# -------------------------------------------------------- # InternVL # Copyright (c) 2023 OpenGVLab # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- from functools import partial import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from einops import rearrange from timm.models.layers import DropPath, to_2tuple try: from .flash_attention import FlashAttention has_flash_attn = True except: print('FlashAttention is not installed.') has_flash_attn = False def _freeze_params(module): for param in module.parameters(): param.requires_grad = False class CrossAttention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., attn_head_dim=None, out_dim=None): super().__init__() if out_dim is None: out_dim = dim self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = qk_scale or head_dim ** -0.5 assert all_head_dim == dim self.q = nn.Linear(dim, all_head_dim, bias=False) self.k = nn.Linear(dim, all_head_dim, bias=False) self.v = nn.Linear(dim, all_head_dim, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.k_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.k_bias = None self.v_bias = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, out_dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, k=None, v=None): B, N, C = x.shape N_k = k.shape[1] N_v = v.shape[1] q_bias, k_bias, v_bias = None, None, None if self.q_bias is not None: q_bias = self.q_bias k_bias = self.k_bias v_bias = self.v_bias q = F.linear(input=x, weight=self.q.weight, bias=q_bias) q = q.reshape(B, N, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) # (B, N_head, N_q, dim) k = F.linear(input=k, weight=self.k.weight, bias=k_bias) k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) v = F.linear(input=v, weight=self.v.weight, bias=v_bias) v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0) q = q * self.scale attn = (q @ k.transpose(-2, -1)) # (B, N_head, N_q, N_k) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class AttentiveBlock(nn.Module): def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, attn_head_dim=None, out_dim=None): super().__init__() self.norm1_q = norm_layer(dim) self.norm1_k = norm_layer(dim) self.norm1_v = norm_layer(dim) self.cross_attn = CrossAttention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim, out_dim=out_dim) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None): x_q = self.norm1_q(x_q + pos_q) x_k = self.norm1_k(x_kv + pos_k) x_v = self.norm1_v(x_kv) x = self.cross_attn(x_q, k=x_k, v=x_v) return x class AttentionPoolingBlock(AttentiveBlock): def forward(self, x): x_q = x.mean(1, keepdim=True) x_kv, pos_q, pos_k = x, 0, 0 x = super().forward(x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None) x = x.squeeze(1) return x class RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) try: from apex.normalization import FusedRMSNorm RMSNorm = FusedRMSNorm # noqa print('Discovered apex.normalization.FusedRMSNorm - will use it instead of RMSNorm') except ImportError: # using the normal RMSNorm pass except Exception: print('discovered apex but it failed to load, falling back to RMSNorm') pass class LayerScale(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False, force_fp32=False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) self.force_fp32 = force_fp32 @torch.cuda.amp.autocast(enabled=False) def forward(self, x): if self.force_fp32: output_type = x.dtype out = x.float().mul_(self.gamma.float()) if self.inplace else x.float() * self.gamma.float() return out.to(dtype=output_type) else: out = x.mul_(self.gamma) if self.inplace else x * self.gamma return out class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_flash_attn=False, causal=False, norm_layer=nn.LayerNorm, qk_normalization=False): super().__init__() assert dim % num_heads == 0, 'dim should be divisible by num_heads' self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.use_flash_attn = use_flash_attn if use_flash_attn: self.causal = causal self.inner_attn = FlashAttention(attention_dropout=attn_drop) self.qk_normalization = qk_normalization self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity() self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity() def _naive_attn(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) if self.qk_normalization: B_, H_, N_, D_ = q.shape q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) attn = ((q * self.scale) @ k.transpose(-2, -1)) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x def _flash_attn(self, x, key_padding_mask=None, need_weights=False): qkv = self.qkv(x) qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads) if self.qk_normalization: q, k, v = qkv.unbind(2) q = self.q_norm(q.flatten(-2, -1)).view(q.shape) k = self.k_norm(k.flatten(-2, -1)).view(k.shape) qkv = torch.stack([q, k, v], dim=2) context, _ = self.inner_attn( qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal ) outs = self.proj(rearrange(context, 'b s h d -> b s (h d)')) outs = self.proj_drop(outs) return outs def forward(self, x): x = self._naive_attn(x) if not self.use_flash_attn else self._flash_attn(x) return x class Mlp(nn.Module): """ MLP as used in Vision Transformer, MLP-Mixer and related networks """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features bias = to_2tuple(bias) drop_probs = to_2tuple(drop) self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0]) self.act = act_layer() self.drop1 = nn.Dropout(drop_probs[0]) self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1]) self.drop2 = nn.Dropout(drop_probs[1]) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop1(x) x = self.fc2(x) x = self.drop2(x) return x class