import argparse import itertools import json import os import random import re import time from functools import partial import numpy as np import torch from internvl.model import load_model_and_tokenizer from internvl.train.dataset import build_transform, dynamic_preprocess from PIL import Image from tqdm import tqdm ds_collections = { 'MIRB': { 'root': 'data/MIRB', 'max_new_tokens': 512, 'min_new_tokens': 1, 'split': 'test' }, } word_to_num = { 'zero': '0', 'one': '1', 'two': '2', 'three': '3', 'four': '4', 'five': '5', 'six': '6', 'seven': '7', 'eight': '8', 'nine': '9', 'ten': '10', 'first': '1', 'second': '2', 'third': '3', 'fourth': '4', 'fifth': '5', 'sixth': '6', 'seventh': '7', 'eighth': '8', 'ninth': '9', 'tenth': '10' } # Define the groupings groups = { 'Knowledge': ['food', 'sightseeing'], 'Reasoning': ['codeu', 'plot_code', 'analogy', '3d_scene'], 'Perception': ['image_jigsaw', 'count', 'attribute'], 'Multi-Hop': ['visual_chain', 'arxiv'] } def eval_scores(results, dataset): if dataset in ['count', 'codeu', 'food', 'image_jigsaw', 'arxiv', 'visual_chain', 'visual_chain_concat', 'plot_code', '3d_scene', '3d_scene_concat', 'count_concat', 'image_needles', 'image_needles_concat', 'plot_text', 'arxiv_text', 'codeu_text']: score = exact_match(results, dataset) elif dataset in ['analogy', 'attribute']: score = exact_yes_no(results) elif dataset in ['sightseeing']: score = exact_in_match(results) return score def exact_yes_no(results): acc = [] for result in results: prediction = result['prediction'].strip() prediction = prediction.strip('\n') trunc_index = prediction.find('\n') if trunc_index <= 0: trunc_index = prediction.find('.') if trunc_index > 0: prediction = prediction[:trunc_index] if result['answers'].lower() == 'yes' and 'yes' in str(prediction).lower(): acc.append(1) elif result['answers'].lower() == 'no' and 'yes' not in str(prediction).lower(): acc.append(1) else: acc.append(0) avg_acc = np.average(acc) return avg_acc def exact_in_match(results): acc = [] for result in results: if result['answers'].lower() in ['yes', 'no']: prediction = result['prediction'].strip() prediction = prediction.strip('\n') trunc_index = prediction.find('\n') if trunc_index <= 0: trunc_index = prediction.find('.') if trunc_index > 0: prediction = prediction[:trunc_index] if result['answers'].lower() == 'yes' and 'yes' in str(prediction).lower(): acc.append(1) elif result['answers'].lower() == 'no' and 'yes' not in str(prediction).lower(): acc.append(1) else: acc.append(0) continue prediction = result['prediction'].strip() prediction = prediction.strip('\n') trunc_index = prediction.find('\n') if trunc_index <= 0: trunc_index = prediction.find('.') if trunc_index > 0: prediction = prediction[:trunc_index] if str(result['answers']).lower() in str(prediction).lower(): acc.append(1) else: acc.append(0) avg_acc = np.average(acc) return avg_acc def exact_match(results, dataset): acc = [] for result in results: prediction = result['prediction'].strip() prediction = prediction.strip('\n') trunc_index = prediction.find('\n') if trunc_index <= 0: trunc_index = prediction.find('.') if trunc_index > 0: prediction = prediction[:trunc_index] if dataset in ['count', 'count_concat', 'visual_chain', 'visual_chain_concat', '3d_scene', '3d_scene_concat', 'image_needles', 'image_needles_concat']: # find the number match = re.search(r'\d+', prediction) if match: prediction = match.group() else: if str(prediction.lower()) in word_to_num: prediction = word_to_num[str(prediction.lower())] else: prediction = '' if str(prediction).lower() == str(result['answers']).lower(): acc.append(1) else: acc.append(0) avg_acc = np.average(acc) return avg_acc def collate_fn(batches, tokenizer): try: pixel_values = torch.cat([_['pixel_values'] for _ in batches], dim=0) except: pixel_values = [None for _ in batches] questions = [_['question'] for _ in batches] answers = [_['answer'] for _ in batches] num_patches_lists = [_['num_patches_list'] for _ in batches] lines = [_['line'] for _ in batches] return pixel_values, questions, answers, num_patches_lists, lines def get_task_instruction(dataset): if dataset in ['analogy', 'attribute', 'plot_code', 'plot_text', 'sightseeing', 'image_needles', 'image_needles_concat', 'visual_chain', 'visual_chain_concat']: instr = 'Answer with a single word.' elif dataset in ['codeu', 'food', 'image_jigsaw', 'codeu_text']: instr = 'Answer with the option symbol.' elif dataset in ['arxiv', 'arxiv_text']: instr = 'Answer with the paper title.' elif dataset in ['count', 'count_concat']: instr = 'Answer with a single number.' elif dataset in ['3d_scene', '3d_scene_concat']: instr = 'The following images are different views of the same 3D scene. Answer with a single number.' return instr class MIRBDataset(torch.utils.data.Dataset): def __init__(self, root, split, input_size=224, dynamic_image_size=False, use_thumbnail=False, max_num=6): json_files = [item for item in os.listdir(root) if item.endswith('.json')] self.data = [] for json_file in json_files: json_path = os.path.join(root, json_file) # if '_concat' in json_path: # continue task = os.path.basename(json_path).replace('.json', '') temp = json.loads(open(json_path).read()) for item in temp: item['task'] = task self.data.append(item) self.root = root self.input_size = input_size self.dynamic_image_size = dynamic_image_size self.use_thumbnail = use_thumbnail self.max_num = max_num self.transform = build_transform(is_train=False, input_size=input_size) def __len__(self): return len(self.data) def __getitem__(self, idx): data = self.data[idx] questions = data['questions'] answers = str(data['answers']) task = data['task'] prompt = get_task_instruction(task) question = questions + '\n' + prompt input_image_path = data['images'] image_list = [] for image_path in input_image_path: image_path = os.path.join(self.root, image_path) image = Image.open(image_path).convert('RGB') image_list.append(image) num_patches_list = [] if self.dynamic_image_size: images = [] for image in image_list: tiles = dynamic_preprocess(image, image_size=self.input_size, use_thumbnail=self.use_thumbnail, max_num=max(1, self.max_num // len(image_list))) images += tiles num_patches_list.append(len(tiles)) else: images = image_list num_patches_list.append(1) pixel_values = [self.transform(image) for image in images] if len(pixel_values) > 0: pixel_values = torch.stack(pixel_values) else: pixel_values = None if len(image_list) == 1: prefix = '\n' else: prefix = ''.join([f'Image-{i + 1}: \n' for i in range(len(image_list))]) question = prefix + question return { 'question': question, 'pixel_values': pixel_values, 'answer': answers, 'num_patches_list': num_patches_list, 'line': data } class InferenceSampler(torch.utils.data.sampler.Sampler): def __init__(self, size): self._size = int(size) assert size > 0 self._rank = torch.distributed.get_rank() self._world_size = torch.distributed.get_world_size() self._local_indices = self._get_local_indices(size, self._world_size, self._rank) @staticmethod def _get_local_indices(total_size, world_size, rank): shard_size = total_size // world_size left = total_size % world_size shard_sizes = [shard_size + int(r < left) for r in range(world_size)] begin = sum(shard_sizes[:rank]) end = min(sum(shard_sizes[:rank + 1]), total_size) return range(begin, end) def __iter__(self): yield from self._local_indices def __len__(self): return len(self._local_indices) def evaluate_chat_model(): random.seed(args.seed) for ds_name in args.datasets: dataset = MIRBDataset( root=ds_collections[ds_name]['root'], split=ds_collections[ds_name]['split'], input_size=image_size, dynamic_image_size=args.dynamic, use_thumbnail=use_thumbnail, max_num=args.max_num ) dataloader = torch.utils.data.DataLoader( dataset=dataset, sampler=InferenceSampler(len(dataset)), batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=True, drop_last=False, collate_fn=partial(collate_fn, tokenizer=tokenizer), ) outputs = [] for _, (pixel_values, questions, answers, num_patches_lists, lines) in tqdm(enumerate(dataloader)): try: pixel_values = pixel_values.to(torch.bfloat16).cuda() except: pixel_values = None generation_config = dict( num_beams=args.num_beams, max_new_tokens=ds_collections[ds_name]['max_new_tokens'], min_new_tokens=ds_collections[ds_name]['min_new_tokens'], do_sample=True if args.temperature > 0 else False, temperature=args.temperature, ) try: pred = model.chat( tokenizer=tokenizer, pixel_values=pixel_values, question=questions[0], generation_config=generation_config, num_patches_list=num_patches_lists[0], verbose=False ) except: pred = 'Error' preds = [pred] for question, pred, answer, line in zip(questions, preds, answers, lines): task = line['task'] line = { 'question': question, 'prediction': pred, 'answers': answer, 'task': task } score = eval_scores([line], task) line['score'] = score outputs.append(line) torch.distributed.barrier() world_size = torch.distributed.get_world_size() merged_outputs = [None for _ in range(world_size)] torch.distributed.all_gather_object(merged_outputs, json.dumps(outputs)) merged_outputs = [json.loads(_) for _ in merged_outputs] merged_outputs = [_ for _ in itertools.chain.from_iterable(merged_outputs)] if torch.distributed.get_rank() == 0: print(f'Evaluating {ds_name} ...') time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime()) results_file = f'{ds_name}_{time_prefix}.jsonl' output_path = os.path.join(args.out_dir, results_file) writer = open(output_path, 'w') scores = {} for item in merged_outputs: task = item['task'] score = item['score'] if task not in scores: scores[task] = [] scores[task].append(score) writer.write(json.dumps(item) + '\n') writer.close() print('Results saved to {}'.format(output_path)) averages = {} for group_name, group_list in groups.items(): values = [np.mean(scores[task]) for task in group_list] averages[group_name] = np.mean(values) for category in averages: print(f'{category} Acc: {averages[category]}') print(f'Mean Acc: {np.mean(list(averages.values()))}') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', type=str, default='') parser.add_argument('--datasets', type=str, default='MIRB') parser.add_argument('--batch-size', type=int, default=1) parser.add_argument('--num-workers', type=int, default=1) parser.add_argument('--num-beams', type=int, default=1) parser.add_argument('--temperature', type=float, default=0.0) parser.add_argument('--out-dir', type=str, default='results') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--dynamic', action='store_true') parser.add_argument('--max-num', type=int, default=6) parser.add_argument('--load-in-8bit', action='store_true') parser.add_argument('--load-in-4bit', action='store_true') parser.add_argument('--auto', action='store_true') args = parser.parse_args() if not os.path.exists(args.out_dir): os.makedirs(args.out_dir, exist_ok=True) args.datasets = args.datasets.split(',') print('datasets:', args.datasets) assert args.batch_size == 1, 'Only batch size 1 is supported' torch.distributed.init_process_group( backend='nccl', world_size=int(os.getenv('WORLD_SIZE', '1')), rank=int(os.getenv('RANK', '0')), ) torch.cuda.set_device(int(os.getenv('LOCAL_RANK', 0))) model, tokenizer = load_model_and_tokenizer(args) image_size = model.config.force_image_size or model.config.vision_config.image_size use_thumbnail = model.config.use_thumbnail total_params = sum(p.numel() for p in model.parameters()) / 1e9 if total_params > 20 or args.dynamic: args.num_beams = 1 print(f'[test] total_params: {total_params}B, use num_beams: {args.num_beams}') else: print(f'[test] total_params: {total_params}B') print(f'[test] image_size: {image_size}') print(f'[test] template: {model.config.template}') print(f'[test] dynamic_image_size: {args.dynamic}') print(f'[test] use_thumbnail: {use_thumbnail}') print(f'[test] max_num: {args.max_num}') evaluate_chat_model()