evaluate_mirb.py 14.9 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import argparse
import itertools
import json
import os
import random
import re
import time
from functools import partial

import numpy as np
import torch
from internvl.model import load_model_and_tokenizer
from internvl.train.dataset import build_transform, dynamic_preprocess
from PIL import Image
from tqdm import tqdm

ds_collections = {
    'MIRB': {
        'root': 'data/MIRB',
        'max_new_tokens': 512,
        'min_new_tokens': 1,
        'split': 'test'
    },
}

word_to_num = {
    'zero': '0', 'one': '1', 'two': '2', 'three': '3', 'four': '4',
    'five': '5', 'six': '6', 'seven': '7', 'eight': '8', 'nine': '9', 'ten': '10',
    'first': '1', 'second': '2', 'third': '3', 'fourth': '4', 'fifth': '5',
    'sixth': '6', 'seventh': '7', 'eighth': '8', 'ninth': '9', 'tenth': '10'
}

# Define the groupings
groups = {
    'Knowledge': ['food', 'sightseeing'],
    'Reasoning': ['codeu', 'plot_code', 'analogy', '3d_scene'],
    'Perception': ['image_jigsaw', 'count', 'attribute'],
    'Multi-Hop': ['visual_chain', 'arxiv']
}


def eval_scores(results, dataset):
    if dataset in ['count', 'codeu', 'food', 'image_jigsaw', 'arxiv', 'visual_chain', 'visual_chain_concat',
                   'plot_code', '3d_scene', '3d_scene_concat', 'count_concat', 'image_needles',
                   'image_needles_concat', 'plot_text', 'arxiv_text', 'codeu_text']:
        score = exact_match(results, dataset)
    elif dataset in ['analogy', 'attribute']:
        score = exact_yes_no(results)
    elif dataset in ['sightseeing']:
        score = exact_in_match(results)
    return score


def exact_yes_no(results):
    acc = []
    for result in results:
        prediction = result['prediction'].strip()
        prediction = prediction.strip('\n')
        trunc_index = prediction.find('\n')
        if trunc_index <= 0:
            trunc_index = prediction.find('.')
        if trunc_index > 0:
            prediction = prediction[:trunc_index]
        if result['answers'].lower() == 'yes' and 'yes' in str(prediction).lower():
            acc.append(1)
        elif result['answers'].lower() == 'no' and 'yes' not in str(prediction).lower():
            acc.append(1)
        else:
            acc.append(0)
    avg_acc = np.average(acc)
    return avg_acc


def exact_in_match(results):
    acc = []
    for result in results:
        if result['answers'].lower() in ['yes', 'no']:
            prediction = result['prediction'].strip()
            prediction = prediction.strip('\n')
            trunc_index = prediction.find('\n')
            if trunc_index <= 0:
                trunc_index = prediction.find('.')
            if trunc_index > 0:
                prediction = prediction[:trunc_index]
            if result['answers'].lower() == 'yes' and 'yes' in str(prediction).lower():
                acc.append(1)
            elif result['answers'].lower() == 'no' and 'yes' not in str(prediction).lower():
                acc.append(1)
            else:
                acc.append(0)
            continue
        prediction = result['prediction'].strip()
        prediction = prediction.strip('\n')
        trunc_index = prediction.find('\n')
        if trunc_index <= 0:
            trunc_index = prediction.find('.')
        if trunc_index > 0:
            prediction = prediction[:trunc_index]
        if str(result['answers']).lower() in str(prediction).lower():
            acc.append(1)
        else:
            acc.append(0)
    avg_acc = np.average(acc)
    return avg_acc


def exact_match(results, dataset):
    acc = []
    for result in results:
        prediction = result['prediction'].strip()
        prediction = prediction.strip('\n')
        trunc_index = prediction.find('\n')
        if trunc_index <= 0:
            trunc_index = prediction.find('.')
        if trunc_index > 0:
            prediction = prediction[:trunc_index]
        if dataset in ['count', 'count_concat',
                       'visual_chain', 'visual_chain_concat',
                       '3d_scene', '3d_scene_concat',
                       'image_needles', 'image_needles_concat']:
            # find the number
            match = re.search(r'\d+', prediction)
            if match:
                prediction = match.group()
            else:
                if str(prediction.lower()) in word_to_num:
                    prediction = word_to_num[str(prediction.lower())]
                else:
                    prediction = ''

        if str(prediction).lower() == str(result['answers']).lower():
            acc.append(1)
        else:
            acc.append(0)
    avg_acc = np.average(acc)
    return avg_acc


