intern_vit_6b.py 17.9 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from functools import partial

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from einops import rearrange
from timm.models.layers import DropPath, to_2tuple

try:
    from .flash_attention import FlashAttention
    has_flash_attn = True
except:
    print('FlashAttention is not installed.')
    has_flash_attn = False


def _freeze_params(module):
    for param in module.parameters():
        param.requires_grad = False


class CrossAttention(nn.Module):
    def __init__(
            self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
            proj_drop=0., attn_head_dim=None, out_dim=None):
        super().__init__()
        if out_dim is None:
            out_dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        self.scale = qk_scale or head_dim ** -0.5
        assert all_head_dim == dim

        self.q = nn.Linear(dim, all_head_dim, bias=False)
        self.k = nn.Linear(dim, all_head_dim, bias=False)
        self.v = nn.Linear(dim, all_head_dim, bias=False)

        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.k_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
        else:
            self.q_bias = None
            self.k_bias = None
            self.v_bias = None

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(all_head_dim, out_dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, k=None, v=None):
        B, N, C = x.shape
        N_k = k.shape[1]
        N_v = v.shape[1]

        q_bias, k_bias, v_bias = None, None, None
        if self.q_bias is not None:
            q_bias = self.q_bias
            k_bias = self.k_bias
            v_bias = self.v_bias

        q = F.linear(input=x, weight=self.q.weight, bias=q_bias)
        q = q.reshape(B, N, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)  # (B, N_head, N_q, dim)

        k = F.linear(input=k, weight=self.k.weight, bias=k_bias)
        k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)

        v = F.linear(input=v, weight=self.v.weight, bias=v_bias)
        v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))  # (B, N_head, N_q, N_k)

        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class AttentiveBlock(nn.Module):

    def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, attn_head_dim=None, out_dim=None):
        super().__init__()

        self.norm1_q = norm_layer(dim)
        self.norm1_k = norm_layer(dim)
        self.norm1_v = norm_layer(dim)
        self.cross_attn = CrossAttention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop,
            proj_drop=drop, attn_head_dim=attn_head_dim, out_dim=out_dim)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None):
        x_q = self.norm1_q(x_q + pos_q)
        x_k = self.norm1_k(x_kv + pos_k)
        x_v = self.norm1_v(x_kv)
        x = self.cross_attn(x_q, k=x_k, v=x_v)

        return x


class AttentionPoolingBlock(AttentiveBlock):

    def forward(self, x):
        x_q = x.mean(1, keepdim=True)
        x_kv, pos_q, pos_k = x, 0, 0
        x = super().forward(x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None)
        x = x.squeeze(1)
        return x


class RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


try:
    from apex.normalization import FusedRMSNorm

    RMSNorm = FusedRMSNorm  # noqa

    print('Discovered apex.normalization.FusedRMSNorm - will use it instead of RMSNorm')
except ImportError:
    # using the normal RMSNorm
    pass
except Exception:
    print('discovered apex but it failed to load, falling back to RMSNorm')
    pass


class LayerScale(nn.Module):
    def __init__(self, dim, init_values=1e-5, inplace=False, force_fp32=False):
        super().__init__()
        self.inplace = inplace
        self.gamma = nn.Parameter(init_values * torch.ones(dim))
        self.force_fp32 = force_fp32

    @torch.cuda.amp.autocast(enabled=False)
    def forward(self, x):
        if self.force_fp32:
            output_type = x.dtype
            out = x.float().mul_(self.gamma.float()) if self.inplace else x.float() * self.gamma.float()
            return out.to(dtype=output_type)
        else:
            out = x.mul_(self.gamma) if self.inplace else x * self.gamma
            return out


