298826068, -0.00448172332630925]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.910706, 0.180669, -0.371448], [0.412445, 0.446604, -0.793999], [0.022439, -0.876301, -0.481241]], 'translation vector': [3.200821, 1.957629, 1.277707]}\nB: {'rotation matrix': [[-0.909073, 0.181004, -0.375266], [0.415983, 0.444783, -0.793175], [0.023344, -0.877158, -0.479635]], 'translation vector': [3.199567, 1.957217, 1.278564]}\nC: {'rotation matrix': [[-0.912991, 0.180032, -0.36611], [0.407432, 0.448869, -0.795309], [0.021154, -0.875275, -0.483163]], 'translation vector': [3.201129, 1.957814, 1.275703]}\nD: {'rotation matrix': [[0.9998091200876347, 0.0024899817556151226, -0.01932364538042797], [-0.0024534091295022355, 0.9999947392396931, 0.0019198938596762963], [0.019328984816227378, -0.0018724870057808746, 0.9998116886101109]], 'translation vector': [-0.0018727616018998638, 0.007005445282938005, 8.97167203275373e-05]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_153_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_153_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_153_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_153_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.910706, 0.180669, -0.371448], [0.412445, 0.446604, -0.793999], [0.022439, -0.876301, -0.481241]], 'translation vector': [3.200821, 1.957629, 1.277707]}\nB: {'rotation matrix': [[-0.909073, 0.181004, -0.375266], [0.415983, 0.444783, -0.793175], [0.023344, -0.877158, -0.479635]], 'translation vector': [3.199567, 1.957217, 1.278564]}\nC: {'rotation matrix': [[-0.912991, 0.180032, -0.36611], [0.407432, 0.448869, -0.795309], [0.021154, -0.875275, -0.483163]], 'translation vector': [3.201129, 1.957814, 1.275703]}\nD: {'rotation matrix': [[0.9998091200876347, 0.0024899817556151226, -0.01932364538042797], [-0.0024534091295022355, 0.9999947392396931, 0.0019198938596762963], [0.019328984816227378, -0.0018724870057808746, 0.9998116886101109]], 'translation vector': [-0.0018727616018998638, 0.007005445282938005, 8.97167203275373e-05]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999837026106017, -0.005604330268430811, -0.00017160014562389917], [0.005604883614299803, 0.9999826757832918, 0.0019021058633347495], [0.00016097085173832394, -0.0019036155522551726, 0.9999985288928479]], 'translation vector': [-0.0002532483433466126, 0.009030133518173555, 0.0039788864378584865]}\nB: {'rotation matrix': [[-0.221399, -0.409647, 0.88497], [-0.971033, 0.176243, -0.161347], [-0.089875, -0.895057, -0.436801]], 'translation vector': [2.157726, 10.114248, 1.730212]}\nC: {'rotation matrix': [[-0.233773, -0.418838, 0.877454], [-0.967259, 0.191883, -0.166106], [-0.098797, -0.887556, -0.449982]], 'translation vector': [2.163177, 10.11361, 1.729991]}\nD: {'rotation matrix': [[-0.208812, -0.406957, 0.88926], [-0.974382, 0.164243, -0.153636], [-0.083532, -0.898561, -0.430827]], 'translation vector': [2.154821, 10.118629, 1.726458]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_154_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_154_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_154_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_154_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999837026106017, -0.005604330268430811, -0.00017160014562389917], [0.005604883614299803, 0.9999826757832918, 0.0019021058633347495], [0.00016097085173832394, -0.0019036155522551726, 0.9999985288928479]], 'translation vector': [-0.0002532483433466126, 0.009030133518173555, 0.0039788864378584865]}\nB: {'rotation matrix': [[-0.221399, -0.409647, 0.88497], [-0.971033, 0.176243, -0.161347], [-0.089875, -0.895057, -0.436801]], 'translation vector': [2.157726, 10.114248, 1.730212]}\nC: {'rotation matrix': [[-0.233773, -0.418838, 0.877454], [-0.967259, 0.191883, -0.166106], [-0.098797, -0.887556, -0.449982]], 'translation vector': [2.163177, 10.11361, 1.729991]}\nD: {'rotation matrix': [[-0.208812, -0.406957, 0.88926], [-0.974382, 0.164243, -0.153636], [-0.083532, -0.898561, -0.430827]], 'translation vector': [2.154821, 10.118629, 1.726458]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.864148, -0.19236, 0.465022], [-0.502138, -0.268523, 0.822042], [-0.033259, -0.943871, -0.328635]], 'translation vector': [3.016374, 2.015361, 1.429191]}\nB: {'rotation matrix': [[0.864117, -0.192314, 0.465099], [-0.502115, -0.266283, 0.822784], [-0.034385, -0.944515, -0.326663]], 'translation vector': [3.015528, 2.015384, 1.428328]}\nC: {'rotation matrix': [[0.864639, -0.19262, 0.464001], [-0.501175, -0.266422, 0.823312], [-0.034966, -0.944414, -0.326895]], 'translation vector': [3.015996, 2.015925, 1.430969]}\nD: {'rotation matrix': [[0.9999953542146168, 0.0030947830980374525, -0.0008131951628852412], [-0.0030994452771746766, 0.999974002426472, -0.006530521364187943], [0.00079388588123918, 0.0065324457136649635, 0.999978487244639]], 'translation vector': [-0.004468736350602409, -0.006227529584318603, -8.95755650023311e-05]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_155_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_155_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_155_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_155_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.864148, -0.19236, 0.465022], [-0.502138, -0.268523, 0.822042], [-0.033259, -0.943871, -0.328635]], 'translation vector': [3.016374, 2.015361, 1.429191]}\nB: {'rotation matrix': [[0.864117, -0.192314, 0.465099], [-0.502115, -0.266283, 0.822784], [-0.034385, -0.944515, -0.326663]], 'translation vector': [3.015528, 2.015384, 1.428328]}\nC: {'rotation matrix': [[0.864639, -0.19262, 0.464001], [-0.501175, -0.266422, 0.823312], [-0.034966, -0.944414, -0.326895]], 'translation vector': [3.015996, 2.015925, 1.430969]}\nD: {'rotation matrix': [[0.9999953542146168, 0.0030947830980374525, -0.0008131951628852412], [-0.0030994452771746766, 0.999974002426472, -0.006530521364187943], [0.00079388588123918, 0.0065324457136649635, 0.999978487244639]], 'translation vector': [-0.004468736350602409, -0.006227529584318603, -8.95755650023311e-05]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[1.0000001305586184, 4.504585202989606e-05, -0.0008677063367108602], [-4.562855519759043e-05, 0.9999983740715708, -0.001562168642633918], [0.0008668198225227341, 0.0015626467626293078, 0.9999978423516577]], 'translation vector': [0.004048003920170018, -0.000314296777893075, -0.001713133752151652]}\nB: {'rotation matrix': [[0.932237, 0.077212, -0.353515], [0.361617, -0.233791, 0.902538], [-0.012962, -0.969216, -0.24587]], 'translation vector': [5.874094, 3.546493, 1.351525]}\nC: {'rotation matrix': [[0.932237, 0.075134, -0.353962], [0.361548, -0.233262, 0.902703], [-0.014743, -0.969507, -0.24462]], 'translation vector': [5.877609, 3.546074, 1.353866]}\nD: {'rotation matrix': [[0.932245, 0.073757, -0.354232], [0.36147, -0.233417, 0.902694], [-0.016104, -0.969576, -0.244262]], 'translation vector': [5.878981, 3.545327, 1.355029]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_156_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_156_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_156_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_156_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[1.0000001305586184, 4.504585202989606e-05, -0.0008677063367108602], [-4.562855519759043e-05, 0.9999983740715708, -0.001562168642633918], [0.0008668198225227341, 0.0015626467626293078, 0.9999978423516577]], 'translation vector': [0.004048003920170018, -0.000314296777893075, -0.001713133752151652]}\nB: {'rotation matrix': [[0.932237, 0.077212, -0.353515], [0.361617, -0.233791, 0.902538], [-0.012962, -0.969216, -0.24587]], 'translation vector': [5.874094, 3.546493, 1.351525]}\nC: {'rotation matrix': [[0.932237, 0.075134, -0.353962], [0.361548, -0.233262, 0.902703], [-0.014743, -0.969507, -0.24462]], 'translation vector': [5.877609, 3.546074, 1.353866]}\nD: {'rotation matrix': [[0.932245, 0.073757, -0.354232], [0.36147, -0.233417, 0.902694], [-0.016104, -0.969576, -0.244262]], 'translation vector': [5.878981, 3.545327, 1.355029]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.967201, -0.070709, 0.243972], [-0.252115, 0.384385, -0.88808], [-0.030984, -0.920461, -0.389605]], 'translation vector': [2.768098, 4.614564, 1.418844]}\nB: {'rotation matrix': [[-0.968215, -0.068836, 0.240461], [-0.248279, 0.380909, -0.890655], [-0.030285, -0.922047, -0.385893]], 'translation vector': [2.770223, 4.618487, 1.418033]}\nC: {'rotation matrix': [[0.9999417292568685, -0.00016387346525461165, 0.010781387930699021], [0.00016087662233447972, 0.9999998236818622, 0.00023678654461243325], [-0.010781286291867453, -0.000235115727098794, 0.9999413646146618]], 'translation vector': [-0.004146218083109776, -0.009777600200150782, -9.031272009885072e-05]}\nD: {'rotation matrix': [[-0.966004, -0.071389, 0.248475], [-0.25638, 0.388148, -0.885218], [-0.03325, -0.918828, -0.393256]], 'translation vector': [2.766369, 4.610029, 1.423364]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_157_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_157_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_157_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_157_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.967201, -0.070709, 0.243972], [-0.252115, 0.384385, -0.88808], [-0.030984, -0.920461, -0.389605]], 'translation vector': [2.768098, 4.614564, 1.418844]}\nB: {'rotation matrix': [[-0.968215, -0.068836, 0.240461], [-0.248279, 0.380909, -0.890655], [-0.030285, -0.922047, -0.385893]], 'translation vector': [2.770223, 4.618487, 1.418033]}\nC: {'rotation matrix': [[0.9999417292568685, -0.00016387346525461165, 0.010781387930699021], [0.00016087662233447972, 0.9999998236818622, 0.00023678654461243325], [-0.010781286291867453, -0.000235115727098794, 0.9999413646146618]], 'translation vector': [-0.004146218083109776, -0.009777600200150782, -9.031272009885072e-05]}\nD: {'rotation matrix': [[-0.966004, -0.071389, 0.248475], [-0.25638, 0.388148, -0.885218], [-0.03325, -0.918828, -0.393256]], 'translation vector': [2.766369, 4.610029, 1.423364]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.819175, -0.184232, 0.543149], [-0.572951, -0.305906, 0.760361], [0.02607, -0.934066, -0.356147]], 'translation vector': [4.417876, 1.783865, 1.2754]}\nB: {'rotation matrix': [[0.815086, -0.186535, 0.548488], [-0.578729, -0.305625, 0.756086], [0.026595, -0.933701, -0.357064]], 'translation vector': [4.412413, 1.788676, 1.273151]}\nC: {'rotation matrix': [[0.9999460053456457, -0.005013531268923329, 0.00905468563745482], [0.0050087072013681256, 0.9999874429708866, 0.000635311021125049], [-0.009056848323318739, -0.0005890721337560823, 0.9999585496849335]], 'translation vector': [-0.01186208886847595, 0.011040583723211927, 0.005770402802990571]}\nD: {'rotation matrix': [[0.823616, -0.181983, 0.537158], [-0.566609, -0.305313, 0.765336], [0.024723, -0.934701, -0.354574]], 'translation vector': [4.422497, 1.777795, 1.277376]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_158_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_158_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_158_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_158_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.819175, -0.184232, 0.543149], [-0.572951, -0.305906, 0.760361], [0.02607, -0.934066, -0.356147]], 'translation vector': [4.417876, 1.783865, 1.2754]}\nB: {'rotation matrix': [[0.815086, -0.186535, 0.548488], [-0.578729, -0.305625, 0.756086], [0.026595, -0.933701, -0.357064]], 'translation vector': [4.412413, 1.788676, 1.273151]}\nC: {'rotation matrix': [[0.9999460053456457, -0.005013531268923329, 0.00905468563745482], [0.0050087072013681256, 0.9999874429708866, 0.000635311021125049], [-0.009056848323318739, -0.0005890721337560823, 0.9999585496849335]], 'translation vector': [-0.01186208886847595, 0.011040583723211927, 0.005770402802990571]}\nD: {'rotation matrix': [[0.823616, -0.181983, 0.537158], [-0.566609, -0.305313, 0.765336], [0.024723, -0.934701, -0.354574]], 'translation vector': [4.422497, 1.777795, 1.277376]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9994834257163207, -0.009826144818556364, 0.03061241068052498], [0.009193271124449974, 0.9997423555682264, 0.020759381716764332], [-0.0308087787211077, -0.020466954157546582, 0.999315737926551]], 'translation vector': [-0.012172691673165703, -0.014778681947341665, 0.009780168112213383]}\nB: {'rotation matrix': [[0.091644, -0.414787, 0.905292], [-0.995361, -0.064895, 0.071028], [0.029288, -0.907601, -0.418811]], 'translation vector': [1.315562, 0.832314, 1.493138]}\nC: {'rotation matrix': [[0.099917, -0.418908, 0.902515], [-0.994362, -0.074403, 0.07555], [0.035502, -0.904975, -0.42398]], 'translation vector': [1.316564, 0.827844, 1.497329]}\nD: {'rotation matrix': [[0.095483, -0.419292, 0.902816], [-0.994923, -0.069178, 0.073096], [0.031806, -0.905212, -0.423769]], 'translation vector': [1.317067, 0.829593, 1.4954]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_159_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_159_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_159_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_159_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9994834257163207, -0.009826144818556364, 0.03061241068052498], [0.009193271124449974, 0.9997423555682264, 0.020759381716764332], [-0.0308087787211077, -0.020466954157546582, 0.999315737926551]], 'translation vector': [-0.012172691673165703, -0.014778681947341665, 0.009780168112213383]}\nB: {'rotation matrix': [[0.091644, -0.414787, 0.905292], [-0.995361, -0.064895, 0.071028], [0.029288, -0.907601, -0.418811]], 'translation vector': [1.315562, 0.832314, 1.493138]}\nC: {'rotation matrix': [[0.099917, -0.418908, 0.902515], [-0.994362, -0.074403, 0.07555], [0.035502, -0.904975, -0.42398]], 'translation vector': [1.316564, 0.827844, 1.497329]}\nD: {'rotation matrix': [[0.095483, -0.419292, 0.902816], [-0.994923, -0.069178, 0.073096], [0.031806, -0.905212, -0.423769]], 'translation vector': [1.317067, 0.829593, 1.4954]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.529968, 0.414216, -0.739972], [0.844868, 0.182762, -0.502789], [-0.073025, -0.891641, -0.446816]], 'translation vector': [5.418643, 4.410617, 1.386009]}\nB: {'rotation matrix': [[-0.531013, 0.418177, -0.736989], [0.843374, 0.176517, -0.507507], [-0.082137, -0.89105, -0.446413]], 'translation vector': [5.416763, 4.405288, 1.382813]}\nC: {'rotation matrix': [[0.9999262982512661, -0.011126048765088865, -0.004724929479929227], [0.011121653443920318, 0.9999373200698624, -0.0008601073344245507], [0.00473500376540592, 0.0008076436796648745, 0.9999882661936769]], 'translation vector': [-0.020480989578110398, -0.004401497485728045, 0.008145336008434256]}\nD: {'rotation matrix': [[-0.533157, 0.409147, -0.740501], [0.84318, 0.185365, -0.504666], [-0.06922, -0.893442, -0.443813]], 'translation vector': [5.417671, 4.419961, 1.384383]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_160_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_160_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_160_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_160_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.529968, 0.414216, -0.739972], [0.844868, 0.182762, -0.502789], [-0.073025, -0.891641, -0.446816]], 'translation vector': [5.418643, 4.410617, 1.386009]}\nB: {'rotation matrix': [[-0.531013, 0.418177, -0.736989], [0.843374, 0.176517, -0.507507], [-0.082137, -0.89105, -0.446413]], 'translation vector': [5.416763, 4.405288, 1.382813]}\nC: {'rotation matrix': [[0.9999262982512661, -0.011126048765088865, -0.004724929479929227], [0.011121653443920318, 0.9999373200698624, -0.0008601073344245507], [0.00473500376540592, 0.0008076436796648745, 0.9999882661936769]], 'translation vector': [-0.020480989578110398, -0.004401497485728045, 0.008145336008434256]}\nD: {'rotation matrix': [[-0.533157, 0.409147, -0.740501], [0.84318, 0.185365, -0.504666], [-0.06922, -0.893442, -0.443813]], 'translation vector': [5.417671, 4.419961, 1.384383]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.848714, 0.230926, -0.475771], [0.528497, 0.337392, -0.77901], [-0.019373, -0.912601, -0.408393]], 'translation vector': [1.792868, 5.329395, 1.618046]}\nB: {'rotation matrix': [[-0.84982, 0.23191, -0.473312], [0.526645, 0.337444, -0.780241], [-0.021229, -0.912332, -0.408901]], 'translation vector': [1.792819, 5.327111, 1.618396]}\nC: {'rotation matrix': [[-0.847697, 0.231565, -0.477271], [0.530179, 0.339488, -0.776955], [-0.017888, -0.911661, -0.410554]], 'translation vector': [1.79081, 5.325803, 1.623639]}\nD: {'rotation matrix': [[0.9999931647889151, 0.002636603414451914, -0.0022507832348392875], [-0.002639482011584797, 0.9999963226575643, -0.0013481976836917885], [0.002247569136725343, 0.001353829445398431, 0.9999964854536705]], 'translation vector': [-0.00651758527214108, -0.0013521488456044173, 0.0015986017122768814]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_161_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_161_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_161_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_161_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.848714, 0.230926, -0.475771], [0.528497, 0.337392, -0.77901], [-0.019373, -0.912601, -0.408393]], 'translation vector': [1.792868, 5.329395, 1.618046]}\nB: {'rotation matrix': [[-0.84982, 0.23191, -0.473312], [0.526645, 0.337444, -0.780241], [-0.021229, -0.912332, -0.408901]], 'translation vector': [1.792819, 5.327111, 1.618396]}\nC: {'rotation matrix': [[-0.847697, 0.231565, -0.477271], [0.530179, 0.339488, -0.776955], [-0.017888, -0.911661, -0.410554]], 'translation vector': [1.79081, 5.325803, 1.623639]}\nD: {'rotation matrix': [[0.9999931647889151, 0.002636603414451914, -0.0022507832348392875], [-0.002639482011584797, 0.9999963226575643, -0.0013481976836917885], [0.002247569136725343, 0.001353829445398431, 0.9999964854536705]], 'translation vector': [-0.00651758527214108, -0.0013521488456044173, 0.0015986017122768814]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999401570739126, -0.0046057655246039214, 0.009916971929525087], [0.004585227566153826, 0.9999870493451988, 0.0021285393012493415], [-0.009927494824793211, -0.0020825415412263123, 0.9999492671696912]], 'translation vector': [-0.008397334377028054, -0.00983275627665292, -0.005241897912080518]}\nB: {'rotation matrix': [[0.979087, -0.093288, 0.180791], [-0.203431, -0.440264, 0.874519], [-0.001987, -0.893009, -0.450035]], 'translation vector': [1.973386, 0.601511, 1.693802]}\nC: {'rotation matrix': [[0.980067, -0.092864, 0.175631], [-0.198651, -0.445785, 0.872819], [-0.002761, -0.89031, -0.455347]], 'translation vector': [1.967233, 0.628282, 1.699375]}\nD: {'rotation matrix': [[0.978621, -0.096572, 0.18159], [-0.205599, -0.435758, 0.876267], [-0.005494, -0.894868, -0.446298]], 'translation vector': [1.993303, 0.583546, 1.694907]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_162_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_162_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_162_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_162_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999401570739126, -0.0046057655246039214, 0.009916971929525087], [0.004585227566153826, 0.9999870493451988, 0.0021285393012493415], [-0.009927494824793211, -0.0020825415412263123, 0.9999492671696912]], 'translation vector': [-0.008397334377028054, -0.00983275627665292, -0.005241897912080518]}\nB: {'rotation matrix': [[0.979087, -0.093288, 0.180791], [-0.203431, -0.440264, 0.874519], [-0.001987, -0.893009, -0.450035]], 'translation vector': [1.973386, 0.601511, 1.693802]}\nC: {'rotation matrix': [[0.980067, -0.092864, 0.175631], [-0.198651, -0.445785, 0.872819], [-0.002761, -0.89031, -0.455347]], 'translation vector': [1.967233, 0.628282, 1.699375]}\nD: {'rotation matrix': [[0.978621, -0.096572, 0.18159], [-0.205599, -0.435758, 0.876267], [-0.005494, -0.894868, -0.446298]], 'translation vector': [1.993303, 0.583546, 1.694907]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.170548, -0.038579, 0.984594], [-0.984686, -0.02999, -0.171739], [0.036154, -0.998805, -0.032873]], 'translation vector': [3.062037, 2.44503, 1.503093]}\nB: {'rotation matrix': [[-0.179914, -0.049674, 0.982427], [-0.983099, -0.025325, -0.181318], [0.033887, -0.998444, -0.044279]], 'translation vector': [3.062168, 2.448737, 1.498158]}\nC: {'rotation matrix': [[-0.175595, -0.045495, 0.983411], [-0.983814, -0.028148, -0.176969], [0.035732, -0.998568, -0.039815]], 'translation vector': [3.062089, 2.446902, 1.500845]}\nD: {'rotation matrix': [[0.9999851894661843, 0.0005818244206442844, -0.005337253553840107], [-0.0006352685106689393, 0.9999500541572905, -0.009997050540678364], [0.005330302626435351, 0.010000486202961777, 0.9999353803458123]], 'translation vector': [0.013561096331675682, -0.004517035589624685, -0.0041143791607543]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_163_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_163_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_163_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_163_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.170548, -0.038579, 0.984594], [-0.984686, -0.02999, -0.171739], [0.036154, -0.998805, -0.032873]], 'translation vector': [3.062037, 2.44503, 1.503093]}\nB: {'rotation matrix': [[-0.179914, -0.049674, 0.982427], [-0.983099, -0.025325, -0.181318], [0.033887, -0.998444, -0.044279]], 'translation vector': [3.062168, 2.448737, 1.498158]}\nC: {'rotation matrix': [[-0.175595, -0.045495, 0.983411], [-0.983814, -0.028148, -0.176969], [0.035732, -0.998568, -0.039815]], 'translation vector': [3.062089, 2.446902, 1.500845]}\nD: {'rotation matrix': [[0.9999851894661843, 0.0005818244206442844, -0.005337253553840107], [-0.0006352685106689393, 0.9999500541572905, -0.009997050540678364], [0.005330302626435351, 0.010000486202961777, 0.9999353803458123]], 'translation vector': [0.013561096331675682, -0.004517035589624685, -0.0041143791607543]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.879731, -0.18442, 0.43825], [-0.471339, -0.216982, 0.854844], [-0.062558, -0.958597, -0.27781]], 'translation vector': [1.012821, 1.289106, 1.470609]}\nB: {'rotation matrix': [[0.877414, -0.186393, 0.442044], [-0.476234, -0.227312, 0.84943], [-0.057846, -0.955818, -0.288213]], 'translation vector': [1.033287, 1.302455, 1.466311]}\nC: {'rotation matrix': [[0.999991817168325, 0.002932358485082305, -0.002640226065149888], [-0.0029080462382595554, 0.9999549882789169, 0.009034252562416854], [0.0026665546966547606, -0.009026772459937056, 0.9999556430330881]], 'translation vector': [0.005120345387922942, -0.0015772155749180783, 0.009569803755594242]}\nD: {'rotation matrix': [[0.878466, -0.185862, 0.440175], [-0.473882, -0.221089, 0.852382], [-0.061107, -0.957379, -0.282296]], 'translation vector': [1.023458, 1.295782, 1.469602]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_164_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_164_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_164_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_164_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.879731, -0.18442, 0.43825], [-0.471339, -0.216982, 0.854844], [-0.062558, -0.958597, -0.27781]], 'translation vector': [1.012821, 1.289106, 1.470609]}\nB: {'rotation matrix': [[0.877414, -0.186393, 0.442044], [-0.476234, -0.227312, 0.84943], [-0.057846, -0.955818, -0.288213]], 'translation vector': [1.033287, 1.302455, 1.466311]}\nC: {'rotation matrix': [[0.999991817168325, 0.002932358485082305, -0.002640226065149888], [-0.0029080462382595554, 0.9999549882789169, 0.009034252562416854], [0.0026665546966547606, -0.009026772459937056, 0.9999556430330881]], 'translation vector': [0.005120345387922942, -0.0015772155749180783, 0.009569803755594242]}\nD: {'rotation matrix': [[0.878466, -0.185862, 0.440175], [-0.473882, -0.221089, 0.852382], [-0.061107, -0.957379, -0.282296]], 'translation vector': [1.023458, 1.295782, 1.469602]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.306256, 0.214312, -0.927512], [0.951867, -0.081783, 0.295401], [-0.012547, -0.973336, -0.229043]], 'translation vector': [3.740017, 1.664374, 1.453227]}\nB: {'rotation matrix': [[0.304194, 0.215718, -0.927864], [0.952563, -0.078625, 0.294012], [-0.009529, -0.973285, -0.229402]], 'translation vector': [3.747529, 1.6658, 1.453625]}\nC: {'rotation matrix': [[0.9998537516460376, 0.013008935130727867, -0.011104836010819949], [-0.013009085999586367, 0.9999155647701683, 0.00015274967336381323], [0.011105421497037882, -8.408899546142835e-06, 0.9999381123179228]], 'translation vector': [0.00936290533716333, 0.003069967953460928, -0.010760020039624951]}\nD: {'rotation matrix': [[0.309341, 0.212762, -0.926844], [0.950827, -0.084926, 0.297851], [-0.015342, -0.973406, -0.228571]], 'translation vector': [3.731516, 1.660707, 1.454311]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_165_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_165_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_165_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_165_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.306256, 0.214312, -0.927512], [0.951867, -0.081783, 0.295401], [-0.012547, -0.973336, -0.229043]], 'translation vector': [3.740017, 1.664374, 1.453227]}\nB: {'rotation matrix': [[0.304194, 0.215718, -0.927864], [0.952563, -0.078625, 0.294012], [-0.009529, -0.973285, -0.229402]], 'translation vector': [3.747529, 1.6658, 1.453625]}\nC: {'rotation matrix': [[0.9998537516460376, 0.013008935130727867, -0.011104836010819949], [-0.013009085999586367, 0.9999155647701683, 0.00015274967336381323], [0.011105421497037882, -8.408899546142835e-06, 0.9999381123179228]], 'translation vector': [0.00936290533716333, 0.003069967953460928, -0.010760020039624951]}\nD: {'rotation matrix': [[0.309341, 0.212762, -0.926844], [0.950827, -0.084926, 0.297851], [-0.015342, -0.973406, -0.228571]], 'translation vector': [3.731516, 1.660707, 1.454311]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.226506, -0.721874, 0.653906], [-0.969583, -0.103174, 0.221955], [-0.092757, -0.68429, -0.723287]], 'translation vector': [2.104302, 2.429349, 1.38499]}\nB: {'rotation matrix': [[0.223513, -0.721637, 0.655197], [-0.970242, -0.100499, 0.220298], [-0.093129, -0.684938, -0.722625]], 'translation vector': [2.105446, 2.427759, 1.384995]}\nC: {'rotation matrix': [[0.22885, -0.719341, 0.655878], [-0.96905, -0.104271, 0.223761], [-0.092571, -0.686787, -0.72094]], 'translation vector': [2.102429, 2.429695, 1.385047]}\nD: {'rotation matrix': [[0.9999909282503874, 0.0026675007233110163, 0.003038726855301391], [-0.0026681297586413737, 0.999996473984971, 2.7861207662840692e-05], [-0.0030386998838646344, -3.5943923369286046e-05, 0.9999953589686927]], 'translation vector': [0.002364456746013932, -0.0010737235666011813, -0.00037719790048196256]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_166_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_166_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_166_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_166_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.226506, -0.721874, 0.653906], [-0.969583, -0.103174, 0.221955], [-0.092757, -0.68429, -0.723287]], 'translation vector': [2.104302, 2.429349, 1.38499]}\nB: {'rotation matrix': [[0.223513, -0.721637, 0.655197], [-0.970242, -0.100499, 0.220298], [-0.093129, -0.684938, -0.722625]], 'translation vector': [2.105446, 2.427759, 1.384995]}\nC: {'rotation matrix': [[0.22885, -0.719341, 0.655878], [-0.96905, -0.104271, 0.223761], [-0.092571, -0.686787, -0.72094]], 'translation vector': [2.102429, 2.429695, 1.385047]}\nD: {'rotation matrix': [[0.9999909282503874, 0.0026675007233110163, 0.003038726855301391], [-0.0026681297586413737, 0.999996473984971, 2.7861207662840692e-05], [-0.0030386998838646344, -3.5943923369286046e-05, 0.9999953589686927]], 'translation vector': [0.002364456746013932, -0.0010737235666011813, -0.00037719790048196256]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.711418, -0.467017, 0.525147], [-0.700604, 0.529926, -0.477841], [-0.055129, -0.707865, -0.704193]], 'translation vector': [2.529564, 4.393072, 1.526695]}\nB: {'rotation matrix': [[0.9999966648975326, -0.0024113488419032422, -0.0008172418163523504], [0.0024114327512952905, 0.9999969977952643, 0.0006432367723817748], [0.0008165042296219522, -0.0006466099152102373, 0.9999990767691678]], 'translation vector': [-0.006437670952323948, -0.005367763877482813, 0.00013241538331776326]}\nC: {'rotation matrix': [[-0.711906, -0.467075, 0.524433], [-0.700166, 0.529878, -0.478536], [-0.054374, -0.707863, -0.704254]], 'translation vector': [2.530244, 4.39346, 1.526741]}\nD: {'rotation matrix': [[-0.711605, -0.467107, 0.524814], [-0.700478, 0.529425, -0.47858], [-0.054301, -0.708181, -0.70394]], 'translation vector': [2.529967, 4.393585, 1.525543]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_167_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_167_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_167_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_167_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.711418, -0.467017, 0.525147], [-0.700604, 0.529926, -0.477841], [-0.055129, -0.707865, -0.704193]], 'translation vector': [2.529564, 4.393072, 1.526695]}\nB: {'rotation matrix': [[0.9999966648975326, -0.0024113488419032422, -0.0008172418163523504], [0.0024114327512952905, 0.9999969977952643, 0.0006432367723817748], [0.0008165042296219522, -0.0006466099152102373, 0.9999990767691678]], 'translation vector': [-0.006437670952323948, -0.005367763877482813, 0.00013241538331776326]}\nC: {'rotation matrix': [[-0.711906, -0.467075, 0.524433], [-0.700166, 0.529878, -0.478536], [-0.054374, -0.707863, -0.704254]], 'translation vector': [2.530244, 4.39346, 1.526741]}\nD: {'rotation matrix': [[-0.711605, -0.467107, 0.524814], [-0.700478, 0.529425, -0.47858], [-0.054301, -0.708181, -0.70394]], 'translation vector': [2.529967, 4.393585, 1.525543]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.61412, -0.406634, 0.676392], [-0.788751, 0.286898, -0.543656], [0.027014, -0.867374, -0.496922]], 'translation vector': [1.884445, 2.364432, 1.389567]}\nB: {'rotation matrix': [[0.9999800934681147, 0.006249341845585854, -0.0009789493583592457], [-0.006247228158252656, 0.9999797870897016, 0.0016201321535261565], [0.0009895210241494333, -0.0016143397944822075, 0.9999982198013821]], 'translation vector': [-0.0069672096971418185, 0.0007707556249330061, 0.0022308491982188094]}\nC: {'rotation matrix': [[-0.614991, -0.407345, 0.675171], [-0.788025, 0.286731, -0.544795], [0.028327, -0.867096, -0.497335]], 'translation vector': [1.885989, 2.365962, 1.389016]}\nD: {'rotation matrix': [[-0.615135, -0.40626, 0.675693], [-0.787872, 0.284761, -0.546048], [0.029426, -0.868253, -0.495248]], 'translation vector': [1.88807, 2.366622, 1.388041]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_168_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_168_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_168_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_168_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.61412, -0.406634, 0.676392], [-0.788751, 0.286898, -0.543656], [0.027014, -0.867374, -0.496922]], 'translation vector': [1.884445, 2.364432, 1.389567]}\nB: {'rotation matrix': [[0.9999800934681147, 0.006249341845585854, -0.0009789493583592457], [-0.006247228158252656, 0.9999797870897016, 0.0016201321535261565], [0.0009895210241494333, -0.0016143397944822075, 0.9999982198013821]], 'translation vector': [-0.0069672096971418185, 0.0007707556249330061, 0.0022308491982188094]}\nC: {'rotation matrix': [[-0.614991, -0.407345, 0.675171], [-0.788025, 0.286731, -0.544795], [0.028327, -0.867096, -0.497335]], 'translation vector': [1.885989, 2.365962, 1.389016]}\nD: {'rotation matrix': [[-0.615135, -0.40626, 0.675693], [-0.787872, 0.284761, -0.546048], [0.029426, -0.868253, -0.495248]], 'translation vector': [1.88807, 2.366622, 1.388041]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999912398243648, -0.003460941321399837, -0.0022122658857095193], [0.003455741372162686, 0.9999910905464573, -0.0022383864983849893], [0.0022193515549835062, 0.0022307044509074837, 0.999995073124285]], 'translation vector': [-0.001957679288641462, -0.0024920290268601875, -0.000907578453192226]}\nB: {'rotation matrix': [[0.67484, -0.325973, 0.662067], [-0.73754, -0.328352, 0.590102], [0.025034, -0.886525, -0.462003]], 'translation vector': [2.869569, 2.417867, 1.545271]}\nC: {'rotation matrix': [[0.67798, -0.325694, 0.658989], [-0.734824, -0.323965, 0.595886], [0.019413, -0.88824, -0.45897]], 'translation vector': [2.868894, 2.415756, 1.54509]}\nD: {'rotation matrix': [[0.682626, -0.324357, 0.654839], [-0.73069, -0.316101, 0.605122], [0.010719, -0.891556, -0.452783]], 'translation vector': [2.86653, 2.411599, 1.544608]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_169_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_169_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_169_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_169_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999912398243648, -0.003460941321399837, -0.0022122658857095193], [0.003455741372162686, 0.9999910905464573, -0.0022383864983849893], [0.0022193515549835062, 0.0022307044509074837, 0.999995073124285]], 'translation vector': [-0.001957679288641462, -0.0024920290268601875, -0.000907578453192226]}\nB: {'rotation matrix': [[0.67484, -0.325973, 0.662067], [-0.73754, -0.328352, 0.590102], [0.025034, -0.886525, -0.462003]], 'translation vector': [2.869569, 2.417867, 1.545271]}\nC: {'rotation matrix': [[0.67798, -0.325694, 0.658989], [-0.734824, -0.323965, 0.595886], [0.019413, -0.88824, -0.45897]], 'translation vector': [2.868894, 2.415756, 1.54509]}\nD: {'rotation matrix': [[0.682626, -0.324357, 0.654839], [-0.73069, -0.316101, 0.605122], [0.010719, -0.891556, -0.452783]], 'translation vector': [2.86653, 2.411599, 1.544608]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.999502, 0.00746, 0.030678], [-0.028996, 0.167572, -0.985433], [-0.012492, -0.985832, -0.167272]], 'translation vector': [6.682728, 5.426456, 1.759702]}\nB: {'rotation matrix': [[-0.999516, 0.005588, 0.030613], [-0.029207, 0.171126, -0.984816], [-0.010741, -0.985233, -0.17088]], 'translation vector': [6.687027, 5.423337, 1.762554]}\nC: {'rotation matrix': [[-0.999427, 0.005452, 0.0334], [-0.031967, 0.171859, -0.984603], [-0.011109, -0.985106, -0.171586]], 'translation vector': [6.682628, 5.424977, 1.756356]}\nD: {'rotation matrix': [[0.9999959031714618, 0.0006283915085459037, 0.0029514431388234703], [-0.0006213832896176772, 0.9999971711296258, -0.0021323447476004893], [-0.0029538525457832297, 0.002130012321803009, 0.9999931612377413]], 'translation vector': [-0.006207505850969852, 0.015496225089857818, -0.006213786764486251]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_170_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_170_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_170_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_170_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.999502, 0.00746, 0.030678], [-0.028996, 0.167572, -0.985433], [-0.012492, -0.985832, -0.167272]], 'translation vector': [6.682728, 5.426456, 1.759702]}\nB: {'rotation matrix': [[-0.999516, 0.005588, 0.030613], [-0.029207, 0.171126, -0.984816], [-0.010741, -0.985233, -0.17088]], 'translation vector': [6.687027, 5.423337, 1.762554]}\nC: {'rotation matrix': [[-0.999427, 0.005452, 0.0334], [-0.031967, 0.171859, -0.984603], [-0.011109, -0.985106, -0.171586]], 'translation vector': [6.682628, 5.424977, 1.756356]}\nD: {'rotation matrix': [[0.9999959031714618, 0.0006283915085459037, 0.0029514431388234703], [-0.0006213832896176772, 0.9999971711296258, -0.0021323447476004893], [-0.0029538525457832297, 0.002130012321803009, 0.9999931612377413]], 'translation vector': [-0.006207505850969852, 0.015496225089857818, -0.006213786764486251]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.106477, -0.473799, 0.874173], [-0.992913, 0.097339, -0.068183], [-0.052786, -0.875237, -0.480805]], 'translation vector': [4.553204, 3.149855, 1.246823]}\nB: {'rotation matrix': [[-0.115243, -0.46998, 0.875122], [-0.991961, 0.100818, -0.076485], [-0.052282, -0.876901, -0.47782]], 'translation vector': [4.553743, 3.152171, 1.246409]}\nC: {'rotation matrix': [[0.999828950585133, 0.0011190525701963586, -0.018454829607259946], [-0.001416468295998283, 0.9998678811169985, -0.016145155593255522], [0.018434708990961175, 0.016168544891222898, 0.9996994385524549]], 'translation vector': [0.002077144261483088, 0.01271199054625649, -0.0002353155159546816]}\nD: {'rotation matrix': [[-0.120252, -0.468652, 0.87516], [-0.991418, 0.102239, -0.081478], [-0.051291, -0.877447, -0.476924]], 'translation vector': [4.555783, 3.154248, 1.246329]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_171_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_171_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_171_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_171_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.106477, -0.473799, 0.874173], [-0.992913, 0.097339, -0.068183], [-0.052786, -0.875237, -0.480805]], 'translation vector': [4.553204, 3.149855, 1.246823]}\nB: {'rotation matrix': [[-0.115243, -0.46998, 0.875122], [-0.991961, 0.100818, -0.076485], [-0.052282, -0.876901, -0.47782]], 'translation vector': [4.553743, 3.152171, 1.246409]}\nC: {'rotation matrix': [[0.999828950585133, 0.0011190525701963586, -0.018454829607259946], [-0.001416468295998283, 0.9998678811169985, -0.016145155593255522], [0.018434708990961175, 0.016168544891222898, 0.9996994385524549]], 'translation vector': [0.002077144261483088, 0.01271199054625649, -0.0002353155159546816]}\nD: {'rotation matrix': [[-0.120252, -0.468652, 0.87516], [-0.991418, 0.102239, -0.081478], [-0.051291, -0.877447, -0.476924]], 'translation vector': [4.555783, 3.154248, 1.246329]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.927045, 0.223636, -0.300956], [0.364198, 0.346229, -0.864573], [-0.08915, -0.911105, -0.402418]], 'translation vector': [7.648557, 2.747808, 1.440051]}\nB: {'rotation matrix': [[0.9999939386175598, 0.0009488285827030999, 0.0032872470438982896], [-0.0009337892397183689, 0.9999879134504162, -0.004824212466184848], [-0.0032917475553783573, 0.004820430801235839, 0.9999833362205853]], 'translation vector': [-0.000493455857793812, -0.002698981007177137, 0.0012657934234763246]}\nC: {'rotation matrix': [[-0.9261, 0.223085, -0.304257], [0.366658, 0.34218, -0.865144], [-0.08889, -0.912768, -0.398689]], 'translation vector': [7.650569, 2.747621, 1.441708]}\nD: {'rotation matrix': [[-0.927432, 0.22366, -0.299744], [0.363522, 0.350792, -0.863016], [-0.087874, -0.909352, -0.406641]], 'translation vector': [7.650677, 2.747929, 1.439487]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_172_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_172_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_172_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_172_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.927045, 0.223636, -0.300956], [0.364198, 0.346229, -0.864573], [-0.08915, -0.911105, -0.402418]], 'translation vector': [7.648557, 2.747808, 1.440051]}\nB: {'rotation matrix': [[0.9999939386175598, 0.0009488285827030999, 0.0032872470438982896], [-0.0009337892397183689, 0.9999879134504162, -0.004824212466184848], [-0.0032917475553783573, 0.004820430801235839, 0.9999833362205853]], 'translation vector': [-0.000493455857793812, -0.002698981007177137, 0.0012657934234763246]}\nC: {'rotation matrix': [[-0.9261, 0.223085, -0.304257], [0.366658, 0.34218, -0.865144], [-0.08889, -0.912768, -0.398689]], 'translation vector': [7.650569, 2.747621, 1.441708]}\nD: {'rotation matrix': [[-0.927432, 0.22366, -0.299744], [0.363522, 0.350792, -0.863016], [-0.087874, -0.909352, -0.406641]], 'translation vector': [7.650677, 2.747929, 1.439487]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.598936, 0.355502, -0.717562], [0.800003, -0.305531, 0.516379], [-0.035664, -0.883329, -0.467396]], 'translation vector': [5.964795, 1.444893, 1.32602]}\nB: {'rotation matrix': [[0.600188, 0.357296, -0.715622], [0.799089, -0.307102, 0.516861], [-0.035096, -0.882059, -0.46983]], 'translation vector': [5.950611, 1.450679, 1.325211]}\nC: {'rotation matrix': [[0.9999898156973296, -0.003952939496578174, 0.0024431521094752146], [0.003942856258073881, 0.9999843026055344, 0.004096575088743528], [-0.0024598279169757275, -0.004085831486072852, 0.9999883270401599]], 'translation vector': [-0.0051631563465806, -0.010227260523923531, 0.01366119668418353]}\nD: {'rotation matrix': [[0.593595, 0.358896, -0.720305], [0.803944, -0.304849, 0.510628], [-0.036322, -0.882191, -0.469489]], 'translation vector': [5.978991, 1.441471, 1.326102]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_173_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_173_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_173_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_173_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.598936, 0.355502, -0.717562], [0.800003, -0.305531, 0.516379], [-0.035664, -0.883329, -0.467396]], 'translation vector': [5.964795, 1.444893, 1.32602]}\nB: {'rotation matrix': [[0.600188, 0.357296, -0.715622], [0.799089, -0.307102, 0.516861], [-0.035096, -0.882059, -0.46983]], 'translation vector': [5.950611, 1.450679, 1.325211]}\nC: {'rotation matrix': [[0.9999898156973296, -0.003952939496578174, 0.0024431521094752146], [0.003942856258073881, 0.9999843026055344, 0.004096575088743528], [-0.0024598279169757275, -0.004085831486072852, 0.9999883270401599]], 'translation vector': [-0.0051631563465806, -0.010227260523923531, 0.01366119668418353]}\nD: {'rotation matrix': [[0.593595, 0.358896, -0.720305], [0.803944, -0.304849, 0.510628], [-0.036322, -0.882191, -0.469489]], 'translation vector': [5.978991, 1.441471, 1.326102]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.983068, 0.048576, -0.176687], [0.181735, -0.381917, 0.906152], [-0.023462, -0.922919, -0.384278]], 'translation vector': [2.212073, 3.484547, 1.465708]}\nB: {'rotation matrix': [[0.982686, 0.047982, -0.178958], [0.183606, -0.38172, 0.905858], [-0.024847, -0.923032, -0.38392]], 'translation vector': [2.212621, 3.48432, 1.466163]}\nC: {'rotation matrix': [[0.983078, 0.050132, -0.176192], [0.181887, -0.381466, 0.906312], [-0.021776, -0.923023, -0.384129]], 'translation vector': [2.213536, 3.486831, 1.465259]}\nD: {'rotation matrix': [[0.9999889301916728, 0.0015926412893515843, 0.004480728220099604], [-0.001621568987345314, 0.9999775972099906, 0.006504872079739442], [-0.004470952780905997, -0.0065123882198827605, 0.9999681868018854]], 'translation vector': [-0.002104900488902217, -0.0034679151915213424, 0.0012659901948626207]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_174_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_174_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_174_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_174_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.983068, 0.048576, -0.176687], [0.181735, -0.381917, 0.906152], [-0.023462, -0.922919, -0.384278]], 'translation vector': [2.212073, 3.484547, 1.465708]}\nB: {'rotation matrix': [[0.982686, 0.047982, -0.178958], [0.183606, -0.38172, 0.905858], [-0.024847, -0.923032, -0.38392]], 'translation vector': [2.212621, 3.48432, 1.466163]}\nC: {'rotation matrix': [[0.983078, 0.050132, -0.176192], [0.181887, -0.381466, 0.906312], [-0.021776, -0.923023, -0.384129]], 'translation vector': [2.213536, 3.486831, 1.465259]}\nD: {'rotation matrix': [[0.9999889301916728, 0.0015926412893515843, 0.004480728220099604], [-0.001621568987345314, 0.9999775972099906, 0.006504872079739442], [-0.004470952780905997, -0.0065123882198827605, 0.9999681868018854]], 'translation vector': [-0.002104900488902217, -0.0034679151915213424, 0.0012659901948626207]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999643490106183, 0.005007713450141965, -0.006820932250517381], [-0.004994218544548531, 0.9999851347119364, 0.0020857596614642536], [0.0068306095153302035, -0.0020519868188517945, 0.9999742349784666]], 'translation vector': [-0.002699516524657053, 0.0005464771955957654, -0.0009563459127281959]}\nB: {'rotation matrix': [[0.549558, 0.430394, -0.716064], [0.833614, -0.2256, 0.504176], [0.05545, -0.873994, -0.482762]], 'translation vector': [3.109701, 1.26111, 1.347453]}\nC: {'rotation matrix': [[0.545357, 0.429527, -0.719787], [0.836166, -0.218941, 0.502882], [0.05841, -0.876111, -0.478557]], 'translation vector': [3.10956, 1.258833, 1.347276]}\nD: {'rotation matrix': [[0.548441, 0.430496, -0.716859], [0.834301, -0.22414, 0.503689], [0.056159, -0.874319, -0.482091]], 'translation vector': [3.109132, 1.259955, 1.347698]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_175_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_175_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_175_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_175_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999643490106183, 0.005007713450141965, -0.006820932250517381], [-0.004994218544548531, 0.9999851347119364, 0.0020857596614642536], [0.0068306095153302035, -0.0020519868188517945, 0.9999742349784666]], 'translation vector': [-0.002699516524657053, 0.0005464771955957654, -0.0009563459127281959]}\nB: {'rotation matrix': [[0.549558, 0.430394, -0.716064], [0.833614, -0.2256, 0.504176], [0.05545, -0.873994, -0.482762]], 'translation vector': [3.109701, 1.26111, 1.347453]}\nC: {'rotation matrix': [[0.545357, 0.429527, -0.719787], [0.836166, -0.218941, 0.502882], [0.05841, -0.876111, -0.478557]], 'translation vector': [3.10956, 1.258833, 1.347276]}\nD: {'rotation matrix': [[0.548441, 0.430496, -0.716859], [0.834301, -0.22414, 0.503689], [0.056159, -0.874319, -0.482091]], 'translation vector': [3.109132, 1.259955, 1.347698]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.9999664473886144, -4.097872539031611e-05, -0.00815329503789991], [4.450303663576986e-05, 1.0000000556925084, 0.0005279321342564721], [0.008153564277134814, -0.0005283064017830043, 0.99996718864845]], 'translation vector': [0.0006960777394775519, 0.0030013724924222718, -0.001027289568414247]}\nB: {'rotation matrix': [[-0.825443, 0.242757, -0.509621], [0.56437, 0.373207, -0.736345], [0.011442, -0.895425, -0.445066]], 'translation vector': [4.848658, 2.610627, 1.449985]}\nC: {'rotation matrix': [[-0.825701, 0.242217, -0.50946], [0.563992, 0.37286, -0.73681], [0.01149, -0.895716, -0.444479]], 'translation vector': [4.848603, 2.611202, 1.449781]}\nD: {'rotation matrix': [[-0.825281, 0.242861, -0.509834], [0.5646, 0.373686, -0.735925], [0.011791, -0.895197, -0.445515]], 'translation vector': [4.848519, 2.6109, 1.44995]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_176_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_176_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_176_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_176_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.9999664473886144, -4.097872539031611e-05, -0.00815329503789991], [4.450303663576986e-05, 1.0000000556925084, 0.0005279321342564721], [0.008153564277134814, -0.0005283064017830043, 0.99996718864845]], 'translation vector': [0.0006960777394775519, 0.0030013724924222718, -0.001027289568414247]}\nB: {'rotation matrix': [[-0.825443, 0.242757, -0.509621], [0.56437, 0.373207, -0.736345], [0.011442, -0.895425, -0.445066]], 'translation vector': [4.848658, 2.610627, 1.449985]}\nC: {'rotation matrix': [[-0.825701, 0.242217, -0.50946], [0.563992, 0.37286, -0.73681], [0.01149, -0.895716, -0.444479]], 'translation vector': [4.848603, 2.611202, 1.449781]}\nD: {'rotation matrix': [[-0.825281, 0.242861, -0.509834], [0.5646, 0.373686, -0.735925], [0.011791, -0.895197, -0.445515]], 'translation vector': [4.848519, 2.6109, 1.44995]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.820406, -0.123018, 0.558391], [-0.564425, -0.330389, 0.756484], [0.091425, -0.935794, -0.340487]], 'translation vector': [1.795617, 2.461673, 1.379824]}\nB: {'rotation matrix': [[0.820181, -0.122779, 0.558774], [-0.564668, -0.330702, 0.756166], [0.091946, -0.935714, -0.340565]], 'translation vector': [1.795446, 2.463577, 1.379349]}\nC: {'rotation matrix': [[0.9999965570678159, 0.002414373935934805, -0.0013910970690502594], [-0.0024092149366839086, 0.9999893972371463, 0.004094256181755705], [0.0014001974871553952, -0.0040912377586492955, 0.9999902946910975]], 'translation vector': [0.0015616232476808878, 0.0015124074702654866, -0.0024993421767338653]}\nD: {'rotation matrix': [[0.81953, -0.122236, 0.559847], [-0.565374, -0.331709, 0.755196], [0.093395, -0.935429, -0.340955]], 'translation vector': [1.794011, 2.466618, 1.378419]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_177_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_177_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_177_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_177_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.820406, -0.123018, 0.558391], [-0.564425, -0.330389, 0.756484], [0.091425, -0.935794, -0.340487]], 'translation vector': [1.795617, 2.461673, 1.379824]}\nB: {'rotation matrix': [[0.820181, -0.122779, 0.558774], [-0.564668, -0.330702, 0.756166], [0.091946, -0.935714, -0.340565]], 'translation vector': [1.795446, 2.463577, 1.379349]}\nC: {'rotation matrix': [[0.9999965570678159, 0.002414373935934805, -0.0013910970690502594], [-0.0024092149366839086, 0.9999893972371463, 0.004094256181755705], [0.0014001974871553952, -0.0040912377586492955, 0.9999902946910975]], 'translation vector': [0.0015616232476808878, 0.0015124074702654866, -0.0024993421767338653]}\nD: {'rotation matrix': [[0.81953, -0.122236, 0.559847], [-0.565374, -0.331709, 0.755196], [0.093395, -0.935429, -0.340955]], 'translation vector': [1.794011, 2.466618, 1.378419]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.802386, 0.058378, -0.593943], [0.596799, 0.07378, -0.798992], [-0.002822, -0.995564, -0.09404]], 'translation vector': [2.583445, 4.00863, 1.432702]}\nB: {'rotation matrix': [[-0.80243, 0.05764, -0.593956], [0.596739, 0.072442, -0.799159], [-0.003036, -0.995706, -0.092526]], 'translation vector': [2.583423, 4.00901, 1.432499]}\nC: {'rotation matrix': [[-0.802147, 0.057229, -0.594377], [0.597116, 0.07095, -0.799012], [-0.003555, -0.995837, -0.091085]], 'translation vector': [2.584156, 4.008181, 1.433043]}\nD: {'rotation matrix': [[0.9999994783035012, 0.00041051927851740725, -0.0005862593604151125], [-0.00040931866521127987, 0.9999994989245719, 0.001478878293238192], [0.0005866244600769685, -0.00147872503352613, 0.9999988017009569]], 'translation vector': [0.00041364848275698973, -0.004321265289284559, -0.00018345117394513721]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_178_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_178_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_178_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_178_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.802386, 0.058378, -0.593943], [0.596799, 0.07378, -0.798992], [-0.002822, -0.995564, -0.09404]], 'translation vector': [2.583445, 4.00863, 1.432702]}\nB: {'rotation matrix': [[-0.80243, 0.05764, -0.593956], [0.596739, 0.072442, -0.799159], [-0.003036, -0.995706, -0.092526]], 'translation vector': [2.583423, 4.00901, 1.432499]}\nC: {'rotation matrix': [[-0.802147, 0.057229, -0.594377], [0.597116, 0.07095, -0.799012], [-0.003555, -0.995837, -0.091085]], 'translation vector': [2.584156, 4.008181, 1.433043]}\nD: {'rotation matrix': [[0.9999994783035012, 0.00041051927851740725, -0.0005862593604151125], [-0.00040931866521127987, 0.9999994989245719, 0.001478878293238192], [0.0005866244600769685, -0.00147872503352613, 0.9999988017009569]], 'translation vector': [0.00041364848275698973, -0.004321265289284559, -0.00018345117394513721]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.992585, -0.064418, 0.103079], [-0.120896, -0.435169, 0.892195], [-0.012617, -0.898041, -0.43973]], 'translation vector': [3.286474, 2.568909, 1.509796]}\nB: {'rotation matrix': [[0.992385, -0.067834, 0.102811], [-0.122233, -0.439432, 0.889921], [-0.015188, -0.895711, -0.444377]], 'translation vector': [3.289696, 2.56831, 1.509591]}\nC: {'rotation matrix': [[0.9999807964258803, 0.0038860910275422844, -0.004806691946462499], [-0.003909951367268014, 0.9999796651555257, -0.005033098084012006], [0.004787399082777756, 0.005051536745205018, 0.999976147031262]], 'translation vector': [-0.001554233624264434, -0.002644430194159053, -0.0006288644424583545]}\nD: {'rotation matrix': [[0.992758, -0.062357, 0.102681], [-0.119576, -0.430727, 0.894525], [-0.011552, -0.900325, -0.435064]], 'translation vector': [3.283188, 2.568117, 1.510042]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_179_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_179_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_179_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_179_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.992585, -0.064418, 0.103079], [-0.120896, -0.435169, 0.892195], [-0.012617, -0.898041, -0.43973]], 'translation vector': [3.286474, 2.568909, 1.509796]}\nB: {'rotation matrix': [[0.992385, -0.067834, 0.102811], [-0.122233, -0.439432, 0.889921], [-0.015188, -0.895711, -0.444377]], 'translation vector': [3.289696, 2.56831, 1.509591]}\nC: {'rotation matrix': [[0.9999807964258803, 0.0038860910275422844, -0.004806691946462499], [-0.003909951367268014, 0.9999796651555257, -0.005033098084012006], [0.004787399082777756, 0.005051536745205018, 0.999976147031262]], 'translation vector': [-0.001554233624264434, -0.002644430194159053, -0.0006288644424583545]}\nD: {'rotation matrix': [[0.992758, -0.062357, 0.102681], [-0.119576, -0.430727, 0.894525], [-0.011552, -0.900325, -0.435064]], 'translation vector': [3.283188, 2.568117, 1.510042]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.422089, -0.487348, 0.764417], [-0.906483, 0.237506, -0.349114], [-0.011414, -0.840287, -0.542021]], 'translation vector': [1.410195, 1.210537, 1.389714]}\nB: {'rotation matrix': [[-0.429509, -0.487246, 0.760337], [-0.903019, 0.239935, -0.356353], [-0.0088, -0.839656, -0.543047]], 'translation vector': [1.408282, 1.210133, 1.390728]}\nC: {'rotation matrix': [[0.9999401042348363, 0.0004722608940826321, -0.010894896595028812], [-0.0004891614331012371, 0.9999986952391333, -0.0015551949611865112], [0.010893168247730851, 0.0015589513371194136, 0.9999394642924967]], 'translation vector': [-0.002554071705175298, -0.000426511698759402, -0.0005788025297613075]}\nD: {'rotation matrix': [[-0.426247, -0.487547, 0.761978], [-0.904552, 0.238954, -0.353109], [-0.00992, -0.839761, -0.542865]], 'translation vector': [1.409365, 1.209862, 1.390977]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_180_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_180_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_180_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_180_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.422089, -0.487348, 0.764417], [-0.906483, 0.237506, -0.349114], [-0.011414, -0.840287, -0.542021]], 'translation vector': [1.410195, 1.210537, 1.389714]}\nB: {'rotation matrix': [[-0.429509, -0.487246, 0.760337], [-0.903019, 0.239935, -0.356353], [-0.0088, -0.839656, -0.543047]], 'translation vector': [1.408282, 1.210133, 1.390728]}\nC: {'rotation matrix': [[0.9999401042348363, 0.0004722608940826321, -0.010894896595028812], [-0.0004891614331012371, 0.9999986952391333, -0.0015551949611865112], [0.010893168247730851, 0.0015589513371194136, 0.9999394642924967]], 'translation vector': [-0.002554071705175298, -0.000426511698759402, -0.0005788025297613075]}\nD: {'rotation matrix': [[-0.426247, -0.487547, 0.761978], [-0.904552, 0.238954, -0.353109], [-0.00992, -0.839761, -0.542865]], 'translation vector': [1.409365, 1.209862, 1.390977]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.471816, -0.325425, 0.819444], [-0.872235, -0.30807, 0.379868], [0.128827, -0.893975, -0.429199]], 'translation vector': [4.769558, 1.138603, 1.289356]}\nB: {'rotation matrix': [[0.9997418114978017, 0.011895326282976197, -0.019384512225947795], [-0.0117477819809795, 0.9999024052361882, 0.007665229365566708], [0.019474149960248398, -0.007435647706830853, 0.99978314162453]], 'translation vector': [0.0024302909823366026, 0.0025910713671302155, 0.004134808496160325]}\nC: {'rotation matrix': [[0.463265, -0.315518, 0.828151], [-0.87672, -0.299624, 0.376281], [0.129411, -0.900374, -0.415426]], 'translation vector': [4.764074, 1.139958, 1.290116]}\nD: {'rotation matrix': [[0.466198, -0.319071, 0.825139], [-0.875193, -0.302567, 0.377479], [0.129217, -0.898136, -0.420304]], 'translation vector': [4.766454, 1.138272, 1.288707]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_181_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_181_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_181_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_181_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.471816, -0.325425, 0.819444], [-0.872235, -0.30807, 0.379868], [0.128827, -0.893975, -0.429199]], 'translation vector': [4.769558, 1.138603, 1.289356]}\nB: {'rotation matrix': [[0.9997418114978017, 0.011895326282976197, -0.019384512225947795], [-0.0117477819809795, 0.9999024052361882, 0.007665229365566708], [0.019474149960248398, -0.007435647706830853, 0.99978314162453]], 'translation vector': [0.0024302909823366026, 0.0025910713671302155, 0.004134808496160325]}\nC: {'rotation matrix': [[0.463265, -0.315518, 0.828151], [-0.87672, -0.299624, 0.376281], [0.129411, -0.900374, -0.415426]], 'translation vector': [4.764074, 1.139958, 1.290116]}\nD: {'rotation matrix': [[0.466198, -0.319071, 0.825139], [-0.875193, -0.302567, 0.377479], [0.129217, -0.898136, -0.420304]], 'translation vector': [4.766454, 1.138272, 1.288707]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.782202, 0.158811, -0.602444], [0.623011, 0.192986, -0.758033], [-0.004121, -0.968264, -0.249895]], 'translation vector': [5.112607, 3.166242, 1.386639]}\nB: {'rotation matrix': [[-0.778966, 0.157543, -0.606954], [0.627051, 0.189047, -0.75569], [-0.00431, -0.969248, -0.246049]], 'translation vector': [5.115294, 3.157473, 1.383296]}\nC: {'rotation matrix': [[-0.779462, 0.157557, -0.606313], [0.62644, 0.190695, -0.755783], [-0.003458, -0.968923, -0.247339]], 'translation vector': [5.116126, 3.162086, 1.384797]}\nD: {'rotation matrix': [[0.9999744617727225, -0.0001956738250342968, -0.007090775323277213], [0.00023566199396404743, 0.9999840487337286, 0.005570125228072977], [0.007090207625955035, -0.005572126334409686, 0.9999593181215198]], 'translation vector': [0.001060093909475146, -0.0011413036070948707, -0.0054511706559239315]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_182_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_182_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_182_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_182_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.782202, 0.158811, -0.602444], [0.623011, 0.192986, -0.758033], [-0.004121, -0.968264, -0.249895]], 'translation vector': [5.112607, 3.166242, 1.386639]}\nB: {'rotation matrix': [[-0.778966, 0.157543, -0.606954], [0.627051, 0.189047, -0.75569], [-0.00431, -0.969248, -0.246049]], 'translation vector': [5.115294, 3.157473, 1.383296]}\nC: {'rotation matrix': [[-0.779462, 0.157557, -0.606313], [0.62644, 0.190695, -0.755783], [-0.003458, -0.968923, -0.247339]], 'translation vector': [5.116126, 3.162086, 1.384797]}\nD: {'rotation matrix': [[0.9999744617727225, -0.0001956738250342968, -0.007090775323277213], [0.00023566199396404743, 0.9999840487337286, 0.005570125228072977], [0.007090207625955035, -0.005572126334409686, 0.9999593181215198]], 'translation vector': [0.001060093909475146, -0.0011413036070948707, -0.0054511706559239315]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.883351, 0.250777, -0.395983], [0.468408, -0.502792, 0.726495], [-0.016909, -0.827231, -0.561607]], 'translation vector': [3.460753, 1.393703, 1.261616]}\nB: {'rotation matrix': [[0.9999974556820361, 0.0020951454008892073, 0.0005388626757519509], [-0.0020947728022776887, 0.9999969776383335, -0.0008772711173625334], [-0.0005408474142489815, 0.0008761512281933679, 0.9999997549182328]], 'translation vector': [0.002023718546634523, -0.000327483901387704, 0.000534647049254211]}\nC: {'rotation matrix': [[0.882846, 0.250522, -0.397268], [0.469328, -0.502506, 0.726099], [-0.017726, -0.827482, -0.561212]], 'translation vector': [3.46034, 1.393395, 1.261018]}\nD: {'rotation matrix': [[0.883505, 0.250774, -0.395641], [0.468134, -0.50232, 0.726998], [-0.016426, -0.827519, -0.561198]], 'translation vector': [3.461493, 1.393772, 1.262191]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_183_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_183_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_183_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_183_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.883351, 0.250777, -0.395983], [0.468408, -0.502792, 0.726495], [-0.016909, -0.827231, -0.561607]], 'translation vector': [3.460753, 1.393703, 1.261616]}\nB: {'rotation matrix': [[0.9999974556820361, 0.0020951454008892073, 0.0005388626757519509], [-0.0020947728022776887, 0.9999969776383335, -0.0008772711173625334], [-0.0005408474142489815, 0.0008761512281933679, 0.9999997549182328]], 'translation vector': [0.002023718546634523, -0.000327483901387704, 0.000534647049254211]}\nC: {'rotation matrix': [[0.882846, 0.250522, -0.397268], [0.469328, -0.502506, 0.726099], [-0.017726, -0.827482, -0.561212]], 'translation vector': [3.46034, 1.393395, 1.261018]}\nD: {'rotation matrix': [[0.883505, 0.250774, -0.395641], [0.468134, -0.50232, 0.726998], [-0.016426, -0.827519, -0.561198]], 'translation vector': [3.461493, 1.393772, 1.262191]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.082095, -0.690035, 0.719105], [-0.996618, 0.054259, -0.061711], [0.003565, -0.72174, -0.692155]], 'translation vector': [1.142854, 0.964299, 1.384999]}\nB: {'rotation matrix': [[-0.082522, -0.690473, 0.718636], [-0.99657, 0.052619, -0.063881], [0.006294, -0.721442, -0.692446]], 'translation vector': [1.142415, 0.962891, 1.383926]}\nC: {'rotation matrix': [[-0.081714, -0.689876, 0.719301], [-0.996653, 0.054911, -0.060558], [0.00228, -0.721842, -0.692054]], 'translation vector': [1.143872, 0.96595, 1.386324]}\nD: {'rotation matrix': [[0.9999981813065101, -0.0008741599533984917, -0.0018370380112936338], [0.0008726557083801512, 0.9999996139578026, -0.0006456924823724538], [0.0018388517886205992, 0.0006438367932182827, 0.999997821691748]], 'translation vector': [-0.0006029244698710912, 0.002574260386327465, 0.00012150794273751986]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_184_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_184_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_184_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_184_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.082095, -0.690035, 0.719105], [-0.996618, 0.054259, -0.061711], [0.003565, -0.72174, -0.692155]], 'translation vector': [1.142854, 0.964299, 1.384999]}\nB: {'rotation matrix': [[-0.082522, -0.690473, 0.718636], [-0.99657, 0.052619, -0.063881], [0.006294, -0.721442, -0.692446]], 'translation vector': [1.142415, 0.962891, 1.383926]}\nC: {'rotation matrix': [[-0.081714, -0.689876, 0.719301], [-0.996653, 0.054911, -0.060558], [0.00228, -0.721842, -0.692054]], 'translation vector': [1.143872, 0.96595, 1.386324]}\nD: {'rotation matrix': [[0.9999981813065101, -0.0008741599533984917, -0.0018370380112936338], [0.0008726557083801512, 0.9999996139578026, -0.0006456924823724538], [0.0018388517886205992, 0.0006438367932182827, 0.999997821691748]], 'translation vector': [-0.0006029244698710912, 0.002574260386327465, 0.00012150794273751986]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.885696, -0.241091, 0.396758], [-0.463478, 0.409419, -0.785852], [0.027022, -0.879915, -0.474362]], 'translation vector': [3.284311, 2.742399, 1.352773]}\nB: {'rotation matrix': [[-0.887326, -0.240072, 0.393723], [-0.460299, 0.409476, -0.787689], [0.027883, -0.880168, -0.473844]], 'translation vector': [3.284908, 2.737404, 1.354156]}\nC: {'rotation matrix': [[0.9999731444122048, 0.0012103447086951903, -0.007132060128435475], [-0.0011432251198222655, 0.9999548360017081, 0.009399220003853712], [0.007143404275372449, -0.009390869439370925, 0.9999297253861809]], 'translation vector': [-0.004051670502601468, 0.003985677205533222, -0.007748124103307941]}\nD: {'rotation matrix': [[-0.88833, -0.238233, 0.392575], [-0.45841, 0.409739, -0.788653], [0.02703, -0.880545, -0.473192]], 'translation vector': [3.286612, 2.733624, 1.354709]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_185_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_185_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_185_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_185_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.885696, -0.241091, 0.396758], [-0.463478, 0.409419, -0.785852], [0.027022, -0.879915, -0.474362]], 'translation vector': [3.284311, 2.742399, 1.352773]}\nB: {'rotation matrix': [[-0.887326, -0.240072, 0.393723], [-0.460299, 0.409476, -0.787689], [0.027883, -0.880168, -0.473844]], 'translation vector': [3.284908, 2.737404, 1.354156]}\nC: {'rotation matrix': [[0.9999731444122048, 0.0012103447086951903, -0.007132060128435475], [-0.0011432251198222655, 0.9999548360017081, 0.009399220003853712], [0.007143404275372449, -0.009390869439370925, 0.9999297253861809]], 'translation vector': [-0.004051670502601468, 0.003985677205533222, -0.007748124103307941]}\nD: {'rotation matrix': [[-0.88833, -0.238233, 0.392575], [-0.45841, 0.409739, -0.788653], [0.02703, -0.880545, -0.473192]], 'translation vector': [3.286612, 2.733624, 1.354709]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.929629, 0.142082, -0.340003], [0.367757, 0.416138, -0.831615], [0.023331, -0.898132, -0.439106]], 'translation vector': [3.895597, 4.105544, 1.337128]}\nB: {'rotation matrix': [[0.9999978567692223, -0.002080974608083212, 0.0006913520673930054], [0.0020836393175395, 0.9999892180319079, -0.004134789557599625], [-0.0006820179303371059, 0.00413702467971305, 0.9999915554185601]], 'translation vector': [0.0017503586952924977, 0.001995171524919126, -0.0003721348284200232]}\nC: {'rotation matrix': [[-0.930698, 0.142163, -0.337032], [0.365142, 0.415816, -0.832928], [0.021732, -0.898269, -0.438909]], 'translation vector': [3.896934, 4.102128, 1.337288]}\nD: {'rotation matrix': [[-0.927672, 0.142632, -0.34508], [0.372556, 0.415512, -0.82979], [0.02503, -0.898335, -0.438597]], 'translation vector': [3.896674, 4.103256, 1.336071]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_186_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_186_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_186_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_186_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.929629, 0.142082, -0.340003], [0.367757, 0.416138, -0.831615], [0.023331, -0.898132, -0.439106]], 'translation vector': [3.895597, 4.105544, 1.337128]}\nB: {'rotation matrix': [[0.9999978567692223, -0.002080974608083212, 0.0006913520673930054], [0.0020836393175395, 0.9999892180319079, -0.004134789557599625], [-0.0006820179303371059, 0.00413702467971305, 0.9999915554185601]], 'translation vector': [0.0017503586952924977, 0.001995171524919126, -0.0003721348284200232]}\nC: {'rotation matrix': [[-0.930698, 0.142163, -0.337032], [0.365142, 0.415816, -0.832928], [0.021732, -0.898269, -0.438909]], 'translation vector': [3.896934, 4.102128, 1.337288]}\nD: {'rotation matrix': [[-0.927672, 0.142632, -0.34508], [0.372556, 0.415512, -0.82979], [0.02503, -0.898335, -0.438597]], 'translation vector': [3.896674, 4.103256, 1.336071]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.97654, 0.035326, -0.212419], [0.213134, -0.299258, 0.930064], [-0.030712, -0.953518, -0.299767]], 'translation vector': [2.83562, 1.415562, 1.663413]}\nB: {'rotation matrix': [[0.976528, 0.035613, -0.212425], [0.213211, -0.299739, 0.929891], [-0.030556, -0.953356, -0.300296]], 'translation vector': [2.836028, 1.415543, 1.663749]}\nC: {'rotation matrix': [[0.976477, 0.035047, -0.212752], [0.213359, -0.299571, 0.929912], [-0.031143, -0.95343, -0.300002]], 'translation vector': [2.836339, 1.415174, 1.663386]}\nD: {'rotation matrix': [[0.9999989734089719, -0.00043750334983729943, -0.0007413258006153675], [0.00043629581692446537, 0.9999991219954293, -0.0014728840089735186], [0.0007417507454709163, 0.0014731899576831099, 0.9999977641755871]], 'translation vector': [0.0005969954680278278, -0.001266102560834259, -0.001081742192190538]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_187_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_187_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_187_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_187_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.97654, 0.035326, -0.212419], [0.213134, -0.299258, 0.930064], [-0.030712, -0.953518, -0.299767]], 'translation vector': [2.83562, 1.415562, 1.663413]}\nB: {'rotation matrix': [[0.976528, 0.035613, -0.212425], [0.213211, -0.299739, 0.929891], [-0.030556, -0.953356, -0.300296]], 'translation vector': [2.836028, 1.415543, 1.663749]}\nC: {'rotation matrix': [[0.976477, 0.035047, -0.212752], [0.213359, -0.299571, 0.929912], [-0.031143, -0.95343, -0.300002]], 'translation vector': [2.836339, 1.415174, 1.663386]}\nD: {'rotation matrix': [[0.9999989734089719, -0.00043750334983729943, -0.0007413258006153675], [0.00043629581692446537, 0.9999991219954293, -0.0014728840089735186], [0.0007417507454709163, 0.0014731899576831099, 0.9999977641755871]], 'translation vector': [0.0005969954680278278, -0.001266102560834259, -0.001081742192190538]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.693693, -0.417889, 0.586651], [-0.719234, -0.35819, 0.595318], [-0.038645, -0.834907, -0.549033]], 'translation vector': [2.468094, 0.650908, 1.47083]}\nB: {'rotation matrix': [[0.694995, -0.417186, 0.58561], [-0.71783, -0.35584, 0.598413], [-0.041266, -0.836262, -0.546775]], 'translation vector': [2.468435, 0.652249, 1.472357]}\nC: {'rotation matrix': [[0.692825, -0.417185, 0.588176], [-0.720192, -0.359253, 0.593516], [-0.036302, -0.834802, -0.549352]], 'translation vector': [2.467356, 0.649437, 1.470088]}\nD: {'rotation matrix': [[0.9999933308482389, -0.003211931119773083, -0.0013319651843937527], [0.003213068050675667, 0.999995289918959, 0.0008982640947086999], [0.0013289957939952358, -0.000903126250102818, 0.9999984333444373]], 'translation vector': [0.0004300736920825887, -0.0014825221206589134, 0.0006853212942847797]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_188_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_188_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_188_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_188_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.693693, -0.417889, 0.586651], [-0.719234, -0.35819, 0.595318], [-0.038645, -0.834907, -0.549033]], 'translation vector': [2.468094, 0.650908, 1.47083]}\nB: {'rotation matrix': [[0.694995, -0.417186, 0.58561], [-0.71783, -0.35584, 0.598413], [-0.041266, -0.836262, -0.546775]], 'translation vector': [2.468435, 0.652249, 1.472357]}\nC: {'rotation matrix': [[0.692825, -0.417185, 0.588176], [-0.720192, -0.359253, 0.593516], [-0.036302, -0.834802, -0.549352]], 'translation vector': [2.467356, 0.649437, 1.470088]}\nD: {'rotation matrix': [[0.9999933308482389, -0.003211931119773083, -0.0013319651843937527], [0.003213068050675667, 0.999995289918959, 0.0008982640947086999], [0.0013289957939952358, -0.000903126250102818, 0.9999984333444373]], 'translation vector': [0.0004300736920825887, -0.0014825221206589134, 0.0006853212942847797]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.999996219803918, 0.0022950861591112606, 0.0016527156635626785], [-0.002306966520835195, 0.9999706555795355, 0.007290423829373102], [-0.0016351749151619617, -0.007294378220159148, 0.9999718191472952]], 'translation vector': [-0.0006106128955529755, 0.003113758643644493, 0.0009225265168792962]}\nB: {'rotation matrix': [[-0.815808, -0.262316, 0.51541], [-0.578233, 0.385672, -0.71896], [-0.010185, -0.884561, -0.466314]], 'translation vector': [2.767913, 1.370181, 1.363789]}\nC: {'rotation matrix': [[-0.81395, -0.261884, 0.518557], [-0.58082, 0.384609, -0.717443], [-0.011555, -0.885151, -0.46516]], 'translation vector': [2.76859, 1.370986, 1.364432]}\nD: {'rotation matrix': [[-0.813152, -0.262698, 0.519397], [-0.581967, 0.382082, -0.717863], [-0.009871, -0.886004, -0.463573]], 'translation vector': [2.770085, 1.372341, 1.364365]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_189_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_189_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_189_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_189_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.999996219803918, 0.0022950861591112606, 0.0016527156635626785], [-0.002306966520835195, 0.9999706555795355, 0.007290423829373102], [-0.0016351749151619617, -0.007294378220159148, 0.9999718191472952]], 'translation vector': [-0.0006106128955529755, 0.003113758643644493, 0.0009225265168792962]}\nB: {'rotation matrix': [[-0.815808, -0.262316, 0.51541], [-0.578233, 0.385672, -0.71896], [-0.010185, -0.884561, -0.466314]], 'translation vector': [2.767913, 1.370181, 1.363789]}\nC: {'rotation matrix': [[-0.81395, -0.261884, 0.518557], [-0.58082, 0.384609, -0.717443], [-0.011555, -0.885151, -0.46516]], 'translation vector': [2.76859, 1.370986, 1.364432]}\nD: {'rotation matrix': [[-0.813152, -0.262698, 0.519397], [-0.581967, 0.382082, -0.717863], [-0.009871, -0.886004, -0.463573]], 'translation vector': [2.770085, 1.372341, 1.364365]}"}, "output": {"output_text": "A"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.928393, -0.117955, 0.352381], [-0.371416, -0.324296, 0.86999], [0.011656, -0.938573, -0.344885]], 'translation vector': [5.42922, 4.041657, 1.370122]}\nB: {'rotation matrix': [[0.9999934814259427, -0.0026531579456658904, 0.00224130267955375], [0.0026602242897140562, 0.9999913138748001, -0.003078123639036722], [-0.0022329200630453808, 0.0030851593249457813, 0.9999929388785541]], 'translation vector': [0.005873456268956634, 0.01508492723074184, 0.0010277199164683282]}\nC: {'rotation matrix': [[0.928402, -0.120953, 0.351341], [-0.37149, -0.322693, 0.870554], [0.008079, -0.938743, -0.344522]], 'translation vector': [5.430759, 4.038916, 1.364124]}\nD: {'rotation matrix': [[0.929388, -0.122542, 0.348169], [-0.369059, -0.323333, 0.87135], [0.005798, -0.938317, -0.345726]], 'translation vector': [5.437048, 4.036695, 1.363649]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_190_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_190_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_190_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_190_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.928393, -0.117955, 0.352381], [-0.371416, -0.324296, 0.86999], [0.011656, -0.938573, -0.344885]], 'translation vector': [5.42922, 4.041657, 1.370122]}\nB: {'rotation matrix': [[0.9999934814259427, -0.0026531579456658904, 0.00224130267955375], [0.0026602242897140562, 0.9999913138748001, -0.003078123639036722], [-0.0022329200630453808, 0.0030851593249457813, 0.9999929388785541]], 'translation vector': [0.005873456268956634, 0.01508492723074184, 0.0010277199164683282]}\nC: {'rotation matrix': [[0.928402, -0.120953, 0.351341], [-0.37149, -0.322693, 0.870554], [0.008079, -0.938743, -0.344522]], 'translation vector': [5.430759, 4.038916, 1.364124]}\nD: {'rotation matrix': [[0.929388, -0.122542, 0.348169], [-0.369059, -0.323333, 0.87135], [0.005798, -0.938317, -0.345726]], 'translation vector': [5.437048, 4.036695, 1.363649]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.953183, -0.088424, 0.289177], [-0.302167, 0.24151, -0.922154], [0.011701, -0.966361, -0.256923]], 'translation vector': [1.211269, 4.890959, 1.556685]}\nB: {'rotation matrix': [[-0.956401, -0.093459, 0.276701], [-0.291436, 0.243606, -0.925052], [0.019048, -0.965361, -0.260222]], 'translation vector': [1.215449, 4.887503, 1.555227]}\nC: {'rotation matrix': [[-0.955218, -0.090693, 0.281661], [-0.295515, 0.243707, -0.92373], [0.015133, -0.965599, -0.259595]], 'translation vector': [1.213553, 4.889249, 1.555428]}\nD: {'rotation matrix': [[0.9999952251812577, 0.0022961074705375706, -0.0021161445756707063], [-0.002289678755021547, 0.9999926232978033, 0.0030864959240033065], [0.002122435340409546, -0.003080853599724993, 0.9999927920546235]], 'translation vector': [-0.0038335858537008605, -0.001641279240269633, 0.007141792646779166]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_191_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_191_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_191_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_191_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.953183, -0.088424, 0.289177], [-0.302167, 0.24151, -0.922154], [0.011701, -0.966361, -0.256923]], 'translation vector': [1.211269, 4.890959, 1.556685]}\nB: {'rotation matrix': [[-0.956401, -0.093459, 0.276701], [-0.291436, 0.243606, -0.925052], [0.019048, -0.965361, -0.260222]], 'translation vector': [1.215449, 4.887503, 1.555227]}\nC: {'rotation matrix': [[-0.955218, -0.090693, 0.281661], [-0.295515, 0.243707, -0.92373], [0.015133, -0.965599, -0.259595]], 'translation vector': [1.213553, 4.889249, 1.555428]}\nD: {'rotation matrix': [[0.9999952251812577, 0.0022961074705375706, -0.0021161445756707063], [-0.002289678755021547, 0.9999926232978033, 0.0030864959240033065], [0.002122435340409546, -0.003080853599724993, 0.9999927920546235]], 'translation vector': [-0.0038335858537008605, -0.001641279240269633, 0.007141792646779166]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.984658, -0.071177, 0.15932], [-0.173691, -0.312158, 0.934018], [-0.016748, -0.94736, -0.319732]], 'translation vector': [3.953827, 2.817107, 1.554211]}\nB: {'rotation matrix': [[0.984585, -0.072332, 0.159251], [-0.17407, -0.316233, 0.932575], [-0.017095, -0.94592, -0.323949]], 'translation vector': [3.956161, 2.818039, 1.553922]}\nC: {'rotation matrix': [[1.000000390586898, -0.00015899006682454229, -7.860499707006931e-05], [0.0001592053293816045, 0.9999988073723325, -0.001691416563679354], [7.911078695652774e-05, 0.0016920717225864005, 0.999998246065904]], 'translation vector': [-0.0031188610741375022, -0.006275319353865605, -0.0020119857094367255]}\nD: {'rotation matrix': [[0.985021, -0.07075, 0.157254], [-0.171705, -0.318523, 0.932234], [-0.015866, -0.945271, -0.325899]], 'translation vector': [3.958103, 2.817717, 1.548612]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_192_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_192_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_192_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_192_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.984658, -0.071177, 0.15932], [-0.173691, -0.312158, 0.934018], [-0.016748, -0.94736, -0.319732]], 'translation vector': [3.953827, 2.817107, 1.554211]}\nB: {'rotation matrix': [[0.984585, -0.072332, 0.159251], [-0.17407, -0.316233, 0.932575], [-0.017095, -0.94592, -0.323949]], 'translation vector': [3.956161, 2.818039, 1.553922]}\nC: {'rotation matrix': [[1.000000390586898, -0.00015899006682454229, -7.860499707006931e-05], [0.0001592053293816045, 0.9999988073723325, -0.001691416563679354], [7.911078695652774e-05, 0.0016920717225864005, 0.999998246065904]], 'translation vector': [-0.0031188610741375022, -0.006275319353865605, -0.0020119857094367255]}\nD: {'rotation matrix': [[0.985021, -0.07075, 0.157254], [-0.171705, -0.318523, 0.932234], [-0.015866, -0.945271, -0.325899]], 'translation vector': [3.958103, 2.817717, 1.548612]}"}, "output": {"output_text": "C"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.324348, -0.501243, 0.802218], [-0.945427, 0.143915, -0.292328], [0.031076, -0.853255, -0.520567]], 'translation vector': [-0.28287, 2.921737, 1.307859]}\nB: {'rotation matrix': [[0.9998206713039935, 0.01088419825826216, -0.015474672154137172], [-0.010778287023678227, 0.999918107104106, 0.00690122311170722], [0.015548906823126927, -0.006732006329303681, 0.9998567482634122]], 'translation vector': [-0.0009142965758486277, -0.0021867567072129113, 0.0020065217081752795]}\nC: {'rotation matrix': [[-0.336594, -0.496252, 0.800274], [-0.941144, 0.149432, -0.30318], [0.030867, -0.855222, -0.517342]], 'translation vector': [-0.283556, 2.919329, 1.307566]}\nD: {'rotation matrix': [[-0.33061, -0.49822, 0.801544], [-0.943277, 0.147056, -0.297664], [0.03043, -0.854489, -0.518578]], 'translation vector': [-0.283976, 2.918767, 1.308425]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_193_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_193_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_193_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_193_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.324348, -0.501243, 0.802218], [-0.945427, 0.143915, -0.292328], [0.031076, -0.853255, -0.520567]], 'translation vector': [-0.28287, 2.921737, 1.307859]}\nB: {'rotation matrix': [[0.9998206713039935, 0.01088419825826216, -0.015474672154137172], [-0.010778287023678227, 0.999918107104106, 0.00690122311170722], [0.015548906823126927, -0.006732006329303681, 0.9998567482634122]], 'translation vector': [-0.0009142965758486277, -0.0021867567072129113, 0.0020065217081752795]}\nC: {'rotation matrix': [[-0.336594, -0.496252, 0.800274], [-0.941144, 0.149432, -0.30318], [0.030867, -0.855222, -0.517342]], 'translation vector': [-0.283556, 2.919329, 1.307566]}\nD: {'rotation matrix': [[-0.33061, -0.49822, 0.801544], [-0.943277, 0.147056, -0.297664], [0.03043, -0.854489, -0.518578]], 'translation vector': [-0.283976, 2.918767, 1.308425]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.988022, -0.009517, -0.154018], [0.15411, 0.009774, 0.988005], [-0.007897, -0.999907, 0.011124]], 'translation vector': [3.954252, 2.675021, 1.588509]}\nB: {'rotation matrix': [[0.9999405001439704, 0.001517544746561925, 0.010769614189192206], [-0.0015446990948080185, 0.9999954653771669, 0.0025653888781814608], [-0.01076601396546154, -0.002581837929747806, 0.999938856444669]], 'translation vector': [-0.04482632526707597, 0.009643399205063075, 0.00020168741742709884]}\nC: {'rotation matrix': [[0.989616, -0.01086, -0.14333], [0.143408, 0.0068, 0.98964], [-0.009773, -0.999918, 0.008287]], 'translation vector': [3.942101, 2.673398, 1.591243]}\nD: {'rotation matrix': [[0.990689, -0.012911, -0.13553], [0.135653, 0.009179, 0.990714], [-0.011547, -0.999875, 0.010845]], 'translation vector': [3.935715, 2.670411, 1.599032]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_194_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_194_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_194_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_194_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.988022, -0.009517, -0.154018], [0.15411, 0.009774, 0.988005], [-0.007897, -0.999907, 0.011124]], 'translation vector': [3.954252, 2.675021, 1.588509]}\nB: {'rotation matrix': [[0.9999405001439704, 0.001517544746561925, 0.010769614189192206], [-0.0015446990948080185, 0.9999954653771669, 0.0025653888781814608], [-0.01076601396546154, -0.002581837929747806, 0.999938856444669]], 'translation vector': [-0.04482632526707597, 0.009643399205063075, 0.00020168741742709884]}\nC: {'rotation matrix': [[0.989616, -0.01086, -0.14333], [0.143408, 0.0068, 0.98964], [-0.009773, -0.999918, 0.008287]], 'translation vector': [3.942101, 2.673398, 1.591243]}\nD: {'rotation matrix': [[0.990689, -0.012911, -0.13553], [0.135653, 0.009179, 0.990714], [-0.011547, -0.999875, 0.010845]], 'translation vector': [3.935715, 2.670411, 1.599032]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.986946, -0.051965, 0.152438], [-0.150832, 0.630041, -0.761774], [-0.056457, -0.774822, -0.629654]], 'translation vector': [2.054614, 1.600808, 1.269291]}\nB: {'rotation matrix': [[-0.986874, -0.051472, 0.153072], [-0.151005, 0.630133, -0.761663], [-0.057252, -0.774779, -0.629634]], 'translation vector': [2.054307, 1.600529, 1.268919]}\nC: {'rotation matrix': [[-0.98698, -0.05266, 0.151977], [-0.150937, 0.629701, -0.762033], [-0.055572, -0.77505, -0.629451]], 'translation vector': [2.055977, 1.600957, 1.269368]}\nD: {'rotation matrix': [[0.9999963800999353, -0.00021451754451556594, -0.002594557385802436], [0.0002238699679127643, 0.9999932861643056, 0.0035784816404103737], [0.002594523779822574, -0.003578355478331594, 0.9999903397449379]], 'translation vector': [-0.000729278960620583, -0.000294753198244152, 0.0006269109678853635]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_195_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_195_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_195_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_195_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.986946, -0.051965, 0.152438], [-0.150832, 0.630041, -0.761774], [-0.056457, -0.774822, -0.629654]], 'translation vector': [2.054614, 1.600808, 1.269291]}\nB: {'rotation matrix': [[-0.986874, -0.051472, 0.153072], [-0.151005, 0.630133, -0.761663], [-0.057252, -0.774779, -0.629634]], 'translation vector': [2.054307, 1.600529, 1.268919]}\nC: {'rotation matrix': [[-0.98698, -0.05266, 0.151977], [-0.150937, 0.629701, -0.762033], [-0.055572, -0.77505, -0.629451]], 'translation vector': [2.055977, 1.600957, 1.269368]}\nD: {'rotation matrix': [[0.9999963800999353, -0.00021451754451556594, -0.002594557385802436], [0.0002238699679127643, 0.9999932861643056, 0.0035784816404103737], [0.002594523779822574, -0.003578355478331594, 0.9999903397449379]], 'translation vector': [-0.000729278960620583, -0.000294753198244152, 0.0006269109678853635]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.68897, 0.400817, -0.603877], [0.724521, 0.403569, -0.55875], [0.01975, -0.822483, -0.568447]], 'translation vector': [2.703838, 2.593028, 1.451995]}\nB: {'rotation matrix': [[0.9999867433099353, 0.0013037371773630478, -0.00505037420137311], [-0.0013327082277047075, 0.9999835004529126, -0.005699178965962697], [0.005042267928314986, 0.005705137184663826, 0.9999709125049986]], 'translation vector': [-0.003533739342698565, -0.0004956556588801009, 0.0008851453202214365]}\nC: {'rotation matrix': [[-0.687775, 0.405276, -0.60226], [0.725687, 0.405077, -0.55614], [0.018572, -0.819551, -0.572706]], 'translation vector': [2.702493, 2.593958, 1.452821]}\nD: {'rotation matrix': [[-0.6898, 0.39893, -0.604178], [0.723736, 0.402474, -0.560554], [0.019544, -0.823935, -0.566347]], 'translation vector': [2.703783, 2.591564, 1.452902]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_196_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_196_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_196_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_196_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.68897, 0.400817, -0.603877], [0.724521, 0.403569, -0.55875], [0.01975, -0.822483, -0.568447]], 'translation vector': [2.703838, 2.593028, 1.451995]}\nB: {'rotation matrix': [[0.9999867433099353, 0.0013037371773630478, -0.00505037420137311], [-0.0013327082277047075, 0.9999835004529126, -0.005699178965962697], [0.005042267928314986, 0.005705137184663826, 0.9999709125049986]], 'translation vector': [-0.003533739342698565, -0.0004956556588801009, 0.0008851453202214365]}\nC: {'rotation matrix': [[-0.687775, 0.405276, -0.60226], [0.725687, 0.405077, -0.55614], [0.018572, -0.819551, -0.572706]], 'translation vector': [2.702493, 2.593958, 1.452821]}\nD: {'rotation matrix': [[-0.6898, 0.39893, -0.604178], [0.723736, 0.402474, -0.560554], [0.019544, -0.823935, -0.566347]], 'translation vector': [2.703783, 2.591564, 1.452902]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[0.956857, -0.169845, 0.235747], [-0.290511, -0.544648, 0.786741], [-0.005224, -0.821286, -0.570492]], 'translation vector': [1.276382, 2.833935, 1.317457]}\nB: {'rotation matrix': [[0.9999970754093099, -0.00022106845961624886, 0.002343703924443124], [0.0002217235397933884, 1.000000114885585, -0.0003702254651105004], [-0.0023436320323324275, 0.00037212161436898277, 0.9999969566117395]], 'translation vector': [-0.0012761111666008684, -0.00028494477773222116, -0.0002961069063054378]}\nC: {'rotation matrix': [[0.956588, -0.169724, 0.236925], [-0.291413, -0.54533, 0.785935], [-0.00419, -0.820859, -0.571116]], 'translation vector': [1.27605, 2.834144, 1.316524]}\nD: {'rotation matrix': [[0.956511, -0.169195, 0.237615], [-0.291683, -0.546399, 0.785092], [-0.003001, -0.820257, -0.571988]], 'translation vector': [1.276076, 2.834318, 1.31658]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_197_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_197_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_197_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_197_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[0.956857, -0.169845, 0.235747], [-0.290511, -0.544648, 0.786741], [-0.005224, -0.821286, -0.570492]], 'translation vector': [1.276382, 2.833935, 1.317457]}\nB: {'rotation matrix': [[0.9999970754093099, -0.00022106845961624886, 0.002343703924443124], [0.0002217235397933884, 1.000000114885585, -0.0003702254651105004], [-0.0023436320323324275, 0.00037212161436898277, 0.9999969566117395]], 'translation vector': [-0.0012761111666008684, -0.00028494477773222116, -0.0002961069063054378]}\nC: {'rotation matrix': [[0.956588, -0.169724, 0.236925], [-0.291413, -0.54533, 0.785935], [-0.00419, -0.820859, -0.571116]], 'translation vector': [1.27605, 2.834144, 1.316524]}\nD: {'rotation matrix': [[0.956511, -0.169195, 0.237615], [-0.291683, -0.546399, 0.785092], [-0.003001, -0.820257, -0.571988]], 'translation vector': [1.276076, 2.834318, 1.31658]}"}, "output": {"output_text": "B"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.13245, -0.562539, 0.816092], [-0.991146, 0.067404, -0.114398], [0.009346, -0.824018, -0.566486]], 'translation vector': [2.413971, 4.448666, 1.362137]}\nB: {'rotation matrix': [[-0.128485, -0.560739, 0.817963], [-0.991659, 0.064113, -0.111818], [0.010258, -0.825507, -0.564299]], 'translation vector': [2.417159, 4.443525, 1.361777]}\nC: {'rotation matrix': [[-0.132037, -0.563719, 0.815345], [-0.991214, 0.068574, -0.113106], [0.007848, -0.823115, -0.567821]], 'translation vector': [2.411706, 4.446467, 1.360844]}\nD: {'rotation matrix': [[0.9999987411869987, 0.0004418575380488951, 0.0016406984025160954], [-0.0004493688554351619, 0.9999862647190665, 0.005219826446688158], [-0.0016383092715178728, -0.005221150249650812, 0.9999852785117939]], 'translation vector': [-0.005409867262581081, 0.0012422036096766398, -0.002713386665627704]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_198_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_198_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_198_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_198_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.13245, -0.562539, 0.816092], [-0.991146, 0.067404, -0.114398], [0.009346, -0.824018, -0.566486]], 'translation vector': [2.413971, 4.448666, 1.362137]}\nB: {'rotation matrix': [[-0.128485, -0.560739, 0.817963], [-0.991659, 0.064113, -0.111818], [0.010258, -0.825507, -0.564299]], 'translation vector': [2.417159, 4.443525, 1.361777]}\nC: {'rotation matrix': [[-0.132037, -0.563719, 0.815345], [-0.991214, 0.068574, -0.113106], [0.007848, -0.823115, -0.567821]], 'translation vector': [2.411706, 4.446467, 1.360844]}\nD: {'rotation matrix': [[0.9999987411869987, 0.0004418575380488951, 0.0016406984025160954], [-0.0004493688554351619, 0.9999862647190665, 0.005219826446688158], [-0.0016383092715178728, -0.005221150249650812, 0.9999852785117939]], 'translation vector': [-0.005409867262581081, 0.0012422036096766398, -0.002713386665627704]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "SCANNET_threed_pose_estimation", "options": "A: {'rotation matrix': [[-0.394987, 0.317496, -0.862079], [0.912593, 0.027696, -0.407931], [-0.10564, -0.947855, -0.300685]], 'translation vector': [4.882912, 2.963368, 1.402415]}\nB: {'rotation matrix': [[-0.393743, 0.318728, -0.862194], [0.912946, 0.026185, -0.40724], [-0.107222, -0.947484, -0.301292]], 'translation vector': [4.884082, 2.960136, 1.407949]}\nC: {'rotation matrix': [[-0.393984, 0.318317, -0.862236], [0.913424, 0.031343, -0.405802], [-0.102149, -0.947466, -0.303106]], 'translation vector': [4.883262, 2.96182, 1.402411]}\nD: {'rotation matrix': [[0.9999866432276233, 0.002858711999338773, -0.0043010740025884895], [-0.0027980802651053054, 0.9998995896653632, 0.013894745582855106], [0.004339725514880082, -0.013881253175420062, 0.9998943009326048]], 'translation vector': [-0.001200424251745491, -0.0035619824296807545, 0.0012814893270478578]}", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_199_0.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_199_1.png", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_199_2.jpg", "3D-spatial/threeD_Pose_Estimation/threeD_Pose_Estimation_199_3.png"], "question": "Given a pair of a RGB image and a depth image for scan 0, along with another pair of a RGB image and a depth image for scan 1, please estimate the relative camera pose from scan 0 to scan 1. The output should indicate the rotation matrix and the translation vector.", "context": "Your task is to estimate the relative camera pose between two scans. \nSelect from the following choices.\nA: {'rotation matrix': [[-0.394987, 0.317496, -0.862079], [0.912593, 0.027696, -0.407931], [-0.10564, -0.947855, -0.300685]], 'translation vector': [4.882912, 2.963368, 1.402415]}\nB: {'rotation matrix': [[-0.393743, 0.318728, -0.862194], [0.912946, 0.026185, -0.40724], [-0.107222, -0.947484, -0.301292]], 'translation vector': [4.884082, 2.960136, 1.407949]}\nC: {'rotation matrix': [[-0.393984, 0.318317, -0.862236], [0.913424, 0.031343, -0.405802], [-0.102149, -0.947466, -0.303106]], 'translation vector': [4.883262, 2.96182, 1.402411]}\nD: {'rotation matrix': [[0.9999866432276233, 0.002858711999338773, -0.0043010740025884895], [-0.0027980802651053054, 0.9998995896653632, 0.013894745582855106], [0.004339725514880082, -0.013881253175420062, 0.9998943009326048]], 'translation vector': [-0.001200424251745491, -0.0035619824296807545, 0.0012814893270478578]}"}, "output": {"output_text": "D"}, "task": "threeD_Pose_Estimation"}