Block(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None, drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flash_attn=False, with_cp=False, qk_normalization=False, layerscale_force_fp32=False): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, use_flash_attn=use_flash_attn, causal=False, norm_layer=norm_layer, qk_normalization=qk_normalization) self.ls1 = LayerScale(dim, init_values=init_values, force_fp32=layerscale_force_fp32) if init_values else nn.Identity() # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.ls2 = LayerScale(dim, init_values=init_values, force_fp32=layerscale_force_fp32) if init_values else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.with_cp = with_cp def forward(self, x): def _inner_forward(x): x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x)))) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) return x if self.with_cp: return checkpoint.checkpoint(_inner_forward, x) else: return _inner_forward(x) class PatchEmbed(nn.Module): """ 2D Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.flatten = flatten self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x, **kwargs): x = self.proj(x) _, _, H, W = x.shape if self.flatten: x = x.flatten(2).transpose(1, 2) # BCHW -> BNC x = self.norm(x) return x, H, W class InternViT6B(nn.Module): def __init__(self, in_chans=3, patch_size=14, img_size=224, pretrain_size=224, qkv_bias=False, drop_path_rate=0.0, embed_dim=3200, num_heads=25, mlp_ratio=4, init_values=0.1, qk_normalization=True, depth=48, use_flash_attn=True, with_cp=True, layerscale_force_fp32=False, freeze_vit=True, cls_target='cls_patch_concat', num_classes=1000, attn_pool_num_heads=16, clip_embed_dim=768, head_norm_type='bn', pretrained=None): super().__init__() self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.pretrain_size = pretrain_size self.drop_path_rate = drop_path_rate self.img_size = img_size self.patch_size = patch_size self.cls_target = cls_target self.depth = depth use_flash_attn = use_flash_attn and has_flash_attn if use_flash_attn and not has_flash_attn: print('Warning: Flash Attention is not available, use_flash_attn is set to False.') use_flash_attn = [use_flash_attn] * depth if not isinstance(use_flash_attn, list) else use_flash_attn norm_layer_for_blocks = partial(RMSNorm, eps=1e-6) self.norm_layer_for_blocks = norm_layer_for_blocks self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim) num_patches = self.patch_embed.num_patches self.num_patches = num_patches self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.pos_drop = nn.Identity() self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] self.blocks = nn.ModuleList([ Block(embed_dim, num_heads, mlp_ratio, qkv_bias=qkv_bias, norm_layer=norm_layer_for_blocks, drop_path=dpr[i], init_values=init_values, attn_drop=0., use_flash_attn=use_flash_attn[i], with_cp=with_cp, qk_normalization=qk_normalization, layerscale_force_fp32=layerscale_force_fp32) for i in range(depth)]) if cls_target == 'clip_projector': self.clip_projector = AttentionPoolingBlock( dim=embed_dim, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim) self.init_weights(pretrained) if freeze_vit: _freeze_params(self) if cls_target == 'cls_patch_concat': if head_norm_type == 'bn': self.norm = nn.SyncBatchNorm(embed_dim * 2, eps=1e-6) else: self.norm = nn.LayerNorm(embed_dim * 2, eps=1e-6) self.head = nn.Linear(embed_dim * 2, num_classes) if num_classes > 0 else nn.Identity() elif cls_target == 'clip_projector': if head_norm_type == 'bn': self.norm = nn.SyncBatchNorm(clip_embed_dim, eps=1e-6) else: self.norm = nn.LayerNorm(clip_embed_dim, eps=1e-6) self.head = nn.Linear(clip_embed_dim, num_classes) if num_classes > 0 else nn.Identity() else: raise NotImplementedError if type(self.head) != nn.Identity: self.head.weight.data.normal_(mean=0.0, std=0.01) self.head.bias.data.zero_() def init_weights(self, pretrained=None): print(f'pretrained: {pretrained}') def resize_pos_embed(pos_embed, H, W): cls = pos_embed[:, :1, :] pos_embed = pos_embed[:, 1:, :].reshape( 1, self.pretrain_size // 14, self.pretrain_size // 14, -1).permute(0, 3, 1, 2) pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \ reshape(1, -1, H * W).permute(0, 2, 1) pos_embed = torch.cat([cls, pos_embed], dim=1) return pos_embed if isinstance(pretrained, str): checkpoint = torch.load(pretrained, map_location='cpu') if 'module' in checkpoint: checkpoint = checkpoint['module'] # resize pos_embed pos_embed = checkpoint['pos_embed'] checkpoint['pos_embed'] = resize_pos_embed( pos_embed, self.img_size // self.patch_size, self.img_size // self.patch_size) # resize patch_embed patch_embed = checkpoint['patch_embed.proj.weight'] checkpoint['patch_embed.proj.weight'] = F.interpolate( patch_embed, size=(self.patch_size, self.patch_size), mode='bicubic', align_corners=False) message = self.load_state_dict(checkpoint, strict=False) print(message) @property def dtype(self): return self.patch_embed.proj.weight.dtype def forward_features(self, x): x, _, _ = self.patch_embed(x.type(self.dtype)) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embed for idx, blk in enumerate(self.blocks): x = blk(x) return x def forward(self, x): x = self.forward_features(x) if self.cls_target == 'cls_patch_concat': x = torch.cat((x[:, 0, :], x[:, 1:, :].mean(dim=1)), dim=-1) elif self.cls_target == 'clip_projector': x = self.clip_projector(x) else: raise NotImplementedError x = self.norm(x) x = self.head(x) return x @torch.jit.ignore def lr_decay_keywords(self, decay_ratio=0.95): lr_ratios = {} # blocks for idx in range(self.depth): tag = 'blocks.{}.'.format(idx) decay = 1.0 * (decay_ratio ** (self.depth - idx)) lr_ratios[tag] = decay # patch_embed lr_ratios['patch_embed'] = 1.0 * (decay_ratio ** (self.depth + 1)) lr_ratios['pos_embed'] = 1.0 * (decay_ratio ** (self.depth + 1)) lr_ratios['cls_token'] = 1.0 * (decay_ratio ** (self.depth + 1)) return lr_ratios