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_flash_attn=False,
                 causal=False, norm_layer=nn.LayerNorm, qk_normalization=False):
        super().__init__()
        assert dim % num_heads == 0, 'dim should be divisible by num_heads'
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.use_flash_attn = use_flash_attn
        if use_flash_attn:
            self.causal = causal
            self.inner_attn = FlashAttention(attention_dropout=attn_drop)

        self.qk_normalization = qk_normalization
        self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity()
        self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity()

    def _naive_attn(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)

        if self.qk_normalization:
            B_, H_, N_, D_ = q.shape
            q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
            k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)

        attn = ((q * self.scale) @ k.transpose(-2, -1))
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
        qkv = self.qkv(x)
        qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)

        if self.qk_normalization:
            q, k, v = qkv.unbind(2)
            q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
            k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
            qkv = torch.stack([q, k, v], dim=2)

        context, _ = self.inner_attn(
            qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal
        )
        outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
        outs = self.proj_drop(outs)
        return outs

    def forward(self, x):
        x = self._naive_attn(x) if not self.use_flash_attn else self._flash_attn(x)
        return x


class Mlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks
    """

    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU,
                 bias=True, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        bias = to_2tuple(bias)
        drop_probs = to_2tuple(drop)

        self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop_probs[0])
        self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
        self.drop2 = nn.Dropout(drop_probs[1])

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x


class Block(nn.Module):

    def __init__(
            self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
            drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flash_attn=False, with_cp=False,
            qk_normalization=False, layerscale_force_fp32=False):
        super().__init__()

        self.norm1 = norm_layer(dim)
        self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
                              use_flash_attn=use_flash_attn, causal=False, norm_layer=norm_layer,
                              qk_normalization=qk_normalization)
        self.ls1 = LayerScale(dim, init_values=init_values,
                              force_fp32=layerscale_force_fp32) if init_values else nn.Identity()
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        self.ls2 = LayerScale(dim, init_values=init_values,
                              force_fp32=layerscale_force_fp32) if init_values else nn.Identity()
        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.with_cp = with_cp

    def forward(self, x):

        def _inner_forward(x):
            x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
            x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
            return x

        if self.with_cp:
            return checkpoint.checkpoint(_inner_forward, x)
        else:
            return _inner_forward(x)


class PatchEmbed(nn.Module):
    """ 2D Image to Patch Embedding
    """

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches
        self.flatten = flatten

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x, **kwargs):
        x = self.proj(x)
        _, _, H, W = x.shape
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # BCHW -> BNC
        x = self.norm(x)
        return x, H, W


class InternViT6B(nn.Module):

    def __init__(self, in_chans=3, patch_size=14, img_size=224, pretrain_size=224, qkv_bias=False, drop_path_rate=0.0,
                 embed_dim=3200, num_heads=25, mlp_ratio=4, init_values=0.1, qk_normalization=True, depth=48,
                 use_flash_attn=True, with_cp=True, layerscale_force_fp32=False, freeze_vit=True,
                 cls_target='cls_patch_concat', num_classes=1000, attn_pool_num_heads=16, clip_embed_dim=768,
                 head_norm_type='bn', pretrained=None):
        super().__init__()
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models

        self.pretrain_size = pretrain_size
        self.drop_path_rate = drop_path_rate
        self.img_size = img_size
        self.patch_size = patch_size
        self.cls_target = cls_target
        self.depth = depth

        use_flash_attn = use_flash_attn and has_flash_attn
        if use_flash_attn and not has_flash_attn:
            print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
        use_flash_attn = [use_flash_attn] * depth if not isinstance(use_flash_attn, list) else use_flash_attn

        norm_layer_for_blocks = partial(RMSNorm, eps=1e-6)
        self.norm_layer_for_blocks = norm_layer_for_blocks
        self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim)
        num_patches = self.patch_embed.num_patches
        self.num_patches = num_patches
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
        self.pos_drop = nn.Identity()
        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]

        self.blocks = nn.ModuleList([
            Block(embed_dim, num_heads, mlp_ratio, qkv_bias=qkv_bias,
                  norm_layer=norm_layer_for_blocks,
                  drop_path=dpr[i], init_values=init_values, attn_drop=0.,
                  use_flash_attn=use_flash_attn[i],
                  with_cp=with_cp,
                  qk_normalization=qk_normalization,
                  layerscale_force_fp32=layerscale_force_fp32)
            for i in range(depth)])