{"source": "NuScenes_threeD_question_answering", "options": "A: yes\nB: uncertain\nC: no\nD: maybe", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_0_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_0_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_0_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_0_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_0_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_0_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_0_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_0_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_0_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_0_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_0_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_0_11.png"], "question": "Are there any things?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: yes\nB: uncertain\nC: no\nD: maybe"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: walking\nB: lying down\nC: sitting\nD: standing", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_1_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_1_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_1_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_1_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_1_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_1_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_1_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_1_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_1_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_1_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_1_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_1_11.png"], "question": "What is the status of the pedestrian to the back right of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: walking\nB: lying down\nC: sitting\nD: standing"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 5\nB: 2\nC: 3\nD: 0", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_2_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_2_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_2_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_2_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_2_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_2_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_2_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_2_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_2_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_2_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_2_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_2_11.png"], "question": "How many cars are to the front left of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 5\nB: 2\nC: 3\nD: 0"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 5\nB: 12\nC: 3\nD: 8", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_3_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_3_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_3_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_3_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_3_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_3_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_3_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_3_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_3_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_3_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_3_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_3_11.png"], "question": "How many moving things are there?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 5\nB: 12\nC: 3\nD: 8"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: moving\nB: idling\nC: broken down\nD: parked", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_4_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_4_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_4_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_4_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_4_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_4_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_4_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_4_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_4_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_4_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_4_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_4_11.png"], "question": "The truck to the back right of the bus is in what status?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: moving\nB: idling\nC: broken down\nD: parked"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: no\nB: not sure\nC: yes\nD: unknown", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_5_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_5_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_5_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_5_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_5_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_5_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_5_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_5_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_5_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_5_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_5_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_5_11.png"], "question": "Are there any other pedestrians of the same status as the thing that is to the front of the bicycle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: no\nB: not sure\nC: yes\nD: unknown"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: new\nB: without rider\nC: for sale\nD: broken", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_6_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_6_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_6_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_6_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_6_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_6_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_6_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_6_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_6_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_6_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_6_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_6_11.png"], "question": "There is a motorcycle; what status is it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: new\nB: without rider\nC: for sale\nD: broken"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: sitting\nB: jumping\nC: stationary\nD: moving", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_7_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_7_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_7_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_7_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_7_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_7_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_7_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_7_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_7_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_7_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_7_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_7_11.png"], "question": "What status is the pedestrian that is to the front of the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: sitting\nB: jumping\nC: stationary\nD: moving"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: on the road\nB: without rider\nC: being ridden by someone\nD: inside the truck", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_8_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_8_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_8_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_8_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_8_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_8_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_8_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_8_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_8_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_8_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_8_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_8_11.png"], "question": "What is the status of the motorcycle to the front of the parked truck?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: on the road\nB: without rider\nC: being ridden by someone\nD: inside the truck"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 7\nB: 5\nC: 3\nD: 10", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_9_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_9_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_9_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_9_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_9_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_9_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_9_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_9_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_9_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_9_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_9_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_9_11.png"], "question": "How many cars are to the back of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 7\nB: 5\nC: 3\nD: 10"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: with rider\nB: in repair\nC: being sold\nD: locked up", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_10_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_10_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_10_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_10_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_10_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_10_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_10_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_10_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_10_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_10_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_10_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_10_11.png"], "question": "The bicycle is in what status?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: with rider\nB: in repair\nC: being sold\nD: locked up"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 2\nB: 4\nC: 10\nD: 8", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_11_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_11_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_11_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_11_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_11_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_11_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_11_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_11_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_11_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_11_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_11_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_11_11.png"], "question": "How many other things are there of the same status as the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 2\nB: 4\nC: 10\nD: 8"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: maybe\nB: I don’t know\nC: no\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_12_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_12_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_12_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_12_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_12_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_12_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_12_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_12_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_12_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_12_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_12_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_12_11.png"], "question": "Is the status of the thing that is to the front left of the construction vehicle the same as the car to the back of the motorcycle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: maybe\nB: I don’t know\nC: no\nD: yes"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: waiting\nB: moving\nC: departing\nD: stopped", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_13_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_13_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_13_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_13_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_13_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_13_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_13_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_13_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_13_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_13_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_13_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_13_11.png"], "question": "There is a bus; what status is it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: waiting\nB: moving\nC: departing\nD: stopped"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 6\nB: 4\nC: 2\nD: 7", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_14_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_14_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_14_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_14_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_14_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_14_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_14_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_14_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_14_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_14_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_14_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_14_11.png"], "question": "There is a bicycle; how many moving things are to the back right of it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 6\nB: 4\nC: 2\nD: 7"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: yes\nB: no\nC: possibly\nD: maybe", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_15_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_15_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_15_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_15_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_15_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_15_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_15_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_15_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_15_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_15_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_15_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_15_11.png"], "question": "Are any trucks visible?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: yes\nB: no\nC: possibly\nD: maybe"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 5\nB: 12\nC: 3\nD: 9", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_16_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_16_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_16_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_16_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_16_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_16_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_16_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_16_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_16_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_16_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_16_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_16_11.png"], "question": "What number of parked cars are to the front left of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 5\nB: 12\nC: 3\nD: 9"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: broken\nB: with rider\nC: new\nD: without rider", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_17_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_17_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_17_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_17_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_17_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_17_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_17_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_17_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_17_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_17_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_17_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_17_11.png"], "question": "The bicycle to the front of me is in what status?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: broken\nB: with rider\nC: new\nD: without rider"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: maybe\nB: no\nC: uncertain\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_18_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_18_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_18_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_18_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_18_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_18_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_18_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_18_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_18_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_18_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_18_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_18_11.png"], "question": "There is a truck that is to the back right of the parked thing; is its status the same as the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: maybe\nB: no\nC: uncertain\nD: yes"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: unsure\nB: yes\nC: no\nD: maybe", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_19_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_19_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_19_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_19_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_19_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_19_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_19_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_19_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_19_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_19_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_19_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_19_11.png"], "question": "There is a car that is to the front left of the motorcycle; is it the same status as the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: unsure\nB: yes\nC: no\nD: maybe"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: no, but there is a stationary bus\nB: yes, the bus is moving\nC: yes, there is a bus in the frame\nD: no", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_20_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_20_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_20_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_20_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_20_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_20_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_20_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_20_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_20_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_20_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_20_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_20_11.png"], "question": "There is a with rider motorcycle; are there any moving buss to the back right of it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: no, but there is a stationary bus\nB: yes, the bus is moving\nC: yes, there is a bus in the frame\nD: no"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: train\nB: trees\nC: bike\nD: car", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_21_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_21_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_21_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_21_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_21_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_21_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_21_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_21_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_21_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_21_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_21_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_21_11.png"], "question": "The thing that is both to the back of the bus and the front left of me is what?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: train\nB: trees\nC: bike\nD: car"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: no\nB: uncertain\nC: maybe\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_22_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_22_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_22_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_22_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_22_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_22_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_22_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_22_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_22_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_22_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_22_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_22_11.png"], "question": "Are there any other things of the same status as the traffic cone to the front left of the with rider thing?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: no\nB: uncertain\nC: maybe\nD: yes"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: uncertain\nB: no\nC: yes\nD: maybe", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_23_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_23_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_23_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_23_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_23_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_23_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_23_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_23_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_23_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_23_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_23_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_23_11.png"], "question": "There is a truck that is to the back right of the bus; is it the same status as the car that is to the back right of the construction vehicle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: uncertain\nB: no\nC: yes\nD: maybe"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: sitting\nB: lying down\nC: moving\nD: standing", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_24_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_24_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_24_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_24_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_24_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_24_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_24_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_24_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_24_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_24_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_24_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_24_11.png"], "question": "What is the status of the pedestrian to the front of the parked thing?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: sitting\nB: lying down\nC: moving\nD: standing"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: not sure\nB: yes\nC: maybe\nD: no", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_25_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_25_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_25_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_25_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_25_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_25_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_25_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_25_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_25_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_25_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_25_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_25_11.png"], "question": "Are there any other things that in the same status as the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: not sure\nB: yes\nC: maybe\nD: no"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: tree\nB: bicycle\nC: lamp post\nD: pedestrian", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_26_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_26_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_26_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_26_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_26_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_26_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_26_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_26_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_26_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_26_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_26_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_26_11.png"], "question": "What is the thing that is to the front left of me and the back right of the moving bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: tree\nB: bicycle\nC: lamp post\nD: pedestrian"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: sold\nB: moving\nC: parked\nD: broken down", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_27_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_27_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_27_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_27_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_27_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_27_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_27_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_27_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_27_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_27_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_27_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_27_11.png"], "question": "What is the status of the trailer?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: sold\nB: moving\nC: parked\nD: broken down"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: with rider\nB: being serviced\nC: missing\nD: on stand", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_28_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_28_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_28_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_28_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_28_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_28_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_28_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_28_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_28_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_28_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_28_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_28_11.png"], "question": "What status is the motorcycle to the front left of the parked thing?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: with rider\nB: being serviced\nC: missing\nD: on stand"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: maybe\nB: no\nC: sometimes\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_29_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_29_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_29_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_29_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_29_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_29_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_29_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_29_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_29_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_29_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_29_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_29_11.png"], "question": "There is a bus; is its status the same as the bicycle to the back of the with rider motorcycle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: maybe\nB: no\nC: sometimes\nD: yes"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: traffic light\nB: bus stop sign\nC: hydrant\nD: pedestrian", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_30_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_30_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_30_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_30_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_30_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_30_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_30_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_30_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_30_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_30_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_30_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_30_11.png"], "question": "What is the standing pedestrian that is to the front left of the stopped bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: traffic light\nB: bus stop sign\nC: hydrant\nD: pedestrian"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: motorcycle\nB: truck\nC: bicycle\nD: car", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_31_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_31_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_31_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_31_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_31_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_31_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_31_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_31_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_31_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_31_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_31_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_31_11.png"], "question": "What is the thing that is both to the back right of the stopped bus and the front left of the parked truck?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: motorcycle\nB: truck\nC: bicycle\nD: car"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: maybe\nB: uncertain\nC: no\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_32_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_32_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_32_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_32_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_32_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_32_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_32_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_32_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_32_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_32_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_32_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_32_11.png"], "question": "Are there any other construction vehicles of the same status as the car that is to the back of the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: maybe\nB: uncertain\nC: no\nD: yes"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: airplane\nB: train\nC: car\nD: motorcycle", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_33_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_33_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_33_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_33_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_33_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_33_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_33_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_33_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_33_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_33_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_33_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_33_11.png"], "question": "The with rider thing to the front left of the with rider bicycle is what?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: airplane\nB: train\nC: car\nD: motorcycle"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: pedestrian\nB: building\nC: bus\nD: car", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_34_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_34_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_34_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_34_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_34_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_34_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_34_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_34_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_34_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_34_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_34_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_34_11.png"], "question": "What is the thing that is both to the back of the standing pedestrian and the front left of the parked thing?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: pedestrian\nB: building\nC: bus\nD: car"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: yes\nB: no\nC: unknown\nD: maybe", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_35_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_35_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_35_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_35_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_35_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_35_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_35_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_35_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_35_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_35_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_35_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_35_11.png"], "question": "There is a car to the back right of the stopped bus; does it have the same status as the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: yes\nB: no\nC: unknown\nD: maybe"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: moving\nB: stopped\nC: under maintenance\nD: idle", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_36_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_36_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_36_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_36_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_36_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_36_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_36_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_36_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_36_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_36_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_36_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_36_11.png"], "question": "What is the status of the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: moving\nB: stopped\nC: under maintenance\nD: idle"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: yes\nB: no\nC: maybe\nD: sometimes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_37_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_37_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_37_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_37_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_37_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_37_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_37_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_37_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_37_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_37_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_37_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_37_11.png"], "question": "Are there any trailers to the front right of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: yes\nB: no\nC: maybe\nD: sometimes"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: yes\nB: maybe\nC: no\nD: uncertain", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_38_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_38_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_38_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_38_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_38_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_38_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_38_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_38_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_38_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_38_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_38_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_38_11.png"], "question": "Is the status of the truck to the front left of the without rider motorcycle the same as the construction vehicle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: yes\nB: maybe\nC: no\nD: uncertain"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: parked\nB: reversing\nC: broken down\nD: moving", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_39_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_39_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_39_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_39_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_39_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_39_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_39_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_39_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_39_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_39_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_39_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_39_11.png"], "question": "What status is the car that is to the front of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: parked\nB: reversing\nC: broken down\nD: moving"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: yes\nB: maybe\nC: sometimes\nD: no", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_40_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_40_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_40_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_40_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_40_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_40_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_40_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_40_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_40_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_40_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_40_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_40_11.png"], "question": "Are there any other pedestrians of the same status as the trailer?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: yes\nB: maybe\nC: sometimes\nD: no"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: yes\nB: no\nC: maybe\nD: not sure", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_41_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_41_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_41_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_41_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_41_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_41_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_41_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_41_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_41_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_41_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_41_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_41_11.png"], "question": "Are there any other things that in the same status as the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: yes\nB: no\nC: maybe\nD: not sure"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 1\nB: 0\nC: 3\nD: 2", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_42_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_42_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_42_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_42_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_42_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_42_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_42_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_42_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_42_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_42_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_42_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_42_11.png"], "question": "How many other motorcycles in the same status as the car that is to the back of the moving bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 1\nB: 0\nC: 3\nD: 2"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: maybe\nB: no\nC: not sure\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_43_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_43_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_43_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_43_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_43_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_43_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_43_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_43_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_43_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_43_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_43_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_43_11.png"], "question": "There is a parked truck; are there any moving pedestrians to the front left of it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: maybe\nB: no\nC: not sure\nD: yes"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: under maintenance\nB: moving\nC: parked\nD: stopped", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_44_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_44_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_44_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_44_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_44_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_44_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_44_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_44_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_44_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_44_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_44_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_44_11.png"], "question": "There is a truck to the front left of the stopped construction vehicle; what status is it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: under maintenance\nB: moving\nC: parked\nD: stopped"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: bicycle\nB: car\nC: motorcycle\nD: tricycle", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_45_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_45_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_45_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_45_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_45_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_45_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_45_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_45_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_45_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_45_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_45_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_45_11.png"], "question": "There is a with rider thing that is to the front left of the bicycle; what is it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: bicycle\nB: car\nC: motorcycle\nD: tricycle"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: maybe\nB: yes\nC: no\nD: I can't tell", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_46_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_46_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_46_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_46_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_46_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_46_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_46_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_46_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_46_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_46_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_46_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_46_11.png"], "question": "Are there any motorcycles to the front right of the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: maybe\nB: yes\nC: no\nD: I can't tell"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: bus\nB: car\nC: bike\nD: train", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_47_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_47_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_47_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_47_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_47_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_47_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_47_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_47_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_47_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_47_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_47_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_47_11.png"], "question": "What is the stopped thing?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: bus\nB: car\nC: bike\nD: train"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: pedestrian\nB: car\nC: bike\nD: tree", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_48_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_48_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_48_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_48_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_48_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_48_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_48_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_48_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_48_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_48_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_48_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_48_11.png"], "question": "The standing pedestrian that is to the front left of me is what?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: pedestrian\nB: car\nC: bike\nD: tree"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 2\nB: 5\nC: 3\nD: 1", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_49_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_49_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_49_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_49_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_49_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_49_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_49_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_49_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_49_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_49_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_49_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_49_11.png"], "question": "How many other things are in the same status as the bus that is to the back right of the moving bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 2\nB: 5\nC: 3\nD: 1"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: standing\nB: moving\nC: lying down\nD: sitting", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_50_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_50_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_50_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_50_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_50_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_50_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_50_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_50_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_50_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_50_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_50_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_50_11.png"], "question": "What is the status of the pedestrian that is to the front of the traffic cone?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: standing\nB: moving\nC: lying down\nD: sitting"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: maybe\nB: no\nC: yes\nD: unknown", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_51_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_51_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_51_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_51_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_51_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_51_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_51_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_51_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_51_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_51_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_51_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_51_11.png"], "question": "There is a motorcycle to the back right of the parked thing; does it have the same status as the bicycle that is to the back right of the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: maybe\nB: no\nC: yes\nD: unknown"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: maybe\nB: possibly\nC: no\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_52_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_52_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_52_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_52_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_52_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_52_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_52_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_52_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_52_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_52_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_52_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_52_11.png"], "question": "Are there any buss to the front right of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: maybe\nB: possibly\nC: no\nD: yes"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: parked\nB: moving\nC: under maintenance\nD: stopping", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_53_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_53_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_53_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_53_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_53_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_53_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_53_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_53_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_53_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_53_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_53_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_53_11.png"], "question": "The bus is in what status?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: parked\nB: moving\nC: under maintenance\nD: stopping"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: parked\nB: broken down\nC: moving\nD: stopped", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_54_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_54_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_54_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_54_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_54_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_54_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_54_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_54_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_54_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_54_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_54_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_54_11.png"], "question": "The bus that is to the front of me is in what status?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: parked\nB: broken down\nC: moving\nD: stopped"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: bicycle\nB: car\nC: motorcycle\nD: pedestrian", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_55_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_55_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_55_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_55_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_55_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_55_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_55_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_55_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_55_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_55_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_55_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_55_11.png"], "question": "The thing that is both to the back of the stopped bus and the back right of me is what?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: bicycle\nB: car\nC: motorcycle\nD: pedestrian"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: yes\nB: maybe\nC: uncertain\nD: no", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_56_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_56_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_56_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_56_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_56_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_56_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_56_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_56_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_56_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_56_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_56_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_56_11.png"], "question": "There is a with rider thing; are there any parked cars to the back of it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: yes\nB: maybe\nC: uncertain\nD: no"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: sometimes\nB: no\nC: yes\nD: uncertain", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_57_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_57_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_57_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_57_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_57_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_57_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_57_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_57_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_57_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_57_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_57_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_57_11.png"], "question": "Does the bicycle have the same status as the thing that is to the back right of the construction vehicle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: sometimes\nB: no\nC: yes\nD: uncertain"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: only on weekends\nB: no\nC: sometimes\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_58_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_58_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_58_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_58_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_58_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_58_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_58_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_58_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_58_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_58_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_58_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_58_11.png"], "question": "Are any without rider things visible?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: only on weekends\nB: no\nC: sometimes\nD: yes"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: maybe\nB: unknown\nC: no\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_59_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_59_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_59_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_59_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_59_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_59_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_59_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_59_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_59_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_59_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_59_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_59_11.png"], "question": "Is the status of the bicycle the same as the truck that is to the back of the without rider motorcycle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: maybe\nB: unknown\nC: no\nD: yes"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: not applicable\nB: no\nC: uncertain\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_60_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_60_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_60_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_60_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_60_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_60_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_60_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_60_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_60_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_60_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_60_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_60_11.png"], "question": "Are there any other buss that in the same status as the motorcycle to the back right of the moving bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: not applicable\nB: no\nC: uncertain\nD: yes"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 9\nB: 5\nC: 12\nD: 7", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_61_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_61_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_61_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_61_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_61_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_61_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_61_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_61_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_61_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_61_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_61_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_61_11.png"], "question": "What number of cars are to the back right of the trailer?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 9\nB: 5\nC: 12\nD: 7"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 3\nB: 0\nC: 1\nD: 2", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_62_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_62_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_62_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_62_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_62_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_62_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_62_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_62_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_62_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_62_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_62_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_62_11.png"], "question": "What number of other things are there of the same status as the bicycle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 3\nB: 0\nC: 1\nD: 2"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: with rider\nB: on the ground\nC: in repair\nD: broken", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_63_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_63_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_63_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_63_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_63_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_63_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_63_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_63_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_63_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_63_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_63_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_63_11.png"], "question": "What is the status of the bicycle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: with rider\nB: on the ground\nC: in repair\nD: broken"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: unsure\nB: no\nC: maybe\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_64_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_64_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_64_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_64_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_64_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_64_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_64_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_64_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_64_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_64_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_64_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_64_11.png"], "question": "Are there any other bicycles of the same status as the car to the front left of the parked trailer?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: unsure\nB: no\nC: maybe\nD: yes"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: being repaired\nB: moving\nC: stopped\nD: parked", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_65_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_65_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_65_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_65_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_65_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_65_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_65_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_65_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_65_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_65_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_65_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_65_11.png"], "question": "The construction vehicle is in what status?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: being repaired\nB: moving\nC: stopped\nD: parked"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: building\nB: bicycle\nC: tree\nD: car", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_66_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_66_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_66_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_66_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_66_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_66_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_66_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_66_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_66_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_66_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_66_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_66_11.png"], "question": "The thing that is both to the front left of the construction vehicle and the back of me is what?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: building\nB: bicycle\nC: tree\nD: car"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 4\nB: 2\nC: 0\nD: 1", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_67_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_67_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_67_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_67_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_67_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_67_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_67_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_67_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_67_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_67_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_67_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_67_11.png"], "question": "What number of moving cars are to the front left of the moving bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 4\nB: 2\nC: 0\nD: 1"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 9\nB: 5\nC: 12\nD: 7", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_68_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_68_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_68_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_68_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_68_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_68_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_68_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_68_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_68_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_68_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_68_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_68_11.png"], "question": "How many cars are to the back of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 9\nB: 5\nC: 12\nD: 7"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: sometimes\nB: no\nC: only during peak hours\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_69_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_69_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_69_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_69_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_69_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_69_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_69_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_69_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_69_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_69_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_69_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_69_11.png"], "question": "Are there any moving trailers?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: sometimes\nB: no\nC: only during peak hours\nD: yes"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 6\nB: 12\nC: 9\nD: 3", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_70_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_70_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_70_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_70_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_70_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_70_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_70_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_70_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_70_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_70_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_70_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_70_11.png"], "question": "What number of cars are there?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 6\nB: 12\nC: 9\nD: 3"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: unknown\nB: yes\nC: no\nD: maybe", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_71_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_71_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_71_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_71_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_71_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_71_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_71_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_71_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_71_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_71_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_71_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_71_11.png"], "question": "Is the status of the car that is to the front of the trailer the same as the trailer?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: unknown\nB: yes\nC: no\nD: maybe"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: yes\nB: uncertain\nC: no\nD: maybe", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_72_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_72_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_72_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_72_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_72_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_72_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_72_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_72_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_72_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_72_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_72_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_72_11.png"], "question": "There is a construction vehicle that is to the front left of the parked truck; does it have the same status as the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: yes\nB: uncertain\nC: no\nD: maybe"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: stopped\nB: moving\nC: broken down\nD: cancelled", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_73_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_73_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_73_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_73_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_73_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_73_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_73_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_73_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_73_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_73_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_73_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_73_11.png"], "question": "What is the status of the bus to the back right of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: stopped\nB: moving\nC: broken down\nD: cancelled"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 4\nB: 9\nC: 7\nD: 12", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_74_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_74_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_74_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_74_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_74_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_74_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_74_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_74_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_74_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_74_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_74_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_74_11.png"], "question": "How many other things in the same status as the thing that is to the front of the with rider bicycle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 4\nB: 9\nC: 7\nD: 12"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: no\nB: maybe\nC: yes\nD: unsure", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_75_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_75_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_75_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_75_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_75_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_75_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_75_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_75_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_75_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_75_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_75_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_75_11.png"], "question": "Are there any other buss of the same status as the construction vehicle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: no\nB: maybe\nC: yes\nD: unsure"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: yes\nB: sometimes\nC: maybe\nD: no", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_76_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_76_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_76_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_76_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_76_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_76_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_76_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_76_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_76_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_76_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_76_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_76_11.png"], "question": "There is a construction vehicle; is its status the same as the bus that is to the front of the truck?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: yes\nB: sometimes\nC: maybe\nD: no"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: tree\nB: car\nC: bicycle\nD: bench", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_77_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_77_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_77_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_77_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_77_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_77_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_77_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_77_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_77_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_77_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_77_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_77_11.png"], "question": "The thing that is both to the back right of the trailer and the back right of me is what?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: tree\nB: car\nC: bicycle\nD: bench"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 9\nB: 7\nC: 5\nD: 12", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_78_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_78_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_78_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_78_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_78_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_78_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_78_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_78_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_78_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_78_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_78_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_78_11.png"], "question": "What number of other things in the same status as the car that is to the front left of the motorcycle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 9\nB: 7\nC: 5\nD: 12"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 10\nB: 3\nC: 1\nD: 5", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_79_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_79_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_79_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_79_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_79_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_79_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_79_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_79_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_79_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_79_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_79_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_79_11.png"], "question": "What number of other things are in the same status as the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 10\nB: 3\nC: 1\nD: 5"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: bench\nB: pedestrian\nC: tree\nD: bicycle", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_80_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_80_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_80_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_80_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_80_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_80_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_80_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_80_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_80_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_80_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_80_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_80_11.png"], "question": "The thing that is both to the back right of the stopped bus and the back right of me is what?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: bench\nB: pedestrian\nC: tree\nD: bicycle"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 5\nB: 3\nC: 7\nD: 2", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_81_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_81_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_81_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_81_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_81_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_81_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_81_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_81_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_81_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_81_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_81_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_81_11.png"], "question": "What number of other things are in the same status as the construction vehicle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 5\nB: 3\nC: 7\nD: 2"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 3\nB: 5\nC: 2\nD: 0", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_82_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_82_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_82_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_82_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_82_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_82_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_82_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_82_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_82_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_82_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_82_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_82_11.png"], "question": "What number of moving buss are to the front right of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 3\nB: 5\nC: 2\nD: 0"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: motorcycle\nB: bicycle\nC: trolley\nD: car", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_83_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_83_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_83_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_83_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_83_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_83_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_83_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_83_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_83_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_83_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_83_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_83_11.png"], "question": "The without rider thing that is to the front left of me is what?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: motorcycle\nB: bicycle\nC: trolley\nD: car"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: with rider\nB: in front of the bus\nC: without rider\nD: parked", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_84_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_84_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_84_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_84_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_84_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_84_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_84_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_84_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_84_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_84_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_84_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_84_11.png"], "question": "What status is the motorcycle to the back of the moving bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: with rider\nB: in front of the bus\nC: without rider\nD: parked"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: scooter\nB: rollerblades\nC: motorcycle\nD: bicycle", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_85_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_85_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_85_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_85_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_85_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_85_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_85_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_85_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_85_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_85_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_85_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_85_11.png"], "question": "The with rider thing to the back right of the moving bus is what?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: scooter\nB: rollerblades\nC: motorcycle\nD: bicycle"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: bicycle\nB: dog\nC: pedestrian\nD: car", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_86_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_86_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_86_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_86_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_86_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_86_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_86_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_86_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_86_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_86_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_86_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_86_11.png"], "question": "What is the moving thing that is both to the back right of the motorcycle and the front of the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: bicycle\nB: dog\nC: pedestrian\nD: car"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: uncertain\nB: maybe\nC: yes\nD: no", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_87_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_87_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_87_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_87_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_87_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_87_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_87_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_87_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_87_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_87_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_87_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_87_11.png"], "question": "Is there another car that has the same status as the thing that is to the front left of the with rider thing?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: uncertain\nB: maybe\nC: yes\nD: no"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: without rider\nB: parked\nC: with rider\nD: damaged", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_88_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_88_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_88_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_88_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_88_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_88_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_88_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_88_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_88_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_88_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_88_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_88_11.png"], "question": "What status is the motorcycle to the back of the moving bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: without rider\nB: parked\nC: with rider\nD: damaged"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 7\nB: 3\nC: 6\nD: 4", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_89_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_89_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_89_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_89_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_89_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_89_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_89_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_89_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_89_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_89_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_89_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_89_11.png"], "question": "There is a stopped bus; what number of moving things are to the front left of it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 7\nB: 3\nC: 6\nD: 4"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: turning\nB: stopped\nC: broken down\nD: moving", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_90_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_90_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_90_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_90_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_90_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_90_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_90_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_90_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_90_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_90_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_90_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_90_11.png"], "question": "There is a truck to the back right of the moving truck; what status is it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: turning\nB: stopped\nC: broken down\nD: moving"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: no\nB: maybe\nC: sometimes\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_91_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_91_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_91_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_91_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_91_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_91_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_91_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_91_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_91_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_91_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_91_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_91_11.png"], "question": "Are there any cars?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: no\nB: maybe\nC: sometimes\nD: yes"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: moving\nB: stationary\nC: parked\nD: broken down", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_92_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_92_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_92_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_92_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_92_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_92_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_92_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_92_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_92_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_92_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_92_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_92_11.png"], "question": "There is a car to the back right of me; what status is it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: moving\nB: stationary\nC: parked\nD: broken down"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: unknown\nB: yes\nC: maybe\nD: no", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_93_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_93_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_93_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_93_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_93_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_93_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_93_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_93_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_93_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_93_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_93_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_93_11.png"], "question": "There is a construction vehicle; does it have the same status as the car to the back right of the construction vehicle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: unknown\nB: yes\nC: maybe\nD: no"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: motorcycle\nB: bicycle\nC: truck\nD: car", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_94_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_94_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_94_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_94_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_94_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_94_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_94_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_94_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_94_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_94_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_94_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_94_11.png"], "question": "What is the moving thing that is both to the back right of the bus and the front left of the with rider bicycle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: motorcycle\nB: bicycle\nC: truck\nD: car"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: no\nB: sometimes\nC: yes\nD: probably not", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_95_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_95_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_95_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_95_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_95_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_95_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_95_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_95_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_95_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_95_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_95_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_95_11.png"], "question": "Are there any barriers?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: no\nB: sometimes\nC: yes\nD: probably not"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 7\nB: 10\nC: 3\nD: 5", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_96_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_96_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_96_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_96_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_96_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_96_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_96_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_96_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_96_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_96_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_96_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_96_11.png"], "question": "How many moving pedestrians are there?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 7\nB: 10\nC: 3\nD: 5"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: no\nB: yes\nC: there is a rider without a car\nD: maybe", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_97_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_97_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_97_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_97_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_97_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_97_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_97_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_97_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_97_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_97_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_97_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_97_11.png"], "question": "There is a with rider thing; are there any stopped cars to the back left of it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: no\nB: yes\nC: there is a rider without a car\nD: maybe"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: yes\nB: not sure\nC: maybe\nD: no", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_98_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_98_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_98_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_98_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_98_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_98_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_98_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_98_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_98_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_98_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_98_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_98_11.png"], "question": "Is there another car of the same status as the pedestrian to the front of the with rider thing?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: yes\nB: not sure\nC: maybe\nD: no"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: not sure\nB: no\nC: maybe\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_99_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_99_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_99_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_99_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_99_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_99_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_99_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_99_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_99_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_99_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_99_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_99_11.png"], "question": "Are there any moving buss?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: not sure\nB: no\nC: maybe\nD: yes"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: moving\nB: under maintenance\nC: being loaded\nD: parked", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_100_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_100_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_100_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_100_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_100_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_100_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_100_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_100_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_100_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_100_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_100_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_100_11.png"], "question": "The construction vehicle is in what status?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: moving\nB: under maintenance\nC: being loaded\nD: parked"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: delayed\nB: stopped\nC: broken down\nD: moving", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_101_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_101_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_101_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_101_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_101_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_101_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_101_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_101_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_101_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_101_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_101_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_101_11.png"], "question": "The bus is in what status?