def collate_fn(batches, tokenizer):
    try:
        pixel_values = torch.cat([_['pixel_values'] for _ in batches], dim=0)
    except:
        pixel_values = [None for _ in batches]
    questions = [_['question'] for _ in batches]
    answers = [_['answer'] for _ in batches]
    num_patches_lists = [_['num_patches_list'] for _ in batches]
    lines = [_['line'] for _ in batches]
    return pixel_values, questions, answers, num_patches_lists, lines


def get_task_instruction(dataset):
    if dataset in ['analogy', 'attribute', 'plot_code', 'plot_text', 'sightseeing',
                   'image_needles', 'image_needles_concat', 'visual_chain', 'visual_chain_concat']:
        instr = 'Answer with a single word.'
    elif dataset in ['codeu', 'food', 'image_jigsaw', 'codeu_text']:
        instr = 'Answer with the option symbol.'
    elif dataset in ['arxiv', 'arxiv_text']:
        instr = 'Answer with the paper title.'
    elif dataset in ['count', 'count_concat']:
        instr = 'Answer with a single number.'
    elif dataset in ['3d_scene', '3d_scene_concat']:
        instr = 'The following images are different views of the same 3D scene. Answer with a single number.'
    return instr


class MIRBDataset(torch.utils.data.Dataset):

    def __init__(self, root, split, input_size=224, dynamic_image_size=False,
                 use_thumbnail=False, max_num=6):
        json_files = [item for item in os.listdir(root) if item.endswith('.json')]
        self.data = []
        for json_file in json_files:
            json_path = os.path.join(root, json_file)
            # if '_concat' in json_path:
            #     continue
            task = os.path.basename(json_path).replace('.json', '')
            temp = json.loads(open(json_path).read())
            for item in temp:
                item['task'] = task
                self.data.append(item)
        self.root = root
        self.input_size = input_size
        self.dynamic_image_size = dynamic_image_size
        self.use_thumbnail = use_thumbnail
        self.max_num = max_num
        self.transform = build_transform(is_train=False, input_size=input_size)

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        data = self.data[idx]
        questions = data['questions']
        answers = str(data['answers'])
        task = data['task']
        prompt = get_task_instruction(task)
        question = questions + '\n' + prompt
        input_image_path = data['images']
        image_list = []
        for image_path in input_image_path:
            image_path = os.path.join(self.root, image_path)
            image = Image.open(image_path).convert('RGB')
            image_list.append(image)

        num_patches_list = []
        if self.dynamic_image_size:
            images = []
            for image in image_list:
                tiles = dynamic_preprocess(image, image_size=self.input_size,
                                           use_thumbnail=self.use_thumbnail,
                                           max_num=max(1, self.max_num // len(image_list)))
                images += tiles
                num_patches_list.append(len(tiles))
        else:
            images = image_list
            num_patches_list.append(1)
        pixel_values = [self.transform(image) for image in images]
        if len(pixel_values) > 0:
            pixel_values = torch.stack(pixel_values)
        else:
            pixel_values = None

        if len(image_list) == 1:
            prefix = '<image>\n'
        else:
            prefix = ''.join([f'Image-{i + 1}: <image>\n' for i in range(len(image_list))])
        question = prefix + question
        return {
            'question': question,
            'pixel_values': pixel_values,
            'answer': answers,
            'num_patches_list': num_patches_list,
            'line': data
        }


class InferenceSampler(torch.utils.data.sampler.Sampler):

    def __init__(self, size):
        self._size = int(size)
        assert size > 0
        self._rank = torch.distributed.get_rank()
        self._world_size = torch.distributed.get_world_size()
        self._local_indices = self._get_local_indices(size, self._world_size, self._rank)

    @staticmethod
    def _get_local_indices(total_size, world_size, rank):
        shard_size = total_size // world_size
        left = total_size % world_size
        shard_sizes = [shard_size + int(r < left) for r in range(world_size)]

        begin = sum(shard_sizes[:rank])
        end = min(sum(shard_sizes[:rank + 1]), total_size)
        return range(begin, end)

    def __iter__(self):
        yield from self._local_indices

    def __len__(self):
        return len(self._local_indices)


def evaluate_chat_model():
    random.seed(args.seed)

    for ds_name in args.datasets:
        dataset = MIRBDataset(
            root=ds_collections[ds_name]['root'],
            split=ds_collections[ds_name]['split'],
            input_size=image_size,
            dynamic_image_size=args.dynamic,
            use_thumbnail=use_thumbnail,
            max_num=args.max_num
        )
        dataloader = torch.utils.data.DataLoader(
            dataset=dataset,
            sampler=InferenceSampler(len(dataset)),
            batch_size=args.batch_size,
            num_workers=args.num_workers,
            pin_memory=True,
            drop_last=False,
            collate_fn=partial(collate_fn, tokenizer=tokenizer),
        )