        if cls_target == 'clip_projector':
            self.clip_projector = AttentionPoolingBlock(
                dim=embed_dim, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None,
                drop=0., attn_drop=0., norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim)

        self.init_weights(pretrained)

        if freeze_vit:
            _freeze_params(self)

        if cls_target == 'cls_patch_concat':
            if head_norm_type == 'bn':
                self.norm = nn.SyncBatchNorm(embed_dim * 2, eps=1e-6)
            else:
                self.norm = nn.LayerNorm(embed_dim * 2, eps=1e-6)
            self.head = nn.Linear(embed_dim * 2, num_classes) if num_classes > 0 else nn.Identity()
        elif cls_target == 'clip_projector':
            if head_norm_type == 'bn':
                self.norm = nn.SyncBatchNorm(clip_embed_dim, eps=1e-6)
            else:
                self.norm = nn.LayerNorm(clip_embed_dim, eps=1e-6)
            self.head = nn.Linear(clip_embed_dim, num_classes) if num_classes > 0 else nn.Identity()
        else:
            raise NotImplementedError

        if type(self.head) != nn.Identity:
            self.head.weight.data.normal_(mean=0.0, std=0.01)
            self.head.bias.data.zero_()

    def init_weights(self, pretrained=None):
        print(f'pretrained: {pretrained}')

        def resize_pos_embed(pos_embed, H, W):
            cls = pos_embed[:, :1, :]
            pos_embed = pos_embed[:, 1:, :].reshape(
                1, self.pretrain_size // 14, self.pretrain_size // 14, -1).permute(0, 3, 1, 2)
            pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
                reshape(1, -1, H * W).permute(0, 2, 1)
            pos_embed = torch.cat([cls, pos_embed], dim=1)
            return pos_embed

        if isinstance(pretrained, str):
            checkpoint = torch.load(pretrained, map_location='cpu')
            if 'module' in checkpoint:
                checkpoint = checkpoint['module']

            # resize pos_embed
            pos_embed = checkpoint['pos_embed']
            checkpoint['pos_embed'] = resize_pos_embed(
                pos_embed, self.img_size // self.patch_size, self.img_size // self.patch_size)
            # resize patch_embed
            patch_embed = checkpoint['patch_embed.proj.weight']
            checkpoint['patch_embed.proj.weight'] = F.interpolate(
                patch_embed, size=(self.patch_size, self.patch_size),
                mode='bicubic', align_corners=False)
            message = self.load_state_dict(checkpoint, strict=False)
            print(message)

    @property
    def dtype(self):
        return self.patch_embed.proj.weight.dtype

    def forward_features(self, x):
        x, _, _ = self.patch_embed(x.type(self.dtype))
        batch_size, seq_len, _ = x.size()
        cls_tokens = self.cls_token.expand(batch_size, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)
        x = x + self.pos_embed

        for idx, blk in enumerate(self.blocks):
            x = blk(x)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        if self.cls_target == 'cls_patch_concat':
            x = torch.cat((x[:, 0, :], x[:, 1:, :].mean(dim=1)), dim=-1)
        elif self.cls_target == 'clip_projector':
            x = self.clip_projector(x)
        else:
            raise NotImplementedError
        x = self.norm(x)
        x = self.head(x)
        return x

    @torch.jit.ignore
    def lr_decay_keywords(self, decay_ratio=0.95):
        lr_ratios = {}

        # blocks
        for idx in range(self.depth):
            tag = 'blocks.{}.'.format(idx)
            decay = 1.0 * (decay_ratio ** (self.depth - idx))
            lr_ratios[tag] = decay

        # patch_embed
        lr_ratios['patch_embed'] = 1.0 * (decay_ratio ** (self.depth + 1))
        lr_ratios['pos_embed'] = 1.0 * (decay_ratio ** (self.depth + 1))
        lr_ratios['cls_token'] = 1.0 * (decay_ratio ** (self.depth + 1))

        return lr_ratios