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: delayed\nB: stopped\nC: broken down\nD: moving"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: lost\nB: moving\nC: stopped\nD: waiting", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_102_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_102_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_102_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_102_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_102_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_102_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_102_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_102_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_102_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_102_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_102_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_102_11.png"], "question": "There is a pedestrian that is to the front left of the stopped bus; what status is it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: lost\nB: moving\nC: stopped\nD: waiting"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: yes\nB: maybe\nC: not sure\nD: no", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_103_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_103_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_103_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_103_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_103_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_103_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_103_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_103_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_103_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_103_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_103_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_103_11.png"], "question": "There is a bus; is it the same status as the thing that is to the back of the moving bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: yes\nB: maybe\nC: not sure\nD: no"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: parked\nB: moving\nC: stopped\nD: overturned", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_104_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_104_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_104_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_104_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_104_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_104_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_104_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_104_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_104_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_104_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_104_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_104_11.png"], "question": "What is the status of the construction vehicle to the front of the bicycle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: parked\nB: moving\nC: stopped\nD: overturned"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: yes\nB: sometimes\nC: no\nD: maybe", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_105_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_105_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_105_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_105_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_105_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_105_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_105_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_105_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_105_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_105_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_105_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_105_11.png"], "question": "Are any things visible?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: yes\nB: sometimes\nC: no\nD: maybe"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: yes\nB: I don't know\nC: maybe\nD: no", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_106_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_106_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_106_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_106_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_106_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_106_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_106_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_106_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_106_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_106_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_106_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_106_11.png"], "question": "Are there any things to the front of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: yes\nB: I don't know\nC: maybe\nD: no"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: bicycle\nB: bus\nC: train\nD: plane", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_107_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_107_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_107_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_107_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_107_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_107_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_107_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_107_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_107_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_107_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_107_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_107_11.png"], "question": "There is a stopped thing that is to the front of me; what is it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: bicycle\nB: bus\nC: train\nD: plane"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: uncertain\nB: no\nC: yes\nD: maybe", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_108_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_108_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_108_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_108_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_108_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_108_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_108_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_108_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_108_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_108_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_108_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_108_11.png"], "question": "Are there any other things that in the same status as the car to the front left of the barrier?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: uncertain\nB: no\nC: yes\nD: maybe"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: maybe\nB: no\nC: yes\nD: possibly", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_109_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_109_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_109_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_109_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_109_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_109_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_109_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_109_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_109_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_109_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_109_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_109_11.png"], "question": "Does the car that is to the front left of the moving truck have the same status as the motorcycle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: maybe\nB: no\nC: yes\nD: possibly"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: moving\nB: under maintenance\nC: accelerating\nD: stopped", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_110_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_110_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_110_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_110_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_110_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_110_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_110_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_110_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_110_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_110_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_110_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_110_11.png"], "question": "The construction vehicle is in what status?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: moving\nB: under maintenance\nC: accelerating\nD: stopped"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: moving\nB: under maintenance\nC: delayed\nD: stopped", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_111_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_111_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_111_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_111_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_111_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_111_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_111_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_111_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_111_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_111_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_111_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_111_11.png"], "question": "The bus is in what status?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: moving\nB: under maintenance\nC: delayed\nD: stopped"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: maybe\nB: no\nC: yes\nD: uncertain", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_112_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_112_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_112_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_112_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_112_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_112_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_112_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_112_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_112_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_112_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_112_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_112_11.png"], "question": "There is a car to the front left of the bicycle; is its status the same as the truck to the back right of the moving bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: maybe\nB: no\nC: yes\nD: uncertain"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: maybe\nB: yes\nC: no\nD: uncertain", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_113_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_113_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_113_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_113_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_113_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_113_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_113_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_113_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_113_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_113_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_113_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_113_11.png"], "question": "Is there another car that has the same status as the motorcycle to the back of the moving bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: maybe\nB: yes\nC: no\nD: uncertain"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: no\nB: maybe\nC: sometimes\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_114_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_114_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_114_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_114_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_114_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_114_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_114_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_114_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_114_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_114_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_114_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_114_11.png"], "question": "There is a car to the front of the construction vehicle; is its status the same as the construction vehicle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: no\nB: maybe\nC: sometimes\nD: yes"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: no\nB: yes\nC: only one other thing\nD: uncertain", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_115_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_115_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_115_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_115_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_115_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_115_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_115_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_115_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_115_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_115_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_115_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_115_11.png"], "question": "Are there any other things of the same status as the motorcycle that is to the front left of the parked thing?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: no\nB: yes\nC: only one other thing\nD: uncertain"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: maybe\nB: no\nC: yes\nD: unknown", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_116_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_116_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_116_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_116_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_116_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_116_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_116_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_116_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_116_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_116_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_116_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_116_11.png"], "question": "Are there any cars to the back left of the construction vehicle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: maybe\nB: no\nC: yes\nD: unknown"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: broken down\nB: moving backward\nC: without rider\nD: with rider", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_117_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_117_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_117_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_117_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_117_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_117_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_117_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_117_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_117_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_117_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_117_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_117_11.png"], "question": "There is a motorcycle that is to the back of me; what status is it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: broken down\nB: moving backward\nC: without rider\nD: with rider"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 10\nB: 15\nC: 3\nD: 5", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_118_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_118_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_118_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_118_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_118_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_118_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_118_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_118_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_118_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_118_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_118_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_118_11.png"], "question": "What number of cars are to the front left of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 10\nB: 15\nC: 3\nD: 5"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: broken\nB: without rider\nC: missing\nD: with rider", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_119_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_119_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_119_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_119_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_119_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_119_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_119_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_119_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_119_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_119_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_119_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_119_11.png"], "question": "There is a thing that is to the front left of me; what status is it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: broken\nB: without rider\nC: missing\nD: with rider"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: sitting\nB: standing\nC: running\nD: walking", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_120_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_120_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_120_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_120_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_120_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_120_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_120_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_120_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_120_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_120_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_120_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_120_11.png"], "question": "What status is the pedestrian that is to the back right of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: sitting\nB: standing\nC: running\nD: walking"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: not sure\nB: maybe\nC: yes\nD: no", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_121_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_121_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_121_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_121_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_121_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_121_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_121_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_121_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_121_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_121_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_121_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_121_11.png"], "question": "Does the truck to the back of the bus have the same status as the construction vehicle that is to the back right of the with rider thing?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: not sure\nB: maybe\nC: yes\nD: no"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: tree\nB: mailbox\nC: sidewalk\nD: traffic cone", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_122_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_122_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_122_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_122_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_122_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_122_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_122_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_122_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_122_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_122_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_122_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_122_11.png"], "question": "The thing that is to the back of the moving car and the front left of me is what?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: tree\nB: mailbox\nC: sidewalk\nD: traffic cone"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: unknown\nB: no\nC: yes\nD: maybe", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_123_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_123_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_123_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_123_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_123_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_123_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_123_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_123_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_123_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_123_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_123_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_123_11.png"], "question": "Do the thing that is to the front of the stopped car and the pedestrian that is to the front left of the stopped car have the same status?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: unknown\nB: no\nC: yes\nD: maybe"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: unknown\nB: no\nC: maybe\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_124_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_124_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_124_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_124_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_124_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_124_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_124_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_124_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_124_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_124_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_124_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_124_11.png"], "question": "Are there any other pedestrians of the same status as the bus that is to the front left of the stopped bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: unknown\nB: no\nC: maybe\nD: yes"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: broken down\nB: being repaired\nC: without rider\nD: with rider", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_125_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_125_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_125_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_125_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_125_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_125_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_125_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_125_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_125_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_125_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_125_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_125_11.png"], "question": "What is the status of the motorcycle that is to the front left of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: broken down\nB: being repaired\nC: without rider\nD: with rider"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: moving\nB: departing\nC: stopped\nD: arriving", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_126_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_126_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_126_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_126_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_126_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_126_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_126_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_126_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_126_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_126_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_126_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_126_11.png"], "question": "What is the status of the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: moving\nB: departing\nC: stopped\nD: arriving"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: there are people\nB: yes\nC: a car\nD: no", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_127_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_127_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_127_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_127_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_127_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_127_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_127_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_127_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_127_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_127_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_127_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_127_11.png"], "question": "Are there any moving things to the back left of the with rider bicycle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: there are people\nB: yes\nC: a car\nD: no"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: absent\nB: moving\nC: dangerous\nD: stationary", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_128_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_128_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_128_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_128_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_128_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_128_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_128_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_128_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_128_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_128_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_128_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_128_11.png"], "question": "There is a pedestrian; what status is it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: absent\nB: moving\nC: dangerous\nD: stationary"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: some\nB: yes\nC: maybe\nD: no", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_129_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_129_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_129_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_129_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_129_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_129_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_129_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_129_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_129_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_129_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_129_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_129_11.png"], "question": "There is a moving truck; are there any trucks to the front of it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: some\nB: yes\nC: maybe\nD: no"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: train\nB: bicycle\nC: car\nD: pedestrian", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_130_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_130_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_130_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_130_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_130_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_130_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_130_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_130_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_130_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_130_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_130_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_130_11.png"], "question": "The stopped thing to the back of the stopped bus is what?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: train\nB: bicycle\nC: car\nD: pedestrian"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: no\nB: not sure\nC: cannot tell\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_131_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_131_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_131_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_131_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_131_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_131_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_131_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_131_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_131_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_131_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_131_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_131_11.png"], "question": "Are any with rider motorcycles visible?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: no\nB: not sure\nC: cannot tell\nD: yes"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 6\nB: 4\nC: 3\nD: 2", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_132_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_132_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_132_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_132_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_132_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_132_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_132_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_132_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_132_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_132_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_132_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_132_11.png"], "question": "How many things are to the front of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 6\nB: 4\nC: 3\nD: 2"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 5\nB: 2\nC: 4\nD: 7", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_133_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_133_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_133_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_133_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_133_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_133_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_133_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_133_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_133_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_133_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_133_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_133_11.png"], "question": "What number of moving things are there?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 5\nB: 2\nC: 4\nD: 7"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: no\nB: yes\nC: not sure\nD: maybe", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_134_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_134_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_134_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_134_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_134_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_134_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_134_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_134_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_134_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_134_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_134_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_134_11.png"], "question": "Are there any barriers?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: no\nB: yes\nC: not sure\nD: maybe"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: maybe\nB: yes\nC: not sure\nD: no", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_135_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_135_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_135_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_135_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_135_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_135_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_135_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_135_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_135_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_135_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_135_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_135_11.png"], "question": "Is the status of the truck that is to the front left of the moving car the same as the trailer?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: maybe\nB: yes\nC: not sure\nD: no"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: pedestrian\nB: tree\nC: bicycle\nD: traffic light", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_136_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_136_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_136_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_136_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_136_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_136_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_136_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_136_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_136_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_136_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_136_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_136_11.png"], "question": "What is the thing that is both to the back right of the moving bus and the back right of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: pedestrian\nB: tree\nC: bicycle\nD: traffic light"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: pedestrian\nB: bicycle\nC: tree\nD: car", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_137_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_137_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_137_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_137_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_137_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_137_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_137_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_137_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_137_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_137_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_137_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_137_11.png"], "question": "The moving thing that is both to the back of me and the front of the with rider motorcycle is what?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: pedestrian\nB: bicycle\nC: tree\nD: car"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: no\nB: maybe\nC: not sure\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_138_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_138_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_138_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_138_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_138_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_138_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_138_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_138_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_138_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_138_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_138_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_138_11.png"], "question": "There is a bus to the front of the parked construction vehicle; is it the same status as the thing that is to the back of the moving truck?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: no\nB: maybe\nC: not sure\nD: yes"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: truck\nB: car\nC: scooter\nD: bus", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_139_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_139_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_139_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_139_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_139_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_139_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_139_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_139_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_139_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_139_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_139_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_139_11.png"], "question": "What is the stopped thing that is both to the front left of the with rider motorcycle and the back of the with rider bicycle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: truck\nB: car\nC: scooter\nD: bus"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: yes\nB: I don’t know\nC: no\nD: maybe", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_140_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_140_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_140_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_140_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_140_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_140_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_140_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_140_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_140_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_140_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_140_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_140_11.png"], "question": "There is a construction vehicle to the back right of the bus; is it the same status as the motorcycle that is to the back of the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: yes\nB: I don’t know\nC: no\nD: maybe"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: no\nB: maybe\nC: yes\nD: not sure", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_141_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_141_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_141_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_141_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_141_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_141_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_141_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_141_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_141_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_141_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_141_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_141_11.png"], "question": "Are there any other things that in the same status as the pedestrian to the back right of the stopped bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: no\nB: maybe\nC: yes\nD: not sure"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: barrier\nB: fire hydrant\nC: tree\nD: light pole", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_142_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_142_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_142_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_142_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_142_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_142_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_142_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_142_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_142_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_142_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_142_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_142_11.png"], "question": "The thing that is to the back right of the moving bus is what?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: barrier\nB: fire hydrant\nC: tree\nD: light pole"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 3\nB: 5\nC: 9\nD: 12", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_143_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_143_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_143_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_143_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_143_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_143_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_143_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_143_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_143_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_143_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_143_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_143_11.png"], "question": "How many moving things are there?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 3\nB: 5\nC: 9\nD: 12"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: car\nB: tree\nC: bench\nD: bicycle", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_144_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_144_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_144_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_144_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_144_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_144_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_144_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_144_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_144_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_144_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_144_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_144_11.png"], "question": "What is the moving thing that is to the front left of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: car\nB: tree\nC: bench\nD: bicycle"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 7\nB: 12\nC: 5\nD: 9", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_145_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_145_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_145_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_145_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_145_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_145_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_145_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_145_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_145_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_145_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_145_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_145_11.png"], "question": "What number of other things in the same status as the car that is to the back right of the parked thing?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 7\nB: 12\nC: 5\nD: 9"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: banana\nB: car\nC: running water\nD: flying bird", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_146_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_146_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_146_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_146_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_146_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_146_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_146_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_146_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_146_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_146_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_146_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_146_11.png"], "question": "There is a stopped thing; what is it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: banana\nB: car\nC: running water\nD: flying bird"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: yes\nB: maybe\nC: cannot determine\nD: no", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_147_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_147_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_147_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_147_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_147_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_147_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_147_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_147_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_147_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_147_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_147_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_147_11.png"], "question": "There is a motorcycle; does it have the same status as the car that is to the front left of the with rider thing?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: yes\nB: maybe\nC: cannot determine\nD: no"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: bicycle\nB: pedestrian\nC: crosswalk\nD: traffic light", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_148_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_148_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_148_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_148_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_148_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_148_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_148_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_148_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_148_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_148_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_148_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_148_11.png"], "question": "There is a standing pedestrian to the front left of me; what is it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: bicycle\nB: pedestrian\nC: crosswalk\nD: traffic light"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 5\nB: 7\nC: 3\nD: 10", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_149_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_149_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_149_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_149_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_149_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_149_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_149_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_149_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_149_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_149_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_149_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_149_11.png"], "question": "What number of motorcycles are there?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 5\nB: 7\nC: 3\nD: 10"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: no\nB: yes\nC: uncertain\nD: probably", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_150_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_150_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_150_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_150_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_150_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_150_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_150_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_150_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_150_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_150_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_150_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_150_11.png"], "question": "Is there another construction vehicle of the same status as the truck that is to the front of the moving truck?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: no\nB: yes\nC: uncertain\nD: probably"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: yes\nB: maybe\nC: no\nD: sometimes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_151_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_151_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_151_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_151_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_151_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_151_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_151_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_151_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_151_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_151_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_151_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_151_11.png"], "question": "Are there any moving buss?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: yes\nB: maybe\nC: no\nD: sometimes"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: lane divider\nB: barrier\nC: tree\nD: cone", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_152_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_152_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_152_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_152_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_152_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_152_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_152_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_152_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_152_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_152_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_152_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_152_11.png"], "question": "The thing that is to the back right of me and the back right of the construction vehicle is what?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: lane divider\nB: barrier\nC: tree\nD: cone"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: stationary\nB: disappearing\nC: transforming\nD: moving", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_153_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_153_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_153_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_153_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_153_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_153_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_153_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_153_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_153_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_153_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_153_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_153_11.png"], "question": "There is a thing that is to the front left of me; what status is it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: stationary\nB: disappearing\nC: transforming\nD: moving"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: yes\nB: no\nC: not sure\nD: maybe", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_154_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_154_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_154_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_154_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_154_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_154_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_154_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_154_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_154_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_154_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_154_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_154_11.png"], "question": "There is a bus to the front left of the stopped bus; is it the same status as the motorcycle to the back of the moving bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: yes\nB: no\nC: not sure\nD: maybe"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: yes\nB: no\nC: maybe\nD: uncertain", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_155_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_155_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_155_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_155_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_155_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_155_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_155_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_155_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_155_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_155_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_155_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_155_11.png"], "question": "There is a truck; is it the same status as the car to the back right of the stopped truck?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: yes\nB: no\nC: maybe\nD: uncertain"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: traffic cone\nB: tree\nC: hydrant\nD: bench", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_156_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_156_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_156_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_156_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_156_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_156_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_156_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_156_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_156_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_156_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_156_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_156_11.png"], "question": "What is the thing that is both to the back right of the parked construction vehicle and the front left of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: traffic cone\nB: tree\nC: hydrant\nD: bench"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: stopped\nB: departed\nC: moving\nD: full", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_157_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_157_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_157_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_157_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_157_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_157_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_157_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_157_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_157_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_157_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_157_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_157_11.png"], "question": "What is the status of the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: stopped\nB: departed\nC: moving\nD: full"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: pedestrian\nB: trash can\nC: tree\nD: motorcycle", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_158_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_158_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_158_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_158_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_158_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_158_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_158_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_158_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_158_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_158_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_158_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_158_11.png"], "question": "The moving thing that is to the front left of the moving bus and the back of me is what?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: pedestrian\nB: trash can\nC: tree\nD: motorcycle"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: bicycle\nB: bench\nC: car\nD: tree", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_159_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_159_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_159_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_159_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_159_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_159_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_159_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_159_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_159_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_159_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_159_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_159_11.png"], "question": "The thing that is to the back of me and the front left of the parked construction vehicle is what?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: bicycle\nB: bench\nC: car\nD: tree"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: parked\nB: moving\nC: accelerating\nD: stopped", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_160_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_160_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_160_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_160_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_160_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_160_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_160_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_160_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_160_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_160_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_160_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_160_11.png"], "question": "What is the status of the car that is to the back of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: parked\nB: moving\nC: accelerating\nD: stopped"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: turning\nB: disappearing\nC: stopped\nD: moving", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_161_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_161_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_161_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_161_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_161_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_161_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_161_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_161_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_161_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_161_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_161_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_161_11.png"], "question": "There is a bus that is to the front of me; what status is it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: turning\nB: disappearing\nC: stopped\nD: moving"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 5\nB: 3\nC: 8\nD: 0", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_162_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_162_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_162_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_162_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_162_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_162_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_162_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_162_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_162_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_162_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_162_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_162_11.png"], "question": "There is a bus; how many things are to the front right of it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 5\nB: 3\nC: 8\nD: 0"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: stopped\nB: waiting for passengers\nC: moving\nD: broken down", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_163_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_163_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_163_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_163_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_163_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_163_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_163_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_163_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_163_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_163_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_163_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_163_11.png"], "question": "What is the status of the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: stopped\nB: waiting for passengers\nC: moving\nD: broken down"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: maybe\nB: sometimes\nC: no\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_164_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_164_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_164_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_164_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_164_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_164_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_164_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_164_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_164_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_164_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_164_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_164_11.png"], "question": "Are there any not standing pedestrians?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: maybe\nB: sometimes\nC: no\nD: yes"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: maybe\nB: unable to determine\nC: no\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_165_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_165_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_165_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_165_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_165_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_165_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_165_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_165_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_165_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_165_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_165_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_165_11.png"], "question": "Is the status of the truck that is to the front left of the moving car the same as the trailer?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: maybe\nB: unable to determine\nC: no\nD: yes"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: car\nB: bicycle\nC: dog\nD: pedestrian", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_166_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_166_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_166_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_166_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_166_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_166_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_166_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_166_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_166_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_166_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_166_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_166_11.png"], "question": "What is the moving thing to the back right of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: car\nB: bicycle\nC: dog\nD: pedestrian"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: maybe\nB: no\nC: yes\nD: uncertain", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_167_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_167_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_167_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_167_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_167_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_167_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_167_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_167_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_167_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_167_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_167_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_167_11.png"], "question": "Is there another bus that has the same status as the car that is to the front left of the stopped construction vehicle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: maybe\nB: no\nC: yes\nD: uncertain"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: moving swiftly\nB: stopped\nC: being repaired\nD: broken down", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_168_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_168_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_168_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_168_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_168_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_168_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_168_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_168_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_168_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_168_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_168_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_168_11.png"], "question": "The bus that is to the back right of the moving bus is in what status?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: moving swiftly\nB: stopped\nC: being repaired\nD: broken down"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 5\nB: 10\nC: 7\nD: 3", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_169_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_169_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_169_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_169_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_169_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_169_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_169_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_169_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_169_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_169_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_169_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_169_11.png"], "question": "What number of trucks are there?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 5\nB: 10\nC: 7\nD: 3"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: bicycle\nB: tree\nC: car\nD: building", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_170_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_170_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_170_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_170_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_170_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_170_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_170_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_170_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_170_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_170_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_170_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_170_11.png"], "question": "The moving thing that is to the front of the construction vehicle and the front left of me is what?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: bicycle\nB: tree\nC: car\nD: building"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: car\nB: traffic light\nC: bicycle\nD: pedestrian", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_171_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_171_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_171_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_171_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_171_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_171_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_171_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_171_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_171_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_171_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_171_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_171_11.png"], "question": "What is the thing that is both to the front left of the stopped bus and the back of the with rider thing?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: car\nB: traffic light\nC: bicycle\nD: pedestrian"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: moving\nB: missing\nC: broken down\nD: parked", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_172_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_172_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_172_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_172_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_172_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_172_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_172_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_172_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_172_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_172_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_172_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_172_11.png"], "question": "What status is the truck to the back right of the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: moving\nB: missing\nC: broken down\nD: parked"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: locked up\nB: in transit\nC: damaged\nD: with rider", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_173_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_173_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_173_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_173_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_173_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_173_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_173_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_173_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_173_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_173_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_173_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_173_11.png"], "question": "What is the status of the bicycle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: locked up\nB: in transit\nC: damaged\nD: with rider"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 1\nB: 5\nC: 10\nD: 3", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_174_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_174_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_174_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_174_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_174_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_174_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_174_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_174_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_174_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_174_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_174_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_174_11.png"], "question": "What number of stopped trucks are there?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 1\nB: 5\nC: 10\nD: 3"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: sometimes\nB: maybe\nC: yes\nD: no", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_175_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_175_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_175_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_175_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_175_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_175_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_175_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_175_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_175_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_175_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_175_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_175_11.png"], "question": "Are there any moving buss to the back left of the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: sometimes\nB: maybe\nC: yes\nD: no"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: moving\nB: broken down\nC: under maintenance\nD: parked", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_176_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_176_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_176_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_176_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_176_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_176_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_176_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_176_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_176_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_176_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_176_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_176_11.png"], "question": "What is the status of the bus that is to the front left of the stopped bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: moving\nB: broken down\nC: under maintenance\nD: parked"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: bus\nB: bicycle\nC: car\nD: train", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_177_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_177_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_177_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_177_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_177_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_177_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_177_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_177_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_177_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_177_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_177_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_177_11.png"], "question": "The moving thing that is both to the back right of the with rider motorcycle and the front of me is what?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: bus\nB: bicycle\nC: car\nD: train"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: boat\nB: bicycle\nC: house\nD: car", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_178_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_178_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_178_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_178_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_178_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_178_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_178_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_178_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_178_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_178_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_178_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_178_11.png"], "question": "There is a parked thing that is to the back of me; what is it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: boat\nB: bicycle\nC: house\nD: car"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: possibly\nB: no\nC: maybe\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_179_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_179_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_179_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_179_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_179_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_179_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_179_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_179_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_179_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_179_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_179_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_179_11.png"], "question": "Are there any not standing pedestrians?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: possibly\nB: no\nC: maybe\nD: yes"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: no\nB: yes\nC: maybe\nD: uncertain", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_180_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_180_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_180_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_180_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_180_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_180_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_180_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_180_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_180_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_180_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_180_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_180_11.png"], "question": "Are any stopped trucks visible?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: no\nB: yes\nC: maybe\nD: uncertain"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 3\nB: 4\nC: 2\nD: 1", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_181_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_181_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_181_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_181_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_181_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_181_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_181_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_181_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_181_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_181_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_181_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_181_11.png"], "question": "What number of things are to the back right of the motorcycle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 3\nB: 4\nC: 2\nD: 1"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 7\nB: 5\nC: 2\nD: 3", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_182_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_182_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_182_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_182_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_182_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_182_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_182_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_182_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_182_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_182_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_182_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_182_11.png"], "question": "How many other things in the same status as the thing to the front left of the pedestrian?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 7\nB: 5\nC: 2\nD: 3"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: stopped\nB: disappeared\nC: moving\nD: broken down", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_183_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_183_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_183_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_183_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_183_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_183_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_183_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_183_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_183_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_183_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_183_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_183_11.png"], "question": "What status is the bus that is to the front of the parked thing?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: stopped\nB: disappeared\nC: moving\nD: broken down"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: bus\nB: bicycle\nC: pedestrian\nD: traffic light", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_184_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_184_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_184_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_184_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_184_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_184_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_184_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_184_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_184_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_184_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_184_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_184_11.png"], "question": "The thing that is to the front left of me and the front of the with rider motorcycle is what?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: bus\nB: bicycle\nC: pedestrian\nD: traffic light"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: no\nB: maybe\nC: I do not know\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_185_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_185_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_185_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_185_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_185_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_185_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_185_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_185_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_185_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_185_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_185_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_185_11.png"], "question": "Are there any other cars that in the same status as the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: no\nB: maybe\nC: I do not know\nD: yes"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: car\nB: tree\nC: bicycle\nD: bus", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_186_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_186_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_186_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_186_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_186_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_186_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_186_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_186_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_186_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_186_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_186_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_186_11.png"], "question": "There is a stopped thing that is to the front of me; what is it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: car\nB: tree\nC: bicycle\nD: bus"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 5\nB: 3\nC: 9\nD: 7", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_187_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_187_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_187_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_187_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_187_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_187_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_187_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_187_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_187_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_187_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_187_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_187_11.png"], "question": "What number of other things are there of the same status as the construction vehicle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 5\nB: 3\nC: 9\nD: 7"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: yes\nB: unknown\nC: maybe\nD: no", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_188_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_188_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_188_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_188_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_188_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_188_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_188_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_188_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_188_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_188_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_188_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_188_11.png"], "question": "Are there any stopped things to the back right of the trailer?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: yes\nB: unknown\nC: maybe\nD: no"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: bus\nB: tree\nC: car\nD: bicycle", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_189_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_189_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_189_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_189_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_189_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_189_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_189_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_189_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_189_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_189_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_189_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_189_11.png"], "question": "What is the stopped thing that is to the front left of the with rider motorcycle and the back right of me?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: bus\nB: tree\nC: car\nD: bicycle"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 3\nB: 5\nC: 10\nD: 7", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_190_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_190_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_190_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_190_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_190_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_190_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_190_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_190_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_190_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_190_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_190_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_190_11.png"], "question": "How many standing pedestrians are there?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 3\nB: 5\nC: 10\nD: 7"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: broken down\nB: stationary\nC: under repair\nD: moving", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_191_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_191_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_191_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_191_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_191_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_191_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_191_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_191_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_191_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_191_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_191_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_191_11.png"], "question": "There is a bus; what status is it?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: broken down\nB: stationary\nC: under repair\nD: moving"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: possibly\nB: unknown\nC: no\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_192_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_192_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_192_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_192_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_192_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_192_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_192_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_192_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_192_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_192_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_192_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_192_11.png"], "question": "Does the thing to the front left of the construction vehicle have the same status as the construction vehicle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: possibly\nB: unknown\nC: no\nD: yes"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: stopped\nB: broken down\nC: moving\nD: delayed", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_193_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_193_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_193_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_193_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_193_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_193_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_193_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_193_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_193_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_193_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_193_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_193_11.png"], "question": "What is the status of the bus?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: stopped\nB: broken down\nC: moving\nD: delayed"}, "output": {"output_text": "C"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: bicycle\nB: car\nC: airplane\nD: bus", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_194_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_194_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_194_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_194_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_194_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_194_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_194_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_194_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_194_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_194_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_194_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_194_11.png"], "question": "What is the stopped thing?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: bicycle\nB: car\nC: airplane\nD: bus"}, "output": {"output_text": "D"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: no\nB: only when moving\nC: sometimes\nD: yes", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_195_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_195_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_195_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_195_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_195_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_195_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_195_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_195_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_195_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_195_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_195_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_195_11.png"], "question": "There is a truck to the front of the stopped construction vehicle; does it have the same status as the bicycle?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: no\nB: only when moving\nC: sometimes\nD: yes"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 5\nB: 2\nC: 10\nD: 8", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_196_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_196_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_196_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_196_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_196_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_196_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_196_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_196_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_196_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_196_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_196_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_196_11.png"], "question": "How many moving cars are there?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 5\nB: 2\nC: 10\nD: 8"}, "output": {"output_text": "A"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 3\nB: 5\nC: 50\nD: 12", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_197_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_197_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_197_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_197_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_197_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_197_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_197_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_197_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_197_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_197_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_197_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_197_11.png"], "question": "How many other things are in the same status as the truck?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 3\nB: 5\nC: 50\nD: 12"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: 7\nB: 1\nC: 3\nD: 5", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_198_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_198_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_198_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_198_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_198_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_198_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_198_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_198_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_198_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_198_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_198_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_198_11.png"], "question": "What number of with rider things are there?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: 7\nB: 1\nC: 3\nD: 5"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "NuScenes_threeD_question_answering", "options": "A: maybe\nB: no\nC: yes\nD: possibly", "visual_input_component": "LiDAR image and natural image", "input": {"input_image_path": ["3D-spatial/threeD_question_answering/threeD_question_answering_199_0.png", "3D-spatial/threeD_question_answering/threeD_question_answering_199_1.png", "3D-spatial/threeD_question_answering/threeD_question_answering_199_2.png", "3D-spatial/threeD_question_answering/threeD_question_answering_199_3.png", "3D-spatial/threeD_question_answering/threeD_question_answering_199_4.png", "3D-spatial/threeD_question_answering/threeD_question_answering_199_5.png", "3D-spatial/threeD_question_answering/threeD_question_answering_199_6.png", "3D-spatial/threeD_question_answering/threeD_question_answering_199_7.png", "3D-spatial/threeD_question_answering/threeD_question_answering_199_8.png", "3D-spatial/threeD_question_answering/threeD_question_answering_199_9.png", "3D-spatial/threeD_question_answering/threeD_question_answering_199_10.png", "3D-spatial/threeD_question_answering/threeD_question_answering_199_11.png"], "question": "There is a car to the front of the parked construction vehicle; is its status the same as the construction vehicle to the front of the moving truck?", "context": "Your task is : Given inputs of the 3D information for a scene and a question about the 3D scene (real life), the model aims to output the correct answer. \nSelect from the following choices.