        outputs = []
        for _, (pixel_values, questions, answers, num_patches_lists, lines) in tqdm(enumerate(dataloader)):
            try:
                pixel_values = pixel_values.to(torch.bfloat16).cuda()
            except:
                pixel_values = None
            generation_config = dict(
                num_beams=args.num_beams,
                max_new_tokens=ds_collections[ds_name]['max_new_tokens'],
                min_new_tokens=ds_collections[ds_name]['min_new_tokens'],
                do_sample=True if args.temperature > 0 else False,
                temperature=args.temperature,
            )
            try:
                pred = model.chat(
                    tokenizer=tokenizer,
                    pixel_values=pixel_values,
                    question=questions[0],
                    generation_config=generation_config,
                    num_patches_list=num_patches_lists[0],
                    verbose=False
                )
            except:
                pred = 'Error'
            preds = [pred]
            for question, pred, answer, line in zip(questions, preds, answers, lines):
                task = line['task']
                line = {
                    'question': question,
                    'prediction': pred,
                    'answers': answer,
                    'task': task
                }
                score = eval_scores([line], task)
                line['score'] = score
                outputs.append(line)

        torch.distributed.barrier()

        world_size = torch.distributed.get_world_size()
        merged_outputs = [None for _ in range(world_size)]
        torch.distributed.all_gather_object(merged_outputs, json.dumps(outputs))

        merged_outputs = [json.loads(_) for _ in merged_outputs]
        merged_outputs = [_ for _ in itertools.chain.from_iterable(merged_outputs)]

        if torch.distributed.get_rank() == 0:
            print(f'Evaluating {ds_name} ...')
            time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime())
            results_file = f'{ds_name}_{time_prefix}.jsonl'
            output_path = os.path.join(args.out_dir, results_file)
            writer = open(output_path, 'w')
            scores = {}
            for item in merged_outputs:
                task = item['task']
                score = item['score']
                if task not in scores:
                    scores[task] = []
                scores[task].append(score)
                writer.write(json.dumps(item) + '\n')
            writer.close()
            print('Results saved to {}'.format(output_path))
            averages = {}
            for group_name, group_list in groups.items():
                values = [np.mean(scores[task]) for task in group_list]
                averages[group_name] = np.mean(values)
            for category in averages:
                print(f'{category} Acc: {averages[category]}')
            print(f'Mean Acc: {np.mean(list(averages.values()))}')


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--checkpoint', type=str, default='')
    parser.add_argument('--datasets', type=str, default='MIRB')
    parser.add_argument('--batch-size', type=int, default=1)
    parser.add_argument('--num-workers', type=int, default=1)
    parser.add_argument('--num-beams', type=int, default=1)
    parser.add_argument('--temperature', type=float, default=0.0)
    parser.add_argument('--out-dir', type=str, default='results')
    parser.add_argument('--seed', type=int, default=0)
    parser.add_argument('--dynamic', action='store_true')
    parser.add_argument('--max-num', type=int, default=6)
    parser.add_argument('--load-in-8bit', action='store_true')
    parser.add_argument('--load-in-4bit', action='store_true')
    parser.add_argument('--auto', action='store_true')
    args = parser.parse_args()

    if not os.path.exists(args.out_dir):
        os.makedirs(args.out_dir, exist_ok=True)

    args.datasets = args.datasets.split(',')
    print('datasets:', args.datasets)
    assert args.batch_size == 1, 'Only batch size 1 is supported'

    torch.distributed.init_process_group(
        backend='nccl',
        world_size=int(os.getenv('WORLD_SIZE', '1')),
        rank=int(os.getenv('RANK', '0')),
    )

    torch.cuda.set_device(int(os.getenv('LOCAL_RANK', 0)))

    model, tokenizer = load_model_and_tokenizer(args)
    image_size = model.config.force_image_size or model.config.vision_config.image_size
    use_thumbnail = model.config.use_thumbnail

    total_params = sum(p.numel() for p in model.parameters()) / 1e9
    if total_params > 20 or args.dynamic:
        args.num_beams = 1
        print(f'[test] total_params: {total_params}B, use num_beams: {args.num_beams}')
    else:
        print(f'[test] total_params: {total_params}B')
    print(f'[test] image_size: {image_size}')
    print(f'[test] template: {model.config.template}')
    print(f'[test] dynamic_image_size: {args.dynamic}')
    print(f'[test] use_thumbnail: {use_thumbnail}')
    print(f'[test] max_num: {args.max_num}')

    evaluate_chat_model()