\nA: maybe\nB: no\nC: yes\nD: possibly"}, "output": {"output_text": "B"}, "task": "threeD_question_answering"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_0_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_0_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_0_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_0_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_0_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_0_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_0_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_0_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.424269, -0.366439, 0.828081], [-0.894198, -0.025281, 0.446957], [-0.142848, -0.930098, -0.338395]] and translation vector: [2.638367, 6.760901, 1.41712], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.432512, -0.37625, 0.819371], [-0.890339, -0.034872, 0.45396], [-0.14223, -0.925862, -0.350073]] and translation vector: [2.640049, 6.763855, 1.420073], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.438239, -0.392392, 0.808687], [-0.889665, -0.061011, 0.452519], [-0.128226, -0.917772, -0.375835]] and translation vector: [2.630422, 6.772062, 1.413381]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_1_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_1_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_1_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_1_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_1_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_1_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_1_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_1_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.156961, 0.257294, -0.953501], [0.986843, 0.002956, -0.161652], [-0.038773, -0.966329, -0.254373]] and translation vector: [1.838324, 1.205476, 1.480452], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.155829, 0.255617, -0.954137], [0.987039, 0.002796, -0.160453], [-0.038347, -0.966774, -0.252739]] and translation vector: [1.83996, 1.205416, 1.474648], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.143517, 0.25546, -0.956108], [0.988424, -0.011031, -0.151315], [-0.049202, -0.966757, -0.25092]] and translation vector: [1.851541, 1.18465, 1.4701]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_2_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_2_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_2_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_2_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_2_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_2_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_2_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_2_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.255252, -0.433184, 0.864406], [-0.966562, 0.137073, -0.216725], [-0.024605, -0.890821, -0.453687]] and translation vector: [1.468232, 3.881342, 1.432686], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.253329, -0.437174, 0.862962], [-0.967015, 0.138948, -0.213484], [-0.026577, -0.888579, -0.457953]] and translation vector: [1.469363, 3.879031, 1.438972], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.261321, -0.422366, 0.867939], [-0.964773, 0.142608, -0.221079], [-0.030398, -0.895137, -0.444754]] and translation vector: [1.471272, 3.88079, 1.429099]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_3_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_3_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_3_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_3_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_3_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_3_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_3_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_3_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.99336, -0.011945, -0.114427], [0.103059, -0.349694, 0.931178], [-0.051137, -0.936788, -0.346141]] and translation vector: [2.948285, 4.432959, 1.460427], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.99314, -0.016022, -0.115825], [0.102925, -0.35027, 0.930977], [-0.055486, -0.936512, -0.346218]] and translation vector: [2.949102, 4.433566, 1.463483], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.994232, -0.017087, -0.105881], [0.09324, -0.350155, 0.93204], [-0.053001, -0.936536, -0.346542]] and translation vector: [2.955784, 4.441682, 1.459117]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_4_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_4_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_4_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_4_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_4_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_4_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_4_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_4_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.30056, -0.511506, 0.805], [-0.953151, 0.130866, -0.272721], [0.034151, -0.849256, -0.526876]] and translation vector: [-0.281614, 2.924112, 1.306122], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.318531, -0.50267, 0.803655], [-0.947336, 0.139247, -0.288383], [0.033055, -0.85319, -0.520551]] and translation vector: [-0.284617, 2.924129, 1.305331], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.357195, -0.491936, 0.793984], [-0.933829, 0.17044, -0.314507], [0.019391, -0.853785, -0.520264]] and translation vector: [-0.283755, 2.908583, 1.310995]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_5_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_5_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_5_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_5_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_5_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_5_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_5_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_5_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.042655, 0.409797, -0.911179], [0.998036, -0.024411, -0.0577], [-0.045888, -0.91185, -0.40795]] and translation vector: [2.423933, 1.356295, 3.282493], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.032887, 0.418885, -0.907444], [0.998611, -0.023628, -0.047098], [-0.041169, -0.907732, -0.417526]] and translation vector: [2.425306, 1.358764, 3.278826], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.041885, 0.387609, -0.920872], [0.998138, -0.024683, -0.055789], [-0.044354, -0.921493, -0.385853]] and translation vector: [2.418078, 1.34298, 3.29873]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_6_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_6_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_6_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_6_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_6_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_6_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_6_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_6_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.241978, -0.427128, 0.871211], [-0.963615, 0.210861, -0.164264], [-0.113543, -0.879261, -0.462611]] and translation vector: [2.164319, 10.11033, 1.716674], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.23973, -0.426819, 0.871983], [-0.964754, 0.205144, -0.16482], [-0.108534, -0.880762, -0.460955]] and translation vector: [2.164643, 10.108889, 1.726434], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.169937, -0.42419, 0.889485], [-0.982379, 0.144175, -0.118927], [-0.077795, -0.894023, -0.441217]] and translation vector: [2.137954, 10.094281, 1.733226]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_7_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_7_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_7_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_7_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_7_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_7_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_7_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_7_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.753053, 0.123809, -0.646206], [0.619922, -0.462608, 0.633791], [-0.220471, -0.877875, -0.42512]] and translation vector: [4.259223, 3.769218, 1.505729], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.760823, 0.125761, -0.636658], [0.611756, -0.466381, 0.638939], [-0.216572, -0.875599, -0.431768]] and translation vector: [4.257898, 3.775608, 1.505422], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.792722, 0.129689, -0.595629], [0.575941, -0.479462, 0.662124], [-0.199711, -0.867927, -0.454772]] and translation vector: [4.245731, 3.788037, 1.507869]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_8_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_8_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_8_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_8_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_8_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_8_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_8_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_8_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.40936, -0.486807, 0.77165], [-0.912164, 0.236459, -0.334729], [-0.019515, -0.840896, -0.540844]] and translation vector: [1.412713, 1.214489, 1.390939], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.417972, -0.487805, 0.766384], [-0.908352, 0.237425, -0.344277], [-0.014019, -0.840045, -0.542336]] and translation vector: [1.411881, 1.212071, 1.390231], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.442659, -0.487865, 0.752356], [-0.896674, 0.245809, -0.368176], [-0.005316, -0.837595, -0.546266]] and translation vector: [1.400211, 1.203382, 1.386707]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_9_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_9_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_9_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_9_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_9_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_9_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_9_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_9_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.999403, 0.004498, 0.03425], [-0.034232, -0.004158, 0.999405], [0.004638, -0.999981, -0.004001]] and translation vector: [2.393484, 5.775056, 1.371464], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.998454, -0.001139, 0.055575], [-0.055569, 0.004857, 0.998443], [-0.001408, -0.999988, 0.004786]] and translation vector: [2.356134, 5.774678, 1.367739], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.989764, 0.002175, 0.142698], [-0.142529, 0.066115, 0.98758], [-0.007287, -0.99781, 0.065748]] and translation vector: [2.255451, 5.785594, 1.33032]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_10_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_10_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_10_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_10_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_10_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_10_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_10_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_10_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.133825, -0.39571, 0.908573], [-0.990975, -0.046263, 0.125813], [-0.007752, -0.91721, -0.398329]] and translation vector: [4.990516, 4.227292, 1.32289], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.168071, -0.388121, 0.906153], [-0.985699, -0.054747, 0.159375], [-0.012247, -0.919981, -0.391772]] and translation vector: [4.987841, 4.19209, 1.32312], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.233014, -0.364692, 0.901501], [-0.972471, -0.085505, 0.216767], [-0.00197, -0.927194, -0.374577]] and translation vector: [4.985941, 4.092797, 1.324644]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_11_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_11_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_11_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_11_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_11_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_11_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_11_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_11_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.993306, 0.029023, -0.111812], [0.110831, -0.512349, 0.851596], [-0.032571, -0.858287, -0.512136]] and translation vector: [2.482234, 1.391135, 1.348064], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.992702, 0.031717, -0.116349], [0.116167, -0.510508, 0.85199], [-0.032374, -0.859288, -0.510467]] and translation vector: [2.48213, 1.388715, 1.34704], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.989452, 0.033499, -0.140936], [0.139029, -0.492892, 0.858911], [-0.040694, -0.869445, -0.49235]] and translation vector: [2.480608, 1.381749, 1.351104]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_12_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_12_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_12_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_12_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_12_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_12_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_12_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_12_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.473704, -0.275929, 0.836342], [-0.879436, -0.198746, 0.432542], [0.046868, -0.940406, -0.336809]] and translation vector: [2.984934, 2.048073, 1.446683], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.466625, -0.271085, 0.841888], [-0.8831, -0.195475, 0.426525], [0.048943, -0.942498, -0.330608]] and translation vector: [2.979092, 2.049407, 1.446378], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.457049, -0.259072, 0.850875], [-0.888339, -0.18058, 0.422191], [0.044273, -0.948827, -0.312678]] and translation vector: [2.973803, 2.044357, 1.455601]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_13_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_13_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_13_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_13_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_13_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_13_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_13_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_13_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.996429, -0.081152, -0.023325], [-0.01119, 0.400709, -0.916137], [0.083693, -0.912604, -0.400187]] and translation vector: [7.365378, 2.610504, 1.343957], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.997089, -0.075007, -0.013671], [-0.016913, 0.392439, -0.919623], [0.074343, -0.916715, -0.392565]] and translation vector: [7.36531, 2.61944, 1.344548], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.997405, -0.064807, -0.031376], [0.004675, 0.376559, -0.926381], [0.071851, -0.924123, -0.375279]] and translation vector: [7.389543, 2.653858, 1.358479]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_14_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_14_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_14_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_14_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_14_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_14_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_14_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_14_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.994136, 0.036629, -0.101745], [0.107123, -0.462198, 0.880283], [-0.014782, -0.88602, -0.463411]] and translation vector: [3.8191, 1.340951, 1.354002], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.994264, 0.034625, -0.101195], [0.105882, -0.452335, 0.885541], [-0.015112, -0.891176, -0.453407]] and translation vector: [3.821174, 1.339834, 1.359098], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.998446, 0.039334, -0.039482], [0.052098, -0.407104, 0.911895], [0.019796, -0.912535, -0.408521]] and translation vector: [3.821787, 1.333543, 1.372052]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_15_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_15_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_15_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_15_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_15_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_15_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_15_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_15_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.844798, -0.442354, 0.301064], [-0.534849, 0.714819, -0.450523], [-0.015916, -0.541624, -0.84047]] and translation vector: [3.085932, 7.995926, 1.934485], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.833593, -0.457276, 0.309873], [-0.552243, 0.702368, -0.449118], [-0.012274, -0.545507, -0.838017]] and translation vector: [3.091993, 8.002051, 1.93396], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.810018, -0.472367, 0.347478], [-0.58602, 0.673547, -0.450461], [-0.02126, -0.56851, -0.822401]] and translation vector: [3.083665, 8.001425, 1.939036]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_16_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_16_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_16_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_16_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_16_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_16_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_16_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_16_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.937403, 0.174354, -0.301457], [0.34768, 0.517889, -0.781607], [0.019845, -0.837491, -0.54609]] and translation vector: [1.513881, 1.499843, 1.388066], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.93698, 0.17766, -0.300842], [0.348874, 0.522274, -0.77815], [0.018876, -0.834067, -0.551341]] and translation vector: [1.515168, 1.503997, 1.385631], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.940806, 0.177334, -0.288855], [0.338804, 0.516688, -0.786286], [0.009813, -0.837607, -0.546185]] and translation vector: [1.517717, 1.515309, 1.387193]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_17_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_17_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_17_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_17_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_17_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_17_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_17_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_17_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.964843, 0.186346, -0.185345], [0.252505, 0.461537, -0.850426], [-0.07293, -0.867329, -0.492364]] and translation vector: [3.779865, 2.337391, 1.461827], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.966867, 0.182729, -0.178267], [0.244986, 0.467845, -0.849178], [-0.071768, -0.864715, -0.49711]] and translation vector: [3.779708, 2.335608, 1.46105], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.975115, 0.169172, -0.14329], [0.209929, 0.496761, -0.842115], [-0.071282, -0.85124, -0.519913]] and translation vector: [3.784041, 2.330569, 1.454727]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_18_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_18_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_18_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_18_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_18_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_18_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_18_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_18_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.399387, 0.327689, -0.856218], [0.9115, 0.041819, -0.409169], [-0.098274, -0.94386, -0.315391]] and translation vector: [4.88233, 2.963563, 1.403722], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.394763, 0.316878, -0.86241], [0.913367, 0.033579, -0.40575], [-0.099614, -0.947872, -0.302681]] and translation vector: [4.88409, 2.965299, 1.400614], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.386874, 0.309114, -0.868779], [0.915474, 0.015736, -0.402069], [-0.110614, -0.950895, -0.289074]] and translation vector: [4.883719, 2.961581, 1.413125]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_19_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_19_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_19_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_19_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_19_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_19_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_19_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_19_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.830629, 0.239867, -0.502514], [0.556756, 0.37214, -0.742654], [0.008867, -0.896647, -0.442658]] and translation vector: [4.849209, 2.614689, 1.447477], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.826514, 0.239564, -0.509396], [0.562778, 0.371773, -0.738286], [0.012512, -0.89688, -0.442097]] and translation vector: [4.848542, 2.612423, 1.449706], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.822193, 0.245879, -0.513364], [0.569134, 0.369775, -0.734406], [0.009254, -0.895997, -0.443965]] and translation vector: [4.848, 2.609138, 1.450893]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_20_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_20_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_20_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_20_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_20_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_20_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_20_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_20_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.815869, 0.244354, -0.524069], [0.578211, -0.336271, 0.743367], [0.005416, -0.909513, -0.415641]] and translation vector: [2.358014, 1.230078, 1.369842], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.817563, 0.244526, -0.521342], [0.575764, -0.332513, 0.746947], [0.009295, -0.910847, -0.41264]] and translation vector: [2.355037, 1.229076, 1.372478], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.827304, 0.233324, -0.511006], [0.561698, -0.330711, 0.758371], [0.007951, -0.914434, -0.404656]] and translation vector: [2.3528, 1.226651, 1.376959]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_21_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_21_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_21_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_21_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_21_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_21_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_21_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_21_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.880278, -0.246293, 0.405524], [-0.473973, 0.417832, -0.775091], [0.021459, -0.874503, -0.484545]] and translation vector: [3.281806, 2.754624, 1.352781], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.883446, -0.241464, 0.401521], [-0.467927, 0.41107, -0.782347], [0.023856, -0.879043, -0.476146]] and translation vector: [3.2823, 2.745028, 1.352692], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.889317, -0.237291, 0.390907], [-0.456246, 0.402627, -0.793556], [0.030913, -0.884073, -0.466326]] and translation vector: [3.299646, 2.724283, 1.356988]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_22_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_22_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_22_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_22_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_22_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_22_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_22_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_22_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.752388, 0.33007, -0.570058], [0.655329, 0.287372, -0.698542], [-0.066749, -0.89915, -0.43252]] and translation vector: [3.814293, 2.583141, 1.394159], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.750374, 0.330815, -0.572276], [0.657793, 0.28836, -0.695813], [-0.065164, -0.89856, -0.433986]] and translation vector: [3.802971, 2.57897, 1.383742], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.774913, 0.365169, -0.515909], [0.625622, 0.32685, -0.708355], [-0.090045, -0.871677, -0.481738]] and translation vector: [3.702851, 2.52357, 1.379531]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_23_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_23_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_23_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_23_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_23_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_23_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_23_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_23_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.764638, 0.028658, -0.643823], [0.64431, -0.055554, 0.762744], [-0.013909, -0.998044, -0.060944]] and translation vector: [3.061982, 3.98913, 1.495508], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.765028, 0.027801, -0.643396], [0.643825, -0.056098, 0.763114], [-0.014878, -0.998038, -0.060816]] and translation vector: [3.064652, 3.991985, 1.487138], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.769869, 0.028995, -0.637544], [0.638044, -0.057257, 0.767869], [-0.01424, -0.997939, -0.06258]] and translation vector: [3.059477, 3.994236, 1.491082]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_24_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_24_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_24_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_24_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_24_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_24_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_24_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_24_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.436119, -0.427186, 0.79203], [-0.89981, 0.218659, -0.377532], [-0.011909, -0.877326, -0.479747]] and translation vector: [1.992302, 3.72193, 1.553249], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.436462, -0.426736, 0.792084], [-0.899636, 0.219226, -0.377618], [-0.012502, -0.877403, -0.47959]] and translation vector: [1.991236, 3.722176, 1.553282], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.436236, -0.428201, 0.791418], [-0.899775, 0.217489, -0.37829], [-0.010141, -0.877122, -0.480161]] and translation vector: [1.989599, 3.72313, 1.552786]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_25_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_25_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_25_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_25_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_25_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_25_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_25_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_25_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.985254, -0.134646, 0.105573], [-0.142287, -0.302097, 0.942599], [-0.095024, -0.94372, -0.3168]] and translation vector: [1.134605, 1.549487, 1.505245], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.985752, -0.13049, 0.106142], [-0.141062, -0.297585, 0.944216], [-0.091624, -0.945736, -0.311752]] and translation vector: [1.131707, 1.551058, 1.506377], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.987724, -0.11535, 0.105339], [-0.134913, -0.289999, 0.94747], [-0.078743, -0.95005, -0.302001]] and translation vector: [1.113611, 1.565945, 1.522577]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_26_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_26_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_26_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_26_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_26_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_26_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_26_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_26_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.567127, -0.123224, 0.81436], [-0.823556, -0.071568, 0.562702], [-0.011056, -0.989795, -0.14207]] and translation vector: [0.249561, 0.967409, 1.634127], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.566682, -0.123694, 0.814599], [-0.82386, -0.07149, 0.562268], [-0.011313, -0.989742, -0.142418]] and translation vector: [0.249762, 0.967631, 1.633273], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.570813, -0.115531, 0.812912], [-0.82106, -0.073224, 0.566127], [-0.005881, -0.990601, -0.136655]] and translation vector: [0.269192, 0.984284, 1.63838]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_27_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_27_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_27_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_27_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_27_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_27_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_27_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_27_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.08083, -0.463089, 0.882618], [-0.994842, 0.091929, -0.042874], [-0.061284, -0.881531, -0.468131]] and translation vector: [4.543997, 3.147744, 1.235262], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.097623, -0.477164, 0.873375], [-0.993778, 0.094019, -0.059714], [-0.05362, -0.873771, -0.483373]] and translation vector: [4.550471, 3.148599, 1.246367], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.130487, -0.461277, 0.877608], [-0.991003, 0.087264, -0.101481], [-0.029773, -0.882954, -0.468514]] and translation vector: [4.556965, 3.161462, 1.2534]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_28_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_28_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_28_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_28_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_28_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_28_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_28_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_28_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.117057, -0.769276, 0.628102], [-0.987232, -0.021336, 0.157855], [-0.108033, -0.638561, -0.761951]] and translation vector: [1.032686, 1.226834, 2.186959], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.111522, -0.769903, 0.628341], [-0.98843, -0.020525, 0.150284], [-0.102807, -0.637831, -0.763284]] and translation vector: [1.037875, 1.232625, 2.186027], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.047902, -0.766247, 0.640758], [-0.996596, 0.006426, 0.082189], [-0.067095, -0.642514, -0.763331]] and translation vector: [1.085053, 1.269848, 2.178721]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_29_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_29_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_29_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_29_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_29_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_29_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_29_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_29_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.824719, -0.175736, 0.537546], [-0.564369, 0.316962, -0.762249], [-0.036427, -0.932015, -0.360584]] and translation vector: [4.397487, 4.054199, 1.411764], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.821778, -0.181799, 0.540028], [-0.568729, 0.319986, -0.757731], [-0.035047, -0.929816, -0.366351]] and translation vector: [4.391561, 4.044915, 1.406417], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.814573, -0.211319, 0.540199], [-0.579135, 0.348873, -0.736811], [-0.032758, -0.913034, -0.406565]] and translation vector: [4.415594, 3.989866, 1.391957]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_30_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_30_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_30_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_30_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_30_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_30_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_30_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_30_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.14018, 0.443083, -0.885453], [0.989985, -0.07783, 0.117782], [-0.016727, -0.893096, -0.449556]] and translation vector: [3.549726, 0.935059, 1.485921], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.140682, 0.443565, -0.885132], [0.989931, -0.077142, 0.11868], [-0.015638, -0.892916, -0.449951]] and translation vector: [3.549777, 0.934132, 1.483108], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.137256, 0.445178, -0.88486], [0.99043, -0.074707, 0.116046], [-0.014444, -0.89232, -0.451172]] and translation vector: [3.545579, 0.936731, 1.483973]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_31_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_31_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_31_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_31_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_31_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_31_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_31_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_31_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.59597, 0.482312, -0.642025], [0.802979, -0.35126, 0.4815], [0.006716, -0.802491, -0.596626]] and translation vector: [3.449961, 1.112515, 1.412234], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.596047, 0.483799, -0.640833], [0.802896, -0.349913, 0.482617], [0.009254, -0.802184, -0.597005]] and translation vector: [3.451157, 1.111087, 1.411899], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.59137, 0.494753, -0.636789], [0.806303, -0.350525, 0.476453], [0.012516, -0.795205, -0.606211]] and translation vector: [3.452706, 1.109482, 1.412867]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_32_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_32_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_32_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_32_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_32_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_32_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_32_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_32_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.112591, -0.547395, 0.829266], [-0.992672, 0.098819, -0.069547], [-0.043877, -0.83102, -0.55451]] and translation vector: [1.18498, 1.814175, 1.496605], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.111637, -0.546351, 0.830083], [-0.992679, 0.100057, -0.067648], [-0.046096, -0.831558, -0.553521]] and translation vector: [1.186424, 1.810214, 1.495373], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.122401, -0.542747, 0.83093], [-0.991535, 0.103412, -0.078512], [-0.043316, -0.833506, -0.55081]] and translation vector: [1.193691, 1.805185, 1.501094]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_33_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_33_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_33_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_33_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_33_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_33_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_33_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_33_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.606497, 0.359513, -0.709163], [0.793947, -0.321582, 0.515978], [-0.042553, -0.875977, -0.480473]] and translation vector: [5.898605, 1.464963, 1.329018], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.603336, 0.358994, -0.712116], [0.79647, -0.316333, 0.515334], [-0.040264, -0.878098, -0.476783]] and translation vector: [5.91512, 1.4588, 1.326343], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.586247, 0.38946, -0.710377], [0.809914, -0.302115, 0.502759], [-0.018811, -0.870085, -0.492543]] and translation vector: [6.035654, 1.433116, 1.31748]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_34_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_34_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_34_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_34_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_34_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_34_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_34_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_34_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.590232, -0.352789, 0.726062], [-0.807221, -0.252962, 0.533296], [-0.004475, -0.900861, -0.434086]] and translation vector: [2.518124, 2.463328, 1.346668], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.586587, -0.358769, 0.726086], [-0.809845, -0.250747, 0.530356], [-0.008212, -0.899117, -0.437632]] and translation vector: [2.520116, 2.462175, 1.344964], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.595628, -0.375207, 0.710244], [-0.80316, -0.264233, 0.533961], [-0.012675, -0.888482, -0.458736]] and translation vector: [2.525984, 2.461792, 1.333971]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_35_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_35_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_35_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_35_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_35_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_35_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_35_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_35_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.934582, -0.143102, 0.325696], [-0.355737, 0.383069, -0.852473], [-0.002774, -0.912568, -0.408916]] and translation vector: [2.694367, 2.483235, 1.465763], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.935747, -0.141154, 0.323191], [-0.352667, 0.379116, -0.85551], [-0.001768, -0.91452, -0.404537]] and translation vector: [2.694351, 2.483417, 1.465522], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.94215, -0.147808, 0.300842], [-0.33486, 0.375166, -0.864361], [0.014894, -0.915098, -0.402958]] and translation vector: [2.702719, 2.477868, 1.47257]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_36_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_36_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_36_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_36_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_36_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_36_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_36_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_36_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.684823, -0.326379, 0.651532], [-0.728707, -0.304485, 0.613413], [-0.001823, -0.894855, -0.446353]] and translation vector: [2.86358, 2.414664, 1.549631], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.684506, -0.325468, 0.652321], [-0.729004, -0.308374, 0.611113], [0.002261, -0.893855, -0.448351]] and translation vector: [2.864701, 2.413023, 1.547001], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.67888, -0.327994, 0.656918], [-0.733931, -0.329441, 0.593981], [0.021593, -0.885375, -0.464376]] and translation vector: [2.877256, 2.417151, 1.541322]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_37_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_37_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_37_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_37_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_37_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_37_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_37_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_37_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.882784, 0.25224, -0.396318], [0.469583, -0.498211, 0.728888], [-0.013595, -0.829554, -0.55826]] and translation vector: [3.463734, 1.394934, 1.262723], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.883097, 0.250738, -0.396574], [0.468931, -0.499833, 0.728197], [-0.015634, -0.829034, -0.558979]] and translation vector: [3.462241, 1.393432, 1.262782], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.878878, 0.250773, -0.405817], [0.476653, -0.496234, 0.725641], [-0.019409, -0.831183, -0.55566]] and translation vector: [3.458656, 1.394662, 1.254618]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_38_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_38_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_38_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_38_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_38_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_38_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_38_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_38_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.752445, 0.275595, -0.598225], [0.657828, -0.35994, 0.661593], [-0.032994, -0.891342, -0.452129]] and translation vector: [2.633805, 2.70906, 1.31733], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.746128, 0.269733, -0.608718], [0.664676, -0.35493, 0.657443], [-0.038718, -0.895136, -0.444108]] and translation vector: [2.667176, 2.689206, 1.310347], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.736878, 0.253582, -0.626664], [0.67323, -0.359496, 0.646161], [-0.061428, -0.89803, -0.435624]] and translation vector: [2.744361, 2.610373, 1.319779]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_39_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_39_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_39_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_39_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_39_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_39_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_39_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_39_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.386761, -0.304254, 0.870543], [-0.920043, 0.191539, -0.34181], [-0.062746, -0.933136, -0.354007]] and translation vector: [2.082368, 4.008438, 1.845888], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.387201, -0.298257, 0.872421], [-0.919947, 0.188025, -0.344013], [-0.061432, -0.935783, -0.347183]] and translation vector: [2.08001, 4.010775, 1.842824], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.376594, -0.325714, 0.867229], [-0.924884, 0.185353, -0.332016], [-0.052601, -0.927122, -0.371051]] and translation vector: [2.082613, 4.009402, 1.837637]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_40_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_40_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_40_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_40_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_40_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_40_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_40_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_40_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.484778, 0.389748, -0.782998], [0.874059, -0.248441, 0.417491], [-0.031813, -0.886777, -0.461102]] and translation vector: [2.948564, 2.712566, 1.480667], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.484062, 0.388161, -0.784229], [0.874419, -0.248162, 0.416902], [-0.03279, -0.887551, -0.459542]] and translation vector: [2.949191, 2.711738, 1.477649], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.467232, 0.39177, -0.792597], [0.88347, -0.241629, 0.401368], [-0.034271, -0.887768, -0.459014]] and translation vector: [2.947397, 2.72527, 1.480424]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_41_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_41_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_41_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_41_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_41_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_41_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_41_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_41_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.493838, -0.420518, 0.76111], [-0.864926, -0.147366, 0.479777], [-0.089593, -0.895236, -0.436493]] and translation vector: [0.736944, 2.108944, 1.402726], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.487676, -0.423405, 0.763479], [-0.869284, -0.154634, 0.469504], [-0.080731, -0.892646, -0.443471]] and translation vector: [0.733117, 2.095654, 1.39687], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.480924, -0.423346, 0.767783], [-0.872629, -0.146192, 0.465989], [-0.085031, -0.894095, -0.439732]] and translation vector: [0.701425, 2.057617, 1.397946]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_42_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_42_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_42_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_42_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_42_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_42_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_42_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_42_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.874867, -0.0675, 0.479638], [-0.482919, 0.197999, -0.852987], [-0.037391, -0.977875, -0.205819]] and translation vector: [2.397274, 1.722858, 1.486845], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.874077, -0.063653, 0.4816], [-0.484123, 0.196153, -0.852731], [-0.040189, -0.978505, -0.202269]] and translation vector: [2.402604, 1.721845, 1.489477], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.887879, -0.058916, 0.456289], [-0.458188, 0.203011, -0.865362], [-0.041648, -0.977402, -0.207244]] and translation vector: [2.446714, 1.689918, 1.489633]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_43_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_43_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_43_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_43_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_43_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_43_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_43_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_43_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.993805, -0.057016, 0.095394], [-0.110597, -0.423109, 0.899304], [-0.010913, -0.904283, -0.426794]] and translation vector: [3.282054, 2.568905, 1.512321], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.993106, -0.061381, 0.099861], [-0.116562, -0.427194, 0.896615], [-0.012375, -0.902074, -0.431404]] and translation vector: [3.283498, 2.568158, 1.509645], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.991697, -0.07473, 0.104657], [-0.127453, -0.462749, 0.877279], [-0.017129, -0.883334, -0.468431]] and translation vector: [3.294037, 2.566846, 1.501968]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_44_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_44_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_44_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_44_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_44_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_44_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_44_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_44_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.672393, -0.274439, 0.687438], [-0.739855, -0.221079, 0.635404], [-0.022402, -0.935846, -0.351697]] and translation vector: [3.802358, 2.110255, 1.494557], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.672432, -0.275262, 0.687071], [-0.739825, -0.222066, 0.635095], [-0.022242, -0.93537, -0.35297]] and translation vector: [3.806542, 2.108163, 1.497405], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.662943, -0.279413, 0.694575], [-0.748414, -0.223073, 0.624593], [-0.019579, -0.933899, -0.357001]] and translation vector: [3.809607, 2.112622, 1.492454]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_45_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_45_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_45_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_45_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_45_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_45_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_45_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_45_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.187285, -0.627824, 0.755488], [-0.982305, 0.118515, -0.145025], [0.001514, -0.76928, -0.63891]] and translation vector: [1.001752, 1.17634, 1.437838], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.187139, -0.630563, 0.75324], [-0.982328, 0.117514, -0.14568], [0.003345, -0.767191, -0.64141]] and translation vector: [1.00191, 1.178201, 1.437088], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.182531, -0.636948, 0.748986], [-0.983189, 0.114531, -0.142208], [0.004797, -0.762352, -0.647145]] and translation vector: [1.004145, 1.176443, 1.437678]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_46_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_46_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_46_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_46_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_46_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_46_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_46_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_46_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.977181, 0.077241, -0.197866], [0.211774, -0.426158, 0.879512], [-0.016388, -0.901345, -0.432791]] and translation vector: [0.977323, 0.877303, 1.40232], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.979446, 0.063797, -0.19135], [0.200663, -0.404476, 0.892263], [-0.020472, -0.912321, -0.408965]] and translation vector: [0.961423, 0.875672, 1.418643], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.983838, 0.068482, -0.165447], [0.178902, -0.337078, 0.924323], [0.007531, -0.938983, -0.343882]] and translation vector: [0.935081, 0.882589, 1.453845]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_47_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_47_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_47_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_47_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_47_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_47_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_47_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_47_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.205964, -0.505778, 0.837716], [-0.978495, 0.11627, -0.170378], [-0.011228, -0.854792, -0.518849]] and translation vector: [2.901534, 4.292832, 1.280844], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.204012, -0.504726, 0.838827], [-0.978841, 0.118998, -0.166463], [-0.0158, -0.855039, -0.518324]] and translation vector: [2.909629, 4.290413, 1.285823], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.169049, -0.47943, 0.861144], [-0.985403, 0.100042, -0.137744], [-0.020112, -0.871859, -0.489344]] and translation vector: [2.918062, 4.255744, 1.296137]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_48_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_48_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_48_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_48_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_48_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_48_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_48_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_48_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.810147, -0.229725, 0.539341], [-0.586224, 0.314131, -0.746769], [0.002128, -0.921167, -0.389162]] and translation vector: [3.108561, 2.950706, 1.466118], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.798041, -0.241673, 0.552019], [-0.602539, 0.306626, -0.736836], [0.00881, -0.920638, -0.390318]] and translation vector: [3.094201, 2.939754, 1.46817], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.730942, -0.298846, 0.613526], [-0.681648, 0.276413, -0.677461], [0.03287, -0.913393, -0.40575]] and translation vector: [3.008661, 2.892656, 1.463078]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_49_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_49_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_49_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_49_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_49_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_49_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_49_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_49_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.983299, 0.047874, -0.175588], [0.180439, -0.382417, 0.9062], [-0.023764, -0.922749, -0.384668]] and translation vector: [2.208684, 3.483128, 1.468268], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.982577, 0.045136, -0.18029], [0.183889, -0.376806, 0.907856], [-0.026957, -0.925192, -0.378541]] and translation vector: [2.211137, 3.481059, 1.465482], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.983986, 0.057121, -0.168843], [0.177826, -0.379389, 0.907988], [-0.012192, -0.923472, -0.383472]] and translation vector: [2.214237, 3.490379, 1.461581]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_50_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_50_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_50_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_50_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_50_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_50_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_50_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_50_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.053762, 0.423971, -0.904079], [0.99709, -0.071809, 0.025618], [-0.05406, -0.902825, -0.426597]] and translation vector: [3.696534, 7.381392, 1.65485], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.059051, 0.424044, -0.903714], [0.996629, -0.076693, 0.029136], [-0.056954, -0.902388, -0.427143]] and translation vector: [3.693501, 7.384472, 1.654036], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.076295, 0.430516, -0.899353], [0.995602, -0.082082, 0.045168], [-0.054375, -0.898843, -0.434884]] and translation vector: [3.686877, 7.38459, 1.650219]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_51_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_51_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_51_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_51_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_51_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_51_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_51_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_51_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.079656, -0.319192, 0.944337], [-0.994012, 0.096527, -0.051219], [-0.074805, -0.942762, -0.324969]] and translation vector: [4.3352, 2.935251, 1.464921], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.08136, -0.319768, 0.943996], [-0.993796, 0.098086, -0.052427], [-0.075828, -0.942405, -0.325765]] and translation vector: [4.335558, 2.933583, 1.460394], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.082648, -0.359045, 0.929654], [-0.993327, 0.104973, -0.047767], [-0.080438, -0.927398, -0.365325]] and translation vector: [4.342546, 2.934833, 1.439448]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_52_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_52_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_52_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_52_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_52_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_52_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_52_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_52_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.299058, 0.37418, -0.877812], [0.95368, -0.085842, 0.288314], [0.032528, -0.923375, -0.38252]] and translation vector: [3.908031, 4.993837, 1.41318], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.301871, 0.365699, -0.880419], [0.952911, -0.087746, 0.290279], [0.028901, -0.926588, -0.374966]] and translation vector: [3.903484, 4.991583, 1.422828], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.301255, 0.344295, -0.889217], [0.952977, -0.076566, 0.293211], [0.032867, -0.935734, -0.351171]] and translation vector: [3.913385, 4.973511, 1.425571]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_53_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_53_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_53_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_53_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_53_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_53_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_53_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_53_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.769532, -0.429513, 0.472588], [-0.615738, -0.302759, 0.727464], [-0.169375, -0.850797, -0.49745]] and translation vector: [2.184386, 2.253813, 1.283805], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.76638, -0.428136, 0.478917], [-0.620171, -0.298738, 0.725357], [-0.167481, -0.85291, -0.494464]] and translation vector: [2.185226, 2.257666, 1.286817], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.752434, -0.422477, 0.505328], [-0.641308, -0.294924, 0.708339], [-0.150223, -0.857049, -0.492848]] and translation vector: [2.203988, 2.240772, 1.285116]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_54_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_54_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_54_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_54_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_54_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_54_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_54_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_54_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.255196, -0.436856, 0.862573], [-0.966393, 0.143834, -0.213066], [-0.030988, -0.887958, -0.45888]] and translation vector: [1.734999, 0.744851, 1.432124], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.254375, -0.435236, 0.863634], [-0.966628, 0.142475, -0.21291], [-0.03038, -0.888972, -0.456953]] and translation vector: [1.735377, 0.747301, 1.433656], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.252592, -0.430397, 0.866577], [-0.967061, 0.14143, -0.211638], [-0.031471, -0.891491, -0.451944]] and translation vector: [1.738514, 0.752667, 1.434948]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_55_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_55_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_55_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_55_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_55_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_55_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_55_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_55_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.721847, -0.019511, -0.691778], [0.690918, -0.036893, 0.721991], [-0.039608, -0.999129, -0.013151]] and translation vector: [1.871862, 0.815296, 1.594356], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.723033, -0.022358, -0.690452], [0.689637, -0.034974, 0.723311], [-0.04032, -0.999138, -0.009869]] and translation vector: [1.872181, 0.815734, 1.596287], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.722407, -0.014829, -0.691309], [0.690381, -0.040572, 0.722307], [-0.038759, -0.999067, -0.019072]] and translation vector: [1.866769, 0.812653, 1.587453]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_56_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_56_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_56_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_56_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_56_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_56_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_56_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_56_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.15851, 0.420096, -0.893529], [0.981106, -0.034663, -0.190342], [-0.110934, -0.906817, -0.406664]] and translation vector: [4.004256, 0.910349, 2.578562], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.153085, 0.419732, -0.894645], [0.982322, -0.034068, -0.184071], [-0.107739, -0.907009, -0.407097]] and translation vector: [4.005316, 0.908549, 2.574668], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.128813, 0.432758, -0.89226], [0.986418, -0.036555, -0.160137], [-0.101917, -0.900769, -0.422171]] and translation vector: [4.005799, 0.894308, 2.560097]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_57_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_57_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_57_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_57_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_57_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_57_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_57_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_57_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.974605, -0.106498, 0.196986], [-0.223762, -0.428932, 0.875185], [-0.008712, -0.897037, -0.44187]] and translation vector: [2.006689, 0.552817, 1.711334], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.976991, -0.101609, 0.187523], [-0.213093, -0.42809, 0.878254], [-0.008962, -0.898006, -0.439892]] and translation vector: [2.014877, 0.551422, 1.700123], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.983342, -0.080889, 0.162776], [-0.181747, -0.450774, 0.87394], [0.002683, -0.888966, -0.457967]] and translation vector: [1.906067, 0.734394, 1.70234]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_58_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_58_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_58_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_58_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_58_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_58_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_58_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_58_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.677945, 0.409221, -0.610679], [0.735109, 0.38004, -0.561413], [0.00234, -0.829523, -0.558468]] and translation vector: [3.092599, 2.044437, 1.437429], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.678782, 0.408186, -0.610442], [0.734335, 0.380383, -0.562193], [0.002723, -0.829875, -0.557943]] and translation vector: [3.0892, 2.043949, 1.440375], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.676872, 0.407734, -0.61286], [0.736083, 0.380637, -0.559729], [0.005057, -0.829981, -0.557769]] and translation vector: [3.08962, 2.045413, 1.436176]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_59_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_59_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_59_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_59_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_59_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_59_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_59_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_59_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.207705, 0.494542, -0.843971], [0.97739, -0.069996, 0.199524], [0.039599, -0.866331, -0.497898]] and translation vector: [4.53083, 2.291093, 1.52739], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.209269, 0.494574, -0.843566], [0.977066, -0.071037, 0.200739], [0.039356, -0.866228, -0.498097]] and translation vector: [4.529976, 2.291335, 1.526507], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.196766, 0.49564, -0.845946], [0.979799, -0.067948, 0.18809], [0.035744, -0.865866, -0.498997]] and translation vector: [4.530453, 2.296434, 1.524226]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_60_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_60_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_60_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_60_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_60_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_60_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_60_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_60_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.956223, -0.170898, 0.237554], [-0.292595, -0.544035, 0.786393], [-0.005155, -0.821474, -0.570223]] and translation vector: [1.275326, 2.834272, 1.3185], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.956815, -0.170774, 0.235249], [-0.290631, -0.544392, 0.786875], [-0.00631, -0.821263, -0.570514]] and translation vector: [1.276568, 2.833979, 1.318089], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.956011, -0.167954, 0.240486], [-0.293328, -0.545359, 0.785202], [-0.000727, -0.821203, -0.570635]] and translation vector: [1.277841, 2.834386, 1.31762]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_61_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_61_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_61_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_61_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_61_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_61_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_61_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_61_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.928108, -0.125197, 0.35063], [-0.371823, 0.3599, -0.855699], [-0.019061, -0.924553, -0.380577]] and translation vector: [5.296664, 4.137775, 1.856988], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.930637, -0.119308, 0.34595], [-0.365378, 0.355543, -0.860284], [-0.020361, -0.927014, -0.374474]] and translation vector: [5.29653, 4.126579, 1.856014], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.952426, -0.118849, 0.280641], [-0.304767, 0.367704, -0.878584], [0.001226, -0.922317, -0.386432]] and translation vector: [5.320154, 4.099401, 1.857875]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_62_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_62_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_62_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_62_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_62_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_62_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_62_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_62_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.86482, -0.183466, 0.467362], [-0.501092, -0.256948, 0.826368], [-0.031523, -0.948851, -0.314147]] and translation vector: [3.012278, 2.022242, 1.442339], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.863867, -0.189194, 0.466839], [-0.502557, -0.260784, 0.824274], [-0.034203, -0.946677, -0.320364]] and translation vector: [3.015002, 2.018446, 1.436262], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.859994, -0.189108, 0.473971], [-0.509792, -0.276775, 0.81456], [-0.022856, -0.942143, -0.33443]] and translation vector: [3.018664, 2.017763, 1.427395]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_63_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_63_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_63_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_63_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_63_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_63_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_63_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_63_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.951558, 0.16536, -0.259218], [0.307283, -0.481983, 0.820531], [0.010744, -0.860436, -0.509446]] and translation vector: [2.919862, 3.428013, 1.521081], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.951326, 0.167996, -0.258374], [0.307875, -0.4803, 0.821295], [0.013877, -0.860866, -0.508643]] and translation vector: [2.920042, 3.428186, 1.518811], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.948369, 0.180855, -0.260555], [0.316485, -0.485614, 0.814872], [0.020845, -0.85526, -0.517779]] and translation vector: [2.906806, 3.429147, 1.512746]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_64_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_64_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_64_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_64_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_64_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_64_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_64_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_64_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.802837, 0.056561, -0.593509], [0.596192, 0.071654, -0.799638], [-0.002701, -0.995825, -0.091248]] and translation vector: [2.583219, 4.008804, 1.439254], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.802466, 0.056012, -0.594063], [0.59669, 0.070227, -0.799393], [-0.003056, -0.995957, -0.089777]] and translation vector: [2.583684, 4.008714, 1.434935], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.802651, 0.061565, -0.593263], [0.596422, 0.0734, -0.799308], [-0.005664, -0.995401, -0.095633]] and translation vector: [2.580812, 4.010173, 1.435745]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_65_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_65_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_65_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_65_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_65_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_65_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_65_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_65_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.355681, -0.20797, 0.911175], [-0.934036, 0.113197, -0.338769], [-0.032689, -0.971563, -0.234514]] and translation vector: [0.539195, 4.841905, 1.636959], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.354881, -0.205091, 0.912139], [-0.934375, 0.110848, -0.338608], [-0.031664, -0.972446, -0.230969]] and translation vector: [0.533365, 4.84225, 1.627512], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.357394, -0.22244, 0.907078], [-0.933778, 0.10396, -0.34242], [-0.018132, -0.969388, -0.244864]] and translation vector: [0.528036, 4.836335, 1.624936]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_66_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_66_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_66_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_66_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_66_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_66_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_66_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_66_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.566304, -0.590941, 0.574533], [-0.823945, 0.423135, -0.376925], [-0.020365, -0.686838, -0.726526]] and translation vector: [2.143516, 1.760119, 1.343188], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.561614, -0.596242, 0.57366], [-0.827171, 0.420904, -0.372329], [-0.019457, -0.683619, -0.729579]] and translation vector: [2.147258, 1.761594, 1.344016], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.547252, -0.609389, 0.573725], [-0.836861, 0.409368, -0.363431], [-0.013394, -0.679017, -0.734001]] and translation vector: [2.154856, 1.762344, 1.343807]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_67_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_67_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_67_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_67_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_67_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_67_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_67_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_67_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.848489, -0.131122, 0.512712], [-0.527579, 0.133483, -0.838954], [0.041567, -0.982339, -0.182436]] and translation vector: [2.702568, 1.718074, 1.602473], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.851363, -0.128939, 0.508484], [-0.523333, 0.142037, -0.840207], [0.036112, -0.981428, -0.188403]] and translation vector: [2.706553, 1.721294, 1.602035], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.862925, -0.138489, 0.485985], [-0.504369, 0.176659, -0.845224], [0.031201, -0.974481, -0.222293]] and translation vector: [2.716626, 1.723908, 1.586826]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_68_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_68_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_68_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_68_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_68_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_68_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_68_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_68_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.205292, 0.226186, -0.952205], [0.97316, -0.150555, 0.174048], [-0.103992, -0.962379, -0.251024]] and translation vector: [4.876985, 2.837537, 1.671042], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.210488, 0.22021, -0.952472], [0.971775, -0.153305, 0.17931], [-0.106533, -0.96333, -0.246263]] and translation vector: [4.87733, 2.840179, 1.675237], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.247756, 0.187443, -0.950517], [0.962582, -0.158806, 0.219585], [-0.109788, -0.969353, -0.219774]] and translation vector: [4.877867, 2.827038, 1.675608]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_69_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_69_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_69_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_69_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_69_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_69_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_69_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_69_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.52463, -0.231347, 0.819293], [-0.850589, 0.102279, -0.515789], [0.03553, -0.96748, -0.25044]] and translation vector: [5.897326, 2.792535, 1.553822], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.52763, -0.228151, 0.818263], [-0.84888, 0.105585, -0.517933], [0.03177, -0.967884, -0.249382]] and translation vector: [5.897463, 2.790525, 1.551499], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.541576, -0.222735, 0.810608], [-0.840076, 0.107703, -0.53167], [0.031116, -0.968911, -0.245444]] and translation vector: [5.894893, 2.788883, 1.558074]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_70_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_70_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_70_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_70_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_70_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_70_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_70_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_70_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.988959, -0.006087, -0.148062], [0.148117, 0.009943, 0.98892], [-0.004548, -0.999932, 0.010735]] and translation vector: [3.911582, 2.672538, 1.565046], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.987297, -0.007995, -0.158684], [0.158774, 0.012251, 0.987239], [-0.005949, -0.999893, 0.013365]] and translation vector: [3.955948, 2.679338, 1.574419], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.992697, -0.03521, -0.115384], [0.116446, 0.029785, 0.99275], [-0.031518, -0.998936, 0.033668]] and translation vector: [3.907376, 2.643518, 1.623414]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_71_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_71_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_71_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_71_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_71_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_71_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_71_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_71_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.999494, 0.005595, 0.031322], [-0.029883, 0.172936, -0.98448], [-0.010925, -0.984917, -0.172681]] and translation vector: [6.687301, 5.436423, 1.742894], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.999393, 0.00615, 0.034285], [-0.032681, 0.175053, -0.984017], [-0.012053, -0.98454, -0.174746]] and translation vector: [6.681215, 5.427393, 1.75699], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.999512, 0.015203, 0.027277], [-0.02448, 0.160854, -0.986675], [-0.019388, -0.986861, -0.160403]] and translation vector: [6.678608, 5.424335, 1.758175]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_72_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_72_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_72_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_72_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_72_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_72_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_72_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_72_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.991592, 0.052224, -0.118397], [0.1292, -0.348306, 0.928435], [0.007248, -0.935925, -0.352124]] and translation vector: [2.177373, 2.142725, 1.46728], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.992093, 0.047571, -0.11614], [0.125441, -0.346386, 0.929667], [0.003996, -0.936885, -0.349615]] and translation vector: [2.181058, 2.142908, 1.465582], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.99009, 0.041581, -0.13414], [0.14016, -0.352521, 0.925248], [-0.008815, -0.93488, -0.354856]] and translation vector: [2.196626, 2.148474, 1.466161]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_73_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_73_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_73_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_73_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_73_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_73_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_73_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_73_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.132001, -0.567775, 0.812532], [-0.991224, 0.069667, -0.112349], [0.007182, -0.820231, -0.571988]] and translation vector: [2.407685, 4.450429, 1.359714], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.130918, -0.563466, 0.8157], [-0.991376, 0.069526, -0.111087], [0.005882, -0.823209, -0.567709]] and translation vector: [2.40989, 4.444678, 1.359228], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.104614, -0.562754, 0.819978], [-0.994308, 0.042438, -0.097729], [0.020199, -0.825534, -0.563991]] and translation vector: [2.433079, 4.433616, 1.362504]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_74_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_74_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_74_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_74_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_74_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_74_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_74_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_74_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.877021, 0.121711, -0.464779], [0.46491, 0.459041, -0.75706], [0.12121, -0.880038, -0.459173]] and translation vector: [3.922419, 3.230202, 1.747047], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.876473, 0.11975, -0.466322], [0.465798, 0.455895, -0.758415], [0.121773, -0.881941, -0.455359]] and translation vector: [3.923546, 3.227255, 1.740959], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.862892, 0.148989, -0.482928], [0.494148, 0.449135, -0.744376], [0.105996, -0.880954, -0.461178]] and translation vector: [3.903725, 3.133858, 1.745573]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_75_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_75_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_75_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_75_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_75_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_75_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_75_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_75_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.515401, -0.339121, 0.786994], [-0.847541, -0.337435, 0.40965], [0.126638, -0.878143, -0.461333]] and translation vector: [4.776819, 1.138867, 1.280463], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.495978, -0.33911, 0.799381], [-0.859276, -0.324304, 0.395565], [0.125103, -0.88308, -0.452237]] and translation vector: [4.773187, 1.14016, 1.284317], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.481026, -0.30789, 0.820864], [-0.867671, -0.301264, 0.395457], [0.125539, -0.902465, -0.412064]] and translation vector: [4.757284, 1.147171, 1.295988]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_76_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_76_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_76_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_76_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_76_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_76_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_76_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_76_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.623567, 0.536294, -0.568817], [0.781209, -0.455034, 0.427384], [-0.029628, -0.710867, -0.702702]] and translation vector: [1.790477, 1.816361, 1.229059], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.636074, 0.528408, -0.562313], [0.771074, -0.462894, 0.437235], [-0.029252, -0.711698, -0.701876]] and translation vector: [1.794875, 1.819226, 1.230937], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.674924, 0.4822, -0.558534], [0.737532, -0.464309, 0.49037], [-0.022876, -0.7429, -0.669012]] and translation vector: [1.813084, 1.825686, 1.243736]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_77_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_77_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_77_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_77_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_77_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_77_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_77_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_77_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.999847, -0.004634, 0.01689], [-0.017397, -0.374134, 0.927211], [0.002023, -0.927363, -0.374157]] and translation vector: [3.310194, 3.16458, 1.506432], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.999774, -0.010896, 0.018284], [-0.021018, -0.369724, 0.928904], [-0.003361, -0.929078, -0.369869]] and translation vector: [3.316631, 3.168954, 1.519748], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.999711, -0.01062, 0.02156], [-0.023945, -0.363153, 0.931422], [-0.002062, -0.931669, -0.363302]] and translation vector: [3.313389, 3.184942, 1.522696]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_78_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_78_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_78_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_78_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_78_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_78_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_78_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_78_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.573165, 0.475287, -0.667521], [0.819422, -0.337921, 0.462988], [-0.005517, -0.81235, -0.583144]] and translation vector: [4.230747, 1.597944, 1.425469], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.580595, 0.472456, -0.663095], [0.814187, -0.339873, 0.470729], [-0.002969, -0.813186, -0.581996]] and translation vector: [4.228813, 1.597838, 1.42741], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.590926, 0.466068, -0.658474], [0.806725, -0.340048, 0.483283], [0.00133, -0.816791, -0.576932]] and translation vector: [4.230728, 1.601094, 1.427952]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_79_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_79_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_79_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_79_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_79_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_79_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_79_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_79_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.246516, -0.470365, 0.847341], [-0.959136, 0.006886, 0.282862], [-0.138884, -0.882445, -0.449446]] and translation vector: [3.043058, 2.955299, 1.551102], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.243276, -0.470143, 0.8484], [-0.960213, 0.006937, 0.279182], [-0.13714, -0.882563, -0.44975]] and translation vector: [3.042024, 2.954946, 1.550413], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.220837, -0.468715, 0.855299], [-0.967151, 0.007957, 0.254077], [-0.125896, -0.883313, -0.451561]] and translation vector: [3.035462, 2.949861, 1.549809]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_80_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_80_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_80_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_80_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_80_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_80_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_80_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_80_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.998134, -0.025826, -0.055325], [0.04389, 0.326427, -0.944203], [0.042444, -0.94487, -0.324684]] and translation vector: [2.355182, 2.984659, 1.395898], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.998605, -0.022906, -0.047579], [0.037628, 0.323493, -0.945482], [0.037048, -0.945953, -0.32218]] and translation vector: [2.345251, 2.98743, 1.391141], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.998425, -0.028903, -0.048087], [0.035665, 0.334665, -0.941662], [0.04331, -0.941894, -0.333107]] and translation vector: [2.317253, 2.991597, 1.388493]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_81_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_81_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_81_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_81_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_81_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_81_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_81_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_81_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.176261, -0.039155, 0.983564], [-0.983722, -0.028492, -0.177423], [0.03497, -0.998827, -0.033496]] and translation vector: [3.054739, 2.437738, 1.503838], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.18153, -0.048874, 0.98217], [-0.982778, -0.026092, -0.182941], [0.034567, -0.998464, -0.043296]] and translation vector: [3.061021, 2.450195, 1.498681], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.163045, -0.034334, 0.986021], [-0.986093, -0.02694, -0.163995], [0.032194, -0.999047, -0.029464]] and translation vector: [3.066704, 2.437577, 1.507359]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_82_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_82_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_82_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_82_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_82_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_82_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_82_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_82_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.853196, -0.330732, 0.403328], [-0.517406, -0.438892, 0.734619], [-0.065945, -0.835458, -0.545584]] and translation vector: [2.734716, 6.775187, 1.412962], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.853022, -0.336855, 0.398601], [-0.516617, -0.436898, 0.736361], [-0.0739, -0.834056, -0.546708]] and translation vector: [2.728871, 6.767794, 1.411126], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.851443, -0.340578, 0.398812], [-0.519517, -0.44372, 0.730216], [-0.071735, -0.828927, -0.554738]] and translation vector: [2.722152, 6.743406, 1.39829]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_83_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_83_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_83_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_83_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_83_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_83_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_83_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_83_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.954506, 0.05554, -0.292973], [0.288831, -0.41644, 0.862064], [-0.074127, -0.907465, -0.413536]] and translation vector: [2.66447, 1.005586, 1.476015], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.956668, 0.052296, -0.286448], [0.280824, -0.425753, 0.860158], [-0.076973, -0.903327, -0.42199]] and translation vector: [2.657996, 1.004761, 1.470821], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.966986, 0.054866, -0.248854], [0.248498, -0.419376, 0.873139], [-0.056458, -0.906153, -0.419165]] and translation vector: [2.617702, 1.004602, 1.502791]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_84_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_84_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_84_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_84_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_84_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_84_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_84_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_84_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.804945, -0.278842, 0.523748], [-0.593014, 0.407765, -0.694307], [-0.019964, -0.869468, -0.493585]] and translation vector: [4.871809, 2.494869, 1.402737], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.804444, -0.274614, 0.526742], [-0.593612, 0.404842, -0.695506], [-0.022252, -0.872176, -0.488687]] and translation vector: [4.863627, 2.491699, 1.400121], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.82218, -0.26485, 0.503859], [-0.568804, 0.416386, -0.709285], [-0.021946, -0.869757, -0.492992]] and translation vector: [4.864128, 2.487759, 1.4037]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_85_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_85_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_85_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_85_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_85_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_85_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_85_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_85_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.330673, -0.328207, 0.884837], [-0.942686, -0.070458, 0.326157], [-0.044703, -0.941975, -0.332694]] and translation vector: [3.753276, 4.481459, 1.345242], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.306694, -0.326667, 0.893995], [-0.950878, -0.063631, 0.302957], [-0.04208, -0.942995, -0.330136]] and translation vector: [3.754864, 4.497246, 1.34429], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.246991, -0.34493, 0.905549], [-0.96808, -0.046739, 0.246244], [-0.042613, -0.937464, -0.345464]] and translation vector: [3.754345, 4.564482, 1.352383]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_86_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_86_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_86_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_86_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_86_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_86_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_86_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_86_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.119369, -0.433868, 0.893034], [-0.990549, 0.113242, -0.077387], [-0.067553, -0.893832, -0.443285]] and translation vector: [3.407035, 4.679209, 1.397058], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.120544, -0.432859, 0.893366], [-0.990306, 0.115004, -0.077902], [-0.06902, -0.894096, -0.442526]] and translation vector: [3.401289, 4.681283, 1.397495], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.162977, -0.454909, 0.875498], [-0.983038, 0.15052, -0.104785], [-0.084112, -0.877725, -0.471725]] and translation vector: [3.342063, 4.674428, 1.399173]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_87_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_87_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_87_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_87_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_87_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_87_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_87_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_87_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.767458, -0.265442, 0.583565], [-0.640543, 0.35536, -0.680752], [-0.026676, -0.896248, -0.442751]] and translation vector: [3.343537, 3.697402, 1.375352], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.780866, -0.263741, 0.566294], [-0.624403, 0.357431, -0.694525], [-0.019236, -0.895926, -0.443786]] and translation vector: [3.344022, 3.709659, 1.376654], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.822146, -0.253316, 0.509811], [-0.569276, 0.364542, -0.736908], [0.000823, -0.896069, -0.443913]] and translation vector: [3.329204, 3.745763, 1.383552]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_88_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_88_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_88_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_88_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_88_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_88_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_88_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_88_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.612656, -0.411508, 0.674769], [-0.789543, 0.280105, -0.546043], [0.035694, -0.867296, -0.496511]] and translation vector: [1.897828, 2.372103, 1.388776], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.615876, -0.406578, 0.674826], [-0.787242, 0.284147, -0.547275], [0.03076, -0.868305, -0.495075]] and translation vector: [1.892345, 2.36762, 1.390764], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.607068, -0.416916, 0.676498], [-0.79419, 0.289362, -0.534352], [0.027027, -0.861656, -0.506773]] and translation vector: [1.87873, 2.3614, 1.391886]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_89_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_89_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_89_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_89_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_89_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_89_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_89_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_89_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.221984, 0.421429, -0.879273], [0.97466, 0.121427, -0.187867], [0.027595, -0.898695, -0.437705]] and translation vector: [3.155292, 0.483793, 1.35371], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.224547, 0.416482, -0.880978], [0.973822, 0.128715, -0.187361], [0.035363, -0.899986, -0.434482]] and translation vector: [3.157119, 0.483672, 1.354178], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.215665, 0.423756, -0.879727], [0.975658, 0.130183, -0.176474], [0.039743, -0.896373, -0.441517]] and translation vector: [3.155366, 0.486351, 1.353433]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_90_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_90_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_90_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_90_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_90_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_90_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_90_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_90_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.955421, 0.119616, -0.269932], [0.295248, 0.388339, -0.872939], [0.000408, -0.91372, -0.406343]] and translation vector: [2.65583, 2.981598, 1.368648], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.951595, 0.120375, -0.282803], [0.307283, 0.392547, -0.866882], [0.006663, -0.91182, -0.410535]] and translation vector: [2.655525, 2.981353, 1.361859], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.943467, 0.154725, -0.293138], [0.331247, 0.407989, -0.850776], [-0.01204, -0.89978, -0.436177]] and translation vector: [2.636264, 2.98502, 1.345518]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_91_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_91_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_91_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_91_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_91_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_91_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_91_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_91_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.908726, 0.150598, -0.389277], [0.406624, 0.108936, -0.907078], [-0.094198, -0.982575, -0.16023]] and translation vector: [8.822721, 3.830595, 1.476402], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.908663, 0.151907, -0.388916], [0.40641, 0.108245, -0.907256], [-0.09572, -0.98245, -0.160095]] and translation vector: [8.818814, 3.832555, 1.475788], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.906287, 0.145588, -0.396797], [0.413103, 0.106574, -0.904427], [-0.089385, -0.983589, -0.156729]] and translation vector: [8.811844, 3.835278, 1.478992]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_92_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_92_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_92_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_92_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_92_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_92_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_92_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_92_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.895509, 0.17248, -0.410263], [0.444823, 0.375965, -0.812886], [0.014038, -0.91044, -0.413402]] and translation vector: [2.818061, 5.409916, 1.54775], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.895274, 0.172164, -0.410907], [0.445264, 0.376844, -0.812237], [0.01501, -0.910136, -0.414037]] and translation vector: [2.819061, 5.407142, 1.548651], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.894314, 0.169155, -0.414233], [0.446992, 0.379174, -0.810201], [0.020016, -0.909733, -0.414712]] and translation vector: [2.82614, 5.405447, 1.545731]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_93_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_93_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_93_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_93_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_93_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_93_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_93_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_93_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.852441, 0.228219, -0.470383], [0.522431, 0.337001, -0.78326], [-0.020235, -0.913426, -0.406502]] and translation vector: [1.798405, 5.320803, 1.619482], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.850776, 0.231102, -0.471988], [0.52508, 0.336676, -0.781627], [-0.021728, -0.91282, -0.407783]] and translation vector: [1.793927, 5.32593, 1.618758], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.843319, 0.217806, -0.491298], [0.537393, 0.333805, -0.774456], [-0.004683, -0.917134, -0.398552]] and translation vector: [1.789976, 5.331068, 1.629155]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_94_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_94_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_94_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_94_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_94_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_94_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_94_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_94_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.443363, -0.325026, 0.835337], [-0.895367, 0.117125, -0.429651], [0.041809, -0.938424, -0.342946]] and translation vector: [2.190343, 3.392878, 1.594635], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.439336, -0.32163, 0.838772], [-0.897253, 0.111545, -0.427195], [0.043838, -0.940272, -0.337589]] and translation vector: [2.183471, 3.393708, 1.586874], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.44052, -0.339041, 0.83126], [-0.896776, 0.123224, -0.424981], [0.041655, -0.932667, -0.358326]] and translation vector: [2.168168, 3.37614, 1.57519]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_95_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_95_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_95_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_95_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_95_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_95_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_95_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_95_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.236277, -0.452541, 0.859872], [-0.970097, 0.160455, -0.182119], [-0.055554, -0.877189, -0.47692]] and translation vector: [1.575898, 1.961144, 1.314442], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.238966, -0.451212, 0.859828], [-0.9694, 0.162109, -0.184349], [-0.056205, -0.87757, -0.476143]] and translation vector: [1.575219, 1.960128, 1.313122], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.271686, -0.463311, 0.843522], [-0.960992, 0.177771, -0.211879], [-0.051788, -0.868182, -0.493536]] and translation vector: [1.583445, 1.96149, 1.313418]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_96_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_96_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_96_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_96_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_96_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_96_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_96_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_96_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.931668, 0.072515, -0.356001], [0.362912, -0.231685, 0.902561], [-0.017031, -0.970084, -0.24217]] and translation vector: [5.886859, 3.543659, 1.354971], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.931979, 0.073028, -0.355079], [0.362119, -0.233112, 0.902513], [-0.016864, -0.969704, -0.2437]] and translation vector: [5.882501, 3.543666, 1.354317], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.932369, 0.086637, -0.350973], [0.36142, -0.244825, 0.899687], [-0.007981, -0.965689, -0.259579]] and translation vector: [5.853946, 3.560033, 1.352092]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_97_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_97_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_97_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_97_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_97_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_97_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_97_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_97_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.688084, 0.423256, -0.589401], [0.725514, -0.415863, 0.54835], [-0.013017, -0.80493, -0.593227]] and translation vector: [3.968163, 0.8771, 1.421607], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.688048, 0.420794, -0.591205], [0.725576, -0.411726, 0.551381], [-0.011397, -0.80834, -0.588605]] and translation vector: [3.964529, 0.870938, 1.417962], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.665465, 0.44657, -0.598107], [0.746417, -0.402654, 0.529841], [-0.004219, -0.799027, -0.60128]] and translation vector: [3.954065, 0.866652, 1.420457]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_98_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_98_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_98_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_98_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_98_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_98_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_98_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_98_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.45377, -0.425062, 0.783208], [-0.891046, 0.227634, -0.392708], [-0.01136, -0.876074, -0.482043]] and translation vector: [2.25004, 3.862298, 1.519108], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.453547, -0.422981, 0.784463], [-0.891155, 0.226808, -0.392938], [-0.011717, -0.877294, -0.47981]] and translation vector: [2.249275, 3.861866, 1.519019], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.445149, -0.42745, 0.786847], [-0.895457, 0.212955, -0.390907], [-0.00047, -0.878599, -0.47756]] and translation vector: [2.244179, 3.86012, 1.517719]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_99_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_99_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_99_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_99_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_99_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_99_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_99_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_99_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.778266, 0.076502, -0.623257], [0.626532, 0.028295, -0.778882], [-0.041951, -0.996668, -0.069952]] and translation vector: [4.354075, 2.27787, 1.510689], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.774603, 0.078895, -0.627508], [0.631084, 0.031306, -0.775082], [-0.041505, -0.996391, -0.074039]] and translation vector: [4.353431, 2.276987, 1.507071], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.765589, 0.09814, -0.635801], [0.642341, 0.061836, -0.76392], [-0.035656, -0.99325, -0.110381]] and translation vector: [4.348542, 2.268086, 1.503072]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_100_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_100_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_100_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_100_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_100_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_100_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_100_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_100_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.997112, 0.02462, 0.071841], [-0.04661, 0.548461, -0.834876], [-0.059957, -0.835814, -0.545729]] and translation vector: [4.834615, 3.436689, 1.398379], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.998397, 0.025746, 0.050402], [-0.028149, 0.546702, -0.836854], [-0.0491, -0.836932, -0.545101]] and translation vector: [4.839047, 3.434593, 1.400064], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.999077, -0.037699, 0.020609], [-0.036788, 0.502836, -0.863599], [0.022194, -0.863559, -0.503759]] and translation vector: [4.856574, 3.440762, 1.395837]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_101_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_101_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_101_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_101_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_101_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_101_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_101_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_101_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.924593, 0.219455, -0.311397], [0.371095, 0.334047, -0.86643], [-0.086121, -0.916653, -0.390296]] and translation vector: [7.650298, 2.745242, 1.444521], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.925403, 0.221817, -0.30729], [0.368562, 0.337876, -0.866026], [-0.088274, -0.914679, -0.394425]] and translation vector: [7.650829, 2.747432, 1.442508], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.931334, 0.218695, -0.291187], [0.355288, 0.37018, -0.858334], [-0.079922, -0.902851, -0.422461]] and translation vector: [7.652313, 2.75096, 1.431448]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_102_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_102_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_102_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_102_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_102_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_102_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_102_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_102_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.927869, -0.125596, 0.351119], [-0.372891, -0.32108, 0.870551], [0.003399, -0.938687, -0.344754]] and translation vector: [5.442723, 4.031985, 1.348893], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.928984, -0.124208, 0.348657], [-0.370086, -0.32475, 0.870387], [0.005117, -0.937609, -0.347654]] and translation vector: [5.438782, 4.038163, 1.363364], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.930142, -0.10574, 0.351647], [-0.366759, -0.314483, 0.87555], [0.018006, -0.943355, -0.331295]] and translation vector: [5.443505, 4.02862, 1.369591]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_103_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_103_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_103_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_103_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_103_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_103_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_103_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_103_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.32152, -0.4706, 0.821681], [-0.946681, 0.178549, -0.268172], [-0.020508, -0.864092, -0.502915]] and translation vector: [2.120097, 2.367636, 1.494245], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.324752, -0.471365, 0.819971], [-0.945715, 0.173395, -0.274877], [-0.012612, -0.864725, -0.502087]] and translation vector: [2.101204, 2.346659, 1.492081], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.35351, -0.420371, 0.835655], [-0.935423, 0.155099, -0.317693], [0.00394, -0.893998, -0.448054]] and translation vector: [2.068189, 2.338444, 1.524964]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_104_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_104_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_104_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_104_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_104_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_104_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_104_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_104_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.504428, 0.479717, -0.717931], [0.860003, -0.204862, 0.467362], [0.077124, -0.853173, -0.515896]] and translation vector: [4.973708, 0.412451, 1.573636], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.50991, 0.478461, -0.714889], [0.856537, -0.205494, 0.47341], [0.079603, -0.853725, -0.514603]] and translation vector: [4.974949, 0.42052, 1.588198], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.529349, 0.450337, -0.719018], [0.846093, -0.217693, 0.486556], [0.062589, -0.865914, -0.496262]] and translation vector: [4.987175, 0.423323, 1.59454]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_105_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_105_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_105_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_105_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_105_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_105_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_105_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_105_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.070416, -0.411804, 0.908548], [-0.99671, 0.065705, -0.047468], [-0.040148, -0.908901, -0.415075]] and translation vector: [2.214543, 1.806687, 1.391502], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.072195, -0.409813, 0.909308], [-0.996578, 0.066438, -0.049181], [-0.040258, -0.909747, -0.413207]] and translation vector: [2.216063, 1.808517, 1.395188], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.080916, -0.398975, 0.913384], [-0.996223, 0.061337, -0.061462], [-0.031503, -0.914908, -0.402432]] and translation vector: [2.214478, 1.812354, 1.396036]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_106_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_106_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_106_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_106_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_106_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_106_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_106_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_106_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.349467, 0.022881, -0.936669], [0.936944, -0.011774, 0.349282], [-0.003037, -0.999669, -0.025553]] and translation vector: [3.08553, 2.787215, 1.609269], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.348555, 0.021762, -0.937036], [0.937279, -0.012701, 0.34835], [-0.00432, -0.999682, -0.024824]] and translation vector: [3.086167, 2.787834, 1.610474], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.369988, 0.031522, -0.928502], [0.929035, -0.010749, 0.369835], [0.001677, -0.999445, -0.033262]] and translation vector: [3.084904, 2.78765, 1.611416]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_107_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_107_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_107_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_107_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_107_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_107_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_107_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_107_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.986418, -0.051155, 0.156087], [-0.152905, 0.633099, -0.758819], [-0.060001, -0.772379, -0.632322]] and translation vector: [2.055195, 1.600374, 1.268236], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.986809, -0.050817, 0.15371], [-0.151071, 0.630346, -0.761474], [-0.058194, -0.77465, -0.629707]] and translation vector: [2.054364, 1.600927, 1.26836], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.986971, -0.056701, 0.150577], [-0.152339, 0.630474, -0.761115], [-0.051779, -0.774137, -0.630897]] and translation vector: [2.055561, 1.60142, 1.26922]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_108_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_108_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_108_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_108_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_108_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_108_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_108_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_108_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.987126, 0.106622, -0.119219], [0.159938, -0.652529, 0.740693], [0.00118, -0.750225, -0.661181]] and translation vector: [4.64166, 4.052867, 1.404314], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.987387, 0.107853, -0.115912], [0.158278, -0.654013, 0.73974], [0.003975, -0.748756, -0.662834]] and translation vector: [4.649776, 4.051806, 1.400746], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.98973, 0.078153, -0.119695], [0.141622, -0.649931, 0.746681], [-0.019438, -0.755964, -0.654324]] and translation vector: [4.654046, 4.058671, 1.412681]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_109_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_109_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_109_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_109_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_109_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_109_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_109_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_109_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.994446, -0.078697, 0.06988], [-0.104992, -0.787844, 0.606859], [0.007297, -0.610826, -0.791731]] and translation vector: [1.305105, 0.510448, 1.183315], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.994112, -0.083607, 0.068931], [-0.10831, -0.785774, 0.608956], [0.003251, -0.612836, -0.790203]] and translation vector: [1.308194, 0.508844, 1.184721], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.994174, -0.088174, 0.061991], [-0.107635, -0.781912, 0.614026], [-0.00567, -0.617121, -0.786848]] and translation vector: [1.316761, 0.496028, 1.1951]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_110_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_110_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_110_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_110_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_110_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_110_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_110_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_110_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.481759, -0.460793, 0.745371], [-0.875469, 0.290199, -0.386444], [-0.038235, -0.838722, -0.543216]] and translation vector: [3.08436, 2.075189, 1.468295], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.482142, -0.463533, 0.743422], [-0.87538, 0.289132, -0.387445], [-0.035354, -0.83758, -0.54517]] and translation vector: [3.085865, 2.079347, 1.468915], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.466183, -0.466331, 0.751804], [-0.884097, 0.276631, -0.376626], [-0.03234, -0.840244, -0.541243]] and translation vector: [3.069418, 2.081707, 1.467716]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_111_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_111_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_111_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_111_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_111_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_111_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_111_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_111_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.975982, 0.033782, -0.215214], [0.215389, -0.297687, 0.930048], [-0.032648, -0.954066, -0.297814]] and translation vector: [2.838751, 1.414222, 1.664536], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.976127, 0.034525, -0.21444], [0.21483, -0.298963, 0.929769], [-0.03201, -0.95364, -0.299243]] and translation vector: [2.83798, 1.414721, 1.663024], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.977071, 0.035817, -0.209879], [0.210869, -0.299025, 0.930655], [-0.029426, -0.953573, -0.299721]] and translation vector: [2.830656, 1.415531, 1.663803]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_112_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_112_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_112_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_112_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_112_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_112_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_112_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_112_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.054781, -0.427281, 0.902458], [-0.998013, -0.051617, 0.036143], [0.031139, -0.902644, -0.429259]] and translation vector: [1.328526, 0.849821, 1.501181], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.086578, -0.407933, 0.908898], [-0.995883, -0.060028, 0.067922], [0.026852, -0.911036, -0.41145]] and translation vector: [1.314662, 0.836147, 1.492068], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.123316, -0.40327, 0.906734], [-0.991749, -0.082348, 0.098253], [0.035045, -0.911368, -0.410097]] and translation vector: [1.307532, 0.816785, 1.49678]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_113_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_113_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_113_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_113_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_113_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_113_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_113_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_113_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.140295, 0.625342, -0.767636], [0.990108, -0.090149, 0.107516], [-0.001967, -0.775126, -0.631804]] and translation vector: [3.410891, 3.073526, 1.198756], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.148525, 0.612201, -0.776627], [0.988818, -0.102561, 0.108258], [-0.013376, -0.784022, -0.620589]] and translation vector: [3.421496, 3.097678, 1.206193], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.180299, 0.582031, -0.792926], [0.982291, -0.148308, 0.114495], [-0.050958, -0.799528, -0.598463]] and translation vector: [3.423417, 3.182928, 1.218892]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_114_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_114_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_114_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_114_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_114_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_114_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_114_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_114_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.408988, -0.323891, 0.853126], [-0.912443, -0.158736, 0.37716], [0.013263, -0.932683, -0.360453]] and translation vector: [3.672612, 2.990265, 1.494339], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.403714, -0.307769, 0.861564], [-0.914697, -0.154884, 0.373283], [0.018558, -0.93877, -0.344045]] and translation vector: [3.67724, 2.998002, 1.501107], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.418114, -0.223767, 0.880403], [-0.907864, -0.136047, 0.396578], [0.031035, -0.965101, -0.260033]] and translation vector: [3.686426, 2.992862, 1.516855]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_115_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_115_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_115_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_115_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_115_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_115_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_115_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_115_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.804414, -0.195207, 0.561082], [-0.593456, -0.306943, 0.74404], [0.026978, -0.931494, -0.362756]] and translation vector: [4.397897, 1.805397, 1.263968], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.81043, -0.19082, 0.553888], [-0.585149, -0.309439, 0.749566], [0.028363, -0.931577, -0.362436]] and translation vector: [4.406421, 1.797547, 1.276681], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.835561, -0.15907, 0.525866], [-0.54802, -0.309079, 0.777267], [0.038894, -0.937639, -0.345428]] and translation vector: [4.454782, 1.746297, 1.281162]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_116_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_116_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_116_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_116_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_116_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_116_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_116_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_116_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.454685, 0.144673, -0.878824], [0.890085, 0.109034, -0.442562], [0.031795, -0.983454, -0.178347]] and translation vector: [3.311996, 2.119304, 1.59409], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.453171, 0.138778, -0.880555], [0.890847, 0.10604, -0.441756], [0.032068, -0.98463, -0.171684]] and translation vector: [3.314367, 2.120091, 1.591769], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.43605, 0.134523, -0.889811], [0.898328, 0.123911, -0.42149], [0.053558, -0.983133, -0.174877]] and translation vector: [3.332471, 2.052713, 1.580764]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_117_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_117_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_117_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_117_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_117_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_117_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_117_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_117_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.51864, -0.44867, 0.727811], [-0.853934, -0.229463, 0.467059], [-0.04255, -0.863738, -0.502143]] and translation vector: [1.002297, 1.98866, 1.344191], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.519607, -0.444592, 0.729621], [-0.853432, -0.229314, 0.468049], [-0.040778, -0.865883, -0.498582]] and translation vector: [1.000441, 1.985865, 1.344846], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.525099, -0.430062, 0.734383], [-0.8496, -0.214703, 0.48175], [-0.049508, -0.876898, -0.478121]] and translation vector: [0.994465, 1.977308, 1.35476]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_118_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_118_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_118_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_118_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_118_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_118_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_118_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_118_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.68967, 0.288211, -0.664297], [0.724122, -0.27239, 0.633602], [0.001663, -0.918008, -0.396559]] and translation vector: [2.530043, 2.005069, 1.437417], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.68921, 0.288518, -0.66464], [0.724561, -0.273014, 0.632831], [0.001127, -0.917726, -0.397212]] and translation vector: [2.5334, 2.008455, 1.44069], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.695343, 0.287777, -0.658546], [0.718659, -0.271639, 0.640111], [0.005323, -0.918366, -0.395696]] and translation vector: [2.535345, 2.010031, 1.440264]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_119_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_119_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_119_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_119_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_119_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_119_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_119_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_119_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.24604, -0.551346, 0.797171], [-0.968826, -0.115295, 0.219278], [-0.028988, -0.826271, -0.562526]] and translation vector: [1.704247, 2.057158, 1.361636], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.236706, -0.55071, 0.800431], [-0.971342, -0.115817, 0.207564], [-0.021604, -0.826623, -0.562342]] and translation vector: [1.70792, 2.062619, 1.364929], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.170375, -0.545117, 0.820866], [-0.98536, -0.099505, 0.138438], [0.006215, -0.832434, -0.554089]] and translation vector: [1.68849, 2.12587, 1.375528]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_120_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_120_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_120_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_120_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_120_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_120_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_120_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_120_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.711391, -0.463973, 0.527875], [-0.700286, 0.531398, -0.476672], [-0.059349, -0.708763, -0.702945]] and translation vector: [2.53321, 4.394931, 1.530427], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.710702, -0.465347, 0.527594], [-0.701175, 0.5294, -0.477586], [-0.057065, -0.709357, -0.702536]] and translation vector: [2.526067, 4.393322, 1.526345], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.710832, -0.469663, 0.523579], [-0.701381, 0.52914, -0.477573], [-0.052748, -0.706702, -0.705542]] and translation vector: [2.532494, 4.391185, 1.524071]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_121_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_121_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_121_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_121_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_121_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_121_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_121_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_121_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.506976, -0.449046, 0.735753], [-0.861802, 0.247713, -0.442646], [0.016513, -0.858485, -0.512574]] and translation vector: [1.568574, 4.423309, 1.333385], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.503836, -0.444181, 0.740846], [-0.863753, 0.25025, -0.437385], [0.008882, -0.860278, -0.509748]] and translation vector: [1.576928, 4.418399, 1.331934], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.476896, -0.475938, 0.738954], [-0.878865, 0.245876, -0.408828], [0.012886, -0.84441, -0.535543]] and translation vector: [1.618973, 4.377153, 1.328238]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_122_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_122_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_122_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_122_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_122_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_122_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_122_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_122_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.857694, 0.203115, -0.472341], [0.513544, 0.293426, -0.806333], [-0.025181, -0.934155, -0.355978]] and translation vector: [3.161674, 3.662206, 1.335287], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.856666, 0.203827, -0.473897], [0.515344, 0.296604, -0.804019], [-0.023321, -0.932995, -0.359132]] and translation vector: [3.164327, 3.659025, 1.330704], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.851543, 0.201203, -0.48414], [0.523447, 0.274112, -0.806762], [-0.029614, -0.940415, -0.338738]] and translation vector: [3.169208, 3.645592, 1.345035]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_123_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_123_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_123_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_123_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_123_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_123_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_123_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_123_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.861262, 0.35211, -0.366398], [0.508128, 0.60504, -0.61297], [0.005853, -0.714105, -0.700014]] and translation vector: [3.145762, 3.637784, 1.437024], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.859655, 0.347273, -0.374693], [0.510745, 0.600786, -0.614977], [0.011546, -0.720041, -0.693836]] and translation vector: [3.145171, 3.63531, 1.440385], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.904923, 0.242096, -0.350005], [0.423906, 0.585528, -0.690985], [0.037653, -0.773658, -0.632485]] and translation vector: [3.179198, 3.619442, 1.477378]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_124_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_124_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_124_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_124_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_124_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_124_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_124_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_124_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.624751, -0.31057, 0.716403], [-0.780527, -0.273701, 0.562018], [0.021534, -0.910293, -0.413403]] and translation vector: [-0.212106, 0.775797, 1.619325], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.624146, -0.312612, 0.716042], [-0.781019, -0.274551, 0.56092], [0.02124, -0.909338, -0.415515]] and translation vector: [-0.212874, 0.777223, 1.616059], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.642142, -0.354499, 0.679694], [-0.766394, -0.316707, 0.558871], [0.017145, -0.879788, -0.475057]] and translation vector: [-0.180935, 0.825968, 1.590205]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_125_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_125_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_125_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_125_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_125_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_125_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_125_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_125_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.984594, -0.069457, 0.160469], [-0.174127, -0.305795, 0.936039], [-0.015944, -0.949561, -0.313178]] and translation vector: [3.941113, 2.817773, 1.559826], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.984592, -0.069572, 0.160429], [-0.174152, -0.307406, 0.935507], [-0.015768, -0.949032, -0.314785]] and translation vector: [3.94407, 2.817183, 1.553188], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.986412, -0.069361, 0.14893], [-0.163547, -0.328462, 0.93025], [-0.015605, -0.941967, -0.335343]] and translation vector: [3.970874, 2.81883, 1.551708]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_126_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_126_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_126_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_126_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_126_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_126_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_126_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_126_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.565317, -0.50256, 0.654103], [-0.824719, 0.328974, -0.460017], [0.016003, -0.799506, -0.600445]] and translation vector: [4.07549, 5.065369, 1.281872], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.538132, -0.502349, 0.676801], [-0.842747, 0.30749, -0.441846], [0.013851, -0.808143, -0.588824]] and translation vector: [4.054681, 5.042427, 1.283033], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.45677, -0.532015, 0.712967], [-0.889546, 0.265624, -0.371689], [0.008363, -0.803993, -0.594581]] and translation vector: [3.985017, 4.950093, 1.286783]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_127_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_127_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_127_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_127_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_127_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_127_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_127_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_127_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.971613, -0.06682, 0.226943], [-0.235147, 0.378036, -0.89543], [-0.02596, -0.923376, -0.383017]] and translation vector: [2.775299, 4.618156, 1.427592], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.969099, -0.066923, 0.237421], [-0.244849, 0.377786, -0.892932], [-0.029937, -0.923471, -0.382498]] and translation vector: [2.770648, 4.620754, 1.418404], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.959375, -0.08118, 0.270203], [-0.280099, 0.388898, -0.877669], [-0.033832, -0.917697, -0.395838]] and translation vector: [2.756619, 4.594989, 1.414391]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_128_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_128_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_128_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_128_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_128_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_128_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_128_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_128_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.218501, -0.721835, 0.656667], [-0.97193, -0.10083, 0.212566], [-0.087226, -0.684681, -0.723605]] and translation vector: [2.10902, 2.428258, 1.386435], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.218569, -0.722397, 0.656026], [-0.971546, -0.098231, 0.215522], [-0.091251, -0.684466, -0.723312]] and translation vector: [2.107975, 2.430531, 1.385643], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.234983, -0.674252, 0.70012], [-0.966581, -0.086145, 0.241454], [-0.102489, -0.73346, -0.671961]] and translation vector: [2.089091, 2.418566, 1.400829]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_129_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_129_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_129_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_129_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_129_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_129_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_129_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_129_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.863619, -0.252896, 0.436126], [-0.502889, 0.371124, -0.780621], [0.03556, -0.893482, -0.447688]] and translation vector: [2.007098, 3.82416, 1.536992], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.862677, -0.255046, 0.436739], [-0.504412, 0.370978, -0.779707], [0.036841, -0.892932, -0.448682]] and translation vector: [2.007321, 3.81907, 1.542811], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.863059, -0.255804, 0.435538], [-0.503401, 0.36489, -0.783226], [0.041429, -0.89522, -0.443694]] and translation vector: [2.011345, 3.815826, 1.540639]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_130_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_130_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_130_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_130_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_130_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_130_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_130_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_130_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.311411, -0.45253, 0.835607], [-0.948656, 0.199362, -0.245576], [-0.055457, -0.869179, -0.491379]] and translation vector: [2.299133, 2.388773, 1.459468], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.314195, -0.454542, 0.833471], [-0.947818, 0.20019, -0.248124], [-0.05407, -0.867937, -0.493722]] and translation vector: [2.299448, 2.389842, 1.45904], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.319309, -0.479365, 0.817466], [-0.946515, 0.203543, -0.250358], [-0.046377, -0.853686, -0.518719]] and translation vector: [2.297309, 2.382683, 1.450072]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_131_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_131_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_131_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_131_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_131_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_131_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_131_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_131_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.922168, 0.178823, -0.342969], [0.38661, 0.453076, -0.803278], [0.011746, -0.873352, -0.486947]] and translation vector: [3.207336, 1.959871, 1.267555], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.914921, 0.180426, -0.361063], [0.403188, 0.450583, -0.796502], [0.018979, -0.874312, -0.484993]] and translation vector: [3.204391, 1.957541, 1.273759], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.899907, 0.183343, -0.395667], [0.435126, 0.437531, -0.786913], [0.028842, -0.880314, -0.473515]] and translation vector: [3.195998, 1.957617, 1.285169]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_132_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_132_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_132_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_132_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_132_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_132_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_132_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_132_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.037281, 0.595041, -0.80283], [0.998378, -0.012419, -0.055566], [-0.043034, -0.803599, -0.593613]] and translation vector: [3.95675, 2.244474, 1.442954], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.038109, 0.594465, -0.803218], [0.998341, -0.012073, -0.056302], [-0.043167, -0.80403, -0.593019]] and translation vector: [3.957906, 2.244142, 1.441716], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.035792, 0.584102, -0.810891], [0.99863, -0.010099, -0.051354], [-0.038185, -0.811617, -0.58294]] and translation vector: [3.956708, 2.24149, 1.443636]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_133_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_133_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_133_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_133_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_133_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_133_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_133_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_133_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.941243, -0.209403, 0.264975], [-0.336113, 0.504116, -0.795548], [0.033012, -0.837865, -0.544878]] and translation vector: [4.828751, 9.008894, 1.463441], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.939528, -0.206646, 0.273103], [-0.341818, 0.516505, -0.785101], [0.021179, -0.830976, -0.555906]] and translation vector: [4.819307, 9.009376, 1.463735], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.929333, -0.218512, 0.297646], [-0.368979, 0.519063, -0.770992], [0.013974, -0.826333, -0.563008]] and translation vector: [4.802584, 9.04943, 1.458571]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_134_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_134_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_134_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_134_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_134_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_134_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_134_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_134_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.341382, 0.594812, -0.727775], [0.932196, 0.11517, -0.343142], [-0.120287, -0.795572, -0.593798]] and translation vector: [7.151203, 3.587152, 1.581923], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.344041, 0.585523, -0.734029], [0.930897, 0.110501, -0.348168], [-0.122749, -0.803089, -0.583079]] and translation vector: [7.150104, 3.60012, 1.584136], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.381268, 0.567894, -0.729473], [0.913798, 0.111991, -0.390424], [-0.140025, -0.815448, -0.561639]] and translation vector: [7.153435, 3.678253, 1.582921]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_135_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_135_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_135_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_135_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_135_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_135_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_135_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_135_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.631332, 0.312126, -0.709927], [0.775472, -0.26347, 0.573784], [-0.007951, -0.912776, -0.408382]] and translation vector: [1.600176, 0.624978, 1.327739], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.627277, 0.311053, -0.713982], [0.778666, -0.267257, 0.567673], [-0.014241, -0.912041, -0.409851]] and translation vector: [1.601099, 0.627571, 1.328079], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.610657, 0.317655, -0.725393], [0.791862, -0.253314, 0.555685], [-0.007236, -0.913744, -0.406226]] and translation vector: [1.603666, 0.628049, 1.323957]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_136_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_136_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_136_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_136_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_136_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_136_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_136_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_136_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.283698, -0.38675, 0.877463], [-0.95878, 0.129662, -0.252839], [-0.015988, -0.913024, -0.407593]] and translation vector: [3.69525, 3.551647, 1.352095], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.292652, -0.378333, 0.878191], [-0.956147, 0.127043, -0.2639], [-0.011726, -0.91691, -0.398922]] and translation vector: [3.694781, 3.553972, 1.346799], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.31632, -0.391232, 0.864222], [-0.948647, 0.127329, -0.28958], [0.003253, -0.911441, -0.411418]] and translation vector: [3.701458, 3.559184, 1.352364]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_137_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_137_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_137_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_137_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_137_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_137_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_137_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_137_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.831143, 0.312948, -0.459636], [0.555586, 0.43327, -0.709649], [-0.022937, -0.845187, -0.533978]] and translation vector: [2.360292, 3.05803, 1.315354], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.8108, 0.328121, -0.484706], [0.584922, 0.423558, -0.691711], [-0.021664, -0.844355, -0.535346]] and translation vector: [2.374215, 3.08026, 1.318953], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.76064, 0.373644, -0.530865], [0.648502, 0.400127, -0.647568], [-0.029546, -0.836832, -0.546661]] and translation vector: [2.421989, 3.144455, 1.295588]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_138_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_138_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_138_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_138_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_138_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_138_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_138_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_138_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.963317, 0.154363, -0.219528], [0.260086, 0.335369, -0.905474], [-0.066149, -0.929355, -0.363214]] and translation vector: [5.972451, 2.818726, 1.468896], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.963149, 0.154275, -0.220326], [0.260736, 0.334417, -0.905639], [-0.066037, -0.929712, -0.362318]] and translation vector: [5.973901, 2.819783, 1.467855], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.966667, 0.155296, -0.203565], [0.245918, 0.341836, -0.907013], [-0.07127, -0.926839, -0.368632]] and translation vector: [5.982299, 2.822232, 1.456096]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_139_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_139_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_139_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_139_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_139_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_139_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_139_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_139_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.48142, 0.335029, -0.809933], [0.872625, 0.096524, -0.478757], [-0.08222, -0.937251, -0.338823]] and translation vector: [4.429162, 2.287411, 1.464776], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.484328, 0.331289, -0.809737], [0.871134, 0.09698, -0.481374], [-0.080946, -0.938532, -0.335568]] and translation vector: [4.432656, 2.285767, 1.465956], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.510728, 0.315618, -0.799714], [0.857732, 0.123483, -0.499047], [-0.058757, -0.940817, -0.333782]] and translation vector: [4.456876, 2.264055, 1.467574]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_140_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_140_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_140_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_140_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_140_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_140_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_140_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_140_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.233902, -0.58763, 0.774584], [-0.967246, -0.059828, 0.246692], [-0.098622, -0.806915, -0.582377]] and translation vector: [0.860343, 3.117731, 1.418568], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.233684, -0.587102, 0.775051], [-0.967496, -0.061159, 0.24538], [-0.096661, -0.8072, -0.58231]] and translation vector: [0.859973, 3.119137, 1.418853], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.249158, -0.592393, 0.766154], [-0.964448, -0.07981, 0.251935], [-0.088098, -0.801687, -0.591217]] and translation vector: [0.847042, 3.133789, 1.403155]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_141_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_141_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_141_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_141_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_141_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_141_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_141_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_141_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.645842, -0.099101, 0.757012], [-0.761541, -0.013148, 0.647984], [-0.054263, -0.994991, -0.083961]] and translation vector: [3.729951, 1.432448, 1.733539], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.649827, -0.099601, 0.753528], [-0.757797, -0.00807, 0.652441], [-0.058903, -0.994995, -0.080722]] and translation vector: [3.727943, 1.43259, 1.731865], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.662065, -0.092976, 0.743657], [-0.747389, -0.008433, 0.664333], [-0.055496, -0.995633, -0.075073]] and translation vector: [3.728372, 1.436196, 1.743771]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_142_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_142_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_142_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_142_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_142_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_142_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_142_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_142_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.924746, 0.145405, -0.351715], [0.379908, 0.407811, -0.830277], [0.022707, -0.901414, -0.432362]] and translation vector: [3.891577, 4.106122, 1.335216], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.925289, 0.144931, -0.350479], [0.378485, 0.412032, -0.828842], [0.024284, -0.899569, -0.436102]] and translation vector: [3.892777, 4.104329, 1.336806], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.936719, 0.138164, -0.321666], [0.349495, 0.42231, -0.836366], [0.020288, -0.89586, -0.443873]] and translation vector: [3.898582, 4.105442, 1.335634]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_143_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_143_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_143_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_143_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_143_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_143_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_143_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_143_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.896132, -0.052356, 0.440688], [-0.436974, -0.277444, 0.855616], [0.07747, -0.959314, -0.271505]] and translation vector: [3.211431, 3.110947, 1.584554], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.889709, -0.065096, 0.451863], [-0.451099, -0.277541, 0.848222], [0.070195, -0.958506, -0.276295]] and translation vector: [3.215954, 3.116336, 1.570817], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.866761, -0.113538, 0.485628], [-0.495946, -0.298858, 0.815305], [0.052566, -0.94752, -0.315347]] and translation vector: [3.24594, 3.15503, 1.569742]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_144_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_144_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_144_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_144_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_144_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_144_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_144_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_144_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.052123, 0.492225, -0.868906], [0.996177, 0.08671, -0.010637], [0.070107, -0.866138, -0.494863]] and translation vector: [3.27549, 2.071379, 1.287401], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.035278, 0.492309, -0.869705], [0.997133, 0.075637, 0.002369], [0.066948, -0.867128, -0.493566]] and translation vector: [3.286684, 2.076202, 1.285681], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.002481, 0.481037, -0.876697], [0.99848, 0.047075, 0.028655], [0.055055, -0.875436, -0.480189]] and translation vector: [3.329912, 2.119781, 1.289403]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_145_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_145_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_145_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_145_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_145_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_145_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_145_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_145_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.935878, -0.161972, 0.312885], [-0.352322, 0.433116, -0.829627], [-0.001139, -0.886666, -0.46241]] and translation vector: [1.123681, 2.231354, 1.408983], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.935522, -0.159, 0.315466], [-0.353249, 0.430874, -0.830399], [-0.003893, -0.888294, -0.459258]] and translation vector: [1.123559, 2.231523, 1.408322], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.93225, -0.177625, 0.315214], [-0.361774, 0.444334, -0.819565], [0.005515, -0.878076, -0.47849]] and translation vector: [1.117516, 2.230649, 1.39948]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_146_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_146_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_146_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_146_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_146_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_146_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_146_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_146_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.305635, -0.390507, 0.868385], [-0.952144, 0.122302, -0.280116], [0.003183, -0.91244, -0.409198]] and translation vector: [4.266061, 1.773856, 1.285079], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.300987, -0.399102, 0.866097], [-0.953628, 0.125052, -0.273781], [0.00096, -0.908339, -0.418234]] and translation vector: [4.263163, 1.772832, 1.291083], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.290604, -0.37367, 0.880863], [-0.956686, 0.130175, -0.260397], [-0.017364, -0.918382, -0.395314]] and translation vector: [4.197608, 1.767915, 1.309526]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_147_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_147_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_147_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_147_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_147_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_147_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_147_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_147_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.485844, -0.617081, 0.619005], [-0.873216, -0.311825, 0.374512], [-0.038083, -0.722479, -0.690343]] and translation vector: [-0.164865, 3.073333, 1.323993], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.482952, -0.621872, 0.616468], [-0.874972, -0.315096, 0.367612], [-0.034361, -0.716931, -0.696297]] and translation vector: [-0.16601, 3.069565, 1.320265], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.481893, -0.627462, 0.611613], [-0.875383, -0.314055, 0.367526], [-0.038529, -0.712503, -0.70061]] and translation vector: [-0.162661, 3.069695, 1.32373]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_148_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_148_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_148_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_148_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_148_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_148_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_148_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_148_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.82141, -0.124481, 0.556588], [-0.562763, -0.33543, 0.755503], [0.092651, -0.933805, -0.345579]] and translation vector: [1.795382, 2.457259, 1.379582], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.820332, -0.124179, 0.558243], [-0.564621, -0.330977, 0.75608], [0.090876, -0.935432, -0.341626]] and translation vector: [1.795684, 2.460531, 1.380001], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.815123, -0.112718, 0.568216], [-0.568956, -0.340207, 0.748698], [0.108919, -0.933571, -0.341442]] and translation vector: [1.795413, 2.484714, 1.377791]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_149_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_149_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_149_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_149_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_149_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_149_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_149_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_149_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.464707, 0.496079, -0.733453], [0.882598, 0.326106, -0.338639], [0.071191, -0.804711, -0.589382]] and translation vector: [2.864701, 0.868861, 1.204561], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.473617, 0.501904, -0.723726], [0.878064, 0.332992, -0.343688], [0.068496, -0.798254, -0.598414]] and translation vector: [2.869803, 0.866998, 1.20304], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.486908, 0.474562, -0.733288], [0.872245, 0.308313, -0.379646], [0.045917, -0.82446, -0.564055]] and translation vector: [2.890215, 0.843054, 1.203118]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_150_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_150_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_150_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_150_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_150_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_150_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_150_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_150_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.199941, 0.263531, -0.943703], [0.979453, -0.027844, 0.19974], [0.026362, -0.964249, -0.263683]] and translation vector: [3.611549, 3.757055, 1.562045], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.20075, 0.267793, -0.94233], [0.97934, -0.030969, 0.199834], [0.024331, -0.962979, -0.268477]] and translation vector: [3.608934, 3.756757, 1.557843], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.195501, 0.302185, -0.932986], [0.980511, -0.041383, 0.192056], [0.019427, -0.95235, -0.304386]] and translation vector: [3.586484, 3.775929, 1.547968]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_151_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_151_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_151_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_151_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_151_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_151_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_151_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_151_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.869565, 0.231948, -0.435955], [0.492522, 0.471291, -0.731647], [0.035758, -0.850932, -0.524058]] and translation vector: [2.750575, 3.154689, 1.290553], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.871211, 0.246607, -0.424472], [0.49036, 0.478017, -0.72873], [0.023195, -0.843022, -0.53738]] and translation vector: [2.712538, 3.137298, 1.287246], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.868111, 0.301221, -0.394523], [0.496051, 0.497976, -0.711305], [-0.017797, -0.813195, -0.581719]] and translation vector: [2.638672, 3.09301, 1.251808]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_152_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_152_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_152_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_152_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_152_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_152_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_152_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_152_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.606468, -0.360414, 0.70873], [-0.789578, -0.16805, 0.590192], [-0.093612, -0.91753, -0.386492]] and translation vector: [2.373669, 6.226582, 1.48631], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.603564, -0.356146, 0.713352], [-0.791899, -0.163667, 0.588311], [-0.092772, -0.919986, -0.380815]] and translation vector: [2.370215, 6.229294, 1.484576], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.585698, -0.348105, 0.731971], [-0.805739, -0.152014, 0.572431], [-0.087997, -0.925048, -0.369516]] and translation vector: [2.368074, 6.23172, 1.479712]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_153_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_153_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_153_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_153_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_153_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_153_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_153_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_153_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.414473, -0.491559, 0.765887], [-0.909569, 0.196057, -0.366396], [0.029948, -0.848488, -0.528367]] and translation vector: [0.955419, 3.497842, 1.497559], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.410009, -0.490704, 0.768832], [-0.911757, 0.198024, -0.359841], [0.024328, -0.848526, -0.528594]] and translation vector: [0.937857, 3.503192, 1.495427], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.398859, -0.490133, 0.775036], [-0.916862, 0.197836, -0.346736], [0.016617, -0.848899, -0.528293]] and translation vector: [0.908797, 3.515594, 1.497193]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_154_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_154_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_154_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_154_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_154_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_154_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_154_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_154_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.935902, 0.160482, -0.313582], [0.351212, -0.493772, 0.795512], [-0.027173, -0.854655, -0.518485]] and translation vector: [4.465, -0.226232, 1.550028], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.933656, 0.161027, -0.319933], [0.356818, -0.495752, 0.791777], [-0.03111, -0.853405, -0.520319]] and translation vector: [4.478531, -0.229773, 1.540292], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.918867, 0.198209, -0.341168], [0.393883, -0.511652, 0.763589], [-0.023209, -0.836017, -0.548212]] and translation vector: [4.561479, -0.239772, 1.527731]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_155_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_155_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_155_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_155_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_155_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_155_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_155_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_155_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.079918, -0.690871, 0.718547], [-0.996802, 0.055321, -0.057677], [9.6e-05, -0.720858, -0.693082]] and translation vector: [1.142658, 0.968078, 1.385987], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.080635, -0.691404, 0.717954], [-0.996742, 0.054488, -0.059473], [0.002, -0.72041, -0.693545]] and translation vector: [1.144302, 0.967344, 1.387927], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.084359, -0.697761, 0.711347], [-0.996391, 0.05228, -0.066881], [0.009477, -0.714421, -0.699652]] and translation vector: [1.144001, 0.956717, 1.378471]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_156_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_156_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_156_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_156_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_156_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_156_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_156_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_156_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.799511, 0.533863, -0.275266], [0.600541, 0.71925, -0.349328], [0.011492, -0.4446, -0.895656]] and translation vector: [2.031323, 2.312379, 1.200993], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.794986, 0.540559, -0.275306], [0.606553, 0.715482, -0.346669], [0.009582, -0.442584, -0.896676]] and translation vector: [2.031011, 2.313572, 1.199732], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.773021, 0.563749, -0.290906], [0.633995, 0.702534, -0.323259], [0.022134, -0.434318, -0.900488]] and translation vector: [2.034953, 2.302037, 1.199248]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_157_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_157_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_157_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_157_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_157_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_157_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_157_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_157_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.573389, -0.355745, 0.738018], [-0.818965, 0.223754, -0.528424], [0.02285, -0.907403, -0.419641]] and translation vector: [2.061407, 3.857203, 1.382209], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.569689, -0.351701, 0.742806], [-0.821614, 0.221591, -0.525212], [0.020118, -0.909508, -0.4152]] and translation vector: [2.058259, 3.848013, 1.384733], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.577204, -0.345215, 0.740042], [-0.816391, 0.223437, -0.532524], [0.018482, -0.911539, -0.410799]] and translation vector: [2.052109, 3.841456, 1.390313]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_158_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_158_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_158_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_158_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_158_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_158_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_158_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_158_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.998162, -0.007354, -0.06016], [0.055338, 0.294228, -0.954132], [0.024717, -0.955707, -0.293281]] and translation vector: [1.687981, 4.43329, 1.569003], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.998237, -0.004775, -0.059163], [0.055295, 0.287523, -0.956176], [0.021577, -0.957762, -0.286752]] and translation vector: [1.687716, 4.435163, 1.571974], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.998336, 0.001509, -0.057642], [0.055709, 0.283251, -0.957427], [0.014882, -0.959045, -0.282864]] and translation vector: [1.68694, 4.439428, 1.572118]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_159_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_159_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_159_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_159_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_159_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_159_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_159_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_159_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.633294, -0.360819, 0.684652], [-0.773758, -0.312806, 0.550863], [0.015401, -0.878613, -0.477285]] and translation vector: [3.241882, 3.386626, 1.367882], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.618852, -0.359339, 0.698497], [-0.785116, -0.311057, 0.535572], [0.02482, -0.87984, -0.47462]] and translation vector: [3.234923, 3.400149, 1.365622], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.596077, -0.384708, 0.704764], [-0.800029, -0.359087, 0.480636], [0.068167, -0.850327, -0.521821]] and translation vector: [3.228332, 3.407161, 1.324573]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_160_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_160_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_160_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_160_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_160_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_160_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_160_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_160_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.977514, -0.102294, 0.184398], [-0.210796, -0.497303, 0.841578], [0.005613, -0.861525, -0.507684]] and translation vector: [3.555602, 1.207732, 1.356493], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.976582, -0.105336, 0.187593], [-0.215087, -0.498001, 0.840079], [0.00493, -0.860755, -0.508995]] and translation vector: [3.555365, 1.207812, 1.356155], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.974531, -0.107289, 0.196922], [-0.224038, -0.504207, 0.834016], [0.009809, -0.856892, -0.515402]] and translation vector: [3.552069, 1.20032, 1.350158]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_161_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_161_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_161_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_161_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_161_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_161_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_161_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_161_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.934222, -0.219071, 0.281493], [-0.356558, -0.595286, 0.72007], [0.009823, -0.773073, -0.634241]] and translation vector: [0.331108, 1.989283, 1.551545], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.93341, -0.222981, 0.281114], [-0.358788, -0.589093, 0.724045], [0.004154, -0.776691, -0.629868]] and translation vector: [0.338532, 1.98258, 1.554168], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.924209, -0.231475, 0.303738], [-0.381819, -0.575084, 0.723528], [0.007196, -0.784664, -0.619879]] and translation vector: [0.352139, 1.976578, 1.57555]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_162_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_162_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_162_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_162_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_162_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_162_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_162_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_162_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.928375, -0.17783, 0.326339], [-0.371449, 0.415395, -0.830345], [0.012101, -0.892089, -0.451697]] and translation vector: [2.096006, 1.919092, 1.36174], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.929206, -0.177937, 0.323905], [-0.369314, 0.414969, -0.83151], [0.013546, -0.892266, -0.451307]] and translation vector: [2.095672, 1.922099, 1.363168], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.930649, -0.183615, 0.31651], [-0.365027, 0.405695, -0.837954], [0.025454, -0.895375, -0.444584]] and translation vector: [2.086709, 1.937528, 1.366332]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_163_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_163_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_163_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_163_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_163_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_163_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_163_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_163_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.699126, -0.324611, 0.637064], [-0.713802, 0.265353, -0.648131], [0.041344, -0.907863, -0.417224]] and translation vector: [0.050403, 3.78209, 1.506908], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.698648, -0.327666, 0.636024], [-0.713993, 0.262294, -0.649166], [0.045885, -0.907654, -0.417203]] and translation vector: [0.047406, 3.786517, 1.504266], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.671591, -0.353844, 0.650968], [-0.738623, 0.250587, -0.625813], [0.058316, -0.901111, -0.429649]] and translation vector: [0.057884, 3.801169, 1.498956]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_164_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_164_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_164_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_164_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_164_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_164_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_164_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_164_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.892065, -0.360019, 0.273141], [-0.443019, -0.577417, 0.685801], [-0.089185, -0.732786, -0.674589]] and translation vector: [2.898737, 2.45906, 1.649541], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.888376, -0.366176, 0.276954], [-0.450762, -0.581088, 0.677606], [-0.087189, -0.726809, -0.681283]] and translation vector: [2.873446, 2.440832, 1.651115], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.866588, -0.389647, 0.31177], [-0.495846, -0.601945, 0.625939], [-0.056227, -0.697021, -0.714843]] and translation vector: [2.802999, 2.373059, 1.651133]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_165_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_165_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_165_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_165_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_165_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_165_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_165_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_165_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.660671, 0.426343, -0.617856], [0.749322, -0.423957, 0.508701], [-0.045063, -0.799057, -0.599565]] and translation vector: [1.739014, 2.260029, 1.323145], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.661948, 0.412501, -0.625834], [0.748146, -0.41469, 0.517987], [-0.045857, -0.811095, -0.583114]] and translation vector: [1.741474, 2.257287, 1.327618], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.667808, 0.364392, -0.649039], [0.743671, -0.363436, 0.561132], [-0.031412, -0.857399, -0.513693]] and translation vector: [1.753926, 2.258369, 1.342793]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_166_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_166_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_166_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_166_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_166_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_166_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_166_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_166_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.997074, 0.061747, -0.045056], [0.074474, 0.651998, -0.754554], [-0.017215, -0.755702, -0.654689]] and translation vector: [1.815792, 5.369752, 1.288561], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.994543, 0.080066, -0.066881], [0.102674, 0.63762, -0.763478], [-0.018484, -0.766179, -0.642361]] and translation vector: [1.819087, 5.36055, 1.286161], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.977666, 0.151417, -0.145745], [0.209051, 0.629394, -0.748438], [-0.021596, -0.762191, -0.646992]] and translation vector: [1.833647, 5.312907, 1.282765]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_167_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_167_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_167_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_167_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_167_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_167_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_167_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_167_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.207785, -0.462455, 0.861952], [-0.977184, 0.13779, -0.161637], [-0.044019, -0.875871, -0.480534]] and translation vector: [2.720584, 1.654419, 1.522448], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.211008, -0.462778, 0.860995], [-0.976592, 0.137438, -0.165466], [-0.04176, -0.875755, -0.480946]] and translation vector: [2.717844, 1.649691, 1.521912], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.235215, -0.460817, 0.855758], [-0.971358, 0.142015, -0.190515], [-0.033738, -0.876059, -0.481022]] and translation vector: [2.714951, 1.646852, 1.521954]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_168_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_168_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_168_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_168_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_168_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_168_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_168_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_168_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.686341, -0.358824, 0.632599], [-0.727213, -0.35045, 0.590209], [0.009912, -0.865119, -0.50147]] and translation vector: [2.486494, 4.601647, 1.455454], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.681394, -0.352774, 0.64129], [-0.731846, -0.340576, 0.590263], [0.010179, -0.871527, -0.490243]] and translation vector: [2.480601, 4.595852, 1.449959], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.622935, -0.386366, 0.680202], [-0.78205, -0.328403, 0.52967], [0.018734, -0.861901, -0.50673]] and translation vector: [2.469727, 4.596006, 1.44499]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_169_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_169_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_169_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_169_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_169_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_169_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_169_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_169_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.482968, -0.397392, 0.78027], [-0.874514, 0.173759, -0.452807], [0.044362, -0.901048, -0.431445]] and translation vector: [8.974016, 2.795387, 1.945192], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.496352, -0.388832, 0.776173], [-0.867003, 0.176647, -0.465943], [0.044064, -0.904216, -0.424797]] and translation vector: [8.98292, 2.792107, 1.939625], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.528625, -0.374982, 0.76154], [-0.848241, 0.199205, -0.490719], [0.032308, -0.905376, -0.42338]] and translation vector: [9.019628, 2.751405, 1.924251]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_170_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_170_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_170_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_170_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_170_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_170_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_170_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_170_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.891251, 0.378307, -0.25011], [0.443048, 0.608538, -0.658323], [-0.096846, -0.697542, -0.709969]] and translation vector: [4.935522, 3.588868, 1.45033], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.887006, 0.383874, -0.256633], [0.452131, 0.60913, -0.651566], [-0.093796, -0.693975, -0.713864]] and translation vector: [4.940225, 3.582454, 1.45688], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.875452, 0.38739, -0.288987], [0.475285, 0.581583, -0.660201], [-0.087685, -0.715325, -0.693269]] and translation vector: [4.970656, 3.561422, 1.469218]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_171_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_171_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_171_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_171_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_171_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_171_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_171_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_171_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.530794, 0.426739, -0.732224], [0.841151, 0.159702, -0.516681], [-0.10355, -0.890162, -0.443721]] and translation vector: [5.418979, 4.373359, 1.385162], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.532043, 0.421439, -0.734384], [0.841755, 0.169492, -0.512564], [-0.091542, -0.890877, -0.444925]] and translation vector: [5.415919, 4.39552, 1.38299], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.539398, 0.40032, -0.740806], [0.839984, 0.194205, -0.506666], [-0.05896, -0.89556, -0.441017]] and translation vector: [5.414681, 4.463818, 1.378667]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_172_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_172_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_172_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_172_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_172_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_172_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_172_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_172_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.086843, 0.425015, -0.901011], [0.995696, 0.066429, -0.064634], [0.032383, -0.902745, -0.428955]] and translation vector: [4.261571, 5.85756, 1.66629], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.086953, 0.422316, -0.902268], [0.995713, 0.06553, -0.065286], [0.031554, -0.904077, -0.426204]] and translation vector: [4.260677, 5.865657, 1.669414], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.081846, 0.421358, -0.903194], [0.995927, 0.068976, -0.058071], [0.03783, -0.904268, -0.425287]] and translation vector: [4.263237, 5.864869, 1.673574]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_173_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_173_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_173_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_173_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_173_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_173_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_173_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_173_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.725417, 0.297171, -0.620854], [0.687848, -0.279954, 0.669695], [0.025203, -0.912861, -0.407492]] and translation vector: [3.434752, 3.057745, 1.556519], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.722045, 0.303192, -0.621873], [0.691238, -0.278447, 0.666827], [0.029018, -0.911341, -0.410629]] and translation vector: [3.433538, 3.052318, 1.549734], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.693174, 0.307801, -0.651742], [0.720057, -0.255516, 0.645158], [0.032049, -0.916499, -0.398751]] and translation vector: [3.420418, 3.038936, 1.558387]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_174_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_174_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_174_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_174_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_174_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_174_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_174_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_174_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.032646, 0.194727, -0.980314], [0.998594, -0.034636, -0.040135], [-0.04177, -0.980246, -0.193322]] and translation vector: [3.506056, 2.493951, 1.706783], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.038857, 0.192835, -0.980462], [0.998032, -0.040846, -0.047587], [-0.049225, -0.980381, -0.190868]] and translation vector: [3.502031, 2.499079, 1.701362], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.064111, 0.226282, -0.97195], [0.996323, -0.040955, -0.075254], [-0.056835, -0.9732, -0.222824]] and translation vector: [3.459589, 2.490182, 1.701209]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_175_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_175_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_175_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_175_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_175_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_175_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_175_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_175_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.881415, -0.308012, 0.3581], [-0.47008, 0.646119, -0.601294], [-0.046169, -0.698325, -0.71429]] and translation vector: [3.147524, 1.689608, 1.273114], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.879224, -0.311908, 0.360109], [-0.474637, 0.638627, -0.605703], [-0.041052, -0.703469, -0.709539]] and translation vector: [3.141599, 1.689583, 1.27073], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.878218, -0.323901, 0.351882], [-0.476941, 0.647734, -0.594111], [-0.035492, -0.689586, -0.723334]] and translation vector: [3.127244, 1.682619, 1.264528]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_176_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_176_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_176_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_176_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_176_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_176_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_176_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_176_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.467192, 0.317292, -0.825262], [0.883302, -0.126478, 0.451421], [0.038855, -0.939856, -0.339354]] and translation vector: [2.723032, 3.168159, 1.438168], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.467636, 0.312306, -0.826911], [0.883318, -0.130557, 0.450227], [0.03265, -0.940968, -0.336919]] and translation vector: [2.722188, 3.168039, 1.441817], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.470302, 0.305008, -0.828122], [0.881834, -0.125828, 0.454462], [0.034414, -0.944001, -0.328143]] and translation vector: [2.718763, 3.171866, 1.451475]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_177_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_177_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_177_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_177_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_177_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_177_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_177_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_177_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.943065, -0.17817, 0.280864], [-0.332105, 0.550897, -0.765649], [-0.018311, -0.815333, -0.578703]] and translation vector: [2.74599, 1.673222, 1.294065], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.942639, -0.173012, 0.285478], [-0.332909, 0.550136, -0.765848], [-0.024551, -0.816957, -0.576177]] and translation vector: [2.737266, 1.663808, 1.300966], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.942881, -0.164787, 0.289518], [-0.331772, 0.54291, -0.771477], [-0.030053, -0.823465, -0.566571]] and translation vector: [2.712684, 1.645235, 1.301017]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_178_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_178_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_178_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_178_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_178_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_178_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_178_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_178_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.695296, -0.421579, 0.582095], [-0.717067, -0.351947, 0.601622], [-0.048765, -0.835707, -0.547007]] and translation vector: [2.470866, 0.652559, 1.473924], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.695871, -0.418819, 0.583399], [-0.716734, -0.353708, 0.600986], [-0.045352, -0.83635, -0.546317]] and translation vector: [2.469546, 0.651931, 1.473078], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.693531, -0.42586, 0.581085], [-0.719633, -0.371637, 0.586528], [-0.033826, -0.824943, -0.564204]] and translation vector: [2.467637, 0.650008, 1.462326]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_179_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_179_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_179_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_179_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_179_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_179_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_179_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_179_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.748873, -0.374013, 0.547087], [-0.662404, -0.447673, 0.600675], [0.020256, -0.812221, -0.582998]] and translation vector: [3.709567, 4.406117, 1.261793], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.747082, -0.370975, 0.551585], [-0.664465, -0.440253, 0.603874], [0.018814, -0.817652, -0.575405]] and translation vector: [3.708719, 4.403161, 1.261416], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.743545, -0.377269, 0.552096], [-0.66849, -0.439378, 0.600057], [0.016196, -0.81524, -0.578898]] and translation vector: [3.708687, 4.402202, 1.259327]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_180_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_180_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_180_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_180_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_180_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_180_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_180_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_180_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.925351, 0.122106, -0.358909], [0.376741, 0.190476, -0.906524], [-0.042329, -0.974068, -0.222259]] and translation vector: [4.735593, 2.732706, 1.21643], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.924788, 0.125024, -0.359357], [0.377675, 0.187086, -0.906841], [-0.046146, -0.974355, -0.220234]] and translation vector: [4.740286, 2.733964, 1.218072], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.925715, 0.103215, -0.363867], [0.37582, 0.142741, -0.915633], [-0.042569, -0.984363, -0.170928]] and translation vector: [4.730338, 2.742957, 1.247444]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_181_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_181_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_181_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_181_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_181_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_181_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_181_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_181_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.264492, -0.222038, 0.938479], [-0.962334, 0.002714, 0.271857], [-0.062909, -0.975034, -0.212957]] and translation vector: [0.925816, 4.784833, 1.497389], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.263009, -0.220134, 0.939344], [-0.962729, 0.003779, 0.270443], [-0.063084, -0.975462, -0.210935]] and translation vector: [0.925807, 4.784041, 1.498483], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.243124, -0.227834, 0.942858], [-0.968357, -0.000546, 0.249567], [-0.056345, -0.9737, -0.220758]] and translation vector: [0.931793, 4.784123, 1.4987]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_182_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_182_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_182_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_182_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_182_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_182_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_182_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_182_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.173351, 0.592298, -0.78685], [0.984858, -0.105806, 0.137329], [-0.001913, -0.798742, -0.601671]] and translation vector: [3.264189, 1.940071, 1.28435], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.172933, 0.589263, -0.789217], [0.98493, -0.105695, 0.136901], [-0.002745, -0.800998, -0.598661]] and translation vector: [3.267153, 1.942133, 1.284021], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.139436, 0.623012, -0.769684], [0.990166, -0.096604, 0.101183], [-0.011316, -0.776224, -0.630355]] and translation vector: [3.29114, 1.970334, 1.268272]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_183_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_183_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_183_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_183_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_183_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_183_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_183_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_183_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.442667, -0.46733, 0.765277], [-0.896368, 0.253361, -0.363776], [-0.023888, -0.847001, -0.531054]] and translation vector: [2.453469, 1.905797, 1.451684], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.441405, -0.472001, 0.763136], [-0.897015, 0.253848, -0.361837], [-0.022933, -0.844261, -0.535442]] and translation vector: [2.45238, 1.90449, 1.449179], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.442687, -0.461983, 0.768505], [-0.8965, 0.24504, -0.369112], [-0.017791, -0.852366, -0.522643]] and translation vector: [2.451253, 1.899634, 1.462124]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_184_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_184_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_184_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_184_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_184_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_184_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_184_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_184_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.643628, -0.362528, 0.674031], [-0.765241, -0.290748, 0.574345], [-0.012243, -0.88546, -0.464555]] and translation vector: [2.632762, 2.243425, 1.452714], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.642371, -0.361874, 0.675579], [-0.76623, -0.285016, 0.575898], [-0.015852, -0.887589, -0.460364]] and translation vector: [2.634792, 2.237319, 1.452971], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.637523, -0.35682, 0.682821], [-0.770314, -0.279737, 0.573031], [-0.013459, -0.891306, -0.453202]] and translation vector: [2.638724, 2.233015, 1.462981]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_185_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_185_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_185_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_185_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_185_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_185_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_185_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_185_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.731293, 0.384445, -0.563394], [0.682011, 0.401944, -0.610984], [-0.008437, -0.831049, -0.556135]] and translation vector: [5.176627, 2.209938, 1.427488], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.733453, 0.387758, -0.558292], [0.679719, 0.411882, -0.606907], [-0.005383, -0.82462, -0.565663]] and translation vector: [5.175584, 2.209993, 1.422561], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.739748, 0.384821, -0.551984], [0.672884, 0.424134, -0.606084], [0.000881, -0.819771, -0.572692]] and translation vector: [5.164479, 2.208437, 1.426833]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_186_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_186_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_186_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_186_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_186_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_186_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_186_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_186_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.996822, -0.027813, -0.074656], [0.056495, -0.413943, 0.908548], [-0.056173, -0.909878, -0.411056]] and translation vector: [4.405487, 5.403347, 1.494535], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.996757, -0.027349, -0.075677], [0.057466, -0.416379, 0.907373], [-0.056327, -0.90878, -0.413457]] and translation vector: [4.408994, 5.403286, 1.494292], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.997265, -0.029561, -0.067745], [0.049832, -0.408017, 0.911613], [-0.05459, -0.912496, -0.405428]] and translation vector: [4.415172, 5.400004, 1.499593]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_187_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_187_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_187_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_187_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_187_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_187_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_187_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_187_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.789457, 0.162095, -0.592016], [0.613764, 0.197318, -0.764434], [-0.007096, -0.966846, -0.255262]] and translation vector: [5.114759, 3.17533, 1.386193], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.785271, 0.158609, -0.598492], [0.619131, 0.193201, -0.761151], [-0.005096, -0.968255, -0.249915]] and translation vector: [5.11251, 3.170745, 1.383731], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.782732, 0.165019, -0.600083], [0.622288, 0.192888, -0.758652], [-0.009443, -0.967245, -0.253669]] and translation vector: [5.104394, 3.153102, 1.37449]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_188_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_188_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_188_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_188_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_188_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_188_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_188_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_188_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.95695, -0.100486, 0.272304], [-0.288986, 0.24231, -0.92616], [0.027085, -0.964981, -0.260918]] and translation vector: [1.227478, 4.879099, 1.55452], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.957752, -0.097454, 0.27058], [-0.286469, 0.240112, -0.927514], [0.025421, -0.965841, -0.257885]] and translation vector: [1.221714, 4.885019, 1.554874], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.941817, -0.081741, 0.326036], [-0.336056, 0.20922, -0.91831], [0.00685, -0.974446, -0.224516]] and translation vector: [1.204022, 4.901892, 1.569033]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_189_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_189_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_189_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_189_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_189_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_189_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_189_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_189_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.982764, 0.054289, -0.17671], [0.184841, -0.27426, 0.943724], [0.002769, -0.960122, -0.279568]] and translation vector: [4.072058, 1.220293, 1.47625], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.982485, 0.057917, -0.177113], [0.186218, -0.270474, 0.944546], [0.0068, -0.960984, -0.276522]] and translation vector: [4.071517, 1.218265, 1.477941], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.980674, 0.05705, -0.187148], [0.195532, -0.252477, 0.947641], [0.006813, -0.96592, -0.258752]] and translation vector: [4.0711, 1.209071, 1.48705]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_190_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_190_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_190_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_190_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_190_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_190_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_190_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_190_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.693623, 0.392298, -0.604144], [0.720137, 0.397492, -0.568686], [0.017048, -0.82952, -0.558217]] and translation vector: [2.706242, 2.586761, 1.453005], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.690051, 0.396658, -0.605386], [0.723517, 0.399766, -0.56277], [0.018785, -0.826347, -0.562848]] and translation vector: [2.704536, 2.590014, 1.45316], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.674504, 0.428853, -0.600941], [0.737993, 0.414011, -0.53288], [0.020269, -0.80292, -0.595742]] and translation vector: [2.699649, 2.603579, 1.443268]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_191_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_191_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_191_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_191_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_191_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_191_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_191_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_191_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.610102, 0.375008, -0.697958], [0.791763, 0.255448, -0.554849], [-0.029781, -0.891132, -0.452767]] and translation vector: [2.349929, 1.419923, 1.358478], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.607496, 0.374505, -0.700496], [0.793845, 0.255679, -0.551759], [-0.027534, -0.891277, -0.452623]] and translation vector: [2.354864, 1.421781, 1.358478], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.579764, 0.373065, -0.724359], [0.814546, 0.24389, -0.526338], [-0.019694, -0.895176, -0.445277]] and translation vector: [2.359462, 1.423068, 1.367348]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_192_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_192_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_192_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_192_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_192_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_192_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_192_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_192_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.081815, 0.638296, -0.765431], [0.996577, -0.061545, 0.055199], [-0.011875, -0.767327, -0.641146]] and translation vector: [3.004073, 1.570726, 1.431248], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.083332, 0.64082, -0.763155], [0.996457, -0.062303, 0.056492], [-0.011346, -0.765159, -0.643742]] and translation vector: [3.00242, 1.571458, 1.432065], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.083112, 0.654572, -0.751417], [0.996444, -0.065065, 0.053535], [-0.013848, -0.753195, -0.657652]] and translation vector: [3.01468, 1.572497, 1.43131]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_193_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_193_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_193_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_193_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_193_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_193_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_193_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_193_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.348231, 0.123124, -0.929288], [0.936413, -1.6e-05, 0.350899], [0.043189, -0.992391, -0.1153]] and translation vector: [2.712005, 2.075202, 1.464169], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.348319, 0.120186, -0.929639], [0.93641, 0.000395, 0.350907], [0.042542, -0.992751, -0.112406]] and translation vector: [2.712393, 2.076758, 1.463984], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.330226, 0.128954, -0.935052], [0.94318, -0.00633, 0.332223], [0.036923, -0.99163, -0.123717]] and translation vector: [2.702959, 2.087481, 1.468829]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_194_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_194_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_194_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_194_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_194_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_194_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_194_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_194_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.524333, 0.441188, -0.728305], [0.848808, -0.202677, 0.488311], [0.067827, -0.874228, -0.480754]] and translation vector: [3.10696, 1.250425, 1.344077], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.531491, 0.437044, -0.72561], [0.844432, -0.205894, 0.494513], [0.066725, -0.875557, -0.478485]] and translation vector: [3.107462, 1.25329, 1.344278], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.56012, 0.431145, -0.707375], [0.826071, -0.226557, 0.516021], [0.062219, -0.873376, -0.483056]] and translation vector: [3.110022, 1.262991, 1.348097]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_195_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_195_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_195_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_195_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_195_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_195_5.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_195_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_195_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.000188, -0.47362, 0.88073], [-0.997828, 0.057931, 0.031365], [-0.065877, -0.878822, -0.47258]] and translation vector: [4.366519, 5.511691, 1.307889], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.002248, -0.465195, 0.885205], [-0.998254, 0.053289, 0.02547], [-0.05902, -0.883603, -0.464503]] and translation vector: [4.36891, 5.516212, 1.317108], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.024267, -0.440835, 0.89726], [-0.998159, 0.06059, 0.002773], [-0.055588, -0.895541, -0.441493]] and translation vector: [4.36929, 5.527184, 1.331889]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "B"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_196_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_196_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_196_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_196_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_196_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_196_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_196_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_196_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.819759, -0.274444, 0.502669], [-0.572709, 0.39303, -0.719397], [-0.00013, -0.877615, -0.479366]] and translation vector: [2.765326, 1.370172, 1.355227], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.819555, -0.26888, 0.505998], [-0.572993, 0.389095, -0.721307], [-0.002936, -0.881084, -0.472951]] and translation vector: [2.765196, 1.369276, 1.358405], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.80543, -0.264338, 0.530479], [-0.592674, 0.365802, -0.717584], [-0.004366, -0.892365, -0.451294]] and translation vector: [2.783833, 1.382351, 1.368477]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_197_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_197_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_197_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_197_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_197_4.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_197_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_197_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_197_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.060487, 0.154719, -0.986105], [0.998165, 0.006603, -0.060191], [-0.002801, -0.987936, -0.154835]] and translation vector: [6.630666, 2.572317, 1.44523], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.062036, 0.175232, -0.982571], [0.998074, 0.011306, -0.060998], [0.00042, -0.984462, -0.175596]] and translation vector: [6.62843, 2.567178, 1.442285], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.077658, 0.209818, -0.974652], [0.996978, 0.01426, -0.076367], [-0.002124, -0.977636, -0.210291]] and translation vector: [6.626263, 2.56408, 1.439607]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "A"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_198_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_198_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_198_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_198_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_198_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_198_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_198_6.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_198_7.png"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.286652, 0.220257, -0.932372], [0.958024, -0.061246, 0.28007], [0.004584, -0.973517, -0.228568]] and translation vector: [3.76659, 1.676076, 1.452194], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[0.299829, 0.216367, -0.929133], [0.953977, -0.07366, 0.290693], [-0.005544, -0.973529, -0.228495]] and translation vector: [3.753121, 1.670498, 1.452776], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[0.332229, 0.205241, -0.920597], [0.943053, -0.089416, 0.320398], [-0.016558, -0.974618, -0.22326]] and translation vector: [3.692962, 1.621141, 1.4585]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "C"}, "task": "threeD_Scene_Reconstruction"}
{"source": "SCANNET_threed_scene_reconstruction", "options": "A: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image", "visual_input_component": "3d image", "input": {"input_image_path": ["3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_199_0.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_199_1.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_199_2.jpg", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_199_3.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_199_4.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_199_5.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_199_6.png", "3D-spatial/threeD_Scene_Reconstruction/threeD_Scene_Reconstruction_199_7.jpg"], "question": "Given a pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.409087, -0.112571, 0.905525], [-0.910894, 0.109148, -0.397943], [-0.05404, -0.987631, -0.147191]] and translation vector: [4.421403, 3.579741, 1.526424], and another pair of RGB and depth images with the corresponding camera pose, i.e., rotation matrix: [[-0.417977, -0.10834, 0.901974], [-0.906895, 0.107978, -0.407287], [-0.053267, -0.988232, -0.143386]] and translation vector: [4.418822, 3.582731, 1.526625], please estimate the RGB image for the query camera pose, i.e., rotation matrix: [[-0.44932, -0.10036, 0.887716], [-0.891042, 0.12205, -0.437205], [-0.064468, -0.987437, -0.144264]] and translation vector: [4.403283, 3.625828, 1.518726]. The provided camera poses represent the the transformation from the camera coordinate system to the world coordinate system.", "context": "Your task is to reconstruct the 3D geometry of a scene. This is tested through the image retrieval for a specific camera pose. The input images are the first 4 images\nSelect from the following choices.\nA: The 5th image\nB: The 6th image\nC: The 7th image\nD: The 8th image"}, "output": {"output_text": "D"}, "task": "threeD_Scene_Reconstruction"}
{"source": "PKUMMD", "options": "A: read a book\nB: drink water\nC: ride a bike\nD: play guitar", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_0_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_0_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_0_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_0_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_0_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_0_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_0_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_0_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_0_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_0_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_0_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_0_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: read a book\nB: drink water\nC: ride a bike\nD: play guitar"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: running\nB: sitting down\nC: lying down\nD: standing up", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_1_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_1_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_1_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_1_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_1_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_1_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_1_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_1_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_1_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_1_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_1_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_1_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: running\nB: sitting down\nC: lying down\nD: standing up"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: lying down\nB: standing up\nC: sitting down\nD: jumping", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_2_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_2_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_2_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_2_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_2_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_2_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_2_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_2_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_2_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_2_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_2_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_2_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: lying down\nB: standing up\nC: sitting down\nD: jumping"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: ride bicycle\nB: play guitar\nC: write letter\nD: eat meal", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_3_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_3_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_3_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_3_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_3_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_3_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_3_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_3_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_3_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_3_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_3_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_3_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: ride bicycle\nB: play guitar\nC: write letter\nD: eat meal"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sit\nB: jump\nC: pickup\nD: run", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_4_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_4_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_4_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_4_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_4_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_4_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_4_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_4_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_4_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_4_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_4_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_4_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sit\nB: jump\nC: pickup\nD: run"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: make a phone call\nB: play a guitar\nC: ride a bicycle\nD: drink a coffee", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_5_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_5_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_5_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_5_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_5_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_5_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_5_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_5_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_5_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_5_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_5_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_5_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: make a phone call\nB: play a guitar\nC: ride a bicycle\nD: drink a coffee"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: read book\nB: play piano\nC: jog\nD: eat meal", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_6_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_6_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_6_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_6_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_6_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_6_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_6_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_6_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_6_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_6_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_6_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_6_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: read book\nB: play piano\nC: jog\nD: eat meal"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: pickup\nB: sit\nC: run\nD: jump", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_7_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_7_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_7_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_7_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_7_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_7_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_7_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_7_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_7_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_7_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_7_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_7_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: pickup\nB: sit\nC: run\nD: jump"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: running\nB: sleeping\nC: dancing\nD: reading", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_8_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_8_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_8_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_8_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_8_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_8_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_8_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_8_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_8_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_8_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_8_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_8_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: running\nB: sleeping\nC: dancing\nD: reading"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: ride a bicycle\nB: make a phone call\nC: cook a meal\nD: play a piano", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_9_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_9_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_9_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_9_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_9_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_9_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_9_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_9_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_9_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_9_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_9_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_9_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: ride a bicycle\nB: make a phone call\nC: cook a meal\nD: play a piano"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: read a book\nB: tie shoelaces\nC: check time (from watch)\nD: wave hand", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_10_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_10_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_10_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_10_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_10_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_10_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_10_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_10_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_10_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_10_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_10_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_10_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: read a book\nB: tie shoelaces\nC: check time (from watch)\nD: wave hand"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: raise hand (greeting)\nB: touch chest (stomachache\nC: tie shoelaces (preparing to run)\nD: clap hands (applause)", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_11_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_11_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_11_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_11_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_11_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_11_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_11_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_11_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_11_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_11_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_11_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_11_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: raise hand (greeting)\nB: touch chest (stomachache\nC: tie shoelaces (preparing to run)\nD: clap hands (applause)"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: pickup\nB: sit\nC: jump\nD: run", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_12_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_12_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_12_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_12_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_12_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_12_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_12_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_12_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_12_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_12_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_12_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_12_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: pickup\nB: sit\nC: jump\nD: run"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: reading a book\nB: cooking a meal\nC: writing a letter\nD: brushing teeth", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_13_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_13_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_13_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_13_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_13_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_13_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_13_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_13_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_13_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_13_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_13_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_13_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: reading a book\nB: cooking a meal\nC: writing a letter\nD: brushing teeth"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sit down\nB: jump\nC: wave hand\nD: touch chest (stomachache", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_14_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_14_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_14_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_14_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_14_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_14_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_14_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_14_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_14_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_14_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_14_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_14_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sit down\nB: jump\nC: wave hand\nD: touch chest (stomachache"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: standing up\nB: jumping\nC: running\nD: sitting down", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_15_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_15_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_15_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_15_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_15_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_15_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_15_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_15_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_15_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_15_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_15_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_15_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: standing up\nB: jumping\nC: running\nD: sitting down"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: pickup\nB: run\nC: sit down\nD: jump", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_16_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_16_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_16_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_16_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_16_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_16_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_16_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_16_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_16_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_16_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_16_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_16_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: pickup\nB: run\nC: sit down\nD: jump"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: jogging\nB: brushing teeth\nC: eating\nD: reading a book", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_17_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_17_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_17_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_17_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_17_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_17_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_17_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_17_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_17_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_17_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_17_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_17_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: jogging\nB: brushing teeth\nC: eating\nD: reading a book"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: eat sandwich\nB: read book\nC: ride bicycle\nD: wear jacket", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_18_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_18_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_18_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_18_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_18_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_18_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_18_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_18_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_18_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_18_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_18_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_18_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: eat sandwich\nB: read book\nC: ride bicycle\nD: wear jacket"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: take off a hat\nB: tie shoelaces\nC: put on a hat\nD: put on gloves", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_19_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_19_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_19_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_19_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_19_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_19_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_19_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_19_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_19_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_19_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_19_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_19_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: take off a hat\nB: tie shoelaces\nC: put on a hat\nD: put on gloves"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: ride bicycle\nB: wear jacket\nC: read book\nD: cook dinner", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_20_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_20_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_20_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_20_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_20_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_20_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_20_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_20_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_20_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_20_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_20_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_20_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: ride bicycle\nB: wear jacket\nC: read book\nD: cook dinner"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: ride a bicycle\nB: tie a shoelace\nC: drink water\nD: read a book", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_21_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_21_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_21_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_21_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_21_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_21_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_21_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_21_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_21_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_21_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_21_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_21_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: ride a bicycle\nB: tie a shoelace\nC: drink water\nD: read a book"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sitting down\nB: jumping\nC: standing up\nD: lying down", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_22_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_22_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_22_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_22_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_22_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_22_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_22_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_22_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_22_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_22_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_22_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_22_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sitting down\nB: jumping\nC: standing up\nD: lying down"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: drink water\nB: read a book\nC: tie shoes\nD: climb stairs", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_23_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_23_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_23_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_23_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_23_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_23_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_23_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_23_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_23_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_23_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_23_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_23_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: drink water\nB: read a book\nC: tie shoes\nD: climb stairs"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: play a guitar\nB: drink water\nC: ride a bike\nD: write a note", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_24_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_24_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_24_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_24_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_24_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_24_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_24_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_24_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_24_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_24_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_24_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_24_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: play a guitar\nB: drink water\nC: ride a bike\nD: write a note"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: take off a hat\nB: put on a hat\nC: pick up a book\nD: tie shoelaces", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_25_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_25_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_25_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_25_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_25_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_25_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_25_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_25_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_25_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_25_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_25_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_25_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: take off a hat\nB: put on a hat\nC: pick up a book\nD: tie shoelaces"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: ride bike\nB: read book\nC: play guitar\nD: eat meal", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_26_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_26_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_26_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_26_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_26_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_26_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_26_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_26_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_26_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_26_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_26_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_26_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: ride bike\nB: read book\nC: play guitar\nD: eat meal"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: touch chest (stomachache\nB: throw a ball\nC: jump up\nD: tie shoelaces", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_27_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_27_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_27_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_27_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_27_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_27_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_27_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_27_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_27_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_27_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_27_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_27_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: touch chest (stomachache\nB: throw a ball\nC: jump up\nD: tie shoelaces"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: wave\nB: sit down\nC: jump\nD: pickup", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_28_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_28_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_28_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_28_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_28_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_28_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_28_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_28_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_28_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_28_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_28_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_28_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: wave\nB: sit down\nC: jump\nD: pickup"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: eat sandwich\nB: ride bicycle\nC: wear jacket\nD: play guitar", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_29_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_29_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_29_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_29_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_29_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_29_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_29_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_29_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_29_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_29_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_29_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_29_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: eat sandwich\nB: ride bicycle\nC: wear jacket\nD: play guitar"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: dancing\nB: reading\nC: sleeping\nD: cooking", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_30_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_30_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_30_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_30_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_30_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_30_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_30_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_30_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_30_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_30_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_30_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_30_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: dancing\nB: reading\nC: sleeping\nD: cooking"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: brushing teeth\nB: washing face\nC: brushing hair\nD: combing hair", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_31_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_31_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_31_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_31_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_31_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_31_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_31_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_31_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_31_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_31_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_31_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_31_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: brushing teeth\nB: washing face\nC: brushing hair\nD: combing hair"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: tie shoelaces\nB: check time (from watch)\nC: drink water\nD: read a book", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_32_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_32_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_32_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_32_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_32_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_32_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_32_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_32_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_32_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_32_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_32_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_32_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: tie shoelaces\nB: check time (from watch)\nC: drink water\nD: read a book"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: jump up\nB: touch chest (stomachache\nC: wave hand\nD: sit down", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_33_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_33_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_33_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_33_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_33_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_33_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_33_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_33_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_33_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_33_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_33_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_33_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: jump up\nB: touch chest (stomachache\nC: wave hand\nD: sit down"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: read a book\nB: tie shoelaces\nC: eat an apple\nD: check time (from watch)", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_34_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_34_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_34_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_34_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_34_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_34_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_34_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_34_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_34_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_34_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_34_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_34_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: read a book\nB: tie shoelaces\nC: eat an apple\nD: check time (from watch)"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: run\nB: drop\nC: jump\nD: sit", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_35_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_35_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_35_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_35_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_35_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_35_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_35_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_35_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_35_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_35_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_35_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_35_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: run\nB: drop\nC: jump\nD: sit"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: riding a bike\nB: baking a cake\nC: brushing teeth\nD: playing a guitar", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_36_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_36_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_36_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_36_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_36_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_36_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_36_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_36_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_36_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_36_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_36_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_36_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: riding a bike\nB: baking a cake\nC: brushing teeth\nD: playing a guitar"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: write on a board\nB: tie shoelaces\nC: check time (from watch)\nD: drink water", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_37_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_37_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_37_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_37_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_37_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_37_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_37_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_37_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_37_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_37_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_37_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_37_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: write on a board\nB: tie shoelaces\nC: check time (from watch)\nD: drink water"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: touch chest (stomachache\nB: clapping hands\nC: tying shoes\nD: jumping in place", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_38_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_38_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_38_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_38_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_38_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_38_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_38_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_38_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_38_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_38_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_38_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_38_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: touch chest (stomachache\nB: clapping hands\nC: tying shoes\nD: jumping in place"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sitting down\nB: standing up\nC: jumping\nD: running", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_39_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_39_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_39_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_39_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_39_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_39_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_39_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_39_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_39_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_39_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_39_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_39_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sitting down\nB: standing up\nC: jumping\nD: running"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: play guitar\nB: run\nC: sleep\nD: eat meal", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_40_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_40_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_40_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_40_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_40_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_40_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_40_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_40_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_40_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_40_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_40_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_40_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: play guitar\nB: run\nC: sleep\nD: eat meal"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: play piano\nB: eat meal\nC: paint picture\nD: ride bicycle", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_41_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_41_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_41_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_41_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_41_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_41_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_41_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_41_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_41_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_41_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_41_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_41_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: play piano\nB: eat meal\nC: paint picture\nD: ride bicycle"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: cooking\nB: reading\nC: dancing\nD: running", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_42_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_42_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_42_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_42_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_42_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_42_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_42_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_42_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_42_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_42_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_42_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_42_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: cooking\nB: reading\nC: dancing\nD: running"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: jumping\nB: sitting down\nC: lying down\nD: standing up", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_43_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_43_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_43_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_43_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_43_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_43_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_43_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_43_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_43_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_43_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_43_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_43_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: jumping\nB: sitting down\nC: lying down\nD: standing up"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: ride a bike\nB: eat a sandwich\nC: make a phone call\nD: tie a shoe", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_44_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_44_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_44_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_44_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_44_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_44_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_44_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_44_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_44_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_44_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_44_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_44_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: ride a bike\nB: eat a sandwich\nC: make a phone call\nD: tie a shoe"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: jump\nB: pickup\nC: sit down\nD: wave", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_45_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_45_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_45_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_45_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_45_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_45_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_45_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_45_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_45_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_45_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_45_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_45_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: jump\nB: pickup\nC: sit down\nD: wave"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: playing guitar\nB: tieing shoes\nC: drinking water\nD: brushing teeth", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_46_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_46_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_46_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_46_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_46_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_46_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_46_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_46_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_46_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_46_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_46_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_46_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: playing guitar\nB: tieing shoes\nC: drinking water\nD: brushing teeth"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: paint a picture\nB: eat meal\nC: run a marathon\nD: play a musical instrument", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_47_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_47_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_47_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_47_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_47_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_47_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_47_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_47_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_47_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_47_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_47_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_47_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: paint a picture\nB: eat meal\nC: run a marathon\nD: play a musical instrument"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: wave hand\nB: check time (from watch)\nC: tie shoelaces\nD: drink water", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_48_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_48_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_48_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_48_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_48_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_48_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_48_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_48_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_48_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_48_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_48_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_48_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: wave hand\nB: check time (from watch)\nC: tie shoelaces\nD: drink water"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: brushing teeth\nB: tying shoes\nC: cooking food\nD: watering plants", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_49_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_49_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_49_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_49_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_49_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_49_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_49_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_49_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_49_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_49_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_49_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_49_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: brushing teeth\nB: tying shoes\nC: cooking food\nD: watering plants"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: put on a hat\nB: take off a hat\nC: button a shirt\nD: tie a shoelace", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_50_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_50_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_50_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_50_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_50_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_50_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_50_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_50_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_50_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_50_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_50_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_50_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: put on a hat\nB: take off a hat\nC: button a shirt\nD: tie a shoelace"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: tie a shoe\nB: make a phone call\nC: play a guitar\nD: cook a meal", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_51_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_51_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_51_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_51_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_51_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_51_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_51_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_51_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_51_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_51_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_51_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_51_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: tie a shoe\nB: make a phone call\nC: play a guitar\nD: cook a meal"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: drop\nB: jump\nC: run\nD: sit", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_52_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_52_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_52_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_52_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_52_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_52_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_52_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_52_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_52_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_52_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_52_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_52_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: drop\nB: jump\nC: run\nD: sit"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: wave hand\nB: scratch head\nC: touch chest (stomachache\nD: jump up and down", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_53_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_53_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_53_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_53_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_53_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_53_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_53_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_53_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_53_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_53_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_53_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_53_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: wave hand\nB: scratch head\nC: touch chest (stomachache\nD: jump up and down"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: lying down\nB: standing up\nC: running\nD: sitting down", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_54_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_54_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_54_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_54_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_54_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_54_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_54_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_54_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_54_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_54_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_54_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_54_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: lying down\nB: standing up\nC: running\nD: sitting down"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: pickup\nB: run\nC: jump\nD: sit", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_55_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_55_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_55_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_55_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_55_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_55_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_55_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_55_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_55_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_55_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_55_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_55_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: pickup\nB: run\nC: jump\nD: sit"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: wipe face\nB: snap fingers\nC: brush hair\nD: tie shoelace", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_56_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_56_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_56_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_56_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_56_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_56_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_56_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_56_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_56_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_56_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_56_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_56_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: wipe face\nB: snap fingers\nC: brush hair\nD: tie shoelace"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sleeping\nB: dancing\nC: reading\nD: running", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_57_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_57_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_57_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_57_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_57_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_57_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_57_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_57_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_57_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_57_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_57_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_57_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sleeping\nB: dancing\nC: reading\nD: running"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: wear jacket\nB: sit down\nC: jump\nD: tie shoelaces", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_58_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_58_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_58_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_58_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_58_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_58_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_58_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_58_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_58_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_58_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_58_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_58_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: wear jacket\nB: sit down\nC: jump\nD: tie shoelaces"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sitting down\nB: jumping\nC: standing up\nD: lying down", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_59_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_59_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_59_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_59_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_59_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_59_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_59_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_59_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_59_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_59_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_59_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_59_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sitting down\nB: jumping\nC: standing up\nD: lying down"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: ride a bike\nB: read a book\nC: eat meal\nD: play a musical instrument", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_60_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_60_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_60_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_60_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_60_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_60_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_60_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_60_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_60_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_60_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_60_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_60_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: ride a bike\nB: read a book\nC: eat meal\nD: play a musical instrument"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: touch back (backache)\nB: clap hands\nC: sit down\nD: jump", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_61_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_61_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_61_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_61_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_61_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_61_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_61_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_61_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_61_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_61_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_61_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_61_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: touch back (backache)\nB: clap hands\nC: sit down\nD: jump"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sitting down\nB: lying down\nC: standing up\nD: jumping", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_62_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_62_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_62_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_62_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_62_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_62_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_62_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_62_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_62_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_62_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_62_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_62_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sitting down\nB: lying down\nC: standing up\nD: jumping"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: eat meal\nB: write letter\nC: ride bicycle\nD: play guitar", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_63_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_63_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_63_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_63_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_63_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_63_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_63_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_63_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_63_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_63_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_63_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_63_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: eat meal\nB: write letter\nC: ride bicycle\nD: play guitar"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: wave hand\nB: pick up a book\nC: wipe face\nD: tie shoelaces", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_64_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_64_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_64_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_64_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_64_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_64_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_64_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_64_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_64_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_64_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_64_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_64_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: wave hand\nB: pick up a book\nC: wipe face\nD: tie shoelaces"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: read a book\nB: play a guitar\nC: make a phone call\nD: cook a meal", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_65_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_65_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_65_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_65_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_65_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_65_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_65_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_65_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_65_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_65_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_65_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_65_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: read a book\nB: play a guitar\nC: make a phone call\nD: cook a meal"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: read a book\nB: make a phone call\nC: eat a meal\nD: play a video game", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_66_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_66_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_66_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_66_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_66_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_66_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_66_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_66_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_66_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_66_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_66_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_66_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: read a book\nB: make a phone call\nC: eat a meal\nD: play a video game"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: drop\nB: jump\nC: pick\nD: hold", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_67_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_67_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_67_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_67_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_67_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_67_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_67_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_67_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_67_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_67_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_67_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_67_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: drop\nB: jump\nC: pick\nD: hold"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: climb ladder\nB: kick ball\nC: tie shoe\nD: wipe face", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_68_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_68_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_68_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_68_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_68_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_68_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_68_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_68_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_68_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_68_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_68_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_68_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: climb ladder\nB: kick ball\nC: tie shoe\nD: wipe face"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: dancing\nB: reading\nC: cooking\nD: sleeping", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_69_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_69_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_69_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_69_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_69_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_69_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_69_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_69_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_69_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_69_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_69_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_69_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: dancing\nB: reading\nC: cooking\nD: sleeping"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sitting down\nB: running\nC: standing up\nD: jumping", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_70_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_70_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_70_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_70_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_70_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_70_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_70_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_70_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_70_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_70_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_70_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_70_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sitting down\nB: running\nC: standing up\nD: jumping"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sleeping\nB: dancing\nC: cooking\nD: reading", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_71_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_71_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_71_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_71_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_71_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_71_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_71_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_71_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_71_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_71_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_71_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_71_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sleeping\nB: dancing\nC: cooking\nD: reading"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: running\nB: jumping\nC: sitting down\nD: standing up", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_72_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_72_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_72_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_72_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_72_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_72_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_72_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_72_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_72_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_72_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_72_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_72_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: running\nB: jumping\nC: sitting down\nD: standing up"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: drop\nB: sit\nC: run\nD: jump", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_73_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_73_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_73_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_73_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_73_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_73_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_73_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_73_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_73_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_73_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_73_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_73_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: drop\nB: sit\nC: run\nD: jump"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: brushing teeth\nB: riding a bicycle\nC: cooking dinner\nD: tying shoelaces", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_74_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_74_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_74_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_74_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_74_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_74_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_74_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_74_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_74_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_74_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_74_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_74_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: brushing teeth\nB: riding a bicycle\nC: cooking dinner\nD: tying shoelaces"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: wave hand\nB: tie shoelace\nC: clap hands\nD: wipe face", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_75_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_75_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_75_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_75_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_75_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_75_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_75_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_75_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_75_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_75_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_75_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_75_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: wave hand\nB: tie shoelace\nC: clap hands\nD: wipe face"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: clap hands\nB: wave hand\nC: wipe face\nD: tie shoelace", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_76_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_76_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_76_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_76_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_76_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_76_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_76_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_76_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_76_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_76_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_76_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_76_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: clap hands\nB: wave hand\nC: wipe face\nD: tie shoelace"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: dancing\nB: sleeping\nC: reading\nD: cooking", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_77_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_77_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_77_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_77_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_77_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_77_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_77_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_77_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_77_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_77_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_77_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_77_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: dancing\nB: sleeping\nC: reading\nD: cooking"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: ride bicycle\nB: play guitar\nC: climb ladder\nD: drink water", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_78_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_78_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_78_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_78_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_78_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_78_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_78_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_78_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_78_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_78_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_78_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_78_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: ride bicycle\nB: play guitar\nC: climb ladder\nD: drink water"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sleeping\nB: reading\nC: dancing\nD: running", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_79_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_79_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_79_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_79_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_79_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_79_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_79_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_79_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_79_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_79_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_79_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_79_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sleeping\nB: reading\nC: dancing\nD: running"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: wipe face\nB: tie shoelaces\nC: brush hair\nD: write a note", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_80_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_80_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_80_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_80_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_80_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_80_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_80_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_80_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_80_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_80_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_80_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_80_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: wipe face\nB: tie shoelaces\nC: brush hair\nD: write a note"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: play a guitar\nB: read a book\nC: tie shoelaces\nD: check time (from watch)", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_81_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_81_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_81_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_81_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_81_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_81_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_81_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_81_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_81_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_81_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_81_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_81_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: play a guitar\nB: read a book\nC: tie shoelaces\nD: check time (from watch)"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: put on a hat\nB: open a door\nC: tie shoelaces\nD: take off a hat", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_82_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_82_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_82_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_82_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_82_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_82_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_82_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_82_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_82_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_82_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_82_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_82_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: put on a hat\nB: open a door\nC: tie shoelaces\nD: take off a hat"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: eat food\nB: brush hair\nC: wipe face\nD: tie shoelaces", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_83_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_83_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_83_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_83_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_83_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_83_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_83_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_83_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_83_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_83_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_83_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_83_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: eat food\nB: brush hair\nC: wipe face\nD: tie shoelaces"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: standing up\nB: jumping\nC: sitting down\nD: running", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_84_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_84_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_84_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_84_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_84_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_84_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_84_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_84_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_84_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_84_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_84_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_84_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: standing up\nB: jumping\nC: sitting down\nD: running"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: adjust glasses\nB: check time (from watch)\nC: wave hand\nD: tie shoelaces", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_85_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_85_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_85_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_85_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_85_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_85_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_85_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_85_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_85_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_85_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_85_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_85_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: adjust glasses\nB: check time (from watch)\nC: wave hand\nD: tie shoelaces"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: reading\nB: swimming\nC: cooking\nD: dancing", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_86_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_86_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_86_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_86_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_86_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_86_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_86_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_86_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_86_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_86_9.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: reading\nB: swimming\nC: cooking\nD: dancing"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sit\nB: run\nC: drop\nD: jump", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_87_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_87_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_87_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_87_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_87_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_87_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_87_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_87_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_87_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_87_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_87_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_87_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sit\nB: run\nC: drop\nD: jump"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: jump\nB: wave hand\nC: tie shoelaces\nD: wipe face", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_88_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_88_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_88_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_88_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_88_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_88_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_88_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_88_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_88_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_88_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_88_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_88_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: jump\nB: wave hand\nC: tie shoelaces\nD: wipe face"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: make a phone call\nB: eat a meal\nC: play a musical instrument\nD: tie a shoelace", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_89_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_89_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_89_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_89_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_89_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_89_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_89_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_89_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_89_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_89_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_89_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_89_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: make a phone call\nB: eat a meal\nC: play a musical instrument\nD: tie a shoelace"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: drop\nB: sit\nC: jump\nD: run", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_90_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_90_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_90_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_90_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_90_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_90_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_90_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_90_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_90_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_90_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_90_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_90_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: drop\nB: sit\nC: jump\nD: run"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: dancing\nB: reading\nC: jumping\nD: running", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_91_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_91_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_91_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_91_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_91_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_91_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_91_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_91_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_91_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_91_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_91_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_91_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: dancing\nB: reading\nC: jumping\nD: running"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: bake a cake\nB: play a guitar\nC: ride a bike\nD: wear jacket", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_92_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_92_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_92_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_92_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_92_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_92_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_92_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_92_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_92_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_92_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_92_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_92_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: bake a cake\nB: play a guitar\nC: ride a bike\nD: wear jacket"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: jumping\nB: touch back (backache)\nC: running\nD: sitting", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_93_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_93_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_93_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_93_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_93_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_93_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_93_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_93_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_93_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_93_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_93_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_93_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: jumping\nB: touch back (backache)\nC: running\nD: sitting"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: jumping\nB: sitting down\nC: running\nD: standing up", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_94_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_94_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_94_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_94_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_94_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_94_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_94_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_94_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_94_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_94_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_94_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_94_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: jumping\nB: sitting down\nC: running\nD: standing up"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: write on blackboard\nB: touch chest (stomachache\nC: jump\nD: sit down", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_95_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_95_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_95_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_95_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_95_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_95_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_95_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_95_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_95_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_95_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_95_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_95_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: write on blackboard\nB: touch chest (stomachache\nC: jump\nD: sit down"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: remove jacket\nB: tie shoelaces\nC: wear jacket\nD: sit down", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_96_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_96_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_96_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_96_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_96_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_96_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_96_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_96_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_96_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_96_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_96_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_96_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: remove jacket\nB: tie shoelaces\nC: wear jacket\nD: sit down"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: put on a coat\nB: take off a hat\nC: put on a hat\nD: tie shoelaces", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_97_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_97_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_97_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_97_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_97_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_97_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_97_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_97_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_97_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_97_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_97_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_97_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: put on a coat\nB: take off a hat\nC: put on a hat\nD: tie shoelaces"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: jumping\nB: lying down\nC: sitting down\nD: standing up", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_98_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_98_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_98_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_98_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_98_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_98_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_98_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_98_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_98_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_98_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_98_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_98_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: jumping\nB: lying down\nC: sitting down\nD: standing up"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: play guitar\nB: tie shoelaces\nC: cook meal\nD: wear jacket", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_99_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_99_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_99_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_99_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_99_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_99_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_99_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_99_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_99_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_99_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_99_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_99_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: play guitar\nB: tie shoelaces\nC: cook meal\nD: wear jacket"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sit\nB: jump\nC: drop\nD: run", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_100_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_100_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_100_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_100_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_100_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_100_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_100_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_100_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_100_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_100_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_100_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_100_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sit\nB: jump\nC: drop\nD: run"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: standing up\nB: jumping\nC: sitting down\nD: lying down", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_101_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_101_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_101_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_101_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_101_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_101_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_101_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_101_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_101_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_101_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_101_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_101_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: standing up\nB: jumping\nC: sitting down\nD: lying down"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: brushing teeth\nB: playing basketball\nC: dancing\nD: cooking", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_102_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_102_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_102_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_102_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_102_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_102_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_102_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_102_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_102_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_102_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_102_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_102_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: brushing teeth\nB: playing basketball\nC: dancing\nD: cooking"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: jump\nB: sit\nC: run\nD: bow", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_103_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_103_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_103_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_103_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_103_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_103_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_103_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_103_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_103_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_103_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_103_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_103_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: jump\nB: sit\nC: run\nD: bow"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: clap\nB: drop\nC: run\nD: jump", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_104_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_104_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_104_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_104_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_104_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_104_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_104_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_104_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_104_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_104_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_104_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_104_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: clap\nB: drop\nC: run\nD: jump"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: remove shoes\nB: wear shoes\nC: remove jacket\nD: wear jacket", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_105_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_105_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_105_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_105_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_105_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_105_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_105_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_105_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_105_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_105_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_105_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_105_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: remove shoes\nB: wear shoes\nC: remove jacket\nD: wear jacket"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: tie a shoelace\nB: eat a sandwich\nC: put on a hat\nD: throw a ball", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_106_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_106_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_106_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_106_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_106_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_106_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_106_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_106_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_106_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_106_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_106_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_106_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: tie a shoelace\nB: eat a sandwich\nC: put on a hat\nD: throw a ball"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: check time (from watch)\nB: drink water\nC: tie shoelace\nD: wave hand", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_107_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_107_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_107_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_107_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_107_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_107_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_107_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_107_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_107_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_107_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_107_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_107_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: check time (from watch)\nB: drink water\nC: tie shoelace\nD: wave hand"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sit down\nB: jump up\nC: take off hat\nD: wear jacket", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_108_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_108_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_108_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_108_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_108_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_108_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_108_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_108_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_108_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_108_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_108_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_108_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sit down\nB: jump up\nC: take off hat\nD: wear jacket"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: wave hand\nB: clap hands\nC: tie shoe\nD: wipe face", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_109_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_109_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_109_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_109_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_109_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_109_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_109_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_109_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_109_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_109_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_109_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_109_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: wave hand\nB: clap hands\nC: tie shoe\nD: wipe face"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: kick a ball\nB: take off a hat\nC: wave a hand\nD: put on a hat", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_110_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_110_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_110_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_110_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_110_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_110_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_110_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_110_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_110_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_110_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_110_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_110_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: kick a ball\nB: take off a hat\nC: wave a hand\nD: put on a hat"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: tie a shoelace\nB: put on a hat\nC: button a shirt\nD: take off a hat", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_111_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_111_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_111_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_111_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_111_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_111_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_111_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_111_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_111_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_111_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_111_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_111_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: tie a shoelace\nB: put on a hat\nC: button a shirt\nD: take off a hat"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: drink water\nB: play guitar\nC: tie shoelaces\nD: check time (from watch)", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_112_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_112_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_112_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_112_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_112_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_112_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_112_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_112_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_112_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_112_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_112_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_112_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: drink water\nB: play guitar\nC: tie shoelaces\nD: check time (from watch)"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: play football\nB: ride a bike\nC: read a book\nD: eat meal", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_113_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_113_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_113_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_113_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_113_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_113_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_113_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_113_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_113_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_113_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_113_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_113_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: play football\nB: ride a bike\nC: read a book\nD: eat meal"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sit\nB: run\nC: jump\nD: drop", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_114_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_114_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_114_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_114_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_114_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_114_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_114_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_114_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_114_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_114_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_114_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_114_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sit\nB: run\nC: jump\nD: drop"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: put on glasses\nB: tie a shoelace\nC: take off a hat\nD: put on a hat", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_115_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_115_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_115_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_115_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_115_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_115_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_115_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_115_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_115_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_115_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_115_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_115_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: put on glasses\nB: tie a shoelace\nC: take off a hat\nD: put on a hat"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: tie a shoelace\nB: drink water\nC: ride a bicycle\nD: read a book", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_116_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_116_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_116_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_116_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_116_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_116_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_116_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_116_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_116_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_116_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_116_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_116_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: tie a shoelace\nB: drink water\nC: ride a bicycle\nD: read a book"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: dance\nB: pickup\nC: sleep\nD: basketball", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_117_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_117_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_117_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_117_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_117_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_117_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_117_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_117_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_117_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_117_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_117_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_117_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: dance\nB: pickup\nC: sleep\nD: basketball"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: eat meal\nB: play guitar\nC: write letter\nD: ride bicycle", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_118_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_118_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_118_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_118_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_118_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_118_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_118_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_118_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_118_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_118_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_118_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_118_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: eat meal\nB: play guitar\nC: write letter\nD: ride bicycle"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: drink water\nB: read a book\nC: play basketball\nD: ride a bicycle", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_119_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_119_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_119_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_119_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_119_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_119_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_119_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_119_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_119_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_119_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_119_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_119_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: drink water\nB: read a book\nC: play basketball\nD: ride a bicycle"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: tie shoe\nB: wave hand\nC: check time (from watch)\nD: pick up phone", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_120_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_120_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_120_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_120_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_120_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_120_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_120_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_120_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_120_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_120_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_120_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_120_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: tie shoe\nB: wave hand\nC: check time (from watch)\nD: pick up phone"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: tie a shoelace\nB: put on a hat\nC: adjust a scarf\nD: take off a hat", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_121_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_121_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_121_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_121_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_121_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_121_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_121_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_121_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_121_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_121_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_121_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_121_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: tie a shoelace\nB: put on a hat\nC: adjust a scarf\nD: take off a hat"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sitting down\nB: lying down\nC: standing up\nD: running", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_122_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_122_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_122_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_122_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_122_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_122_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_122_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_122_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_122_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_122_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_122_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_122_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sitting down\nB: lying down\nC: standing up\nD: running"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: read a book\nB: drink water\nC: play guitar\nD: ride a bike", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_123_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_123_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_123_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_123_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_123_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_123_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_123_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_123_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_123_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_123_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_123_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_123_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: read a book\nB: drink water\nC: play guitar\nD: ride a bike"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: tie shoelaces\nB: check time (from watch)\nC: brush hair\nD: eat food", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_124_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_124_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_124_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_124_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_124_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_124_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_124_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_124_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_124_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_124_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_124_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_124_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: tie shoelaces\nB: check time (from watch)\nC: brush hair\nD: eat food"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: wave hand\nB: eat\nC: scratch head\nD: wipe face", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_125_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_125_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_125_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_125_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_125_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_125_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_125_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_125_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_125_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_125_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_125_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_125_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: wave hand\nB: eat\nC: scratch head\nD: wipe face"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: drink water\nB: write notes\nC: play guitar\nD: tie shoes", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_126_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_126_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_126_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_126_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_126_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_126_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_126_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_126_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_126_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_126_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_126_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_126_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: drink water\nB: write notes\nC: play guitar\nD: tie shoes"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: make a phone call\nB: write a letter\nC: tie shoes\nD: brush teeth", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_127_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_127_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_127_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_127_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_127_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_127_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_127_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_127_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_127_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_127_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_127_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_127_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: make a phone call\nB: write a letter\nC: tie shoes\nD: brush teeth"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: reading a book\nB: playing basketball\nC: brushing teeth\nD: riding a bicycle", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_128_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_128_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_128_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_128_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_128_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_128_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_128_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_128_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_128_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_128_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_128_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_128_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: reading a book\nB: playing basketball\nC: brushing teeth\nD: riding a bicycle"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: raise hand (question)\nB: touch chest (stomachache\nC: sit down (rest)\nD: step forward (walk)", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_129_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_129_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_129_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_129_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_129_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_129_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_129_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_129_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_129_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_129_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_129_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_129_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: raise hand (question)\nB: touch chest (stomachache\nC: sit down (rest)\nD: step forward (walk)"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: talk on phone\nB: pick up object\nC: tie shoelaces\nD: wipe face", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_130_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_130_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_130_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_130_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_130_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_130_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_130_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_130_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_130_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_130_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_130_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_130_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: talk on phone\nB: pick up object\nC: tie shoelaces\nD: wipe face"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: jump (exercise)\nB: touch chest (stomachache\nC: sit down (rest)\nD: wave hand (greeting)", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_131_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_131_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_131_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_131_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_131_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_131_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_131_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_131_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_131_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_131_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_131_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_131_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: jump (exercise)\nB: touch chest (stomachache\nC: sit down (rest)\nD: wave hand (greeting)"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: lying down\nB: sitting down\nC: standing up\nD: running", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_132_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_132_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_132_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_132_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_132_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_132_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_132_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_132_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_132_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_132_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_132_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_132_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: lying down\nB: sitting down\nC: standing up\nD: running"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: jumping\nB: sitting\nC: pickup\nD: running", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_133_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_133_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_133_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_133_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_133_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_133_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_133_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_133_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_133_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_133_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_133_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_133_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: jumping\nB: sitting\nC: pickup\nD: running"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sit\nB: jump\nC: sleep\nD: pickup", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_134_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_134_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_134_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_134_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_134_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_134_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_134_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_134_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_134_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_134_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_134_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_134_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sit\nB: jump\nC: sleep\nD: pickup"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: eat meal\nB: play guitar\nC: write letter\nD: read book", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_135_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_135_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_135_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_135_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_135_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_135_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_135_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_135_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_135_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_135_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_135_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_135_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: eat meal\nB: play guitar\nC: write letter\nD: read book"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: eat meal\nB: play basketball\nC: walk dog\nD: sleep", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_136_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_136_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_136_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_136_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_136_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_136_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_136_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_136_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_136_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_136_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_136_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_136_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: eat meal\nB: play basketball\nC: walk dog\nD: sleep"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: dance\nB: read book\nC: play tennis\nD: eat meal", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_137_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_137_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_137_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_137_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_137_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_137_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_137_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_137_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_137_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_137_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_137_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_137_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: dance\nB: read book\nC: play tennis\nD: eat meal"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: playing piano\nB: brushing teeth\nC: riding a bike\nD: cooking dinner", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_138_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_138_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_138_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_138_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_138_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_138_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_138_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_138_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_138_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_138_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_138_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_138_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: playing piano\nB: brushing teeth\nC: riding a bike\nD: cooking dinner"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: run\nB: pickup\nC: jump\nD: sit down", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_139_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_139_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_139_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_139_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_139_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_139_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_139_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_139_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_139_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_139_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_139_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_139_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: run\nB: pickup\nC: jump\nD: sit down"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sit\nB: pickup\nC: jump\nD: run", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_140_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_140_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_140_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_140_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_140_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_140_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_140_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_140_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_140_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_140_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_140_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_140_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sit\nB: pickup\nC: jump\nD: run"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: wave a hand\nB: tie a shoe\nC: kick a ball\nD: drink water", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_141_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_141_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_141_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_141_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_141_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_141_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_141_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_141_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_141_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_141_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_141_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_141_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: wave a hand\nB: tie a shoe\nC: kick a ball\nD: drink water"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: drop\nB: jump\nC: sit\nD: turn", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_142_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_142_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_142_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_142_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_142_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_142_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_142_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_142_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_142_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_142_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_142_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_142_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: drop\nB: jump\nC: sit\nD: turn"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: pickup\nB: jump\nC: sit\nD: run", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_143_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_143_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_143_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_143_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_143_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_143_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_143_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_143_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_143_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_143_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_143_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_143_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: pickup\nB: jump\nC: sit\nD: run"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: make a phone call\nB: play a guitar\nC: cook a meal\nD: paint a picture", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_144_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_144_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_144_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_144_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_144_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_144_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_144_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_144_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_144_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_144_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_144_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_144_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: make a phone call\nB: play a guitar\nC: cook a meal\nD: paint a picture"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: check time (from watch)\nB: tie shoelaces\nC: eat an apple\nD: play guitar", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_145_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_145_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_145_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_145_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_145_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_145_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_145_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_145_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_145_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_145_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_145_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_145_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: check time (from watch)\nB: tie shoelaces\nC: eat an apple\nD: play guitar"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: running a marathon\nB: cooking dinner\nC: playing a guitar\nD: brushing teeth", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_146_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_146_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_146_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_146_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_146_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_146_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_146_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_146_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_146_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_146_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_146_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_146_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: running a marathon\nB: cooking dinner\nC: playing a guitar\nD: brushing teeth"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: make a phone call\nB: read a book\nC: ride a bicycle\nD: play a guitar", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_147_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_147_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_147_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_147_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_147_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_147_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_147_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_147_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_147_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_147_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_147_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_147_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: make a phone call\nB: read a book\nC: ride a bicycle\nD: play a guitar"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sit down\nB: wave\nC: put on a hat\nD: take off a hat", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_148_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_148_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_148_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_148_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_148_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_148_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_148_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_148_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_148_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_148_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_148_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_148_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sit down\nB: wave\nC: put on a hat\nD: take off a hat"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: put on a hat\nB: tie shoes\nC: lift weights\nD: take off a hat", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_149_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_149_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_149_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_149_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_149_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_149_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_149_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_149_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_149_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_149_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_149_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_149_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: put on a hat\nB: tie shoes\nC: lift weights\nD: take off a hat"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: adjust a tie\nB: take off a hat\nC: put on glasses\nD: put on a hat", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_150_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_150_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_150_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_150_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_150_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_150_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_150_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_150_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_150_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_150_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_150_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_150_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: adjust a tie\nB: take off a hat\nC: put on glasses\nD: put on a hat"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: raise hand (greeting)\nB: jump (excited)\nC: touch chest (stomachache\nD: sit down (tired)", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_151_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_151_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_151_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_151_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_151_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_151_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_151_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_151_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_151_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_151_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_151_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_151_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: raise hand (greeting)\nB: jump (excited)\nC: touch chest (stomachache\nD: sit down (tired)"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: raise hand\nB: touch chest (stomachache\nC: jump in place\nD: bend forward", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_152_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_152_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_152_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_152_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_152_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_152_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_152_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_152_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_152_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_152_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_152_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_152_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: raise hand\nB: touch chest (stomachache\nC: jump in place\nD: bend forward"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: ride bike\nB: read book\nC: play guitar\nD: eat meal", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_153_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_153_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_153_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_153_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_153_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_153_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_153_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_153_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_153_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_153_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_153_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_153_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: ride bike\nB: read book\nC: play guitar\nD: eat meal"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: eat meal\nB: play guitar\nC: read book\nD: ride bicycle", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_154_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_154_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_154_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_154_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_154_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_154_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_154_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_154_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_154_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_154_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_154_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_154_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: eat meal\nB: play guitar\nC: read book\nD: ride bicycle"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sleep\nB: read book\nC: eat meal\nD: run", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_155_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_155_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_155_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_155_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_155_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_155_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_155_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_155_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_155_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_155_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_155_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_155_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sleep\nB: read book\nC: eat meal\nD: run"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: play guitar\nB: drink water\nC: jump rope\nD: read a book", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_156_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_156_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_156_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_156_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_156_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_156_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_156_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_156_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_156_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_156_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_156_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_156_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: play guitar\nB: drink water\nC: jump rope\nD: read a book"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: drop\nB: spin\nC: run\nD: jump", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_157_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_157_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_157_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_157_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_157_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_157_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_157_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_157_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_157_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_157_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_157_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_157_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: drop\nB: spin\nC: run\nD: jump"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: ride a bicycle\nB: play a guitar\nC: put on a hat\nD: write on a board", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_158_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_158_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_158_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_158_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_158_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_158_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_158_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_158_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_158_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_158_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_158_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_158_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: ride a bicycle\nB: play a guitar\nC: put on a hat\nD: write on a board"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: clap hands\nB: tie shoelaces\nC: touch back (backache)\nD: jump rope", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_159_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_159_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_159_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_159_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_159_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_159_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_159_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_159_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_159_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_159_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_159_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_159_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: clap hands\nB: tie shoelaces\nC: touch back (backache)\nD: jump rope"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: tie shoelaces\nB: drink water\nC: read a book\nD: play guitar", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_160_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_160_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_160_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_160_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_160_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_160_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_160_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_160_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_160_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_160_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_160_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_160_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: tie shoelaces\nB: drink water\nC: read a book\nD: play guitar"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sitting\nB: touch chest (stomachache\nC: jumping\nD: waving", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_161_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_161_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_161_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_161_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_161_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_161_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_161_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_161_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_161_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_161_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_161_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_161_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sitting\nB: touch chest (stomachache\nC: jumping\nD: waving"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: play tennis\nB: read a book\nC: eat meal\nD: ride a bike", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_162_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_162_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_162_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_162_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_162_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_162_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_162_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_162_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_162_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_162_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_162_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_162_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: play tennis\nB: read a book\nC: eat meal\nD: ride a bike"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: lying down\nB: running\nC: sitting down\nD: standing up", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_163_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_163_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_163_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_163_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_163_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_163_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_163_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_163_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_163_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_163_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_163_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_163_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: lying down\nB: running\nC: sitting down\nD: standing up"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: jump\nB: run\nC: sit\nD: drop", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_164_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_164_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_164_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_164_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_164_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_164_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_164_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_164_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_164_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_164_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_164_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_164_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: jump\nB: run\nC: sit\nD: drop"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: pick up object\nB: wipe face\nC: tie shoes\nD: jump rope", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_165_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_165_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_165_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_165_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_165_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_165_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_165_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_165_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_165_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_165_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_165_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_165_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: pick up object\nB: wipe face\nC: tie shoes\nD: jump rope"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sit\nB: run\nC: jump\nD: bow", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_166_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_166_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_166_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_166_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_166_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_166_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_166_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_166_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_166_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_166_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_166_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_166_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sit\nB: run\nC: jump\nD: bow"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: remove shoes\nB: wear jacket\nC: sit down\nD: drink water", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_167_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_167_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_167_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_167_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_167_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_167_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_167_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_167_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_167_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_167_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_167_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_167_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: remove shoes\nB: wear jacket\nC: sit down\nD: drink water"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: run in place\nB: wave hand\nC: touch chest (stomachache\nD: jump up", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_168_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_168_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_168_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_168_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_168_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_168_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_168_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_168_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_168_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_168_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_168_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_168_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: run in place\nB: wave hand\nC: touch chest (stomachache\nD: jump up"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: tie shoelaces\nB: open a door\nC: brush teeth\nD: check time (from watch)", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_169_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_169_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_169_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_169_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_169_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_169_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_169_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_169_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_169_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_169_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_169_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_169_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: tie shoelaces\nB: open a door\nC: brush teeth\nD: check time (from watch)"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: jump rope\nB: play guitar\nC: wipe face\nD: tie shoelaces", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_170_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_170_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_170_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_170_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_170_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_170_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_170_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_170_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_170_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_170_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_170_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_170_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: jump rope\nB: play guitar\nC: wipe face\nD: tie shoelaces"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sitting down\nB: running\nC: lying down\nD: standing up", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_171_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_171_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_171_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_171_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_171_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_171_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_171_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_171_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_171_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_171_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_171_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_171_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sitting down\nB: running\nC: lying down\nD: standing up"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: button a shirt\nB: take off a hat\nC: put on a hat\nD: tie a shoe", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_172_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_172_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_172_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_172_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_172_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_172_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_172_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_172_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_172_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_172_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_172_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_172_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: button a shirt\nB: take off a hat\nC: put on a hat\nD: tie a shoe"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: ride bicycle\nB: play piano\nC: wear jacket\nD: eat apple", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_173_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_173_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_173_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_173_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_173_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_173_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_173_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_173_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_173_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_173_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_173_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_173_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: ride bicycle\nB: play piano\nC: wear jacket\nD: eat apple"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: brushing teeth\nB: jogging\nC: reading a book\nD: cooking", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_174_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_174_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_174_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_174_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_174_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_174_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_174_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_174_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_174_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_174_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_174_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_174_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: brushing teeth\nB: jogging\nC: reading a book\nD: cooking"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: tie shoelaces\nB: pick up bag\nC: clap hands\nD: check time (from watch)", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_175_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_175_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_175_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_175_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_175_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_175_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_175_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_175_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_175_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_175_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_175_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_175_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: tie shoelaces\nB: pick up bag\nC: clap hands\nD: check time (from watch)"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: wave hand\nB: touch back (backache)\nC: eat food\nD: jump", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_176_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_176_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_176_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_176_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_176_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_176_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_176_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_176_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_176_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_176_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_176_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_176_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: wave hand\nB: touch back (backache)\nC: eat food\nD: jump"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: running\nB: reading\nC: dancing\nD: cooking", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_177_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_177_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_177_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_177_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_177_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_177_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_177_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_177_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_177_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_177_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_177_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_177_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: running\nB: reading\nC: dancing\nD: cooking"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: play guitar\nB: eat meal\nC: dance\nD: read book", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_178_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_178_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_178_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_178_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_178_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_178_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_178_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_178_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_178_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_178_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_178_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_178_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: play guitar\nB: eat meal\nC: dance\nD: read book"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: tie shoelaces\nB: make a phone call\nC: brush teeth\nD: write in a notebook", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_179_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_179_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_179_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_179_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_179_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_179_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_179_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_179_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_179_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_179_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_179_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_179_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: tie shoelaces\nB: make a phone call\nC: brush teeth\nD: write in a notebook"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: check time (from watch)\nB: tie shoes\nC: take a photo\nD: read a book", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_180_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_180_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_180_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_180_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_180_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_180_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_180_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_180_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_180_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_180_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_180_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_180_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: check time (from watch)\nB: tie shoes\nC: take a photo\nD: read a book"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: eat sandwich\nB: wear jacket\nC: play piano\nD: ride bicycle", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_181_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_181_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_181_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_181_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_181_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_181_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_181_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_181_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_181_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_181_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_181_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_181_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: eat sandwich\nB: wear jacket\nC: play piano\nD: ride bicycle"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: brushing teeth\nB: cooking\nC: jogging\nD: reading a book", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_182_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_182_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_182_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_182_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_182_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_182_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_182_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_182_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_182_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_182_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_182_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_182_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: brushing teeth\nB: cooking\nC: jogging\nD: reading a book"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: pick up phone\nB: tie shoe\nC: adjust glasses\nD: check time (from watch)", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_183_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_183_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_183_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_183_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_183_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_183_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_183_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_183_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_183_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_183_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_183_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_183_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: pick up phone\nB: tie shoe\nC: adjust glasses\nD: check time (from watch)"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: jumping\nB: sitting down\nC: dancing\nD: running", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_184_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_184_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_184_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_184_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_184_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_184_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_184_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_184_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_184_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_184_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_184_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_184_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: jumping\nB: sitting down\nC: dancing\nD: running"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: ride bike\nB: play guitar\nC: wear jacket\nD: eat food", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_185_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_185_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_185_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_185_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_185_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_185_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_185_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_185_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_185_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_185_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_185_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_185_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: ride bike\nB: play guitar\nC: wear jacket\nD: eat food"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: eat a sandwich\nB: sit down\nC: play a guitar\nD: put on a hat", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_186_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_186_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_186_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_186_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_186_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_186_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_186_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_186_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_186_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_186_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_186_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_186_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: eat a sandwich\nB: sit down\nC: play a guitar\nD: put on a hat"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: jump\nB: drop\nC: run\nD: climb", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_187_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_187_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_187_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_187_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_187_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_187_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_187_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_187_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_187_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_187_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_187_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_187_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: jump\nB: drop\nC: run\nD: climb"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: bow\nB: run\nC: sit\nD: jump", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_188_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_188_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_188_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_188_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_188_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_188_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_188_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_188_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_188_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_188_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_188_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_188_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: bow\nB: run\nC: sit\nD: jump"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: reading\nB: dancing\nC: sleeping\nD: running", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_189_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_189_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_189_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_189_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_189_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_189_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_189_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_189_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_189_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_189_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_189_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_189_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: reading\nB: dancing\nC: sleeping\nD: running"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: wave\nB: jump\nC: bow\nD: sit", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_190_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_190_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_190_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_190_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_190_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_190_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_190_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_190_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_190_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_190_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_190_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_190_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: wave\nB: jump\nC: bow\nD: sit"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: standing up\nB: sitting down\nC: jumping\nD: running", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_191_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_191_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_191_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_191_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_191_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_191_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_191_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_191_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_191_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_191_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_191_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_191_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: standing up\nB: sitting down\nC: jumping\nD: running"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: tie shoelaces\nB: play guitar\nC: read a book\nD: drink water", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_192_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_192_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_192_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_192_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_192_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_192_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_192_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_192_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_192_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_192_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_192_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_192_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: tie shoelaces\nB: play guitar\nC: read a book\nD: drink water"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: running\nB: cooking\nC: reading\nD: dancing", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_193_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_193_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_193_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_193_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_193_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_193_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_193_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_193_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_193_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_193_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_193_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_193_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: running\nB: cooking\nC: reading\nD: dancing"}, "output": {"output_text": "C"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: play guitar\nB: check time (from watch)\nC: tie shoelaces\nD: eat sandwich", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_194_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_194_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_194_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_194_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_194_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_194_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_194_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_194_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_194_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_194_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_194_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_194_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: play guitar\nB: check time (from watch)\nC: tie shoelaces\nD: eat sandwich"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: make a phone call\nB: read a book\nC: ride a bicycle\nD: play a guitar", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_195_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_195_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_195_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_195_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_195_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_195_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_195_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_195_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_195_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_195_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_195_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_195_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: make a phone call\nB: read a book\nC: ride a bicycle\nD: play a guitar"}, "output": {"output_text": "A"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: tie shoes\nB: eat a sandwich\nC: read a book\nD: put on a hat", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_196_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_196_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_196_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_196_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_196_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_196_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_196_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_196_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_196_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_196_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_196_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_196_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: tie shoes\nB: eat a sandwich\nC: read a book\nD: put on a hat"}, "output": {"output_text": "D"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: sitting down\nB: standing up\nC: lying down\nD: jumping", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_197_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_197_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_197_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_197_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_197_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_197_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_197_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_197_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_197_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_197_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_197_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_197_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: sitting down\nB: standing up\nC: lying down\nD: jumping"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "PKUMMD", "options": "A: play a guitar\nB: make a phone call\nC: tie a shoelace\nD: ride a bicycle", "visual_input_component": "natural image", "input": {"input_image_path": ["3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_198_0.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_198_1.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_198_2.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_198_3.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_198_4.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_198_5.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_198_6.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_198_7.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_198_8.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_198_9.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_198_10.png", "3D-spatial/Multiview_Action_Recognition/Multiview_Action_Recognition_198_11.png"], "question": "Given the set of images from three different views (i.e., left, middle and right views), please identify the action that this person performs.", "context": "Your task is recognize human actions or activities in a scene using information from multiple views. \nSelect from the following choices.\nA: play a guitar\nB: make a phone call\nC: tie a shoelace\nD: ride a bicycle"}, "output": {"output_text": "B"}, "task": "Multiview_Action_Recognition"}
{"source": "EgoTaskQA", "options": "A: microwave\nB: refrigerator\nC: stove\nD: television", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_0_31.png"], "question": "which object changed its status when the person do the first action did before he/she point to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: microwave\nB: refrigerator\nC: stove\nD: television"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: apple1\nB: orange2\nC: banana3\nD: grape4", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_1_31.png"], "question": "which object changed its status when the person put something to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: apple1\nB: orange2\nC: banana3\nD: grape4"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: broken\nB: emptiness\nC: cleanliness\nD: fullness", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_2_31.png"], "question": "what status of cup changed while the person do the first action did before he/she wash something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: broken\nB: emptiness\nC: cleanliness\nD: fullness"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: locked\nB: opened\nC: half-opened\nD: closed", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_3_31.png"], "question": "what will the status of fridge change to if the actor do the first action in the video in the future?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: locked\nB: opened\nC: half-opened\nD: closed"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Put water-pot to table\nB: Placed water-pot on shelf\nC: Put water-pot to floor\nD: Moved water-pot to window", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_4_31.png"], "question": "How did the person changed the spatial relationships of the last object that has status change in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Put water-pot to table\nB: Placed water-pot on shelf\nC: Put water-pot to floor\nD: Moved water-pot to window"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: I don't know\nB: maybe\nC: yes\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_5_31.png"], "question": "Does the first action did after the person point to something fulfills the preconditions of the action eating something with something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: I don't know\nB: maybe\nC: yes\nD: no"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Reading a book quietly\nB: Chopping vegetables on a board\nC: Put fish to basin using fishing-net\nD: Playing a musical instrument", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_6_31.png"], "question": "During which action does the person knows about the other person's action?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Reading a book quietly\nB: Chopping vegetables on a board\nC: Put fish to basin using fishing-net\nD: Playing a musical instrument"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: sometimes\nB: maybe\nC: no\nD: yes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_7_31.png"], "question": "If the person did not get something from something, is the person able to open something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: sometimes\nB: maybe\nC: no\nD: yes"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Sit on the couch\nB: Turn on the TV\nC: Open microwave\nD: Close the window", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_8_31.png"], "question": "what will the other person do next?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Sit on the couch\nB: Turn on the TV\nC: Open microwave\nD: Close the window"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Pick up the book\nB: Put cup to the other person\nC: Turn off the lights\nD: Close the door", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_9_31.png"], "question": "If the person did not do the last action in the video, what remaining actions in the video is executable?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Pick up the book\nB: Put cup to the other person\nC: Turn off the lights\nD: Close the door"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: no\nB: maybe\nC: yes\nD: sometimes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_10_31.png"], "question": "If the person did not sweep something using something, is the person able to turn off something with something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: no\nB: maybe\nC: yes\nD: sometimes"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: partially\nB: yes\nC: maybe\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_11_31.png"], "question": "Did the attribute of remote changed because of the first action in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: partially\nB: yes\nC: maybe\nD: no"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Put sandwich to plate\nB: Take sandwich off the plate\nC: Throw sandwich away\nD: Put sandwich in the fridge", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_12_31.png"], "question": "What is the last action the person did in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Put sandwich to plate\nB: Take sandwich off the plate\nC: Throw sandwich away\nD: Put sandwich in the fridge"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Wash knife\nB: Dry dishes\nC: Cook meal\nD: Sweep floor", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_13_31.png"], "question": "what is the other person doing while the person put something to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Wash knife\nB: Dry dishes\nC: Cook meal\nD: Sweep floor"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: not sure\nB: maybe\nC: yes\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_14_31.png"], "question": "Does the last action in the video fulfills the preconditions of the action putting something to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: not sure\nB: maybe\nC: yes\nD: no"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Put the fork in the fridge\nB: Dropped the fork on the floor\nC: Get fork from table\nD: Mixed the fork with a spoon", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_15_31.png"], "question": "How did the person changed the state of mixture of fork?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Put the fork in the fridge\nB: Dropped the fork on the floor\nC: Get fork from table\nD: Mixed the fork with a spoon"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: maybe\nB: no\nC: sometimes\nD: yes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_16_31.png"], "question": "Does the last action in the video fulfills the preconditions of the action putting something to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: maybe\nB: no\nC: sometimes\nD: yes"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: falling to the ground\nB: broken in half\nC: completely detached\nD: attached to knife base", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_17_31.png"], "question": "What is the status of knife after the person do the first action did before he/she get something from something to change it?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: falling to the ground\nB: broken in half\nC: completely detached\nD: attached to knife base"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: remote\nB: book\nC: lamp\nD: cup", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_18_31.png"], "question": "which object changed its status first in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: remote\nB: book\nC: lamp\nD: cup"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: in fridge\nB: in microwave\nC: on table\nD: in sink", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_19_31.png"], "question": "what will the status of cup1 change to if the actor put something to something in the future?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: in fridge\nB: in microwave\nC: on table\nD: in sink"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: no\nB: maybe\nC: yes\nD: sometimes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_20_31.png"], "question": "Did the attribute of controller changed because of the first action did before the person point to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: no\nB: maybe\nC: yes\nD: sometimes"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Add seasoning to meat\nB: Cut meat with a knife\nC: Put meat in oven\nD: Get meat from pan using fork", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_21_31.png"], "question": "How did the person changed the wrappedness of meat1?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Add seasoning to meat\nB: Cut meat with a knife\nC: Put meat in oven\nD: Get meat from pan using fork"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Put the cup in the fridge\nB: Wash cup\nC: Break the cup\nD: Throw the cup away", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_22_31.png"], "question": "what will the person do next after this video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Put the cup in the fridge\nB: Wash cup\nC: Break the cup\nD: Throw the cup away"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: sometimes\nC: no\nD: maybe", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_23_31.png"], "question": "If the person did not do the first action did before he/she drink something with something, is the person able to wash something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: sometimes\nC: no\nD: maybe"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Get kettle from stove\nB: Pick up a spoon\nC: Open the fridge\nD: Turn on the faucet", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_24_31.png"], "question": "What is the first action the person did in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Get kettle from stove\nB: Pick up a spoon\nC: Open the fridge\nD: Turn on the faucet"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Get bowl from microwave\nB: Put a cup inside\nC: Turned it on without food\nD: Left it empty", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_25_31.png"], "question": "How did the person changed the emptiness of microwave?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Get bowl from microwave\nB: Put a cup inside\nC: Turned it on without food\nD: Left it empty"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: frozen\nB: boiled\nC: cooked\nD: raw", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_26_31.png"], "question": "What does the person want meat1 to be for the action cooking something using something in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: frozen\nB: boiled\nC: cooked\nD: raw"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: next to the sink\nB: inside the cabinet\nC: under the table\nD: on top of knife", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_27_31.png"], "question": "What is the status of watermelon2 before the person put something to something using knife to change it?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: next to the sink\nB: inside the cabinet\nC: under the table\nD: on top of knife"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: under juicer base\nB: behind juicer base\nC: next to juicer base\nD: on top of juicer base", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_28_31.png"], "question": "What does the person want the last object that has status change in the video to be for the action putting something to something in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: under juicer base\nB: behind juicer base\nC: next to juicer base\nD: on top of juicer base"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Hold controller\nB: Drop controller\nC: Throw controller\nD: Put controller to table", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_29_31.png"], "question": "what is the other person doing while the person do the first action did after he/she turn off something with something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Hold controller\nB: Drop controller\nC: Throw controller\nD: Put controller to table"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: it depends\nC: no\nD: maybe", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_30_31.png"], "question": "If the person did not open something, is the person able to pour from something into something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: it depends\nC: no\nD: maybe"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: only if they do the second action\nC: no\nD: maybe", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_31_31.png"], "question": "If the person did not do the first action in the video, will juicer-lid change its status?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: only if they do the second action\nC: no\nD: maybe"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Eating a snack\nB: Talking on the phone\nC: Point to TV\nD: Reading a book", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_32_31.png"], "question": "What is the person doing before he/she stand-up?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Eating a snack\nB: Talking on the phone\nC: Point to TV\nD: Reading a book"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Ignore it\nB: Wipe with a dry cloth\nC: Use a paper towel\nD: Wash cutting-board", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_33_31.png"], "question": "How did the person changed the cleanliness of cutting-board?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Ignore it\nB: Wipe with a dry cloth\nC: Use a paper towel\nD: Wash cutting-board"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: no\nC: possibly\nD: uncertain", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_34_31.png"], "question": "Did the attribute of closet changed because of the action closing something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: no\nC: possibly\nD: uncertain"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Open a window\nB: Read a book\nC: Make a phone call\nD: Get remote from shelf", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_35_31.png"], "question": "What is the person doing before he/she turn on something with something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Open a window\nB: Read a book\nC: Make a phone call\nD: Get remote from shelf"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: cannot be determined\nB: no\nC: yes\nD: not sure", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_36_31.png"], "question": "Is kettle-base visible to the other person before the person do the first action in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: cannot be determined\nB: no\nC: yes\nD: not sure"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Drive a car\nB: Take a nap\nC: Put juicer to juicer-base\nD: Read a book", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_37_31.png"], "question": "what will the other person do next?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Drive a car\nB: Take a nap\nC: Put juicer to juicer-base\nD: Read a book"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: maybe\nB: yes\nC: no\nD: sometimes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_38_31.png"], "question": "If the person did not sweep something using something, will the last object that has status change in the video change its status?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: maybe\nB: yes\nC: no\nD: sometimes"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: taste\nB: color\nC: shape\nD: size", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_39_31.png"], "question": "what status will the person change on tomato?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: taste\nB: color\nC: shape\nD: size"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Move vacuum to closet\nB: Get vacuum from floor\nC: Leave vacuum outside\nD: Put vacuum on table", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_40_31.png"], "question": "How did the person changed the spatial relationships of the last object that has status change in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Move vacuum to closet\nB: Get vacuum from floor\nC: Leave vacuum outside\nD: Put vacuum on table"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: door\nB: sink\nC: chair\nD: table", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_41_31.png"], "question": "which object changed its status when the person do the first action did before he/she fill something using something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: door\nB: sink\nC: chair\nD: table"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: height\nB: wateredness\nC: humidity\nD: brightness", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_42_31.png"], "question": "Which attribute does the person want to change with plant for doing the action pouring from something into something in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: height\nB: wateredness\nC: humidity\nD: brightness"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: wateredness\nB: leaf size\nC: height\nD: color", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_43_31.png"], "question": "what status of plant changed while the person do the first action did after he/she fill something using something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: wateredness\nB: leaf size\nC: height\nD: color"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Cook food in the kitchen\nB: Watch TV instead of fishing\nC: Get fishing-net and fish from basin and fishing-net\nD: Play a game on the computer", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_44_31.png"], "question": "If the person did not fill something using something, what remaining actions in the video is executable?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Cook food in the kitchen\nB: Watch TV instead of fishing\nC: Get fishing-net and fish from basin and fishing-net\nD: Play a game on the computer"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: plate\nB: spoon\nC: cup\nD: fork", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_45_31.png"], "question": "which object changed its status last in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: plate\nB: spoon\nC: cup\nD: fork"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Work on juicer-lid\nB: Read a book\nC: Cook dinner\nD: Go for a run", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_46_31.png"], "question": "what will the person do next after this video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Work on juicer-lid\nB: Read a book\nC: Cook dinner\nD: Go for a run"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: size\nB: openess\nC: brand\nD: color", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_47_31.png"], "question": "Which attribute does the person want to change with fridge for doing the last action in the video in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: size\nB: openess\nC: brand\nD: color"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: sometimes\nB: only if the person opens something else\nC: no\nD: yes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_48_31.png"], "question": "If the person did not close something, will cereal1 change its status?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: sometimes\nB: only if the person opens something else\nC: no\nD: yes"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: uncertain\nB: no\nC: yes\nD: maybe", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_49_31.png"], "question": "Did the attribute of lettuce changed because of the first action did after the person get something from something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: uncertain\nB: no\nC: yes\nD: maybe"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Talking on the phone\nB: Walking away\nC: Eating noodles\nD: Get noodles from table", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_50_31.png"], "question": "what is the other person doing while the person do the first action in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Talking on the phone\nB: Walking away\nC: Eating noodles\nD: Get noodles from table"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: wrapping\nB: lamp\nC: table\nD: chair", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_51_31.png"], "question": "which object changed its status first in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: wrapping\nB: lamp\nC: table\nD: chair"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: no\nC: maybe\nD: sometimes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_52_31.png"], "question": "If the person did not get something from something, is the person able to put something to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: no\nC: maybe\nD: sometimes"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Break the seal\nB: Flip the switch\nC: Open wrapping\nD: Cut the ribbon", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_53_31.png"], "question": "What action caused the first object that has status change in the video's status to change to opened?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Break the seal\nB: Flip the switch\nC: Open wrapping\nD: Cut the ribbon"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: sometimes\nC: no\nD: maybe", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_54_31.png"], "question": "If the person did not open something, is the person able to put something to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: sometimes\nC: no\nD: maybe"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Place fork on table\nB: Dry fork\nC: Pick up spoon\nD: Wash fork", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_55_31.png"], "question": "If the person did not do the first action did after he/she put something to something, what remaining actions in the video is executable?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Place fork on table\nB: Dry fork\nC: Pick up spoon\nD: Wash fork"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: under the table\nB: inside the cupboard\nC: in the sink\nD: on top of shelf", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_56_31.png"], "question": "What is the status of plate before the other person do the first action before he/she put something to something to change it?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: under the table\nB: inside the cupboard\nC: in the sink\nD: on top of shelf"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: attached to fork\nB: on the plate\nC: in the pan\nD: detached from fork", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_57_31.png"], "question": "What is the status of meat3 before the person do the first action did after he/she get something from something using fork to change it?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: attached to fork\nB: on the plate\nC: in the pan\nD: detached from fork"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: chair\nB: lamp\nC: book\nD: knife", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_58_31.png"], "question": "If the actor do not get something from something, which object will he/she not be able to change in the future?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: chair\nB: lamp\nC: book\nD: knife"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: I don’t know\nB: yes\nC: maybe\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_59_31.png"], "question": "Did the attribute of the last object that has status change in the video changed because of the action turning off something with something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: I don’t know\nB: yes\nC: maybe\nD: no"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: no\nB: yes\nC: maybe\nD: uncertain", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_60_31.png"], "question": "Did the attribute of fridge changed because of the action closing something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: no\nB: yes\nC: maybe\nD: uncertain"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: maybe\nB: no\nC: yes\nD: I don’t know", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_61_31.png"], "question": "Did the attribute of fridge changed because of the action opening something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: maybe\nB: no\nC: yes\nD: I don’t know"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: no\nC: sometimes\nD: unknown", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_62_31.png"], "question": "Is the other person aware when the person stand-up?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: no\nC: sometimes\nD: unknown"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: no\nC: maybe\nD: sometimes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_63_31.png"], "question": "Did the attribute of juicer changed because of the first action did before the person open something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: no\nC: maybe\nD: sometimes"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Get lettuce from lettuce\nB: Go to sleep\nC: Write a report\nD: Eat a sandwich", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_64_31.png"], "question": "What is the person doing after he/she work on something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Get lettuce from lettuce\nB: Go to sleep\nC: Write a report\nD: Eat a sandwich"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: partially wrapped\nB: wrapped\nC: double wrapped\nD: unwrapped", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_65_31.png"], "question": "what will the person want to have coffee's wrappedness be in the future?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: partially wrapped\nB: wrapped\nC: double wrapped\nD: unwrapped"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: maybe\nB: sometimes\nC: yes\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_66_31.png"], "question": "If the person did not do the first action did after he/she turn on something with something, is the person able to get something from something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: maybe\nB: sometimes\nC: yes\nD: no"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: no\nC: often\nD: sometimes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_67_31.png"], "question": "Did the attribute of fishing-net changed because of the action filling something using something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: no\nC: often\nD: sometimes"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: in the car\nB: in closet\nC: on the table\nD: under the bed", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_68_31.png"], "question": "What does the person want cup to be for the action putting something to something in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: in the car\nB: in closet\nC: on the table\nD: under the bed"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Reading a book\nB: Playing video games\nC: Cooking dinner\nD: Wash juicer and juicer-lid", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_69_31.png"], "question": "what is the other person doing while the person do the first action did before he/she get something from something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Reading a book\nB: Playing video games\nC: Cooking dinner\nD: Wash juicer and juicer-lid"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: sometimes\nB: maybe\nC: yes\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_70_31.png"], "question": "If the person did not open something, will the first object that has status change in the video change its status?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: sometimes\nB: maybe\nC: yes\nD: no"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: separate from the other person\nB: attached to the other person\nC: above the other person\nD: beneath the other person", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_71_31.png"], "question": "what will the person want to have juice's spatial relationships be in the future?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: separate from the other person\nB: attached to the other person\nC: above the other person\nD: beneath the other person"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Pour from bottle-water into juicer\nB: Running a Marathon\nC: Playing a Piano\nD: Sleeping", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_72_31.png"], "question": "What is the person doing after he/she open something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Pour from bottle-water into juicer\nB: Running a Marathon\nC: Playing a Piano\nD: Sleeping"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: not enough information\nB: no\nC: maybe\nD: yes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_73_31.png"], "question": "If the person did not do the first action did before he/she pour from something into something, will spoon change its status?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: not enough information\nB: no\nC: maybe\nD: yes"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: sometimes\nC: maybe\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_74_31.png"], "question": "Did the attribute of closet changed because of the first action did after the person put something to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: sometimes\nC: maybe\nD: no"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: temporal relationships\nB: emotional status\nC: spatial relationships\nD: frequency", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_75_31.png"], "question": "what status of cup changed while the person get something from something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: temporal relationships\nB: emotional status\nC: spatial relationships\nD: frequency"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: placed on the table\nB: attached to me\nC: inside the drawer\nD: on the kitchen counter", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_76_31.png"], "question": "What is the status of knife before the person put something to something to change it?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: placed on the table\nB: attached to me\nC: inside the drawer\nD: on the kitchen counter"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: irrelevant\nB: no\nC: yes\nD: partially", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_77_31.png"], "question": "Did the attribute of knife changed because of the first action did after the person wash something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: irrelevant\nB: no\nC: yes\nD: partially"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: maybe\nB: yes\nC: no\nD: unsure", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_78_31.png"], "question": "If the person did not do the first action in the video, will tv change its status?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: maybe\nB: yes\nC: no\nD: unsure"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Get juicer from juicer-base\nB: Turn on the blender\nC: Chop vegetables\nD: Check the timer", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_79_31.png"], "question": "What is the person doing after he/she put something to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Get juicer from juicer-base\nB: Turn on the blender\nC: Chop vegetables\nD: Check the timer"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: broken\nB: opened\nC: painted\nD: removed", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_80_31.png"], "question": "what will the person want to have the last object that has status change in the video's openess be in the future?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: broken\nB: opened\nC: painted\nD: removed"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Put cup to shelf\nB: Cook meal\nC: Wash car\nD: Water plants", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_81_31.png"], "question": "If the person did not do the first action did after he/she close something, what remaining actions in the video is not executable?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Put cup to shelf\nB: Cook meal\nC: Wash car\nD: Water plants"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: wet\nB: broken\nC: dirty\nD: clean", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_82_31.png"], "question": "What is the status of plate after the person wash something to change it?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: wet\nB: broken\nC: dirty\nD: clean"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Get tomato from table\nB: Wash the knife\nC: Chop the tomato\nD: Slice the bread", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_83_31.png"], "question": "What is the person doing before he/she cut something using something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Get tomato from table\nB: Wash the knife\nC: Chop the tomato\nD: Slice the bread"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Cook a meal\nB: Read a book\nC: Paint a picture\nD: Put fish to basin using tank", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_84_31.png"], "question": "If the person did not get something from something using fishing-net, what remaining actions in the video is not executable?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Cook a meal\nB: Read a book\nC: Paint a picture\nD: Put fish to basin using tank"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: only sometimes\nB: maybe\nC: yes\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_85_31.png"], "question": "If the person did not pour from something into something, will kettle-lid change its status?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: only sometimes\nB: maybe\nC: yes\nD: no"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Read a book\nB: Cook a meal\nC: Get coffee from shelf\nD: Wash the dishes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_86_31.png"], "question": "what is the other person doing while the person do the first action in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Read a book\nB: Cook a meal\nC: Get coffee from shelf\nD: Wash the dishes"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Put tank to table\nB: Take tank from table\nC: Move tank to floor\nD: Put table to tank", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_87_31.png"], "question": "What is the person doing before he/she get something from something and fishing-net?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Put tank to table\nB: Take tank from table\nC: Move tank to floor\nD: Put table to tank"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: sofa\nB: lamp\nC: table\nD: vacuum", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_88_31.png"], "question": "which object changed its status first in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: sofa\nB: lamp\nC: table\nD: vacuum"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Reading a book\nB: Eating lunch\nC: Taking a nap\nD: Put wrapping to table", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_89_31.png"], "question": "what is the other person doing while the person do the first action did before he/she close something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Reading a book\nB: Eating lunch\nC: Taking a nap\nD: Put wrapping to table"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: half-squeezed\nB: in market\nC: in juicer\nD: unpeeled", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_90_31.png"], "question": "what will the status of orange2 change to if the actor do the first action did before he/she get something from something in the future?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: half-squeezed\nB: in market\nC: in juicer\nD: unpeeled"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Slice the watermelon\nB: Peel the watermelon\nC: Throw away the watermelon\nD: Put watermelon to juicer", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_91_31.png"], "question": "what will the other person do next?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Slice the watermelon\nB: Peel the watermelon\nC: Throw away the watermelon\nD: Put watermelon to juicer"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: maybe\nB: possibly\nC: no\nD: yes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_92_31.png"], "question": "Did the attribute of kettle-base changed because of the first action did after the person close something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: maybe\nB: possibly\nC: no\nD: yes"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Reading a book\nB: Boiling water\nC: Put kettle to table\nD: Sitting on a chair", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_93_31.png"], "question": "what is the other person doing while the person do the first action did before he/she point to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Reading a book\nB: Boiling water\nC: Put kettle to table\nD: Sitting on a chair"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: it depends\nB: yes\nC: sometimes\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_94_31.png"], "question": "Does the first action did before the person turn on something with something fulfills the preconditions of the action getting something from something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: it depends\nB: yes\nC: sometimes\nD: no"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Place kettle on stovetop\nB: Fill kettle using sink\nC: Turn on the kettle\nD: Add tea leaves to kettle", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_95_31.png"], "question": "What action caused kettle's status to change to nonempty?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Place kettle on stovetop\nB: Fill kettle using sink\nC: Turn on the kettle\nD: Add tea leaves to kettle"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: no\nC: maybe\nD: sometimes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_96_31.png"], "question": "Did the attribute of tomato1 changed because of the first action did before the person wash something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: no\nC: maybe\nD: sometimes"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Stand up and walk away\nB: Sit down on sofa\nC: Open the window\nD: Start cooking dinner", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_97_31.png"], "question": "what will the other person do next?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Stand up and walk away\nB: Sit down on sofa\nC: Open the window\nD: Start cooking dinner"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Watch TV\nB: Read a book\nC: Go for a run\nD: Work on noodles", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_98_31.png"], "question": "what will the person do next after this video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Watch TV\nB: Read a book\nC: Go for a run\nD: Work on noodles"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: knife\nB: cup\nC: phone\nD: pen", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_99_31.png"], "question": "which object changed its status when the other person get something from something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: knife\nB: cup\nC: phone\nD: pen"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Close the tank lid\nB: Put tank on table\nC: Put tank to sink\nD: Pour tank contents into a glass", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_100_31.png"], "question": "What is the person doing after he/she pour from something into something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Close the tank lid\nB: Put tank on table\nC: Put tank to sink\nD: Pour tank contents into a glass"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: maybe\nC: no\nD: sometimes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_101_31.png"], "question": "If the person did not do the first action did before he/she open something, is the person able to get something from something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: maybe\nC: no\nD: sometimes"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: in room temperature\nB: in boiling water\nC: in the freezer\nD: in the microwave", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_102_31.png"], "question": "what will the person want to have the last object that has status change in the video's temperature be in the future?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: in room temperature\nB: in boiling water\nC: in the freezer\nD: in the microwave"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Tie shoes\nB: Read a book\nC: Drink water from cup\nD: Get meat from floor", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_103_31.png"], "question": "What is the person doing before he/she throw something into something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Tie shoes\nB: Read a book\nC: Drink water from cup\nD: Get meat from floor"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: can not be opened\nB: left part removed\nC: completely sealed\nD: right part added", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_104_31.png"], "question": "What is the precondition of changing the openability of meat2?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: can not be opened\nB: left part removed\nC: completely sealed\nD: right part added"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: undecided\nB: no\nC: yes\nD: maybe", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_105_31.png"], "question": "Did the attribute of cutting-board changed because of the first action did after the person point to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: undecided\nB: no\nC: yes\nD: maybe"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: cleanliness\nB: weight\nC: sharpness\nD: color", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_106_31.png"], "question": "Which attribute does the person want to change with knife for doing the last action in the video in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: cleanliness\nB: weight\nC: sharpness\nD: color"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: lettuce\nB: carrot\nC: pepper\nD: tomato", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_107_31.png"], "question": "which object changed its status when the other person do the last action in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: lettuce\nB: carrot\nC: pepper\nD: tomato"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Leave the watermelon unpeeled\nB: Wash the cutting-board\nC: Cut the watermelon on the floor\nD: Get watermelon from cutting-board", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_108_31.png"], "question": "If the other person did not wash something, what actions of this person in the video is executable?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Leave the watermelon unpeeled\nB: Wash the cutting-board\nC: Cut the watermelon on the floor\nD: Get watermelon from cutting-board"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: always on\nB: could be turned off\nC: always off\nD: could be turned on", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_109_31.png"], "question": "What is the precondition of changing the switchability of the last object that has status change in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: always on\nB: could be turned off\nC: always off\nD: could be turned on"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: not sure\nB: maybe\nC: no\nD: yes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_110_31.png"], "question": "Did the attribute of fridge changed because of the action closing something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: not sure\nB: maybe\nC: no\nD: yes"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: no\nB: yes\nC: not sure\nD: maybe", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_111_31.png"], "question": "If the person did not do the last action in the video, is the person able to put something to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: no\nB: yes\nC: not sure\nD: maybe"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: max temperature\nB: on\nC: off\nD: half full", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_112_31.png"], "question": "What is the precondition of changing the poweredness of kettle?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: max temperature\nB: on\nC: off\nD: half full"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: maybe\nB: no\nC: yes\nD: not sure", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_113_31.png"], "question": "Did the attribute of vacuum changed because of the last action in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: maybe\nB: no\nC: yes\nD: not sure"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: maybe\nB: sometimes\nC: yes\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_114_31.png"], "question": "Is milk visible to the other person after the person do the first action did after he/she open something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: maybe\nB: sometimes\nC: yes\nD: no"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: maybe\nC: not sure\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_115_31.png"], "question": "Does the first action in the video fulfills the preconditions of the action opening something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: maybe\nC: not sure\nD: no"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: sometimes\nB: only if it is a chair\nC: yes\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_116_31.png"], "question": "Does the action sitting down on something fulfills the preconditions of the action putting something to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: sometimes\nB: only if it is a chair\nC: yes\nD: no"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: on the side of shelf\nB: next to the door\nC: on the edge of table\nD: under the chair", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_117_31.png"], "question": "What is the status of vacuum before the person get something from something to change it?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: on the side of shelf\nB: next to the door\nC: on the edge of table\nD: under the chair"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: no\nB: yes\nC: maybe\nD: sometimes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_118_31.png"], "question": "Does the action sitting down on something fulfills the preconditions of the action switching with something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: no\nB: yes\nC: maybe\nD: sometimes"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: fishing-rod\nB: boat\nC: fishing-net\nD: life-jacket", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_119_31.png"], "question": "which object changed its status when the person do the first action in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: fishing-rod\nB: boat\nC: fishing-net\nD: life-jacket"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Moved the milk to the fridge\nB: Placed the milk on the floor\nC: Put milk to table\nD: Took the milk off the table", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_120_31.png"], "question": "How did the person changed the spatial relationships of the first object that has status change in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Moved the milk to the fridge\nB: Placed the milk on the floor\nC: Put milk to table\nD: Took the milk off the table"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: spoon\nB: knife\nC: plate\nD: fork", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_121_31.png"], "question": "which object changed its status when the other person do the first action before he/she eat something with something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: spoon\nB: knife\nC: plate\nD: fork"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: sometimes\nB: maybe\nC: yes\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_122_31.png"], "question": "If the person did not do the first action did before he/she wash something, will sink change its status?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: sometimes\nB: maybe\nC: yes\nD: no"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: no\nB: maybe\nC: yes\nD: sometimes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_123_31.png"], "question": "If the person did not do the first action did before he/she get something from something, is the person able to put something to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: no\nB: maybe\nC: yes\nD: sometimes"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: no\nB: yes\nC: maybe\nD: sometimes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_124_31.png"], "question": "Did the attribute of meat changed because of the action putting something to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: no\nB: yes\nC: maybe\nD: sometimes"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Get meat from meat using spoon\nB: Use a knife to cut the meat\nC: Boil the meat to change its shape\nD: Squash the meat with a fork", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_125_31.png"], "question": "How did the person changed the shape of meat2?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Get meat from meat using spoon\nB: Use a knife to cut the meat\nC: Boil the meat to change its shape\nD: Squash the meat with a fork"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: only partially\nB: maybe\nC: no\nD: yes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_126_31.png"], "question": "Did the attribute of spoon changed because of the first action did after the person put something to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: only partially\nB: maybe\nC: no\nD: yes"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: uncertain\nB: no\nC: maybe\nD: yes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_127_31.png"], "question": "Does the first action did before the person put something to something fulfills the preconditions of the action opening something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: uncertain\nB: no\nC: maybe\nD: yes"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: no\nB: yes\nC: only if watermelon1 changes its status first\nD: maybe", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_128_31.png"], "question": "If the person did not do the first action did before he/she get something from something, will watermelon2 change its status?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: no\nB: yes\nC: only if watermelon1 changes its status first\nD: maybe"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: in the fridge\nB: on the table\nC: in cup1\nD: in cup2", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_129_31.png"], "question": "What is the status of juice before the person do the first action did after he/she get something from something to change it?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: in the fridge\nB: on the table\nC: in cup1\nD: in cup2"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: in the garden\nB: on the table\nC: under the bed\nD: in sink", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_130_31.png"], "question": "What does the person want tank to be for the first action did before the person pour from something into something in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: in the garden\nB: on the table\nC: under the bed\nD: in sink"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: in the refrigerator\nB: under the sink\nC: on top of stove\nD: outside in the garden", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_131_31.png"], "question": "What is the status of water-pot after the other person put something to something to change it?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: in the refrigerator\nB: under the sink\nC: on top of stove\nD: outside in the garden"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Get watermelon from cutting-board\nB: Wash hands\nC: Put apple on the counter\nD: Chop vegetables", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_132_31.png"], "question": "What is the last action the person did in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Get watermelon from cutting-board\nB: Wash hands\nC: Put apple on the counter\nD: Chop vegetables"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: possibly\nB: yes\nC: no\nD: unknown", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_133_31.png"], "question": "Does the first action in the video fulfills the preconditions of the action pouring from something into something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: possibly\nB: yes\nC: no\nD: unknown"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: maybe\nB: no\nC: I am not sure\nD: yes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_134_31.png"], "question": "Did the attribute of controller1 changed because of the first action did before the person stand-up?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: maybe\nB: no\nC: I am not sure\nD: yes"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: full\nB: half-full\nC: boiling\nD: empty", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_135_31.png"], "question": "What is the status of kettle after the person do the last action in the video to change it?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: full\nB: half-full\nC: boiling\nD: empty"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Turned on the lights\nB: Plugged in the TV\nC: Turned off the remote\nD: Turn on TV with remote", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_136_31.png"], "question": "How did the person changed the poweredness of the first object that has status change in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Turned on the lights\nB: Plugged in the TV\nC: Turned off the remote\nD: Turn on TV with remote"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: maybe\nC: sometimes\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_137_31.png"], "question": "Does the action putting something to something fulfills the preconditions of the action watching something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: maybe\nC: sometimes\nD: no"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: maybe\nB: no\nC: yes\nD: only if performed sequentially", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_138_31.png"], "question": "Does the action getting something from something fulfills the preconditions of the action putting something to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: maybe\nB: no\nC: yes\nD: only if performed sequentially"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Cooking food on stove\nB: Fill water-pot using water-dispenser\nC: Reading a book\nD: Talking on the phone", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_139_31.png"], "question": "what is the other person doing while the person stand-up?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Cooking food on stove\nB: Fill water-pot using water-dispenser\nC: Reading a book\nD: Talking on the phone"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: only if they open the fridge again\nB: yes\nC: maybe\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_140_31.png"], "question": "Is fridge visible to the other person after the person do the first action did after he/she put something to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: only if they open the fridge again\nB: yes\nC: maybe\nD: no"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: no\nC: not sure\nD: maybe", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_141_31.png"], "question": "Did the attribute of fridge changed because of the action opening something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: no\nC: not sure\nD: maybe"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Get cereal from table\nB: Turn off the lights\nC: Wash dishes\nD: Open fridge", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_142_31.png"], "question": "What is the last action the person did in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Get cereal from table\nB: Turn off the lights\nC: Wash dishes\nD: Open fridge"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Put orange in the fridge\nB: Put watermelon to fridge\nC: Take watermelon out of the fridge\nD: Take apples from the table", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_143_31.png"], "question": "What is the person doing before he/she get something from something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Put orange in the fridge\nB: Put watermelon to fridge\nC: Take watermelon out of the fridge\nD: Take apples from the table"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: probably\nC: maybe\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_144_31.png"], "question": "Did the attribute of the first object that has status change in the video changed because of the action getting something from something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: probably\nC: maybe\nD: no"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: television\nB: remote\nC: phone\nD: computer", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_145_31.png"], "question": "If the actor do not put something to something, which object will he/she not be able to change in the future?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: television\nB: remote\nC: phone\nD: computer"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Throw the cup away\nB: Break the cup\nC: Put cup to the other person\nD: Keep the cup for themselves", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_146_31.png"], "question": "If the person did not do the first action did after he/she get something from something, what remaining actions in the video is executable?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Throw the cup away\nB: Break the cup\nC: Put cup to the other person\nD: Keep the cup for themselves"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: mixing\nB: harvesting\nC: watering\nD: pruning", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_147_31.png"], "question": "What does the person want plant to be for the first action did before the person fill something using something in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: mixing\nB: harvesting\nC: watering\nD: pruning"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: sometimes\nB: yes\nC: no\nD: maybe", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_148_31.png"], "question": "If the person did not do the first action did after he/she fill something using something, is the person able to work on something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: sometimes\nB: yes\nC: no\nD: maybe"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: emptiness\nB: happiness\nC: fullness\nD: sadness", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_149_31.png"], "question": "what status will the person change on juicer-base?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: emptiness\nB: happiness\nC: fullness\nD: sadness"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: no\nB: yes\nC: uncertain\nD: maybe", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_150_31.png"], "question": "Did the attribute of water-pot changed because of the first action did after the person sit down on something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: no\nB: yes\nC: uncertain\nD: maybe"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: kettle\nB: towel\nC: window\nD: chair", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_151_31.png"], "question": "which object changed its status when the other person do the last action in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: kettle\nB: towel\nC: window\nD: chair"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Put cup to cutting-board\nB: Playing a game\nC: Reading a book\nD: Watching TV", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_152_31.png"], "question": "what is the other person doing while the person open something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Put cup to cutting-board\nB: Playing a game\nC: Reading a book\nD: Watching TV"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: state of separation\nB: state of mixture\nC: state of disintegration\nD: state of dissolution", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_153_31.png"], "question": "what status of noodles changed while the person do the last action in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: state of separation\nB: state of mixture\nC: state of disintegration\nD: state of dissolution"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: in bottle\nB: in cup2\nC: in cup1\nD: on table", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_154_31.png"], "question": "How would the first action did after the person close something change the state of milk1?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: in bottle\nB: in cup2\nC: in cup1\nD: on table"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: off\nB: ignored\nC: on\nD: broken", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_155_31.png"], "question": "What does the person want kettle to be for the first action did after the person work on something in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: off\nB: ignored\nC: on\nD: broken"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: no\nB: yes\nC: sometimes\nD: maybe", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_156_31.png"], "question": "Does the action sitting down on something fulfills the preconditions of the action drinking something with something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: no\nB: yes\nC: sometimes\nD: maybe"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: box1\nB: box2\nC: wrapping1\nD: wrapping2", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_157_31.png"], "question": "which object changed its status when the person get something from something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: box1\nB: box2\nC: wrapping1\nD: wrapping2"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: unknown\nC: no\nD: maybe", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_158_31.png"], "question": "Did the attribute of lettuce changed because of the first action did after the person put something to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: unknown\nC: no\nD: maybe"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Cook meat using microwave\nB: Cook meat using pan and stove\nC: Cook meat using oven\nD: Cook meat using grill", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_159_31.png"], "question": "How did the person changed the cookedness of meat12?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Cook meat using microwave\nB: Cook meat using pan and stove\nC: Cook meat using oven\nD: Cook meat using grill"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: no\nB: partially\nC: yes\nD: maybe", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_160_31.png"], "question": "Did the attribute of the first object that has status change in the video changed because of the action filling something using something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: no\nB: partially\nC: yes\nD: maybe"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: underneath watermelon\nB: on top of watermelon\nC: next to watermelon\nD: inside watermelon", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_161_31.png"], "question": "What is the precondition of changing the spatial relationships of watermelon1?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: underneath watermelon\nB: on top of watermelon\nC: next to watermelon\nD: inside watermelon"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: sometimes\nC: maybe\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_162_31.png"], "question": "Did the attribute of the first object that has status change in the video changed because of the action putting something to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: sometimes\nC: maybe\nD: no"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: vacuum cleaner\nB: refrigerator\nC: microwave\nD: television", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_163_31.png"], "question": "which object changed its status when the other person do the first action in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: vacuum cleaner\nB: refrigerator\nC: microwave\nD: television"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Sit on the couch\nB: Check their phone\nC: Go outside\nD: Get bowl and spoon from table", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_164_31.png"], "question": "What is the person doing after he/she point to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Sit on the couch\nB: Check their phone\nC: Go outside\nD: Get bowl and spoon from table"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: in basin\nB: on ground\nC: in tree\nD: in sky", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_165_31.png"], "question": "How would the action putting something to something using fishing-net change the state of fish?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: in basin\nB: on ground\nC: in tree\nD: in sky"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Read a book\nB: Get remote from table\nC: Go for a walk\nD: Start cooking dinner", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_166_31.png"], "question": "what will the other person do next?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Read a book\nB: Get remote from table\nC: Go for a walk\nD: Start cooking dinner"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: probably not\nB: maybe\nC: yes\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_167_31.png"], "question": "Did the attribute of juicer changed because of the last action in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: probably not\nB: maybe\nC: yes\nD: no"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Watch TV\nB: Go for a run\nC: Read a book\nD: Wash bowl", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_168_31.png"], "question": "If the person did not eat something with something, what remaining actions in the video is executable?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Watch TV\nB: Go for a run\nC: Read a book\nD: Wash bowl"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Painting a portrait\nB: Playing a musical instrument\nC: Cook meat using fork and pan and stove\nD: Reading a book by the fireplace", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_169_31.png"], "question": "what is the other person doing while the person do the last action in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Painting a portrait\nB: Playing a musical instrument\nC: Cook meat using fork and pan and stove\nD: Reading a book by the fireplace"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Put meat to pan using fork\nB: Put meat to pan using knife\nC: Put meat to plate using fork\nD: Put meat to pan using spatula", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_170_31.png"], "question": "How did the person changed the spatial relationships of meat1?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Put meat to pan using fork\nB: Put meat to pan using knife\nC: Put meat to plate using fork\nD: Put meat to pan using spatula"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: no\nB: maybe\nC: uncertain\nD: yes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_171_31.png"], "question": "Did the attribute of meat1 changed because of the action getting something from something using fork?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: no\nB: maybe\nC: uncertain\nD: yes"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: coffee2\nB: coffee1\nC: bottle\nD: tea", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_172_31.png"], "question": "which object changed its status last in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: coffee2\nB: coffee1\nC: bottle\nD: tea"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: maybe\nC: uncertain\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_173_31.png"], "question": "Does the first action in the video fulfills the preconditions of the action opening something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: maybe\nC: uncertain\nD: no"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: sometimes\nB: no\nC: maybe\nD: yes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_174_31.png"], "question": "If the person did not do the first action in the video, will drawer change its status?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: sometimes\nB: no\nC: maybe\nD: yes"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: no\nB: yes, the status changed due to pouring\nC: the action completed without any status change\nD: the attribute has been initialized", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_175_31.png"], "question": "Did the attribute of the object has status change changed because of the action pouring from something into something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: no\nB: yes, the status changed due to pouring\nC: the action completed without any status change\nD: the attribute has been initialized"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: sometimes\nB: no\nC: yes\nD: maybe", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_176_31.png"], "question": "If the person did not do the first action did before he/she wash something, is the person able to get something from something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: sometimes\nB: no\nC: yes\nD: maybe"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: transparent\nB: blue\nC: empty\nD: nonempty", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_177_31.png"], "question": "What is the status of trash-can after the other person throw something into something to change it?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: transparent\nB: blue\nC: empty\nD: nonempty"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Put lettuce to trash-can\nB: Moved the trash-can\nC: Cleaned the trash-can\nD: Removed the lettuce", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_178_31.png"], "question": "What action caused trash-can's status to change to nonempty?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Put lettuce to trash-can\nB: Moved the trash-can\nC: Cleaned the trash-can\nD: Removed the lettuce"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Turn on the light\nB: Open the refrigerator\nC: Get knife from knife-base\nD: Sit on the couch", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_179_31.png"], "question": "During which action does the person knows about the other person's action?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Turn on the light\nB: Open the refrigerator\nC: Get knife from knife-base\nD: Sit on the couch"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: maybe\nB: no\nC: sometimes\nD: yes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_180_31.png"], "question": "Did the attribute of vacuum changed because of the action putting something to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: maybe\nB: no\nC: sometimes\nD: yes"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: inside the refrigerator\nB: next to the coffee machine\nC: on top of juicer base\nD: under the microwave", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_181_31.png"], "question": "what will the person want to have the first object that has status change in the video's spatial relationships be in the future?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: inside the refrigerator\nB: next to the coffee machine\nC: on top of juicer base\nD: under the microwave"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Washed the car\nB: Sweep floor using vacuum\nC: Read a book\nD: Cooked dinner", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_182_31.png"], "question": "How did the person changed the cleanliness of vacuum?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Washed the car\nB: Sweep floor using vacuum\nC: Read a book\nD: Cooked dinner"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: bowl\nB: book\nC: door\nD: lamp", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_183_31.png"], "question": "which object changed its status when the person get something from something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: bowl\nB: book\nC: door\nD: lamp"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: no\nC: sometimes\nD: always", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_184_31.png"], "question": "Is the other person aware when the person get something from something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: no\nC: sometimes\nD: always"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: no\nB: yes\nC: I don’t know\nD: maybe", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_185_31.png"], "question": "If the person did not fill something using something, is the person able to do the first action in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: no\nB: yes\nC: I don’t know\nD: maybe"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Close the tank-lid\nB: Get tank-lid from table\nC: Take a seat\nD: Pour water into the tank", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_186_31.png"], "question": "what is the other person doing while the person do the first action did after he/she put something to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Close the tank-lid\nB: Get tank-lid from table\nC: Take a seat\nD: Pour water into the tank"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: no\nB: only if the object is transparent\nC: sometimes\nD: yes", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_187_31.png"], "question": "Is cutting-board visible to the other person after the person put something to something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: no\nB: only if the object is transparent\nC: sometimes\nD: yes"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Cut another vegetable\nB: Put knife to knife-base\nC: Throw the knife away\nD: Wash the knife", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_188_31.png"], "question": "what will the person do next after this video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Cut another vegetable\nB: Put knife to knife-base\nC: Throw the knife away\nD: Wash the knife"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: in a drawer\nB: on a shelf\nC: under the bed\nD: in trash can", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_189_31.png"], "question": "How would the action throwing something into something change the state of wrapping?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: in a drawer\nB: on a shelf\nC: under the bed\nD: in trash can"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: in the dishwasher\nB: in sink\nC: on the table\nD: in the fridge", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_190_31.png"], "question": "What is the status of cup before the other person do the first action after he/she put something to something to change it?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: in the dishwasher\nB: in sink\nC: on the table\nD: in the fridge"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: table\nB: tv\nC: window\nD: phone", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_191_31.png"], "question": "which object changed its status when the person do the first action did after he/she stand-up?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: table\nB: tv\nC: window\nD: phone"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: no\nB: maybe\nC: yes\nD: I don't know", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_192_31.png"], "question": "If the person did not throw something into something, is the person able to get something from something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: no\nB: maybe\nC: yes\nD: I don't know"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Get fishing-net from basin\nB: Throw the net into the water\nC: Cover the basin with a lid\nD: Pour water from the basin", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_193_31.png"], "question": "If the person did not pour from something into something, what remaining actions in the video is executable?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Get fishing-net from basin\nB: Throw the net into the water\nC: Cover the basin with a lid\nD: Pour water from the basin"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Cut lettuce using knife\nB: Boiling water\nC: Stirring a pot\nD: Peeling an orange", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_194_31.png"], "question": "What is the person doing after he/she throw something into something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Cut lettuce using knife\nB: Boiling water\nC: Stirring a pot\nD: Peeling an orange"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: sometimes\nB: yes\nC: no\nD: maybe", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_195_31.png"], "question": "If the person did not do the first action did after he/she put something to something, is the person able to get something from something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: sometimes\nB: yes\nC: no\nD: maybe"}, "output": {"output_text": "B"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: yes\nB: maybe\nC: no\nD: I don’t know", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_196_31.png"], "question": "If the person did not do the first action in the video, will cereal change its status?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: yes\nB: maybe\nC: no\nD: I don’t know"}, "output": {"output_text": "A"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: maybe\nB: uncertain\nC: yes\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_197_31.png"], "question": "Does the action getting something from something fulfills the preconditions of the last action in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: maybe\nB: uncertain\nC: yes\nD: no"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: Used a remote\nB: Pressed a button\nC: Get controller from table\nD: Turned on the switch", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_198_31.png"], "question": "How did the person changed the poweredness of the first object that has status change in the video?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: Used a remote\nB: Pressed a button\nC: Get controller from table\nD: Turned on the switch"}, "output": {"output_text": "C"}, "task": "Egocentric_Video_QuestionAnswering"}
{"source": "EgoTaskQA", "options": "A: sometimes\nB: only if the action is prolonged\nC: yes\nD: no", "visual_input_component": "egocentric image", "input": {"input_image_path": ["3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_0.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_1.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_2.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_3.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_4.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_5.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_6.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_7.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_8.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_9.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_10.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_11.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_12.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_13.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_14.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_15.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_16.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_17.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_18.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_19.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_20.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_21.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_22.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_23.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_24.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_25.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_26.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_27.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_28.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_29.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_30.png", "3D-spatial/Egocentric_Video_QuestionAnswering/Egocentric_Video_QuestionAnswering_199_31.png"], "question": "Did the attribute of meat changed because of the action closing something?", "context": "Your task is to understand and reasoning about activities and events from the first-person perspective. \nSelect from the following choices.\nA: sometimes\nB: only if the action is prolonged\nC: yes\nD: no"}, "output": {"output_text": "D"}, "task": "Egocentric_Video_QuestionAnswering"}